
������������	
�������
	
���������	
������	
���������������	�
��������	
���
������
���������
		
	�����
��
�������������������������������������
���������� �
�!!	�"#$%�&"

��!���!�������������'���������������������������������������
�����'�"(%"#
��&&�

������'���)��������*��+���%�����
�����'����	,	�-�+
.
�/���!������'����
�0�����1	

2���!�!��������'���3��4�'�!����������3������������
������������	
��
���	����	�������������������������

��	������	��
�����
�� ������� /����
� ������'���)������� �*�� +���%� ����
�����'��� �	,	� -�+
.
� ��������� �*�

�����4� ���� ���'������4
� /���!������'����
� 0�����1� -�'������� ��� �'�� !�� ���
���������.	

�� 5����� �6��78���
��1������29
�+���
��3����	
�� ������ ��������
� �6+29
� ��!�������� ��� ���!����� ���� ������������ �������
� +��4:!��

;��8�����1
��3����	

�	����	����
�����
�������/����
�2������<���'���4�
��'����������'3�� ��
�6��4���������
�<�'����9���

������'���)��������*��+���%�����
�����'����	,	�-�+
.
�����������*��
�����4����
���'������4
�/���!������'����
�0�����1

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 195 Modelica 2002, March 18−19, 2002

Using Modelica for Testing Embedded Systems

Wolfgang Freiseisen, Robert Keber, Wihelm Medetz,

 Petru Pau, Dietmar Stelzmueller
[wfreisei,rkeber,ppau]@risc.uni-linz.ac.at

[wilhelm.medetz,dietmar.stelzmueller]@scch.at

Abstract
In this paper, we give an overview of a simulation environ-

ment based on Modelica, dedicated to testing PLC

programs. The main components of the system are a compiler

of a Modelica subset and a runtime environment, which

provides the necessary tools for simulating the evolution of

models.

Introduction
Due to the high complexity of embedded

software systems, it is more and more desirable to

provide programmable logic control (PLC) program-

mers with virtual test environments. Usually, tests of

the complete software, including PLC programs, high-

level task control and human-machine interface (HMI)

visualization, can only be performed when the

mechanical environment, which is controlled by the

software, has been finished.

This is the reason why a simulation environment

based on Modelica has been developed. We describe

in this paper a simulation system that handles models

written in Modelica and uses C++ as intermediate

language. Developed in the frame of the project

VirtMould, supported by RISC institute and

company ENGEL from Schwertberg, Austria, the

compiler was meant to provide a tool for simulating

injection-molding machines. The compiler accepts only

a subset of Modelica language: this subset suffices

for obtaining a model that simulates faithfully an

injection-molding machine.

 In order to minimize the necessary simulation

modelling time, Modelica descriptions of many

components are generated automatically from CAD

models. Models are translated first to XML, the

resulting files containing, in fact, the syntactic structure

of the Modelica programs. The XML files are further

parsed and provide the input for a pushdown

automaton, which creates the internal data structures

that store the essential content of the future C++
classes.

This C++ code is compiled and linked to specific

simulation libraries; the resulting software component

– a dynamic-link library or a static library – can be

linked to external tools for visualization or process

simulation.

In fact, the runtime environment is interfaced

with a simulation of the embedded software

environment. It allows an almost real time execution

and simulation of the embedded software. In addition,

an open, OPC (OLE for process control) based

interface for visualization and monitoring of the

process is provided.

As we have already mentioned, the stable version

of our product accepts only a subset of Modelica
language. Thus, among the restricted classes, only

blocks are currently translated, and the syntax is

restricted. A version that can handle Modelica
models is currently in the testing phase.

The paper is structured as follows: We begin by

giving a short overview of the project. The architecture

is detailed in Section 2. In Section 3 we present the

main features of the C++ generated code. Section 4

describes the interface provided by the software

component obtained after compiling the model. In

Section 6 we give some examples and snapshots of the

visual interfaces.

1. Project overview
ENGEL is a leading manufacturer of injection

moulding machines, producing and selling integrated

flexible manufacturing cells. A typical manufacturing

cell consists of:

- an injection-moulding machine, whose

individual components are selected from a

wide variety of available product features;

- a handling system built upon a free program-

mable robot.

The whole manufacturing cell is controlled by an

embedded software system that integrates an IEC 1131
based PLC, a high-level task-coordination language, a

Java-based HMI and communication components for

manufacturing execution system (MES) integration.

The software engineers and service technicians

should have the possibility to perform software tests

offline on their desktop with a “virtual injection-

moulding machine”, whenever a new PLC is produced.

In order to achieve a high user acceptance, a test

environment (see [6] for a description of the main

features of such software components) must be closely

integrated with the development environment used by

the PLC programmers; also, the PLC programmer

should not be bothered with building simulation

models for his specific target machine. Therefore the

simulation models used for testing must be

automatically generated from CAD designs.

The main goal is to increase software quality

through simulation-based testing without increasing the

Using Modelica for Testing Embedded Systems Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.

Modelica 2002, March 18−19, 2002 196 The Modelica Association

time spent for testing. In addition to this, VirtMould
should also be applicable for other application

domains, like customer support offline diagnosis,

computer based training or sales support.

2. System architecture
VirtMould environment contains four major compo-

nents:

• automatic generation of a simulation model;

• programming environment;

• runtime environment;

• visualization.

Figure 1: System architecture of the VirtMould
environment.

Automatic generation of the simulation model

In order to minimize the effort for building

simulation models, XML-based tools have been

developed for translating CAD files (containing

electrical, hydraulic, etc. components), together with

information about product configuration, to Modelica.

These tools work with XLST transformations based on

the XML files exported from CAD, and generate

component assembly files.

A library containing the mechatronic blocks and

handling system components of the injection-moulding

machine has been developed and is continuously

improved and extended (ENGEL Component Library).

The goal has not been to achieve the highest possible

simulation accuracy, but rather to provide the accuracy

required for software testing, together with a high

degree of flexibility and fast simulation execution. This

library also contains components for interactive test

manipulation, interaction with the panel of the virtual

machine, and simulation of machine failures.

Programming Environment

A compiler for a Modelica subset has been

implemented. The focus of this compiler was to

provide an easy integration into the overall system

architecture and to allow the efficient simulation of

discrete events. This is done in two phases: The

Modelica - XML translator parses the Modelica
files and generates a XML representation, and the XML

- C++ translator generates C++ class files. Details on

the Modelica compiler are presented in Section 3.

Runtime Environment

The runtime environment is loaded by the PLC

program simulation and contains some major

components:

– the model is the C++ collection of classes

corresponding to the Modelica program;

– the solver is the C++ framework for

computing trajectories of the variables of the

model;

– there are two kinds of interfaces for

controlling the simulation and for data

exchange:

the control interface is a COM in-process

DLL interface, which has been chosen for

coupling the PLC program simulation with

the Modelica simulation runtime environ-

ment. The PLC program simulation allows

program execution in either soft real-time or

virtual simulation time mode.

for accessing the simulating state we have

added an OPC server. A more detailed

description is given in Section 4.

Visualization

In addition to using third party visualization

tools, a built-in configurable user interface allows the

design of virtual hardware panels. The user has the

possibility to:

- inspect all model variables in a hierarchical

manner;

- monitor some variables by drawing their

trajectories;

- change the values of some variables, provided

that those variables permit this kind of user

interaction.

The user interface can be configured through an XML

file.

3. Short description of the Modelica

compiler
The compilation of a Modelica model comprises

three steps. After each step, one or more files of

specific types are generated. Thus:

1. The model is parsed and the syntactic

structure is stored in an XML file. In the same

format (XML) are stored the libraries.

2. One or more XML files are taken as input by a

program that produces C++ code. This code

mirrors the Modelica code, a Modelica

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 197 Modelica 2002, March 18−19, 2002

class having a C++ counterpart, which is a

C++ class.

3. The C++ file is compiled, and the object is

linked with some libraries, which provide the

framework for solving the model, i.e.,

generating a simulation, and for interfacing

with other software tools.

In the following we focus on the characteristics of the

C++ code.

Base classes

C++ as intermediate code was a normal choice,

due to the object-oriented philosophy of Modelica
(see Modelica tutorial [1]). A Modelica class is

translated into a C++ class. Among the restricted

Modelica classes, our system accepts type, block,

connector and package. Models are accepted with

some restrictions.

To each component of a Modelica class

corresponds a member data in its C++ image.

According to the specifics of the Modelica class, a

number of other members are included in the C++

code, like, e.g., one additional member for each

differentiated variable.

A Modelica block and its C++ image are

shown in Figure 1. We have kept in the C++ code only

the member declarations and function definitions that

correspond directly to their Modelica counterparts.

The C++ correspondent of a Modelica
package is derived from a special class, which has no

method with equations but can contain a number of

inner classes.

The connectors provide a set of template

member functions, in order to allow connections with

components of various types.

We must emphasize that the granularity of

Modelica code is preserved: The models are de-

scribed hierarchically in Modelica, by giving the

mathematical description of components and

connecting them in composite objects; this structure is

transmitted to the C++ code.

Equations

The equations that describe the behavior of a

component generate a few member functions. Thus:

1. discrete equations are collected in a member

function that is executed only when special

events occur;

2. differential equations go to another member

function;

3. the remaining equations are divided in two

groups, depending on the relation of their

variables with differential equations. Thus,

we call dynamic these equations that are

related to differential equations, and

4. independent algebraic the other ones.

These methods are easily generated for blocks –

provided that the Modelica code contains all

equations in explicit form. If flow variables occur and

Kirchoff laws have to be generated, implicit equations

should be added and the translation requires further

processing. Moreover, for equations that cannot be

explicitized (like transcendental equations, or poly-

nomial of high degree), numerical solvers are required.

These features will be covered in a future version of

our system.

Events

The set of discrete equations is solved only when

some events occur. During the simulation, an event

queue is maintained and used for triggering the

evaluation of these equations.

Changes of values of discrete variables usually

generate events; also, the special functions sample
and edge are event-generators. On the other hand,

events can be generated externally, by the interaction

of the user with the visual interface: Recall that the

output of our system is a software component that can

be embedded or attached to other software tools; this

component communicates with the environment in two

ways, that is, it exposes names, types and values of

variables, and it accepts, with some restrictions,

modifications of these variables.

Simulation

A simulation consists in the computation of

trajectories of variables during a specific time period.

In fact, a finite set of points on these trajectories is

computed, for values of time discretized by a time step

whose value is set externally.

For solving differential-algebraic equations we

have implemented a few numerical integrators: Euler,

Runge-Kutta, Runge-Kutta with variable step size (see

[4], [5] for detailed descriptions of these methods). In

order to ensure a higher stability, the integrators have

an internal time step (fixed or variable), which is

usually much smaller than the external. The differential

and dynamic equations are evaluated after each internal

time step, whereas the independent algebraic equations

are evaluated after the external time step.

Basically, the simulation is performed following

the same rules as described in the Modelica language

specifications (see [2], Chapter 4): The integrator

solves numerically the equations between two events.

When an event occurs, the set of discrete equations is

solved and any change of the values of the discrete

variables can influence the set of differential and

algebraic equations.

Ordering their enclosing blocks gives the order in

which the equations are evaluated, so that every

variable that occurs in the right-hand side of an

equation has already been given a value before the

equation is evaluated.

Using Modelica for Testing Embedded Systems Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.

Modelica 2002, March 18−19, 2002 198 The Modelica Association

classclassclassclass Sine : publicpublicpublicpublic Interfaces::MO {

// Variables ...

publicpublicpublicpublic:

ParamVectorN<Real> amplitude;

ParamVectorN<SIunits::Frequency> freqHz;

ParamVectorN<SIunits::Angle> phase;

ParamVectorN<Real> offset;

ParamVectorN<SIunits::Time> startTime;

// protected members

 ConstScalar<Real> pi;

 ParamVectorN<Real> p_amplitude;

 ParamVectorN<Real> p_freqHz;

 ParamVectorN<Real> p_phase;

 ParamVectorN<Real> p_offset;

 ParamVectorN<SIunits::Time> p_startTime;

// methods

publicpublicpublicpublic:

 Sine(){ // Default Constructor....

 // … initialization of parameters with constant vals

 // …

 }

 voidvoidvoidvoid resize(){ // resizing vector components

 p_amplitude.resize(nout);

 p_freqHz.resize(nout);

 p_phase.resize(nout);

 p_offset.resize(nout);

 p_startTime.resize(nout);

 }

 voidvoidvoidvoid init() {

// initializing parameters with non-constant expr.

 //

// initializing nout

 nout.parameter(max (size (amplitude,1) ,

size (freqHz,1) ,size (phase,1) ,

size (offset,1) ,size (startTime,1)), 1);

 MO::init();

 //…

 resize();

 }

 voidvoidvoidvoid start(){ // Settings for start

 MO::start();

 }

// …

 voidvoidvoidvoid equation_dyn(const Time &time){

// Dynamic Equations for this Block

 MO::equation_dyn(time);

 {

 Integer _initialCond;

 Integer _finalCond;

 _initialCond = 1;

 _finalCond = nout;

 forforforfor (intintintint i=_initialCond;i<=_finalCond;i++){

 Real _if5;

 ifififif (TimeLt(time, p_startTime [i - 1])){

 _if5 = 0.;

 } elseelseelseelse {

_if5 = p_amplitude [i - 1] *

 Modelica->Math->sin (

 2*pi*p_freqHz [i - 1] *

 (time-p_startTime [i - 1]) +

 p_phase [i - 1]) ;

 }

 y [i - 1] = p_offset [i - 1] + (_if5) ;

 }

 }

 returnreturnreturnreturn;

 }

// …

}; // end class: Sine

Figure 2: A Modelica block and its C++ translation.

blockblockblockblock Sine

parameterparameterparameterparameter RealRealRealReal amplitude[:]={1.};

parameterparameterparameterparameter SIunits.Frequency freqHz[:]={1.};

parameterparameterparameterparameter SIunits.Angle phase[:]={0.};

parameterparameterparameterparameter RealRealRealReal offset[:]={0.};

parameterparameterparameterparameter SIunits.Time startTime[:]={0.};

extendsextendsextendsextends Interfaces.MO(finalfinalfinalfinal nout=max([size(amplitude, 1); size(freqHz, 1); size(phase, 1);

size(offset, 1); size(startTime, 1)]));

protectedprotectedprotectedprotected

constantconstantconstantconstant RealRealRealReal pi=Modelica.Constants.pi;

parameterparameterparameterparameter RealRealRealReal p_amplitude[nout]=(ifififif size(amplitude, 1) == 1 thenthenthenthen ones(nout)*amplitude[1] elseelseelseelse amplitude);

parameterparameterparameterparameter RealRealRealReal p_freqHz[nout]=(ifififif size(freqHz, 1) == 1 thenthenthenthen ones(nout)*freqHz[1] elseelseelseelse freqHz);

parameterparameterparameterparameter RealRealRealReal p_phase[nout]=(ifififif size(phase, 1) == 1 thenthenthenthen ones(nout)*phase[1] elseelseelseelse phase);

parameterparameterparameterparameter RealRealRealReal p_offset[nout]=(if if if if size(offset, 1) == 1 thenthenthenthen ones(nout)*offset[1] elseelseelseelse offset);

parameterparameterparameterparameter SIunits.Time p_startTime[nout]=(if size(startTime, 1) == 1 thenthenthenthen ones(nout)*startTime[1] elseelseelseelse startTime);

equationequationequationequation

forforforfor i inininin 1:nout looplooplooploop

y[i] = p_offset[i] + (ifififif time < p_startTime[i] thenthenthenthen 0.

elseelseelseelse p_amplitude[i]*Modelica.Math.sin(2*pi*p_freqHz[i]*(time - p_startTime[i]) + p_phase[i]));

endendendend forforforfor;
endendendend Sine;

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 199 Modelica 2002, March 18−19, 2002

4. Communication with other

programs
The runtime system contains two interfaces for

connections with other programs:

- a proprietary COM interface for com-

municating with the PLC program simulation;

- an open OPC-based interface for communi-

cation with visualization tools.

After compiling the initial Modelica text, a

library (.lib file) or a dynamic-link library (.dll
file) is generated. This library encapsulates both the

model description and the integration algorithms.

Among the possible services provided by this library we

mention: start/stop a simulation process, transmit the

names, types and values of all the internal variables of

the model, at every time moment during the simulation

run, and accept new values for some of the variables.

Interaction with other programs is realized through

a common interface: we have used the COM (Common

Object Mode) technique. A COM interface component

for loading and unloading simulations, calculating time

steps and exchanging data with the simulation has been

designed.

For visualizing the results of the simulation an

OPC (OLE for process control, see [3] for more

information) server has been developed and imple-

mented. The simulation results are provided via OPC

and these values can be visualized with standard OPC

client tools. OPC is the most commonly used standard

for inter-process communication in the area of manu-

facturing automation.

The OPC specification is a non-proprietary

technical specification that defines a set of standard

interfaces based upon Microsoft OLE/COM technology.

An OPC standard interface makes possible inter-

operability between automation/control applications,

field systems/devices and business/office applications.

Traditionally, each software or application devel-

oper was required to write a custom interface, or

server/driver, to exchange data with hardware field

devices. OPC eliminates this requirement by defining a

common, high performance interface that permits this

work to be done once, and then easily reused by HMI,

SCADA (Supervisory Control and Data Acquisition),

control and custom applications.

The advantage of using the OPC Data Access

Specification is that it provides a hierarchically

structured namespace that can be directly used to map

Modelica variables. Clients can then retrieve OPC

items (i.e. Modelica variables) either synchronously

or asynchronously. OPC also provides possibilities to

specify the desired update rates for items and to browse

the available item name space. The OPC server defines

the access status (read, write) for each item together

with additional descriptive information. As OPC is

implemented by a COM object, the inter-process com-

munication can be realized either as an highly efficient

in-process communication or as distributable (DCOM)

out-of-process communication. Also several clients can

communicate in parallel with one OPC server.

5. Usage and examples
The following figure shows a standard ENGEL

injection moulding machine. The ENGEL HL is a

highly accurate, fast and energy-saving injection

moulding machine in tiebarless design for use in the

range from 200 to 6,000 kN clamping force.

Figure 3: An injection moulding machine.

After a thorough analysis of the machine structure,

a simulation model written in Modelica has been

developed, which should describe its components with

an appropriate accuracy for testing its general behavior.

As we have already mentioned, Modelica description of

many components has been automatically generated

from CAD specifications.

An excerpt of the main Modelica model of the

injection model machine is given in the following. In

the instantiation sector of this model all the functional

units of the machine are defined.

blockblockblockblock InjectMoldMachine

 "Tiebarless Injection Molding Machine"

Lib.IMM.FunctionalUnits.MainPowerSupply MainPower;

 Lib.IMM.FunctionalUnits.ControlVoltages ContrVolt;

 Lib.IMM.FunctionalUnits.EmergencyOff EmergOff;

 Lib.IMM.FunctionalUnits.FilterMotor FilterMotor1;

 Lib.IMM.FunctionalUnits.Motor Motor1;

 Lib.IMM.FunctionalUnits.SafetyGateMoldFront SGMoldFront;

 Lib.IMM.FunctionalUnits.SafetyDoor SafetyDoor;

 Lib.IMM.FunctionalUnits.SafetyGateInject SGInject;

 Lib.IMM.FunctionalUnits.Heating

 Heat1 (startTemp = 30.);

 Lib.IMM.FunctionalUnits.TraverseCooling Cool1;

 Lib.IMM.FunctionalUnits.PumpBlock Pumps;

 Lib.IMM.FunctionalUnits.Ejector

 Ejector1 (startPos = 0.3);

 Lib.IMM.FunctionalUnits.Core

 Core1 (startPos = 10.),

 Core2 (startPos = 10.);

 Lib.IMM.FunctionalUnits.InjectionUnit

 InjUnit1 (startPos = 5.);

 Lib.IMM.FunctionalUnits.Mold

 Mold1 (startPos = 3.);

 Lib.IMM.FunctionalUnits.InjectionPlasticize

 InjPlast1 (startPos = 1.);

 Lib.VMLib.Electrics.AlarmLamp Alarm;

 PLC_Interface PLC_IO;

 ButtonBlock Buttons;

equationequationequationequation

// input connections for "SafetyDoor"

connect(ContrVolt.VAC24, SafetyDoor.VAC24);

connect(ContrVolt.VE24, SafetyDoor.VE24);

connect(Buttons.SafetyDoor.outPort, SafetyDoor.HandleGate);

connect(Buttons.QuitKey.outPort, SafetyDoor.QuitKey);

 //. . .

endendendend InjectMoldMachine;

Using Modelica for Testing Embedded Systems Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D.

Modelica 2002, March 18−19, 2002 200 The Modelica Association

The simulation model contains all components

necessary for characterizing the behavior of the

machine, including its electrical parts (e.g. power supply

with different control voltages), hydraulic movements

(e.g. ejector, mold) and interaction with the user (e.g.

open/close safety gate).

Currently, the typical testing environment consists

of the following windows:

- HMI of the injection moulding machine; this

graphical object has the appearance and

functionalities of the touch screen of the real

machine;

- Graph window: for visualizing simulation

results of selected variables;

- Control panel: buttons and switches for

opening/closing safety gates, moving hydraulic

units, etc.; this object is a faithful copy of the

control panel of the injection moulding

machine;

- PLC simulation window: gives internal infor-

mation of the PLC runtime environment.

These components can be seen in Figure 4.

6. Conclusions and future work
The quality of the overall system architecture of

the VirtMould test environment has been proved by a

high user acceptance. About 10 PLC programmers in

their daily work are currently using the environment;

this number should be increased to 50 or more users,

testing more than 1000 systems per year. Modelica
has proved to be the ideal object oriented modelling

language for building reusable libraries of simulation

components, which is essential for automatic model

generation.

The next step will be to add a test automation

framework, such that regression tests can be performed

automatically. An SVG (Scalable Vector Graphic)

based visualization client will provide enhanced 2D

animation of the simulation process. A 3D mechanical

component visualization will also provide the possibility

for collision checking.

In addition to software testing, the environment

will also be used for computer-based training.

Figure 4: Screenshot from a simulation session.

Freiseisen W., Keber R., Medetz W., Pau P., Stelzmueller D. Using Modelica for Testing Embedded Systems

The Modelica Association 201 Modelica 2002, March 18−19, 2002

 References

[1] Modelica™ – A Unified Object-Oriented Language
for Physical Systems Modeling, Tutorial,

Version 1.4, by Modelica Association,

Dec. 2000, downloadable from

http://www.modelica.org.

[2] Modelica™ – A Unified Object-Oriented Language
for Physical Systems Modeling,

Language Specification, Version 1.4, by

Modelica Association, Dec. 2000,

downloadable from

http://www.modelica.org.

[3] F. Iwanitz, J. Lange - OLE for Process Control,

Huethig GmbH, Heidelberg, 2001.

[4] U. M. Ascher, L. R. Petzold – Computer methods for

ordinary differential equations and

differential-algebraic equations, SIAM,

1998.

[5] K. E. Brennan, S. L. Campbell, L. R. Petzold –

Numerical solution or initial-value

problems in differential-algebraic

equations, SIAM 1996.

[6] C. Kaner, J. Falk, H. Q. Nguyen - Testing Computer
Software, John Wiley & Sons, 1999.

[7] M. Fewster, D. Graham - Software Test Automation,

Addison-Wesley, 1999.

