MoD ELI"CA

Remelhe M.A.P.:

Combining Discrete Event Models and Modelica - General Thoughts and a
Special Modeling Environment

2" International Modelica Conference, Proceedings, pp. 203-207

Paper presented at the 2" International Modelica Conference, March 18-19, 2002,
Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen, Germany.

All papers of this workshop can be downloaded from
http://’www. Modelica.org/Conference2002/papers.shtml

Program Committee:

e Martin Otter, Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Institut fiir
Robotik und Mechatronik, Oberpfaffenhofen, Germany (chairman of the program
committee).

¢ Hilding Elmqvist, Dynasim AB, Lund, Sweden.

e Peter Fritzson, PELAB, Department of Computer and Information Science, Linkdping
University, Sweden.

Local organizers:

Martin Otter, Astrid Jaschinski, Christian Schweiger, Erika Woeller, Johann Bals,
Deutsches Zentrum fiir Luft- und Raumfahrt e.V. (DLR), Institut fiir Robotik und
Mechatronik, Oberpfaffenhofen, Germany

Remelhe M.A.P.

Combining Discrete Event Models and Modelica — General Thoughts ...

Combining Discrete Event Models and Modelica —
General Thoughts and a Special Modeling Environment

Manuel A. Pereira Remelhe
Process Control Laboratory
Department of Chemical Engineering
University Dortmund, D-44221 Dortmund
Tel.: +49/231/755-5127, Fax: +49/231/755-5129
Email: m.remelhe@ct.uni-dortmund.de

Abstract

This contribution consists of two parts. In the first
part general possibilities for the combination of
Modelica models and discrete event models are
discussed on a conceptual level. It is shown that it
is necessary to support asynchronous behavior and
that it is useful to represent sampled data behavior
of discrete event systems in an interrupt-driven
style for fast simulation. The characterizations of
the alternatives are summarized in table 1.

In the second part a modeling environment proto-
type that provides dedicated editors for different
discrete event formalisms and supports hierarchical
and heterogeneous models is presented briefly. It
transforms a discrete event model into a Modelica
class whose behavior is given by a Modelica algo-
rithm and several Modelica functions. Such a dis-
crete event component can be inserted intuitively
into a model of a physical system and simulated by
standard Modelica-Tools.

Introduction

Sophisticated technological systems often require
complex discrete event control. For instance, se-
quential control is needed for the execution of
recipes on chemical batch plants. Redundancy
control is crucial for the safety of aircraft. And
resource booking systems are needed for coordi-
nating several interacting sequential controllers,
e.g., to avoid collisions of robots or to prevent the
mixing of parallel running batches in chemical
batch plants. These discrete parts often involve
hierarchical execution schemes as well as
concurrency with synchronous and asynchronous
communication. The physical part of such techno-
logical systems normally is very large and include
complex hybrid dynamics such as Friction, colli-
sions and instantaneous equilibrium reactions.

If simulation is to be used for the estimation of
throughput, power consumption, quality quantities

etc. the simulation model has to incorporate the
discrete event as well as the physical part of the
system. Hence, powerful modeling formalisms are
required for both, the physical and the discrete
part, and an intuitive integration of these parts has
to be supported. In addition to the clearness of the
modeling paradigm the simulation efficiency is an
important aspect.

For the modeling and simulation of general hybrid

physical systems Modelica [1] is particular suit-

able, because it facilitates multi-domain models,

allows intuitive modeling of the most hybrid phe-

nomena and enables efficient simulation. Further-

more it is possible to combine physical models

with complex discrete event dynamics. In this

contribution 4 general approaches for the integra-

tion of physical models and discrete-event models

are discussed:

1. declarative style (based on equations),

2. imperative style (based on Modelica algo-
rithms and functions),

3. external secondary simulator (based on the
external function interface) and

4. external primary simulator (Modelica in the
loop).

One well known example for the first approach is
the Petri nets library created by Mosterman, Otter
and Elmgqvist [2]. The Petri net modeling objects,
i.e., places and transitions, are represented by li-
brary components. These can be instantiated and
connected via the connectors to constitute a spe-
cific Petri net graph. The equations of the transi-
tion and place objects were specified in a way such
that the composition of these equations behaves
like a Petri net would do.

The second approach implies that the behavior of a
discrete event system is encoded imperatively into
one Modelica algorithm that may call Modelica
functions. In order to support high-level modeling
formalisms a special modeling environment has to

The Modelica Association

Modelica 2002, March 18-19, 2002

Combining Discrete Event Models and Modelica — General Thoughts ...

Remelhe M.A.P.

be implemented that provides dedicated editors for
specific discrete event formalisms and translates
automatically a discrete event model into a Mode-
lica component containing such an algorithm. A
prototype of such a modeling environment will be
presented in the second part of this contribution.

The third and fourth approaches allow the usage of
existing discrete event simulators. In the third case
a Modelica simulator controls the external simula-
tor, whereas in the fourth case the Modelica simu-
lator is controlled from outside, e.g., by a State-
flow-Simulink model.

Part I: General Thoughts

Interrupt-driven Models

The task of discrete event systems is normally to
wait for certain state events in the physical system
and react instantly when they occur, e.g., when a
predefined temperature is reached, the next step of
a recipe is started. Hence, from a functional point
of view discrete event systems are interrupt-driven,
or to be more precise, driven by state events (and
sporadic time events).

A prerequisite for realizing this behavior is the
detection and localization of state events during
continuous integration. Since integration methods
require continuous model equations, in Modelica
all inequality expressions of a model are fixed
during integration in order to guarantee that dis-
continuous changes of variables do not occur. In
addition, inequality expressions which depend on
continuous state variables and which are critical,
are monitored during integration. When the logical
value of an inequality expression changes, the time
instant of the switching point is determined up to a
certain precision and the integration is stopped,
i.e., a state event is localized. In the case of time
events the inequality expression depends only on
the time variable and the integration simply stops
directly at the predetermined time.

Modelica-Tools such as Dymola [3] support this
event handling, if the events can be deduced from
the Modelica code, i.e., the inequality expressions
must be included in the code. Therefore an inter-
rupt-driven model of a discrete event system can
only be realized accurately with the first two ap-
proaches. If an external simulator is to be used, a
wrapper code could be written in Modelica that
defines the externally caused state events. But that
would not be feasible for very complex discrete

event models and the advantage of using an ap-
proved discrete event simulator would get lost due
to error-prone hand coding. However, the fourth
approach allows to detect the state events at the
end of an integration step without using event
localization, so that the event instants depend on
the step size of the integrator.

Sampled-data Models

Discrete event systems are normally implemented
as sampled-data systems. In the most cases the
sampling rates are very high, so that the sampling
can be neglected which results into interrupt-driven
models. However, sometimes it is necessary to
consider the sampling. The simplest way to do so
is to use the sample-operator. In the following
example a tank is filled continuously with the rate
1. A controller with 100 samplings per second
opens the outlet when the tank level becomes
higher than 10 and it closes the outlet when the
tank level becomes lower than 0.1 .

model ControlledTank
Real level;
Boolean valveOpen;
equation
der (level)= if valveOpen then
1 - sgrt(level*2.173) else 1;
when sample (0, 0.01) then
valveOpen =
if level > 10 then true
else if level < 0.1 then false
else pre(valveOpen) ;
end when;
end ControlledTank;

The sample-Operator generates regular time events
each 0.01 seconds. At every time event the inte-
grator is stopped, the switching equation is evalu-
ated and the integrator is started again. Since the
initialization of the integrator consumes the largest
amount of time, the simulation can be speed up
significantly by transforming this sampled-data
model into an interrupt-driven model that emulates
the sampled-data behavior. This is done by replac-
ing the when clause by the following two when
clauses:

when {level<0.1, level>10} then
sampleTime= (floor (time*100)+1) /100;
end when;
when time > sampleTime then
valveOpen = if level>10 then true
else if level<0.1 then false
else pre(valveOpen) ;
end when;

Modelica 2002, March 18-19, 2002

The Modelica Association

Remelhe M.A.P.

Combining Discrete Event Models and Modelica — General Thoughts ...

In the first when clause an effective sampling time
is determined, when a significant state event oc-
curs. It is the next regular sample time the sample
operator would have. In the second when clause
then the switching equation is evaluated when the
sampling time is reached. While no state events
occur, the integration does not stop. For the given
example the simulation of the interrupt-driven
model is 70 times faster than the simulation of the
sampled-data model. In consequence, the sample-
operator should not be used for reactive discrete
event systems. Instead, it is always possible to
emulate sampled-data behavior, if required.

Asynchronous Behavior

In the first approach the modeling objects of a
formalism are represented by Modelica objects
whose behavior is defined declaratively using
equations.

These equations are treated in the same way as the
equations of the physical systems part so that a
discrete transition of the discrete event model is
connected to a complete evaluation of the whole
system of equations including the physical systems
equations. This synchronous behavior is disadvan-
tageous when a formalism is used that performs a
sequence of intermediate transitions in order to
achieve a consistent state. Here, the effective tran-
sition that should be observable from the physical
system incorporates several internal transitions that
are asynchronous to the those of the physical sys-
tem. Otherwise inconsistent intermediate states of
the discrete event model could have an illegal ef-
fect on the physical system. Furthermore complex
discrete event systems often involve complex hier-
archical execution schemes: on each level a proc-
ess can include sub-processes, and concurrent
subsystems may run asynchronously. Therefore, it
is crucial to support asynchronous behavior for
modeling complex discrete event controllers.
Hence, the equation-based approach is only suit-
able for simple cases where as the other three ap-
proaches can realize such complex behavior due to
the algorithm-based imperative definition.

Other Aspects

Modelica algorithms are more limited in compari-
son to real programming languages, because
Modelica’s data structure is static, i.e., it is not
possible to instantiate new variables or components
at run-time. Therefore all variables that might be
needed possibly at run-time have to be installed at
compile-time. For example an event list of a
scheduler of a discrete event simulator has to be

realized by a fixed length vector in principle. If
during a simulation the number of elements for the
event list exceeds the length of the vector, the
simulation has to abort.

Some discrete event systems have only discrete-
time input signals. In this case state or time events
are generated outside of the discrete event compo-
nent, e.g., by limit switches in the physical system,
and the usage of an external simulator is straight-
forward.

The models created with the Petri nets library look
pretty much like Petri nets. The difference to the
original formalism is that there no ports, so that the
objects can be connected directly with lines and
therefore only two classes of objects are needed.
However, many formalisms have more complex
syntax and graphics that can not be represented
adequately using object-oriented composition dia-
grams. Statecharts for example has a state hierar-
chy concept without encapsulation of inner states.
Consequently, dedicated graphical editors should
be used in general. The following table summa-
rizes the characterizations of the 4 approaches.

Table 1: Characterization of the 4 approaches

Approach 112]3 |4
allows interrupt-driven models |x [x |- |-
(localization of state events)

allows asynchronous behavior |- |x |x |x
(hidden iterations)

allows dynamic data structures - |- |x|x
adequate graphics - X |x[x
heterogeneous discrete event models x|?]?
reliable discrete event simulation 71?7 |xx

Part ll: A Prototype of a Modeling
Environment

In order to enable heterogeneous discrete event
models including domain-specific formalisms a
modeling environment prototype has been devel-
oped that provides dedicated editors for the differ-
ent formalisms. The environment is based on the
meta-modeling tool DoME [4]. This tool generates
automatically graphical editors based on a formal
specification of the syntax and on parameters for
the graphical appearance of the formalism. There-
fore prototypes of new editors can be implemented
within a few hours and a final version can be
achieved within a few days. This is important for
further development of domain-specific formalism.

The Modelica Association

Modelica 2002, March 18-19, 2002

Combining Discrete Event Models and Modelica — General Thoughts ...

Remelhe M.A.P.

PullT_vpe _ O] <]
File Edit “iew
Name;l states
Mame | Description | Fationale |
Traceahility | Color | ¥-Refs Declarstions

Algebraic Variables: [

Boolean HS1, Isolated, HZ2, Off, Passive, Active, N
HotStandby, Standby, Hot;

HedCon
File Edit “iew Lavout

ools indow

Help

=¥ Dj=|H S

r a
RedCon_BG
L a

L] & # e =]

——

FFCU1

failures

PFCUZs

L]

PFFCs

PFCULs
>
PFCLs

failures

preUze PFOUZ prcursl]

i failures

| o

Figure 1: Defining a port type named "states" using
Modelica syntax

An hierarchical block diagram formalism is im-
plemented that allows the basic blocks to be mod-
eled with any reactive formalism. At present, state-
charts [5] and sequential function charts [6] are
integrated, but other formalisms can be added in
future.

Hierarchical Block Diagram Formalism

In the framework of the block diagram formalism
an archetype concept is used. Each archetype de-
fines a specific class of objects and can be instanti-
ated several times. The definition of an archetype
incorporates the ports of the objects (fig. 3), ar-
chetype attributes, object attributes and one or
more alternative internal implementations, i.e.,
different interchangeable realizations. In order to
cope with the possible combinations of different
implementations one or more configurations can be
defined that determine unambiguously which im-
plementation is used for which instance.

In our case port types and block types can be de-
fined. Port types are archetypes with archetype
attributes (port variables and sub-ports), but with-
out an implementation (fig.1). Ports can be instan-
tiated within block archetypes and port archetypes.
The block archetypes contain ports and no further
attributes. The implementations of a block arche-
type can be a block diagram or a statechart or a
sequential function chart (fig. 2 and 4). A block
diagram contains the outer ports of the corre-
sponding archetype and sub-blocks adorned with
their own ports. In a block diagram one output port
can be connected to several input ports, but one
input port must not be connected with more than
one output port (fig. 2).

Figure 2: A block diagram implementation named "Red-
Con_BG"

Shelf Browser for: ProloDOME Model 'redundancy-management.dom’ |_ (O] =]
File Edit View Layout Tools ‘Window Help
MJJJJ@JJﬂJﬂm_J B
Interface: References:
= FiedCaon]
CodeBlock <Nc|de Spe §>
PortType:<Mode Speci ?
Tk, RedCon]
FFCUIs # [~
[* failures Implementations:
C) PFouzs # || RedCon_BG =
»
RedConkodule 0
= I Follow User Mavigation =

Figure 3: The shelf view on the archetypes

’ RedConModule
File Edit ‘“iew Layout oolz ‘window Help

EE R E R s

b

g -‘—”'V HS1

. H3z
= —
Hate, Pasfet "
— Passive _-__:L Fetive
- L FetPas

StaPas HotFas

Fas 9‘= Fas Hot

Hot Standby Tofet]
Standby Hot

L ToOft off

L Toiso [tsoimed

I I _>ILI

RED_CON_SC

?
FroOff ,'

Figure 4: A statechart model that represents an implemen-
tation of an block

Modelica 2002, March 18-19, 2002

The Modelica Association

Remelhe M.A.P.

Combining Discrete Event Models and Modelica — General Thoughts ...

The Translation into Modelica

The translation procedures for the different for-
malisms are programmed using the extension fa-
cilities of DoME: The Scheme variant Alter, a Lisp
like functional programming language, and Small-
talk in which DoME itself is implemented.

For the translation of a hierarchical model a spe-
cific implementation configuration is used. All
parts that are automatically generated are encap-
sulated in one Modelica model class. The connec-
tors of this class correspond to the outer ports on
the highest model level. Each port type is directly
represented by a connector definition. For each
block implementation a record is generated that
defines the components (variables and/or sub-
blocks) of the corresponding implementation.
Since the instantiation of such a record is con-
nected to the instantiation of its components, the
instance of the top-level block contains the whole
data structure of the hierarchical model.

// blockl contains block2 and block3:
record Data blockl

data_Block2 block2;
data_Block3 block3;

Boolean trig;
end Data_ blockl;

In addition for each block implementation a set of

Modelica functions is generated that define its

behavior. The following tasks are realized by sin-

gle Modelica functions:

- initialization of the components (variables and
sub-blocks) of the block implementation

- detecting the need for state transitions based on
given input values

- performing state transitions based on given
input values

- data logging for visualization

For a specific block implementation the argument

type and the output type of these functions is the

corresponding record. Hence, the initialization

function of the top-level block gets its data object

(a record) as an argument and calls the initializa-

tion function of its sub-blocks using the corre-

sponding sub-objects included in the record:

function init blockl
input Data blockl par;
output Data blockl data;
algorithm
data := par;
data.block2 :=

init block2 (data.block2) ;
data.block3d :=
init block2 (data.block3) ;

end init blockl;

Finally, the generated Modelica model class con-
tains an algorithm that originates all function calls:

model DiscreteController
< Port Definitions >
< Record Definitions >
< Function Definitions >
InputPort inputConnector;
OutputPort outputConnector;
Data _blockl blockl;

algorithm
blockl.inputPort := inputConnector;
when initial () then
blockl := init blockl (blockl) ;
end when;
blockl := detect blockl (blockl) ;

if blockl.trig then
blockl := peform blockl (blockl) ;
end if;
outputConnector :=
blockl.outputPort;
end DiscreteController;

Such a Modelica model of a discrete event compo-
nent can be inserted intuitively into a model of a
physical system and simulated by standard Mode-
lica-Tools.

References
[1] Modelica. Homepage: http://www.Modelica.org/

[2] Mosterman P.J., Otter M. and Elmqvist H.: Modeling
Petri-Nets as Local Constraint Equations for Hybrid Sys-
tems using Modelica. Proceedings of the 1998 Summer
Computer Simulation Conference (SCSC'98), Reno,
U.S.A., 19.-20. Juli 1998.

[3] Dymola. Homepage: http://www.Dynasim.se/.
[4] DoME. http://www.htc.honeywell.com/dome/.

[5] D. Harel: Statecharts: A Visual Formalism for Complex
Systems. Sc. of Comp. Prog. 8, pp 231-274, 1987.

[6] International Electrotechnical Commission. Interna-
tional Standard IEC 1131 Programmable Control-
lers, Part 3, Programming Languages. IEC, Geneva,
1993.

[7] M. Otter, M. A. Pereira Remelhe, S. Engell, P. Moster-
man, “Hybrid Models of Physical Systems and Discrete
Controllers,” at - Automatisierungstechnik, vol. 48, no. 09,
pp. 426-437, 2000.

[8] M. A. Pereira Remelhe: Simulation and Visualization
Support for User-defined Formalisms Using Meta-
Modeling and Hierarchical Formalism Transformation.
Proceedings of the 2001 IEEE International Conference
on Control Applications, México City, 2001

The Modelica Association

Modelica 2002, March 18-19, 2002

