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Abstract 
In this paper, we give an overview of a simulation environ-

ment based on Modelica, dedicated to testing PLC 

programs. The main components of the system are a compiler 

of a Modelica subset and a runtime environment, which 

provides the necessary tools for simulating the evolution of 

models. 

Introduction 
Due to the high complexity of embedded 

software systems, it is more and more desirable to 

provide programmable logic control (PLC) program-

mers with virtual test environments. Usually, tests of 

the complete software, including PLC programs, high-

level task control and human-machine interface (HMI) 

visualization, can only be performed when the 

mechanical environment, which is controlled by the 

software, has been finished. 

This is the reason why a simulation environment

based on Modelica has been developed. We describe 

in this paper a simulation system that handles models 

written in Modelica and uses C++ as intermediate 

language. Developed in the frame of the project 

VirtMould, supported by RISC institute and 

company ENGEL from Schwertberg, Austria, the 

compiler was meant to provide a tool for simulating 

injection-molding machines. The compiler accepts only 

a subset of Modelica language: this subset suffices 

for obtaining a model that simulates faithfully an 

injection-molding machine. 

  In order to minimize the necessary simulation 

modelling time, Modelica descriptions of many 

components are generated automatically from CAD 

models. Models are translated first to XML, the 

resulting files containing, in fact, the syntactic structure 

of the Modelica programs. The XML files are further 

parsed and provide the input for a pushdown 

automaton, which creates the internal data structures 

that store the essential content of the future C++
classes.  

This C++ code is compiled and linked to specific 

simulation libraries; the resulting software component 

– a dynamic-link library or a static library – can be 

linked to external tools for visualization or process 

simulation. 

In fact, the runtime environment is interfaced 

with a simulation of the embedded software 

environment. It allows an almost real time execution 

and simulation of the embedded software. In addition, 

an open, OPC (OLE for process control) based 

interface for visualization and monitoring of the 

process is provided. 

As we have already mentioned, the stable version 

of our product accepts only a subset of Modelica
language. Thus, among the restricted classes, only 

blocks are currently translated, and the syntax is 

restricted. A version that can handle Modelica
models is currently in the testing phase. 

The paper is structured as follows: We begin by 

giving a short overview of the project. The architecture 

is detailed in Section 2. In Section 3 we present the 

main features of the C++ generated code. Section 4 

describes the interface provided by the software 

component obtained after compiling the model. In 

Section 6 we give some examples and snapshots of the 

visual interfaces.  

1. Project overview 
ENGEL is a leading manufacturer of injection 

moulding machines, producing and selling integrated 

flexible manufacturing cells. A typical manufacturing 

cell consists of: 

- an injection-moulding machine, whose 

individual components are selected from a 

wide variety of available product features; 

- a handling system built upon a free program-

mable robot.  

The whole manufacturing cell is controlled by an 

embedded software system that integrates an IEC 1131
based PLC, a high-level task-coordination language, a 

Java-based HMI and communication components for 

manufacturing execution system (MES) integration. 

The software engineers and service technicians 

should have the possibility to perform software tests 

offline on their desktop with a “virtual injection-

moulding machine”, whenever a new PLC is produced. 

In order to achieve a high user acceptance, a test 

environment (see [6] for a description of the main 

features of such software components) must be closely 

integrated with the development environment used by 

the PLC programmers; also, the PLC programmer 

should not be bothered with building simulation 

models for his specific target machine. Therefore the 

simulation models used for testing must be 

automatically generated from CAD designs. 

The main goal is to increase software quality 

through simulation-based testing without increasing the 
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time spent for testing. In addition to this, VirtMould
should also be applicable for other application 

domains, like customer support offline diagnosis,

computer based training or sales support.

2. System architecture 
VirtMould environment contains four major compo-

nents: 

• automatic generation of a simulation model; 

• programming environment; 

• runtime environment; 

• visualization. 

Figure 1: System architecture of the VirtMould 
environment. 

Automatic generation of the simulation model  

In order to minimize the effort for building 

simulation models, XML-based tools have been 

developed for translating CAD files (containing 

electrical, hydraulic, etc. components), together with 

information about product configuration, to Modelica.

These tools work with XLST transformations based on 

the XML files exported from CAD, and generate 

component assembly files.

A library containing the mechatronic blocks and 

handling system components of the injection-moulding 

machine has been developed and is continuously 

improved and extended (ENGEL Component Library).

The goal has not been to achieve the highest possible 

simulation accuracy, but rather to provide the accuracy 

required for software testing, together with a high 

degree of flexibility and fast simulation execution. This 

library also contains components for interactive test 

manipulation, interaction with the panel of the virtual 

machine, and simulation of machine failures. 

Programming Environment 

A compiler for a Modelica subset has been 

implemented. The focus of this compiler was to 

provide an easy integration into the overall system 

architecture and to allow the efficient simulation of 

discrete events. This is done in two phases: The 

Modelica - XML translator parses the Modelica
files and generates a XML representation, and the XML 

- C++ translator generates C++ class files. Details on 

the Modelica compiler are presented in Section 3. 

Runtime Environment 

The runtime environment is loaded by the PLC 

program simulation and contains some major 

components:  

– the model is the C++ collection of classes 

corresponding to the Modelica program;  

– the solver is the C++ framework for 

computing trajectories of the variables of the 

model;  

– there are two kinds of interfaces for 

controlling the simulation and for data 

exchange:  

the control interface is a COM in-process 

DLL interface, which has been chosen for 

coupling the PLC program simulation with 

the Modelica simulation runtime environ-

ment. The PLC program simulation allows 

program execution in either soft real-time or 

virtual simulation time mode. 

for accessing the simulating state we have 

added an OPC server. A more detailed 

description is given in Section 4. 

Visualization 

In addition to using third party visualization 

tools, a built-in configurable user interface allows the 

design of virtual hardware panels. The user has the 

possibility to: 

- inspect all model variables in a hierarchical 

manner; 

- monitor some variables by drawing their 

trajectories; 

- change the values of some variables, provided 

that those variables permit this kind of user 

interaction. 

The user interface can be configured through an XML 

file. 

3. Short description of the Modelica 

compiler 
The compilation of a Modelica model comprises 

three steps. After each step, one or more files of 

specific types are generated. Thus: 

1. The model is parsed and the syntactic 

structure is stored in an XML file. In the same 

format (XML) are stored the libraries. 

2. One or more XML files are taken as input by a 

program that produces C++ code. This code 

mirrors the Modelica code, a Modelica
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class having a C++ counterpart, which is a 

C++ class. 

3. The C++ file is compiled, and the object is 

linked with some libraries, which provide the 

framework for solving the model, i.e., 

generating a simulation, and for interfacing 

with other software tools. 

In the following we focus on the characteristics of the 

C++ code.  

Base classes 

C++ as intermediate code was a normal choice, 

due to the object-oriented philosophy of Modelica
(see Modelica tutorial [1]). A Modelica class is 

translated into a C++ class. Among the restricted 

Modelica classes, our system accepts type, block,

connector and package. Models are accepted with 

some restrictions. 

To each component of a Modelica class 

corresponds a member data in its C++ image. 

According to the specifics of the Modelica class, a 

number of other members are included in the C++ 

code, like, e.g., one additional member for each 

differentiated variable.  

A Modelica block and its C++ image are 

shown in Figure 1. We have kept in the C++ code only 

the member declarations and function definitions that 

correspond directly to their Modelica counterparts. 

The C++ correspondent of a Modelica
package is derived from a special class, which has no 

method with equations but can contain a number of 

inner classes.  

The connectors provide a set of template 

member functions, in order to allow connections with 

components of various types. 

We must emphasize that the granularity of 

Modelica code is preserved: The models are de-

scribed hierarchically in Modelica, by giving the 

mathematical description of components and 

connecting them in composite objects; this structure is 

transmitted to the C++ code.  

Equations 

The equations that describe the behavior of a 

component generate a few member functions. Thus: 

1. discrete equations are collected in a member 

function that is executed only when special 

events occur; 

2. differential equations go to another member 

function;  

3. the remaining equations are divided in two 

groups, depending on the relation of their 

variables with differential equations. Thus, 

we call dynamic these equations that are 

related to differential equations, and 

4. independent algebraic the other ones. 

These methods are easily generated for blocks – 

provided that the Modelica code contains all 

equations in explicit form. If flow variables occur and 

Kirchoff laws have to be generated, implicit equations 

should be added and the translation requires further 

processing. Moreover, for equations that cannot be 

explicitized (like transcendental equations, or poly-

nomial of high degree), numerical solvers are required. 

These features will be covered in a future version of 

our system. 

Events

The set of discrete equations is solved only when 

some events occur. During the simulation, an event 

queue is maintained and used for triggering the 

evaluation of these equations.  

Changes of values of discrete variables usually 

generate events; also, the special functions sample
and edge are event-generators. On the other hand, 

events can be generated externally, by the interaction 

of the user with the visual interface: Recall that the 

output of our system is a software component that can 

be embedded or attached to other software tools; this 

component communicates with the environment in two 

ways, that is, it exposes names, types and values of 

variables, and it accepts, with some restrictions, 

modifications of these variables.  

Simulation 

A simulation consists in the computation of 

trajectories of variables during a specific time period. 

In fact, a finite set of points on these trajectories is 

computed, for values of time discretized by a time step

whose value is set externally.  

For solving differential-algebraic equations we 

have implemented a few numerical integrators: Euler, 

Runge-Kutta, Runge-Kutta with variable step size (see 

[4], [5] for detailed descriptions of these methods). In 

order to ensure a higher stability, the integrators have 

an internal time step (fixed or variable), which is 

usually much smaller than the external. The differential 

and dynamic equations are evaluated after each internal 

time step, whereas the independent algebraic equations 

are evaluated after the external time step. 

Basically, the simulation is performed following 

the same rules as described in the Modelica language 

specifications (see [2], Chapter 4): The integrator 

solves numerically the equations between two events. 

When an event occurs, the set of discrete equations is 

solved and any change of the values of the discrete 

variables can influence the set of differential and 

algebraic equations. 

Ordering their enclosing blocks gives the order in 

which the equations are evaluated, so that every 

variable that occurs in the right-hand side of an 

equation has already been given a value before the 

equation is evaluated.  
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classclassclassclass Sine : publicpublicpublicpublic Interfaces::MO { 

//  Variables ... 

publicpublicpublicpublic:  

ParamVectorN<Real>    amplitude; 

ParamVectorN<SIunits::Frequency> freqHz; 

ParamVectorN<SIunits::Angle>  phase; 

ParamVectorN<Real>    offset; 

ParamVectorN<SIunits::Time>  startTime; 

// protected members 

 ConstScalar<Real>   pi; 

 ParamVectorN<Real>  p_amplitude; 

 ParamVectorN<Real>  p_freqHz; 

 ParamVectorN<Real>  p_phase; 

 ParamVectorN<Real>  p_offset; 

 ParamVectorN<SIunits::Time> p_startTime; 

// methods 

publicpublicpublicpublic:  

 Sine(){     // Default Constructor....

 // … initialization of parameters with constant vals 

  // … 

 } 

 voidvoidvoidvoid resize(){  // resizing vector components 

  p_amplitude.resize(nout); 

  p_freqHz.resize(nout); 

  p_phase.resize(nout); 

  p_offset.resize(nout); 

  p_startTime.resize(nout); 

 } 

 voidvoidvoidvoid init() { 

// initializing parameters with non-constant expr. 

  // 

// initializing nout 

  nout.parameter(max ( size ( amplitude,1 ) ,  

size ( freqHz,1 ) ,size ( phase,1 ) ,  

size ( offset,1 ) ,size ( startTime,1 ) ), 1); 

  MO::init(); 

  //… 

  resize(); 

 } 

 voidvoidvoidvoid start(){    // Settings for start 

  MO::start(); 

 } 

// … 

 voidvoidvoidvoid equation_dyn(const Time &time){ 

// Dynamic Equations for  this Block 

  MO::equation_dyn(time); 

  { 

   Integer _initialCond; 

   Integer _finalCond; 

   _initialCond = 1; 

   _finalCond   =  nout; 

   forforforfor (intintintint i=_initialCond;i<=_finalCond;i++){ 

    Real _if5; 

   ifififif (TimeLt(time, p_startTime [ i - 1 ] )){ 

      _if5 = 0.; 

     } elseelseelseelse { 

_if5 = p_amplitude [ i - 1 ] * 

    Modelica->Math->sin (  

 2*pi*p_freqHz [ i - 1 ] *  

 ( time-p_startTime [ i - 1 ]  ) + 

 p_phase [ i - 1 ]  ) ; 

    } 

  y [ i - 1 ]  = p_offset [ i - 1 ] + ( _if5 ) ; 

   } 

  } 

  returnreturnreturnreturn; 

 } 

// … 

};    // end class: Sine

Figure 2: A Modelica block and its C++ translation.

blockblockblockblock Sine 

parameterparameterparameterparameter RealRealRealReal amplitude[:]={1.}; 

parameterparameterparameterparameter SIunits.Frequency freqHz[:]={1.}; 

parameterparameterparameterparameter SIunits.Angle phase[:]={0.}; 

parameterparameterparameterparameter RealRealRealReal offset[:]={0.}; 

parameterparameterparameterparameter SIunits.Time startTime[:]={0.}; 

extendsextendsextendsextends Interfaces.MO(finalfinalfinalfinal nout=max([size(amplitude, 1); size(freqHz, 1); size(phase, 1); 

size(offset, 1); size(startTime, 1)])); 

protectedprotectedprotectedprotected 

constantconstantconstantconstant RealRealRealReal pi=Modelica.Constants.pi; 

parameterparameterparameterparameter RealRealRealReal p_amplitude[nout]=(ifififif size(amplitude, 1) == 1 thenthenthenthen ones(nout)*amplitude[1] elseelseelseelse amplitude); 

parameterparameterparameterparameter RealRealRealReal p_freqHz[nout]=(ifififif size(freqHz, 1) == 1 thenthenthenthen ones(nout)*freqHz[1] elseelseelseelse freqHz); 

parameterparameterparameterparameter RealRealRealReal p_phase[nout]=(ifififif size(phase, 1) == 1 thenthenthenthen ones(nout)*phase[1] elseelseelseelse phase); 

parameterparameterparameterparameter RealRealRealReal p_offset[nout]=(if if if if size(offset, 1) == 1 thenthenthenthen ones(nout)*offset[1] elseelseelseelse offset); 

parameterparameterparameterparameter SIunits.Time p_startTime[nout]=(if size(startTime, 1) == 1 thenthenthenthen ones(nout)*startTime[1] elseelseelseelse startTime); 

equationequationequationequation 

forforforfor i inininin 1:nout looplooplooploop 

y[i] = p_offset[i] + (ifififif time < p_startTime[i] thenthenthenthen 0. 

elseelseelseelse p_amplitude[i]*Modelica.Math.sin(2*pi*p_freqHz[i]*(time - p_startTime[i]) + p_phase[i])); 

endendendend forforforfor; 
endendendend Sine;
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4. Communication with other 

programs
The runtime system contains two interfaces for 

connections with other programs:  

- a proprietary COM interface for com-

municating with the PLC program simulation; 

- an open OPC-based interface for communi-

cation with visualization tools. 

After compiling the initial Modelica text, a 

library (.lib file) or a dynamic-link library (.dll
file) is generated. This library encapsulates both the 

model description and the integration algorithms. 

Among the possible services provided by this library we 

mention: start/stop a simulation process, transmit the 

names, types and values of all the internal variables of 

the model, at every time moment during the simulation 

run, and accept new values for some of the variables. 

Interaction with other programs is realized through 

a common interface: we have used the COM  (Common 

Object Mode) technique. A COM interface component 

for loading and unloading simulations, calculating time 

steps and exchanging data with the simulation has been 

designed. 

For visualizing the results of the simulation an 

OPC (OLE for process control, see [3] for more 

information) server has been developed and imple-

mented. The simulation results are provided via OPC 

and these values can be visualized with standard OPC 

client tools. OPC is the most commonly used standard 

for inter-process communication in the area of manu-

facturing automation. 

The OPC specification is a non-proprietary 

technical specification that defines a set of standard 

interfaces based upon Microsoft OLE/COM technology. 

An OPC standard interface makes possible inter-

operability between automation/control applications, 

field systems/devices and business/office applications. 

Traditionally, each software or application devel-

oper was required to write a custom interface, or 

server/driver, to exchange data with hardware field 

devices. OPC eliminates this requirement by defining a 

common, high performance interface that permits this 

work to be done once, and then easily reused by HMI, 

SCADA (Supervisory Control and Data Acquisition), 

control and custom applications. 

The advantage of using the OPC Data Access 

Specification is that it provides a hierarchically 

structured namespace that can be directly used to map 

Modelica variables. Clients can then retrieve OPC 

items (i.e. Modelica variables) either synchronously 

or asynchronously. OPC also provides possibilities to 

specify the desired update rates for items and to browse 

the available item name space. The OPC server defines 

the access status (read, write) for each item together 

with additional descriptive information. As OPC is 

implemented by a COM object, the inter-process com-

munication can be realized either as an highly efficient 

in-process communication or as distributable (DCOM) 

out-of-process communication. Also several clients can 

communicate in parallel with one OPC server. 

5. Usage and examples 
The following figure shows a standard ENGEL 

injection moulding machine. The ENGEL HL is a 

highly accurate, fast and energy-saving injection 

moulding machine in tiebarless design for use in the 

range from 200 to 6,000 kN clamping force. 

Figure 3: An injection moulding machine.  

After a thorough analysis of the machine structure, 

a simulation model written in Modelica has been 

developed, which should describe its components with 

an appropriate accuracy for testing its general behavior. 

As we have already mentioned, Modelica description of 

many components has been automatically generated 

from CAD specifications. 

An excerpt of the main Modelica model of the 

injection model machine is given in the following. In 

the instantiation sector of this model all the functional 

units of the machine are defined.  

blockblockblockblock InjectMoldMachine  

  "Tiebarless Injection Molding Machine" 

Lib.IMM.FunctionalUnits.MainPowerSupply  MainPower; 

 Lib.IMM.FunctionalUnits.ControlVoltages  ContrVolt; 

 Lib.IMM.FunctionalUnits.EmergencyOff  EmergOff; 

 Lib.IMM.FunctionalUnits.FilterMotor FilterMotor1;  

 Lib.IMM.FunctionalUnits.Motor Motor1; 

 Lib.IMM.FunctionalUnits.SafetyGateMoldFront SGMoldFront; 

 Lib.IMM.FunctionalUnits.SafetyDoor SafetyDoor; 

 Lib.IMM.FunctionalUnits.SafetyGateInject SGInject; 

 Lib.IMM.FunctionalUnits.Heating  

   Heat1 (startTemp = 30.); 

 Lib.IMM.FunctionalUnits.TraverseCooling Cool1; 

 Lib.IMM.FunctionalUnits.PumpBlock Pumps; 

 Lib.IMM.FunctionalUnits.Ejector  

  Ejector1 (startPos = 0.3); 

 Lib.IMM.FunctionalUnits.Core  

  Core1 (startPos = 10.), 

   Core2 (startPos = 10.); 

 Lib.IMM.FunctionalUnits.InjectionUnit  

  InjUnit1 (startPos = 5.); 

  Lib.IMM.FunctionalUnits.Mold  

  Mold1 (startPos = 3.); 

 Lib.IMM.FunctionalUnits.InjectionPlasticize  

  InjPlast1 (startPos = 1.); 

 Lib.VMLib.Electrics.AlarmLamp Alarm; 

 PLC_Interface  PLC_IO; 

 ButtonBlock  Buttons; 

equationequationequationequation 

// input connections for "SafetyDoor" 

connect(ContrVolt.VAC24, SafetyDoor.VAC24); 

connect(ContrVolt.VE24, SafetyDoor.VE24); 

connect(Buttons.SafetyDoor.outPort, SafetyDoor.HandleGate); 

connect(Buttons.QuitKey.outPort, SafetyDoor.QuitKey); 

 //. . .  

endendendend InjectMoldMachine; 
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The simulation model contains all components 

necessary for characterizing the behavior of the 

machine, including its electrical parts (e.g. power supply 

with different control voltages), hydraulic movements 

(e.g. ejector, mold) and interaction with the user (e.g. 

open/close safety gate).  

Currently, the typical testing environment consists 

of the following windows: 

- HMI of the injection moulding machine; this 

graphical object has the appearance and 

functionalities of the touch screen of the real 

machine; 

- Graph window: for visualizing simulation 

results of selected variables; 

- Control panel: buttons and switches for 

opening/closing safety gates, moving hydraulic 

units, etc.; this object is a faithful copy of the 

control panel of the injection moulding 

machine; 

- PLC simulation window: gives internal infor-

mation of the PLC runtime environment.

These components can be seen in Figure 4. 

6. Conclusions and future work 
The quality of the overall system architecture of 

the VirtMould test environment has been proved by a 

high user acceptance. About 10 PLC programmers in 

their daily work are currently using the environment; 

this number should be increased to 50 or more users, 

testing more than 1000 systems per year. Modelica
has proved to be the ideal object oriented modelling 

language for building reusable libraries of simulation 

components, which is essential for automatic model 

generation. 

The next step will be to add a test automation 

framework, such that regression tests can be performed 

automatically. An SVG (Scalable Vector Graphic) 

based visualization client will provide enhanced 2D 

animation of the simulation process. A 3D mechanical 

component visualization will also provide the possibility 

for collision checking.  

In addition to software testing, the environment 

will also be used for computer-based training.

Figure 4: Screenshot from a simulation session.
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