Preface

The Modelica modeling language and technology is being warmly received by the world community
in modeling and simulation. It is bringing about a revolution in this area, based on its ease of use, visual
design of models with combination of lego-like predefined model building blocks, its ability to define model
libraries with reusable components, its support for object-oriented modeling and simulation of complex
industrial applications involving parts from several application domains, and many more useful facilities.
The Modelica Association is an open non-profit organization that promotes the use and development of the
Modelica language, libraries, and tools. In order to increase the distribution and usefulness of Modelica, the
Modelica Association has created a conference series especially for the Modelica end-users and developers,
to bring together Modelica users, engineers, researchers, language designers, library developers, and tool
vendors. This gives people an opportunity to be informed about the latest developments, to influence the
future development of Modelica and its libraries, and to get in touch with people solving similar modeling
problems.

In October 2000, the first event in this series took place in Lund, Sweden. This was a great success,
with more than 80 participants, and many high-quality papers. The next event, the second international
Modelica conference at DLR in Oberpfaffenhofen, Germany, March 18-19 2002, was an even greater
success with approximately 120 participants and an increased number of submitted and presented papers.

This volume contains the papers presented at the 3rd international Modelica conference at Linkdping
University, Linkdping, Sweden, November 3-4, 2003. A number of high-quality papers were received. The
program committee had the difficult task of planning the conference since not all papers could be
accommodated during the limited conference time of two days. Thirty-six papers were selected for regular
presentations, and six papers were selected for poster presentations.

More information about the Modelica language, the Modelica Association, this and future events can
be found at the web page http://www.modelica.org, including all papers from this proceedings and earlier
proceedings in the Modelica conference series.

The Modelica2003 conference was arranged by the Modelica Association in cooperation with
PELAB - the Programming Environment Laboratory, Department of Computer and Information Science,
Linkdping University, Sweden.

Linkdping, October 10, 2003

Peter Fritzson

The Modelica Association 1 Modelica 2003, November 3-4, 2003

Program Committee

O Peter Fritzson, PELAB, Department of Computer and Information Science, Link&ping University,
Sweden (Chairman of the committee).

0 Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

0 Hilding Elmqvist, Dynasim AB, Sweden.

0 Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center, Oberpfaffenhofen,
Germany.

0 Michael Tiller, Ford Motor Company, Dearborn, USA.

0 Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of Computer and Information
Science, Linkdping University, Sweden.

Local Organization

0 Vadim Engelson (Chairman of local organization).
0 Bodil Mattsson-Kihlstrom.
O Peter Fritzson.

The Modelica Association 2 Modelica 2003, November 3-4, 2003

Contents

Index of authors 7
Session 2A 9
Automotive Simulation - I

Johan Andreasson Division of Vehicle Dynamics, Royal Institute of 11
Technology, Sweden: VehicleDynamics library

Stefan Heller, Tilman Biinte 7U Miinchen; DLR Oberpfaffenhofen, 19

Germany: Modelica Vehicle dynamics library: Implementation of driving
maneuvers and a controller for active car steering

Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson, Johan 29
Andreasson, Martin Otter, Christian Schweiger, Dag Briick Dynasim;
Royal Institute of Technology, DLR: Real-time Simulation of Detailed
Automotive Models

Session 2B 39
Thermodynamic Systems - I
Francesco Casella, Alberto Leva Dipartimento di Elettronica e 41

Informazione, Politecnico di Milano: Modelica open library for power
plant simulation: design and experimental validation

Tomas Skoglund Tetra Pak Processing Systems, Sweden: Simulation of 51
Liquid Food Process in Modelica

Martin Raberg, Jan Tuszynski Car! Bro Energikonsult, Sweden: Thermo 59
hydraulic library for power systems applications

Session 3A 73
Automotive Simulation - 11

Michael Tiller, Paul Bowles, Mike Dempsey Ford Motor Company, 75
USA; Claytex, UK: Development of a Vehicle Modeling Architecture in
Modelica

Leo Laine, Johan Andreasson Chalmers Institute of Technology; Royal 87
Institute of Technology, Sweden: Modelling of Generic Hybrid Electric
Vehicles

Erik Surewaard, Eckhard Karden, Michael Tiller Energy Management 95
Group, Ford Forschungszentrum Aachen, Germany; Ford Motor
Company, USA: Advanced Electric Storage System Modeling in Modelica

Session 3B 103
Tools - 1

Per Sahlin and Pavel Grozman Equa Simulation AB, Sweden: IDA 105
Simulation Environment - a tool for Modelica based end-user application
deployment

Mike Dempsey Claytex Services Limited: Automatic translation of 115
Simulink models into Modelica using Simelica and the AdvancedBlocks

library

The Modelica Association 3 Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin, Susanna Monemar, Peter Fritzson, 125
Peter Bunus PELAB , Linkoping University: DrModelica - An Interactive
Tutoring Environment for Modelica

Session 4A 137
Automotive Simulation - I11

John Batteh, Michael Tiller and Charles Newman Ford Motor 139
Company, USA: Simulation of Engine Systems in Modelica

Christian Schweiger, Martin Otter Institute of Robotics and 149
Mechatronics, DLR : Modeling 3D Mechanical Effects of 1D Powertrains
Session 4B 159

Electrical and Chemical Systems

Carla Martin, Alfonso Urquia and Sebastian Dormido Department of 161
Computer Science and Automatic Control, UNED, Spain: SPICELIb -
Modeling and Analysis of Electric Circuits with Modelica

Gerald Reichl Department of Automation and Systems Engineering, 171
Technishe Universitdt llmenau: WasteWater - a Library for Modeling and
Simulation of Wastewater Treatment Plants in Modelica

Session 5: Poster session: 177
Jorgen Svensson and Per Karlsson Dept. of Industrial Electrical 179
Engineering and Automation, Lund University: Adaptive signal

management

Christian Hoffmann and Jens Kahler Department of Automation and 189
System Engineering, Technische Universitdt [Imenau, Germany, De

Montfort University, UK: Object-oriented simulation of energy supply

systems on the basis of renewable energy

Torge Pfafferott, Gerhard Schmitz Department of Technical 197
Thermodynamics, Technical University Hamburg-Harburg:

Implementation of a Modelica Library for Simulation of Refrigeration

Systems

Jerzy Mikler and Vadim Engelson PELAB, Linképing University; Royal 207

Institute of Technology, Sweden : Simulation for Operation Management:
Object Oriented Approach using Modelica

Emma Larsdotter Nilsson and Peter Fritzson PELAB, Linkoping 215
University : BioChem - A Biological and Chemical Library for Modelica
Dr S.Sumathi, K. Vinod Kumar PSG College of Technology, 221

Coimbatore, India : Simulation and Control of Induction Motor in Dymola

The Modelica Association 4 Modelica 2003, November 3-4, 2003

Session 7A 229

Mechatronic Systems - 1

Gianni Ferretti, Marco Gritti, Gianantonio Magnani, Paolo Rocco, 231
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy:
A Remote User Interface to Modelica Robot Models

Angelika Peer, Naim Bajcinca, Christian Schweiger Institute of Robotics 241
and Mechatronics, DLR: Physical-based Friction Identification of an
Electro-Mechanical Actuator with Dymola/Modelica and MOPS

Lars Eriksson Vehicular Systems, Linkoping University: VehProLib - 249
Vehicle Propulsion Library. Library development issues
Session 7B 257

Thermodynamic Systems - 11

Stefan Wischhusen, Bruno Liidemann, Gerhard Schmitz Department of 259
Technical Thermodynamics, TU Hamburg-Harburg, Imtech Deutschland
GmbH, Germany: Economical Analysis of Complex Heating and Cooling
Systems with the Simulation Tool HKSim

Hilding Elmqvist, Hubertus Tummescheit and Martin Otter Dynasim, 269
Sweden;, UTRC, USA; DLR, Germany: Object-Oriented Modeling of
Thermo-Fluid Systems

Riidiger Franke, Manfred Rode, Klaus Kriiger ABB Corporate 287
Research, ABB Utilities GmbH, Germany: On-line Optimization of Drum

Boiler Startup

Session 8A 297
Mechatronic Systems - 11

Ivan 1. Kossenko and Maia S. Stavrovskaia Moscow State University of 299
the Service, Russia: How One Can Simulate Dynamics of Rolling Bodies

via Dymola: Approach to Model Multibody System Dynamics Using

Modelica

Martin Otter, Hilding EImqvist and Sven Erik Mattsson DLR; 311
Dynasim: The New Modelica MultiBody Library

Peter Beater and Martin Otter Fachhochschule Siidwestfalen in Soest; 331
DLR, Germany: Multi-Domain Simulation: Mechanics and Hydraulics of
an Excavator

Session 8B 341
Thermodynamic Systems - I11

Francesco Casella and Francesco Schiavo Dipartimento di Elettronica e 343
Informazione, Politecnico di Milano: Modelling and Simulation of Heat
Exchangers in Modelica with Finite Element Methods

Magnus Holmgren Solvina, Sweden: Process simulation in industrial 353
projects

Andreas Idebrant and Lennart Nis MathCore Engineering AB; Alstom 359
Industrial Turbines AB, Sweden: Gas Turbine Applications using
ThermoFluid

The Modelica Association 5 Modelica 2003, November 3-4, 2003

Session 9A 367

Mechatronic Systems - 111

Peter Beater and Christoph Clauss University of Applied Sciences 369
Stidwestfalen, Soest; Fraunhofer-Institut fiir Integrierte Schaltungen,

Dresden: Multidomain Systems: Pneumatic, Electronic and Mechanical
Subsystems of a Pneumatic Drive Modelled with Modelica

Johann Bals, Gerhard Hofer, Andreas Pfeiffer, Christian Schallert 377
Institute of Robotics and Mechatronics, DLR: Object-Oriented Inverse
Modelling of Multi-Domain Aircraft Equipment Systems and Assessment

with Modelica

Mats Beckman and Johan Andreasson Division of Vehicle Dynamics, 385
Royal Institute of Technology, Sweden: Wheel model library for use in
vehicle dynamics studies

Niklas Pettersson, Karl Henrik Johansson Scania; Royal Instutute of 393
Technology, Sweden: Modelica Library for Simulating Energy
Consumption of Auxiliary Units in Heavy Vehicles

Session 9B 399
Tools - 11
Wim Lammen, Jos Vankan, Robert Maas and Johan Kos National 401

Aerospace Laboratory, The Netherlands: Approximation of black-box
system models in Matlab with direct application in Modelica

Michael Tiller Ford Motor Company: Parsing and Semantic Analysis of 411
Modelica Code for Non-Simulation Applications

Adrian Pop, Peter Fritzson PELAB, Linképing University: 419
ModelicaXML: A Modelica XML Representation with Applications

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus and Kaj 431
Nystrom PELAB, Linkoping University: Meta Programming and Function
Overloading in OpenModelica

The Modelica Association 6 Modelica 2003, November 3-4, 2003

Andreasson, Johan 11, 29, 87, 385
Aronsson, Peter 431

Bajcinca, Naim 241

Bals, Johann 377

Batteh, John 139

Beater, Peter 331, 369
Beckman, Mats 385

Bowles, Paul 75

Briick, Dag 29

Bunus, Peter 125, 431

Biinte, Tilman 19

Casella, Francesco 41,343
Clauss, Christoph 369
Dempsey, Mike 75, 115
Dormido, Sebastian 161
Elmgqvist, Hilding 29, 269, 311
Engelson, Vadim 207
Eriksson, Lars 249

Ferretti, Gianni 231

Franke, Riidiger 287

Fritzson, Peter 125, 215, 419, 431
Gritti, Marco 231

Grozman, Pavel 105

Heller, Stefan 19

Hofer, Gerhard 377
Hoffmann, Christian 189
Holmgren, Magnus 353
Idebrant, Andreas 359
Johansson, Karl Henrik 393
Kahler, Jens 189

Karden, Eckhard 95

Karlsson, Per 179

Kos, Johan 401

Kossenko, Ivan 1. 299

Kriiger, Klaus 287

Kumar, Vinod 221

Laine, Leo 87

Lammen, Wim 401

Larsdotter Nilsson, Emma 215
Lengquist Sandelin, Eva-Lena 125
Leva, Alberto 41

Lidemann, Bruno 259

Maas, Robert 401

Magnani, Gianantonio 231
Martin, Carla 161

Mattsson, Sven Erik 29, 311
Mikler, Jerzy 207

Index of Authors

Monemar, Susanna 125
Newman, Charles 139
Nystrom, Kaj 431

Nis, Lennart 359

Olsson, Hans 29

Otter, Martin 29, 149, 269, 311, 331
Peer, Angelika 241
Pettersson, Niklas 393
Pfafferott, Torge 197
Pfeiffer, Andreas 377

Pop, Adrian 419

Reichl, Gerald 171

Rocco, Paolo 231

Rode, Manfred 287

Réberg, Martin 59

Sahlin, Per 105

Saldamli, Levon 431
Schallert, Christian 377
Schiavo, Francesco 343
Schmitz, Gerhard 197, 259
Schweiger, Christian 29, 149, 241
Skoglund, Tomas 51
Stavrovskaia, Maia S. 299
Sumathi, S 221

Surewaard, Erik 95
Svensson, Jorgen 179
Tiller, Michael 75, 95, 139, 411
Tummescheit, Hubertus 269
Tuszynski, Jan 59

Urquia, Alfonso 161
Vankan, Jos 401
Wischhusen, Stefan 259

The Modelica Association

Modelica 2003, November 3-4, 2003

The Modelica Association 8 Modelica 2003, November 3-4, 2003

Session 2A

Automotive Simulation — I

The Modelica Association 9 Modelica 2003, November 3-4, 2003

The Modelica Association 10 Modelica 2003, November 3-4, 2003

J. Andreasson VehicleDynamics library

VehicleDynamics library

Johan Andreasson
KTH Vehicle Dynamics, Sweden
johan@fkt.kth.se

Abstract splitMue constantWind load

dh 3

A Modelica library for vehicle dynamics problems has
been developed and a pre-release version is availak
The library is based on modular design and contai ~——
models of components as well as suspensions, chas

and vehicles. In this paper the modelling structure i ~r~)
discussed and it is illustrated how this simplifies thi

usage. —~ 10—

r={-ILoad,0,0}

airResistance

1 Introduction

Due to the multidomain qualities of Modelica, it haEigure 1: The layout of a vehicle model with a power

for long been thought of as a suitable tool for contrain and an additional load.

plete vehicle modelling. Detailed models of vehicle

power train are available [1] and chassis models h° Chassis

also been presented [2, 3]. This paper presents t

VehicleDynamics library that provides models forln vehicle dynamics studies, the chassis is of great im-

vehicle dynamics studies. A pre-release versionportance. Not only the geometry of the suspensions

available [4] for download. but also bushing and strut characteristics are of great
The library is divided into sub packages contaiimportance and thus, the models often tend to be de-

ing models of vehicle chassis and wheels, envirotailed, containing models representing different fields

ments and drivers. The library structure is best undef expertise. At the same time it is crucial that the

stood by considering Figure 1. The chassis, which hmodels are easily reconfigurable and that it is possi-

been the main focus within this work, contains bodple to grasp the contents of a model without needing

suspensions and wheels. To control the chassis’ rto understand the details. To allow this, the chassis is

tion a driver model is used. This could either be opelefined in a modular and hierarchical way based on

loop from a predefined input or a more advanced driiour levels. The highest level is the vehicle level and

model to mimic human behaviour. can be seenin Figure 1. The three remaining levels are
The chassis have connectors to the wheels to ¢hassis, suspension and component levels and they are

low the addition of a power train. There is is alstlustrated in Figure 2.

a MultiBody connector to the body to allow addi- i o .

tional models to be attached. This is here illustrat&Nassis levelWithin the chassis level a complete

by an aerodynamic model and an additional load, b ~ chassis is built up using suspensions, wheels and

it is also possible to attach e.g. trailers. Environmeni @ Pody. Here, a four wheel chassis with front

representing ground and atmosphere conditions are: ~ Wheel steer is shown, but other models can eas-

lected independent of the rest of the vehicle model. 1Y b€ defined, e.g. with four wheel steer or
six wheelers. However, there is no need to de-

fine a new chassis model for each configuration

The Modelica Association 11 Modelica 2003, November 3-4, 2003

J. Andreasson

VehicleDynamics library

wheel_4

" |MacPherson

MultiLink

frontSuspension

rearSuspension

R
==P0
I0ONB31)

A

":[[2/ym

i
x
<

¥

3a

rightLink

Data

data

leftLink

leftLever

Figure 2: The hierarchical levels of a chassis model. 1: the chassis level, 2: the suspension level, 3: the
component level represented by an anti roll bar linkage: 3a, a MacPherson linkage: 3b, and a steering rack: 3c.

~1Cs._scaled

MacPherson

rearBar

1
A
By, <D
'4 froniBar
S

steeringJoint

uuuuuuuu

The Modelica Association

12

Modelica 2003, November 3-4, 2003

J. Andreasson VehicleDynamics library

of different suspensions or wheels. This is ir ground frame
stead handled as described in Section 6, using
redeclare constructs in Modelica.

BGR
Suspension levelCommon for all individual suspen- ‘Z°
sions are the linkages that carry the wheels a
normally there is some kind of roll-suppressin 9
8| y
X

mechanism between these. If the suspension
steerable there is also a steering rack. Each
theses components can be used to build up n
suspensions. Thus, the suspension linkage, hel
MacPherson, could easily be replaced by anotr

linkage, e.g. a double wishbone or a multi-link=jgyre 3: The vehicles motion is specified by how the
In the same manner, the steering and the anti ;3GR moves relative to the ground frame. From the

linkages can also be replaced. Furthermore, BGR, locations of e.g. centre of mass and construction
parameters are gathered in a data record, makoins are defined.

it easy to change a whole suspension setup.

The idea with the suspension level is to makey, ,qhings are located. Additionally, the mass and in-
easy to reconfigure a car by just swapping SUSPéia properties of the parts within the linkage can
sion and therefore, all suspension models shoy,q yefined. For a comprehensive parameterisation of

share the same basic interface, i.e. one MBS-¢q0 hroperties, a systematic definition of the param-
for the connection to the body. There should al<Eter names is necessary.

be an MBS cut for each wheel (normally wo) that - 5 geometry is mainly defied by the connection

is to be connected to the suspension. Additiofg; |ocations, connection points. Additionally, the

ally, there may be some extra connectors depefifla otion(s) of a joint's degree(s) of freedom must be

ing on the suspension. For example, a steerapeq, i not defined by the connection joint points. The
suspension will also have a connector for a Ste%@ometry parameters are defined as:

ing wheel.

- [geometry parameter]
Component level Within the component level, the =[property][connection] [wheel no]

foundation for efficient reuse of vehicle modelgonnection]
is laid. Components like a-arms, bushings, Mac =[part 1][part 2]..[part n]

Pherson struts, trailing arms, multi-links, anti ro%{h'l th d inerti " ¢
linkages, rack steerings etc. are available. e the mass and inertia properties are componen
ecific and are thus named according to:

this version, these components are based on he
Modelica andModelicaAdditions libraries. [component parameter]
Other basic models that are needed in the compo<=[property][part] _[wheel no]

nent models, such as nonlinear spring-dampers i
are described in Section 4. Where[property] and[part] are defined accord-

ing to Table 1.

When there are more than one part of the same
type, a number is added to the character. For exam-
The parameterisation of the chassis is based on a Be# if there are more than one link, as in a double-
Geometric Reference frame (BGR). This frame is omishbone, they are numbered L1, L2, etc., starting at
entied according to the DIN standard, they andz the front upper link. The wheels are numbered from
axes point forward, left and upward respectively, séf@nt left towards right and rear. Some examples of
Figure 3. parameter names are give below:

The geometry of the chassis and the suspensions
are then defined by a set of points where joints anraC

2.1 Parameterisation

L1 _2 Location of connection joint between chassis
and link 1 at front right wheel.

The Modelica Association 13 Modelica 2003, November 3-4, 2003

J. Andreasson

VehicleDynamics library

3

rcm

-~ - 0 0

o

q
glnit

XrTWrMHCnNWTCITO

w

Table 1: Naming of parts and properties.

location

direction of rotation or translation
mass

location of centre of mass
stiffness

damping

force

torque

inertia element, (gear) ratio
Relative offset

Initial value

chassis

steering (rack)

upright, part that holds the wheel
pivot element

strut, 1D force element

link or rod

body or bushing

antiroll

undefined/general part
wheel

requiring different models to cover various aspects.
Therefore, these are packaged together with the rim
and the hub to form ready-to-use wheel models. The
models used in this package are based on a tyre model
suggested in [5] and implemented in Modelica in [2].
This model uses steady state force characteristics to-
gether with a simple tyre belt deflection model. Addi-
tionally, the Magic Formula [6, 7] is also available for
the tyre force calculation.

Common for both models are the assumption that
the contact patch between the tyre and the road can
be approximated by a point. To avoid coupling the
wheel and the road models, this contact point is cal-
culated using thénner/outer Modelica language
constructs to get information from the Environment
model about the current altitude and road condition.
As a consequence, the road properties can be defined
at the top-level of the model and can also be easily
changed.

Due to the contact point assumption, this model
has troubles travelling on roads with sharp edges,
which often is the case when a real road profile is
meshed. To manage this and other issues, a new
Wheels library is currently under development [8].

i22L1 _3 Inertia element i22 of link 1 at rear left

wheel.

4 Utilities

nCU4 Direction of revolution of the joint that con-

nects the upright 1 to the chassis at the right réa" vehicle dynamics studies it is essential that the
wheel. This could for example be the rotatiogharacteristics of flexible elements such as struts and

axis of a

swing axle.

bushings are modelled. To deal with this, a set of basic
force elements are available. These are either taking

rUL1L2 _1 Location of connection joint between thénto account the deformation along one degree of free-
upright and link 1 and 2 at the front left wheeldom, 1D-forces, or six degrees of freedom, 3D-forces.
This could for example be the upper spindle joint The 1D-forces apply force depending on the de-
at a double wishbone suspension.

In many cases it is convenient to mirror comp
nents in a car, for example left and right suspensio
To handle this, a three-dimensional scale factor

formation according to thévodelica.Mechanics
definitions or depending on the distance between two
Yrames. The force versus deformation and its time
Wrivative are defined as look-up tables.

'S The 3D-forces calculates the relative rotation be-

. Thi nr le and mirror obj for exampl . . .
used s can rescale and or objects, for exa RVeen two frames, either as a linearisation around a

scaleFactor=
the xz-plane.

{1,-1,1 } mirrors the model around

3 Wheels

Good tyre models are essential for driving simul#he degrees of freedom, are also available. These use
tion of all ground vehicles using pneumatic tyreswo 6 x 6 matrices for stiffness and damping to cal-
However, tyre behaviour is extremely complex, oftezulate the resulting force and torque vectors from the

zero deformation or nonlinear allowing deformations

up tottradians. The force can be calculated as a non-
linear spring-damper element, without considering the
coupling effects. Linear spring-damper elements with
bump stops, taking into account the coupling between

The Modelica Association

14 Modelica 2003, November 3-4, 2003

J. Andreasson VehicleDynamics library

described above, it consists of two rotational flanges
for steering and drive. For closed loop driver models,
an MBS connector is used to make the model able to

deformation:

[fa+f_bump; ta] =

-C*[r_rela-r_rela0;phi_rela-phi_rela0]
-D*[v_rela;w_rela];

Thef _bumpis an additional, stiff, spring-damper force6
that is active whem _rela is outside the edge of the
linear region. It is directed perpendicular to the ed
that can be defined either as a cylinder, sphere or ng
More complex geometries and models, using e.qg. fr%c
tional derivatives, are currently not implemented.

In addition to the force elements, there are also
a set of joints particular relevant for vehicle dynam-
ics studies. Composite joint models (e.g. an aggreg
tion of a revolute, a spherical and a universal joint) are
available to reduce the nonlinear algebraic loops tr\ll%t
normally occur in suspensions with ideal joints [9].

Also there are joints that applies unphysical con-
straints to the vehicle. For example, it is in man%
cases interesting to be able to perform a maneouvre
at constant speed. In other simulation packages likel
e.g. ADAMS [10] this is solved by adding a power
train and applying a cruise control. The drawback is
then that the user need to add unnecessary complexity
as well as unwanted dynamics to the analysis. Here, it
is instead possible to constrain the velocity along the
longitudinal axis of the car.

Other cases where it may be interesting to con-
strain the vehicle in an unphysical way is when study-2
ing the effects of flexibility in the suspensions. Typi-
cally, there are very high eigen-frequencies due to high
stiffness and low mass that are irrelevant for the anal-
ysis and thus using joint models that do not consider
the acceleration may speed up the simulation without
loosing relevant accuracy.

5 Drivers

The driver models used in vehicle dynamics studies are8
either open loop drivers that apply a predefined motion
on the steering wheel or more advanced models that
try to mimic the human behaviour, taking into account
some states of the body and sometimes also the force-
feed-back through pedals and steering wheel.

More advanced studies considering combined cor-
nering and braking/acceleration requires a tight inter-*
action of steering wheel and pedal output. The in-
terface is prepared to be able to handle the aspects

sense the vehicle’s motion.

Usage

e modular design of the vehicle models gives three
ignificant advantages. First, it is easy to reuse already
eveloped models. Secondly, because of the standard-
ised interfaces, much of the test rigs already imple-
mented can be used for new models as well, making it
easy to test and verify these. A third aspect that will be
Ristrated further is the ability to exchange sub models
without redesigning the original model which leads to
ry flexible use.

To illustrate this, it is here described how one
model can cover different combinations of suspen-
ons of a front steered four wheeled chassis.

Double-clicking the chassis in ti8andardCar
example opens the dialog box showed in Fig-
ure 4.1. Here it is possible to select the desired
models for all the wheels as well as for the front
and rear suspension, respectively. As indicated in
the figure, a drop down box appears, listing all
possible choices.

Once the desired suspensions and tyre models
are chosen, the corresponding parameters can be
edited by pressing the triangle at the end of each
row. Since all suspension parameters are set in a
data record, Figure 4.2, it is easy to select the
desired setup from the dropdown box, again only
showing the relevant options. The geometry is
also indicated in a figure to make it more easy to
verify that the right suspension is selected and to
understand the parameterisation.

Even if a specific setup is chosen for the suspen-
sion or not, it is still possible to edit each value
separately as illustrated in Figure 4.3. Except for
the geometry parameters, it is also easy to change
mass and inertia properties as well as the charac-
teristics of the force elements.

To facilitate the modification of force elements,
which can be rather complex, it is possible to both
edit these as Modelica code, Figure 4.4 and to vi-
sulise the characteristics, Figure 4.5.

The Modelica Association 15

Modelica 2003, November 3-4, 2003

J. Andreasson VehicleDynamics library

1 hassis in YehicleDynamics.Examples.StandardCar 2]
General | Agd Modifers
~Component: lcon
Marne |Dhas:is
: o &
Comment I am
" m
i~ Model
Path WehicleDpramics Chassis StandardChassis
LComment
P
wheel 1 ¥ Front left wheel
whee| 2 b Frontright wheel
wheel 3 ¥ FReat left wheel
wheel_4 xl* FRearright wheel
frontSuspension {: WehicleDynarics Chassis. Suspersions. MacPhersonSuspension2 frontSuspension ¥ | with steering
1zarSuspension |:lare VehicleD namics Chassis Suspensions. TralingdmS uspension rearSuspension | Edit Text nwithout steering
o - —r -
—Initial conditions I,] S Copy Default
[} Trailing aim suspension with anti roll inkage. Fiamrsie .
winit [3 Steerable suspension without geometry. Camber and toe are give as functions of | pead of vehicle
i s i Select Class o =
ilrit [} Suspension without geometiy. Mo stesring possibility, Camber and toe are give as osition of vehicle
MacPherson suspension with ideal joints. oy e 5 5
hil it o » rad
2 [3 Double wish-hone [4-am) suspension with ideal joints L b
[2 Double wish-bone [4-aim) suspension with an onboard bells-ville to decouple sus;
L% Double wish-hone [A-aim) suspension with anboard mounted struts j
[} Suspension with wheel mount points fied rigidly to the chassis oK Cancel
C% Link ane with five inks bn contrain the rontion |dealinints are used =

2 IS redeclare frontSuspension in YehicleDynamics:Eample . a2l 3 Record Editor for MatPhersonData data 1 2l x|

Gereral | Add Modfiers ifaeameini | bass andlnertia. | Forces |
i~ Comparent leon i~ Scaling
Wame' [redaclare fonStspansion scaleFactor| 17077 b Use this to iescale the geomehy. doss nat affes inettia properties and force slements
Comment | LeftMacPherson
i~ Model CL1_1 b m
Path VehicleDynarics Chassis Suspansions MacPhersonS uspension? L2 1 b m
Comment M acPherson suspension with ideal jints UL T o
Parameter 1 bm
data | €51 bm
F T e e s b
Copy Defaul 051 13
rCL1 - "
Propagate o
i~ Right MacPhersan
Select Class
CL1_2 P
CL2. 2 »m
RL3 ruL4 LIz 2 b m
s 2 »m
rus 15 2 b
s_2 rom
rCA rAL4 052 »m
[~ Steering-
ruw
L3 1
RL3_1
rCL2 ruL3 ruLl1L2 s 2
RL3 2
ik Cancal ratioi/heelToRack fotatational to translational ratio [m/rad]
~Antiroll

ecord Editer for ForceTablelD data.dat 2lx] atrix Editor for data.data § 1.fd i 2] x|
45 5 BT
Input
& Caolumns i2
id) Edt Text . 2
tzbleName_C |- Copy Defaylt [l 0 in function useitabloplional) 1] -3000
flleName.C e is stored (optional) 2 05 000
icol e {0 be interpolated 3 02 300
tableName_D e or in function usertabloptional) 4 0 0
fileMame 0 |- T r il i1 is stored (aptional
lehame_| ile where matiix is st Urtla [optianal) 5 02 300
ieal D © % columns of table to be interpolated
[05 200
7 07 1600
Ok Ci -4000
ok | o | 8 1 2500 1 ! K ! 1
Ok Cancel I Plat 223 Table | Map Bows | M ap Columts:

Figure 4: Dialog boxes for modification and parameter settings.

Within the VehicleDynamics library, there is a of a Formula 3 race car, Figure 5 and a car with a
set of samples available to illustrate the use of the tiiailer. Furthermore, there are some examples show-
brary. Except for th&tandardCar , there is a model ing how components and suspensions can be tested in-

The Modelica Association 16 Modelica 2003, November 3-4, 2003

J. Andreasson VehicleDynamics library

camber [rad] c_ast-er_[rag] E[;d] B

———T—
0 0.1 0.2 0.3 [m]
deflection

Figure 5: Animation view of the Formula 3 car exe
ple.

Figure 6: Animation of a MacPherson suspension
along with a mapping of the change of camber, caster
and toe angles as function of bump motion.

dividually, see for example Figure 6.

Additionally, there are four variants of t
StandardCar corresponding to four different leve
of detail of a mid-sized car with a front MacPher:
suspension and a rear multi-link suspension. The 8 Future work
idea is to illustrate how Modelica can be used to m
vehicles with a wide range of level of detail. The s The library is under constant development. Upcoming
plest model uses look-up tables to define the de improvements concern an extension of the flexibility
tion of the suspension and an Ackermann functior 0 include swapping between bushings and joints and
the steering geometry. The second level uses linkag&&er ability to add active components such as con-
with ideal joints while level three and four use busitollable dampers. To be able to study the gyroscopic
ings. A more detailed description of these models c&f{ects of the power train and torque oscillations due
be found in [9]. In Figure 7, two pictures of the level 0 Cardan joints, multi-body models of drive shafts

car when performing a double lane change maneou#8d brakes will also be included. The intention is also
1SO3888-1:1999, is shown. to convert thevehicleDynamics to the new MBS-

library [11] and to improve the documentation.

7 Conclusions
9 Acknowledgements

In this work, a library for modelling of vehicle dynam-
ics related problems is realised. It uses the interfaddys library is based on models developed for the Driv-
from theModelica andModelicaAddtions pack- ing Dynamics project within the Swedish National
ages to be compatible with other libraries. Research Programme "The Green Vehicle/FCHEV”.
VehicleDynamics ~ provides an architecture forS0me components of this library, such as the Rill tyre
vehicle modelling as well as components, suspensiéh@del and the aggregation joints for analytically solv-
and chassis model to simplify for the user to exterfR@ kinematic loops, have been developed by Martin
the library according to his/her needs. The modul&ter, from DLR - Institute of Robotics and Mecha-

structure of the model design allows to take advantd§@nics, Germany. Part of this library was developed
of the potential of the Modelica language. with financial support from Dynasim AB, Sweden and

VehicleDynamics is freely available and theDLR - Institute of Robotics and Mechatronics, Ger-

source code is completely open. The library can alS&"Y-
be used together with theowerTrain package to
model complete vehicles.

The Modelica Association 17 Modelica 2003, November 3-4, 2003

J. Andreasson

VehicleDynamics library

Figure 7: Vehicle performing a double lane change at 20 m/s.

References

[1]

[2]

[3]

[4]
[5]

[6]

M. Otter, M. Dempsey, and C. Schlegel. Pack-
age PowerTrain: A Modelica library for model- [7]
ing and simulation of vehicle power trains. In
Peter Fritzson, editoiRroceedings of the Mod-
elica’2000 WorkshopLund, October 2000. The
Modelica Association and Lund University.

[8]

J. Andreasson, A. Bller, and M. Otter. Mod-
eling of a racing car with Modelicas MultiBody
library. In Peter Fritzson, editoRroceedings

of the Modelica’2000 Workshoph.und, October
2000. The Modelica Association and Lund Uni-[]
versity.

S. Drogies and M. Bauer. Modeling Road Vehi-
cle Dynamics with Modelica. In Peter Fritzson,
editor, Proceedings of the Modelica’2000 Work-
shop Lund, October 2000. The Modelica Asso[—lo]
ciation and Lund University.

Modelica Association. http://www.modelica.org[ll]

G. Rill Simulation von Kraftfahrzeugen
Vieweg, 1994.

E. Bakker, H.B. Pacejka, and L. Lidner. A new
tire model with application in vehicle dynamics

studies.SAE transactions, paper 89008Yages
83-93, 1989.

H.B. Pacejka.Tyre and vehicle dynamicBut-
terworth Heinemann, 2002.

M. Beckman and J. Andreasson. Wheel model
library in Modelica for use in vehicle dynam-
ics studies. In Peter Fritzson, edit®toceed-
ings of the 3rd International Modelica Confer-
ence Linkdping, November 2003. The Modelica
Association and Lin&ping University.

H. Elmqvist et al. Realtime simulation of de-
tailed physically based automotive models. In
Peter Fritzson, editorProceedings of the 3rd
International Modelica Conferengd.inkdping,
November 2003. The Modelica Association and
Linkdping University.

ADAMS, Mechanical
http://www.adams.com/.

Dynamics Inc.

M. Otter, H. EImqvist, and S.E. Mattson. The
new Modelica MultiBody library. In Peter Fritz-
son, editorProceedings of the 3rd International
Modelica Conference Linkdping, November
2003. The Modelica Association and Liding
University.

The Modelica Association

18

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

MODELICA vehicledynamicslibrary:
| mplementation of driving maneuversand a controller for active
car steering

Stefan Heller*
Technische Universitdt Miinchen (TUM),

Institute for Real-Time Computer Systems (RCS),

D-80290 Miinchen, Germany

Abstract

This paper deals with the assessment and exploitation
of the recently released MODELICA-based vehicle
dynamics library. A setup of various driving ma-
neuvers is accomplished. These maneuvers will be
conducted by providing steering angle and gas/brake
position to the car model of the library. The common
linearized single track model is derived as an approxi-
mative model for the fully detailed vehicle dynamics
model. This model is used for synthesis of feedfor-
ward control and later also as a nominal model for
active car steering control aiming at vehicle dynamics
stability improvement. The applied robust steering
controller structure is known as the disturbance
observer. Simulations are used to demonstrate the
effectiveness of the vehicle dynamics enhancement in
comparison to the uncontrolled vehicle. Also some
experiences with the vehicle dynamics library are
pointed out.

1 Introduction

As a rather recent field of research the simulation
of multiphysical objects gets more and more weight.
The behaviour of car models during maneuvers is
of interest, e. g. for research and development of
cars. The general ability of executing the simulations
in real time is important for hardware-in-the-loop
investigations. The MODELICA language is able
to handle multiphysical objects. Concerning the

*e-mail: Stefan.Heller@mytum.de
te-mail: Tilman.Buente@dlr.de

Tilman Binte'

German Aerospace Center (DLR),
Institute of Robotics and Mechatronics,
Oberpfaffenhofen, D-82230 Wessling,

Germany

real time ability MODELICA comprises some pow-
erfulpromising features: hybrid modelling, inline
integrators and symbolic preprocessing.

The MODELICA vehicle dynamics library [1] ba-
sically consists of a detailed mathematical model
comprising the governing multibody differential equa-
tions. Moreover, there are some rudimental steering
schedules for conducting simple maneuvers. This
library is also appropriate for the analysis, synthesis
and evaluation of control systems concerning vehicle
dynamics. All considerations in this paper refer
to an unofficial prerelease of the vehicle dynamics
library [1] and particularly to the chassis level 2. The
library and some significant features will be outlined
in section 2. For the setup of more sophisticated
and realistic maneuvers a generic driver module is
needed, which represents the action of a real driver.
This driver module conducts the maneuvers and is
therefore called maneuver control block.

The single track model is used as an approximative
model for the more detailed car model. It is used
for the synthesis of a lateral acceleration controller
which is contained in the maneuver control block.
The identification of the parameters of the single track
model is explained and the parameters are given in
section 3. The maneuver control block is introduced
in section 4. The lateral acceleration controller
provides steering wheel angle suitable for following a
predefined lateral acceleration profile. Alternatively,
the steering angle can be provided directly to the car
model. Analogue is the setting of the position of the
gas/brake pedal. This position and hence the speed of
the car model are controlled according to a predefined
speed profile.

Maneuvers executing full
functionality.

braking need ABS-
Therefore, a wheel slip controller

The Modelica Association

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

is introduced in section 5 which approximates the
function of a real ABS-system.

Section 6 deals with the application of the maneuver
control block. Four maneuvers are conducted which
illustrate the action of this block. Also the car
model of the vehicle dynamics library is evaluated by
means of these maneuvers. Moreover, the maneuvers
braking in a curve and p-split braking demonstrate
the operation of the added wheel slip controller.

In section 7 the active car steering controller for
improvement of yaw dynamics is introduced. When
the car model is exposed to asymmetric conditions
like asymmetric load, side wind or asymmetric road
friction while braking critical yaw dynamics can cause
instability of the car. This instability can be reduced
and the car can be brought back into safe state by
active car steering. The controller used in this paper is
known as the disturbance observer [2]. It determines
an additional steering angle which is superimposed
mechanically to the steering wheel angle.

The controlled car is evaluated in section 8 by com-
paring simulations of the maneuvers to simulations
with the conventional car.

Finally, section 9 reports on some experiences about
working with the vehicle dynamics library.

2 MODELICA vehicle dynamics li-
brary

The vehicle dynamics library [1] is structured hier-
archically using four levels. The uppermost level is
called the vehicle level and contains the total model of
the car. This car model can optionally be completed
by a power-train, brakes, a block which has the func-
tion of a driver, and environmental conditions, like cer-
tain roadtypes (friction) or aerodynamics. On the next
level the chassis components are modeled explicitly, e.
g. with a front and a rear suspension, wheels and body.
The suspension level allows the reconfiguration of a
car with different suspensions. Therefore, the suspen-
sions have the same interface. The lowest level is the
component level with components like trailing arms,
struts, linkages etc. which are based on the standard
MODELICA and ModelicaAdditions libraries.

Fig. 1 shows our final setup from the vehicle level
for simulating the maneuvers with active car steering.
The dotted connections indicate the transmission of
the signals on the actual state of the car: speed vy,

lateral acceleration ay, position and orientation to the
maneuver control block; yaw rate r and speed vy to
the Vehicle Dynamics Control (VDC) block; speed v;
and rotational speed wy of each wheel to the wheel
slip controller.

The gray connections refer to the steering angle
signals. During maneuvers with the conventional car,
the VDC block is inactive. Hence, the steering angle
from the maneuver control block is equivalent to the
input steering angle at the car model. The thin gray
connections are for transmission of the reference and
the actual additional steering wheel angle between
VDC block and mechanical steering angle addition
block.

The value for the gas/brake pedal position in the
maneuver control block is passed to the wheel slip
controller block. For a positive value the acceleration
is carried out by equal propelling torques on both
wheels of the rear axle. A negative value for the
pedal position means braking. Then the deceleration
command is distributed on the brakes of the four
wheels according to the wheel slip control. The black
bondings represent the propelling torques (solid) and
braking torques (dashed) of the wheels.

The steering angle is passed to the car model by use
of the position element of the Mechanics Package of
MODELICA. The position element is accordingly
used as interface for the gas/brake pedal position.
In the latter case the only additional feature is the
dependence on the signed value (as described before).

3 Singletrack model parameters

For controller design the common linearized single
track model [2][3] is employed as an approximative
model for the fully detailed vehicle dynamics model.
For example, the steady state gain Gy |s=o from steer-
ing wheel angle & to lateral acceleration ayger is
needed to implement feedforward control for the steer-
ing controller in the maneuver control block. Hence,
first the parameters of the single track model are iden-
tified.

The single track model parameters corresponding to
the fully detailed vehicle dynamics model are deter-
mined by an optimization aiming at best matching of
the simulation results for both steady state cornering
and dynamic maneuvers. The parameters given in Tab
1 are the single track parameters for the car model in

The Modelica Association

20

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

techanical
Steering |
Anigle
[Addition = -
is
i
1
--------- I
: i
.. vDC I
: i
H : 1
H s 1
H = 1
H . 1
: : Lo
I\ -'jﬂ;
: > : Sl
O I B T | e e e e e e e Iy
: i L
-----] i i :
S _Car Model [
i Yiheel 1 1
: G
i . - 22l
ManeLver E Cantraller Zl1 1 Brakel
Control H 3 e T

Brake3

Figure 1: structure of the simulation set up with active car steering controller

the vehicle dynamics library (which is by default pa-
rameterized as a BMW 3-series).

Table 1: Identified parameters of the single track
model
mass m | 1482.9 kg
distance from front axle to cen- | I+ 1.0203m
ter of gravity
distance from rear axle to center | I, 1.5297m
of gravity
tire cornering stiffness of the | c¢ 91776%
front wheels
tire cornering stiffness of the | c, 77576%
back wheels
transfer constant angle steering | i_ 16.94
wheel to angle front wheel
moment of inertia w.r.t. the ver- | J | 2200kgm?
tical axis through centre of grav-
ity

4 The maneuver control block

As mentioned before, this maneuver control block is a
model for the real driver’s actions which are necessary
to perform a certain maneuver. It operates the steer-
ing angle and gas/brake pedals of the car model. This
block needs information on the actual dynamic state of
the car i.e. virtual measurement signals of the actual
speed vy and the lateral acceleration ay. The maneuver
control block consists of a lateral dynamics controller
(Fig. 2) and a speed controller (Fig. 3).

1
Gv|§0

Y 5
o~ P |~ i

Ayref
ay

Figure 2. Controller for providing steering wheel an-
gle according to a predefined lateral acceleration pro-
file

The total steering wheel angle output by this block is
composed of a feedforward and a feedback part which

The Modelica Association

21

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

may individually be hooked up as adequate for a spe-
cific maneuver (Fig. 2). For some maneuvers, a mere
feedforward steering is sufficient. For others main-
taining a certain lateral acceleration requires feedback
control (this means incorporating the Pl-controller by
closing switch S in Fig. 2). The block i is the gear ra-
tio between steering wheel angle d_ and average steer-
ing angle at the two front wheels.

Similarly to the steering angle controller the speed
controller (Fig. 3) consists of a feedforward and a
feedback part.

up

Pl

Vxref

Vx

Figure 3: Controller for the position of the gas/brake
pedal

The feedforward control is based on the assumption
that the actual longitudinal acceleration is proportional
to the gas/brake pedal position up:

1
ay = S Vx = Keonst Up 1)
For the model of the library it is Kgng =

0.0025m/s2.This relation has been validated by sev-
eral simulations. The inverse is used for feedforward
control. The low pass filter in Fig. 3 is added for mak-
ing the included differentiator causal.

5 Whes dlip controller

To be able to execute full braking an ABS-
functionality is needed. Therefore, the actual speed v;
and rotational speed wy of each wheel must be known
from the car model to calculate the actual longitudinal
slip at each wheel (with (2)). R is the radius of the
wheels.

R

Vi

Si=1

2

These slips S; are then used to calculate the
average slip Sag of the four wheels:

4

Savg =
The slip controlled braking force Tgj =

%1 (1—1Si|) (1 —Sawg) Tp is then calculated with the
braking force at the pedal Tp for each wheel.

This ensures that the brake torque at the brake pedal
is distributed on the brakes of each wheel according to
the slip at the wheel. Blocking of a wheel is avoided
and the vehicle remains controllable. The wheel slip
controller was designed heuristically to copy the basic
ABS functionality. In our simulations it turned out that
it works satisfactory (see next section).

6 Driving maneuvers

Four different maneuvers have been chosen from
[4]. This election is made in regard to expressiveness
of the maneuvers to evaluate both the usage of the
vehicle dynamics library and the car model and also
the performance of a active steering controller for
vehicle dynamics. At first, the conventional car
(without additional steering) is considered. Therefore,
the VDC block is inactive.

Maneuver: steady state cornering . This maneuver
is conducted by maintaining a constant lateral accel-
eration which is adjusted by the steering wheel con-
troller from Fig. 2. Starting from a maximum value,
the speed is slowly decreased to cover a certain speed
operating domain.

Fig. 4 shows the results of maneuver steady state cor-
nering. To maintain a constant lateral acceleration
ay during a constant decline of speed vy the steering
wheel angle & rises.

Maneuver: braking in a curve For this maneuver
the steering wheel angle is kept constant. Full braking
is applied. Simulation results are shown in Fig. 5.
When the braking is applied the vehicle is in the state
of a left turn with high lateral acceleration (=~ 6m/s?).
Fig. 5e shows the slip at the wheels. The rear left
wheel encounters the least vertical load. Therefore,
its slip exceeds the other wheels. However, the brak-
ing force at this wheel is reduced by the slip controller
(Fig. 5f, 5h). Hence the slip remains limited and block-
ing of the wheels is prevented.

Maneuver: sequence of alternating steering wheel
angle steps . A so called lateral acceleration level

The Modelica Association

22

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

a. actual speed
60
@ 40
£
<
> 20
0
0 50 100 150 200
ts
c. 4 chassis side slip angle

pre
o N

o

50 100

Us 150

steady state gain
e. from steering wheel angle
to chassis side slip angle

B3)I misz®
S °
> S ©
(5] o (9] -
o S

50 100 150

t/'s

Figure 4. Simulation results of the maneuver steady

state cornering

a. speed
30
@
g 20
\x
> 10
0
0 /s 5 10
c. chassis side slip angle d.
2 6
k)

. ° £
“ sy
-2 [

0
-4
0 s 5 10
e. Sy slip at the wheels
- Sfr
0.2 5
_ rl
C L
0.1 =
=" > -
7

0

o

gs 5 10

g. longitudinal force at the front wheels h. longitudinal force at the rear wheels

0
Z
~= -1000

x

f
x fl
—2000

x fr

0 t/s 5

10

Figure 5: Simulation results of maneuver braking in a

b. steering wheel angle
60
. 40
EA
20
0
0 50 100 150 200
t's
d. lateral acceleration
0.15
o A
0.05
>
0
-0.05
0 50 100 150 200

t's

steady state gain
from steering wheel angle
to lateral acceleration

k) : :
£ 10

<

< 9 : :
Ps

200

0 50 Vs 100 150

b. steering wheel angle

0 ys 5 10

lateral acceleration

E v\ - — o
= 0fv -
> \
-1000 f !
xrl \
—2000 X \,\\,_
0 /s 5 10

curve (indices: i= front,rear; j=right,left)

needs to be assigned prior to the simulation. The steer-
ing wheel angle is periodically switched between op-
posite values depending on the actual speed. The step
height is computed from the single track model such
that it corresponds to a steady state lateral accelera-
tion being equal to the preassigned lateral acceleration
level. Again, speed is decreased slowly to cover a cer-
tain speed range (Fig. 6). The resulting lateral ac-

a speed b. steering wheel angle

80 10

60 5
» o
= 40 > 0 J\.I‘I.I‘LI‘I.FLI‘U’LI'LI'L!'I_I‘L]‘]_]’UH’L
=

20 -5

0 -10
0 t's 50 100 0 ys 50 100

Figure 6: Speed vy and lateral acceleration ay of ma-
neuver sequence of alternating steering angle steps

celeration (Fig. 7) gives information on the dynamic
steering responses of the car model.

ay ref
a
y

0.1

/ m/s?

< 0.05

o
T

0 10 20 30 40 y ¢ 50 60 70 80 90
Figure 7: Simulation results of maneuver sequence of

alternating steering angle steps

Maneuver: p-split braking The steering wheel
angle is zero (&, = 0°) and not changed during the
whole maneuver. Initially the car model is driven at
constant speed (initial value: vy, = 30m/s). Then the
car model is driven along parallel lanes with different
friction. The wheels on the right side of the car drive
on the lane with low friction (u = 0.4). When the
braking is applied the asymmetric road friction at the
wheels causes a disturbing yaw moment. It is expected
that the wheels on the lane with low friction, are less
detained and therefore the direction of the car tends
towards the lane with higher friction. Fig. 8 shows
the results of the simulation. The friction of the road
under the right wheels is reduced to p = 0.4 and as ex-
pected rises again to p = 1 (Fig. 8 b) when the wheels
enter the left lane. The stroboscopic diagram in Fig.

The Modelica Association

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

b. friction between road and each wheel

a. speed
35
Theim i i
! [
30
g R — My ! !
-~ = M, | I
o : =05 fl)
25 == Wy
s l'lrl
20]
15 16 17 18 15 16 17 18
t's t's
c. yaw angle d. chassis side slip angle

we
S

o o o

L

= 1

o o o

Eoot

-10 -15
15 16 17 18 15 16 17 18
t's t's
e. lateral acceleration X slip controlled force at the brakes
15 1500

fb fr

1000 fon /
- - fb " [
" bl

a /m/s?
y
=
o (4] o
fbll
a
o
o
Ll
2
-
N
Y

Ofpr— o

15 16 17 18 15 16 17
t's t's

18

Figure 8: Simulation results of the maneuver p-split
braking

9 shows the course of the vehicle from bird’s eye view.

520

x(t)/m

530

Figure 9: Stroboscopic recorded course of the maneu-
ver p-split braking

7 Controller for active car steering

The effect of the yaw disturbance torque shall now be
reduced by adding a controller for active car steering.
To improve the yaw dynamics of the vehicle a robust
steering controller known as the disturbance observer
[2] is added. This two degree of freedom control ar-
chitecture is used to improve vehicle handling and to
achieve better disturbance rejection.

The controller synthesis is based on the equation (3)
which describes the yaw dynamics of the vehicle
model [2].

r=Goy+d (3)

G is the transfer function between steering angle oy
at the front wheels and the yaw rate r. The external
disturbances are d. In equation (4) an adopted nominal
model Gy and a multiplicative model uncertainty Ay
are used for description of G.

r=(Gn(1+4Awm))dy +d (4)

The aim of the controller is to obtain the transfer func-
tion in (5) despite model uncertainty Ay and external
disturbance d (9 is the steering wheel angle).

r

— =G
5 N

External disturbance and model uncertainty are treated
as an extended disturbance e (eq. (6) and (7)).

()

r = GN5\/+(GNAM5\/+d)=GN5\/+e (6)

e = r—Gydy (7
The front steering angle dy is set according to (8).
& = dq+dc (8)
e r
& = —GAG—N =Ga (5v - G_N) 9)

The additive steering angle d¢ provided by the VDC
block is the output of the steering actuator Ga (9). Eq.
(5) is approximated best with an ideal actuator (Ga —
1). For implementation, the feedback signals r and &y
are lowpass filtered to limit the controller to low and
medium frequency domain. The relative degree of the
low pass filter Q is chosen to be at least equal to the
relative degree of Gy for causality of Q/Gy. The filter
Q is chosen according to (10)

1

10
TQS+1 ()

Q=

The Modelica Association

24 Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

The structure of the controller according to equation
(12) is shown in Fig. 10.

6v=6L+GA(Q6v—G%r) (11)

oL oy
. L
GA 6Cref @ -

Figure 10: structure of the Disturbance Observer

The transfer function is given in eq. (12).

L_ GnG
o Gn(1-GaQ)+GaGQ

Here, as nominal model, the dynamics of the single
track model is implemented. The virtue of this con-
troller is described in detail in [2]. For physical im-
plementation “additional steering” is assumed, i. e.
mechanical superposition of the steering wheel angle
o, and the output of the actuator. In the model of the
actively steered car (1), the controller (11) is imple-
mented in the VDC block. A simple actuator model is
implemented as part of the mechanical steering angle
addition block.

(12)

8 Comparing maneuvers with active
car steering to conventional con-
ducted maneuvers

Finally, the car model with the active steering con-
troller is compared with the conventional car. There-
fore, the simulation results of four maneuvers are dis-
cussed. Both the conventional an dthe controlled car
are displayed.

Maneuver: braking in a curve . This maneuver is
known from section 6. The VDC block provides a
steering angle d¢c which is added to the steering wheel
angle &_. As shown in Fig. 11 the additive steering
angle first raises because the nominal model is valid
for the linear operating range of the tire characteris-
tics, whereas in the simulation the lateral wheel forces
are already close to their saturation. Also the yaw rate

r and the lateral acceleration ay are shown. When the
braking causes a disturbing yaw moment the additive
steering angle is reduced to compensate for this over-
steering. The cause of the temporary oscillations of ay
in Fig. 11 seems to be due to a (yet unclear) imperfec-
tion of the car model.

Steering wheel angle 65: and 65

a Speed b. " added with angle of VDC 3
30 70
— 9
60 S
25 6S+BC
50
20
[o 40
E 15 = IS
> 30 ‘ﬂ
10 20 |
5 10
0 0
0 5 10 0 5 10
t/s tls
c. Lateral acceleration d. Yaw rate
8
0.3
: —
0.2}
EEl g |
e Ll S 01
[— _
0 y conv 0 rconv
&, vpe vDC
-2 -0.1
0 5 10 0 5 10
t/s t/s

Figure 11: Comparing maneuver braking in curve

Maneuver: double lane change . Maneuver double
lane change is used for assessment of car dynamics in
research and development of both vehicles and con-
trol systems for vehicle dynamics. The speed of the
vehicle is kept constant during the whole maneuver
(vx = 30m/s). Resulting from one period of a sinu-
soidal steering angle input the vehicle completes a sin-
gle lane change. The lane change back is caused by a
corresponding steering input in the opposite direction.
For the assessment of the vehicle model of the MOD-
ELICA library the amplitude of the sinusoidal steering
angle and the time between the two sinusoidal signals
are adapted until the course of the vehicle (y-position
in Fig. 12 b.) fulfills the requirements of the standard-
ized double lane change (according to ISO 3888; the
boundaries of this course are marked in Fig. 12 b.).
This maneuver is performed as an open loop maneu-
ver, i. e. the drivers steering wheel input is not affected
by the course of the vehicle. For a better agreement
with reality, the maneuver control block needs to be
enhanced by a more sophisticated driver model in the
future. Nevertheless, in Fig. 12 the stability enhancing
effect of the controller can be recognized.

The Modelica Association

25

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

Steering wheel angle BS; and BS

b. Steering wheel angle 65; and ESS

a. added with angle of VDC éc b. y position
2
0oo - y(l) conv
50 /\ : f 1 y(l) VDC
1 | 0 (o]
o 0 L £
"~ [7 = _
© [<1 000 000
| \ - 6s -2 /
-50 (VY. bt
] -3 000 0
0 2 4 6 0 4 6
t's s
c. Lateral acceleration 615 Yaw rate
5 f\ Al (\
) \ o [\\
E o . B o / -
e / = [\
\/ \ [ay conv | \/ — Teonv
-5 \J a vbc \/ "voc
05]
0 2 4 6 0 2 4 6

Figure 12: Comparing maneuver double lane change

Maneuver: sequence of alternating steering wheel
angle steps This maneuver shows how the con-
troller affects the steering transfer function of the vehi-
cle over the entire speed operating domain. The speed
is slowly but continously increased. Apart from that
the simulation is executed similarly as described in
section 6. Fig. 13 shows the results of the maneu-

Steering wheel angle 65; and 65

a. Speed b. added with angle of VDC &_
50 201\
40 N e
” ~ A
£ 30 o 0 SR
- 5 -
> 20 ol L7 — %
10 %*%
0 -40
0 20 40 20 40
ts t's
ay conv | G- Yaw rate
qvoc | 0af rg
2 0.05 : LYy
- - |
% 1 P e B B I [R :tl :Ll 2
£ | R L E R
= i £]
| = - SR =
= 0 [0051 | || =
-1 -0.1}) conv
S L S e vbC
-0.15 — = Tom
0 20 40 60 0 20 40

Figure 13: Comparing maneuver sequence of alternat-
ing steering angle steps

ver simulations. The controller’s aim is to make the
yaw rate close to the nominal model despite of distur-
bances.

Maneuver: p-split braking This maneuver is al-

ready known from section 6.

Fig. 14 shows the results of the maneuver simulations.

a. speed added with angle of VDC éc
30 o L
g 20 \ R
> v,) = s
10 ~ “xconv A 2 O+,
Yy vbc !
0 -3
0 5 10 15 20 0 5 10 15 20
t's t's
c. Lateral acceleration d. Yaw rate
1
15— } 0.06 ; j
y conv A ~ 7 “conv |
a | T,
o 1 y VDC VDC A
b " 2 0.04 1
£ I B
<. 05 ! 2 I
> | =
“ [0.02 I
I
0 e |
0 .
0 5 10 15 20 0 5 10 15 20
t's t's

Figure 14: Comparing maneuver p-split braking

For better clearness the lines of the conventional vehi-
cle are printed dashed.

When braking is applied with the contolled car an ad-
ditional steering angle &¢ (Fig. 14 b.) compensates for
the increasing yaw rate (Fig. 14 ¢. and d.). This can
also be seen in the stroboscopic diagram in Fig. 15.
Compared to the conventional p-split braking (Fig. 9),
the distinct stability improvement is obvious. A small

start of braking

u=1
~- 0 s[—s—s—n—a—-—"m—
>~ -5 u=04
500 520 540 560 580
X/ m

Figure 15: Stroboscopic recorded course of the ma-
neuver p-split braking with active steering controller.
(Compare to Fig. 9)

divergence is still present.

9 Experiences with vehicle dynamics
library

From a user’s point of view, the general advantage
of working with a vehicle dynamics model based
on MODELICA is its transparency and, as a matter
of course, the feasibility of multidisciplinary mod-
elling. Due to the component oriented philosophy,
user-specific enhancements to a car model taken from
the vehicle dynamics library may easily be accom-
plished. Our specific comments refer to an unofficial
pre-release version of vehicle dynamics library [1],

The Modelica Association

26

Modelica 2003, November 3-4, 2003

Stefan Heller, Tilman Biinte

Implementation of driving maneuvers and a controller for active car steering

and particularly to the chassis level 2. Therefore, our
records may not be applicable to the consecutively re-
leased versions. As far as our experiences with the
vehicle dynamis library on the basis of the investi-
gated maneuvers are concerned, the simulation results
are commensurate with a typical mid-size passenger
car. The performance of the simulated vehicle appears
to be plausible and realistic but two exceptions which
are reported below. Firstly, during maneuvers where
the lateral vehicle dynamics is explicitly excited (e.g.
braking in a curve and alternating steering wheel steps)
poorly damped oscillations at 4Hz of the lateral accel-
eration occur at all speeds (see Figs. 7,11,13). We act
on the assumption that this effect is not realistic and
the model should be reviewed in this regard. Secondly,
a strange phenomenon appears during the p-split brak-
ing maneuver. In the period between entering the low
friction lane (low p) and the start of the full braking a
remarkable yaw disturbance torque is generated which
at first make the vehicle turn towards the low-u lane.
This effect may be explained by the reduction of the
lateral force which is due to the toe-in angle of the
front tire on the low-y side. However, the effect of this
fact seems to be much too excessive compared to re-
ality. We guess that checking the tire model will solve
this problem.

10 Conclusions

The vehicle dynamics library was assessed and ex-
ploited in this paper. The single track parameters for
the vehicle model of the library were identified. With
these parameters feedforward control for the setup of
various driving maneuvers was implemented. The
maneuvers were conducted by providing steering an-
gle and gas/brake. Also feedback control was imple-
mented for this maneuvers. A robust steering con-
troller for active car steering was introduced and im-
plemented. The stability enhancement concerning the
yaw dynamics of the vehicle was shown by execu-
tion of significant maneuvers. The model with active
car steering controller was compared with the conven-
tional model by means of these maneuvers.

11 Acknowledgement

The authors want to thank Univ.-Prof. Georg Férber
and Dipl.-Ing. Philipp Harms from the Institute for

Real-Time Computer Systems (RCS) of the Technical
University Munich (TUM) for their scientific support.

References

[1] J. Andreasson, “Vehicle dynamics library.” 3rd
International Modelica Conference, Linkdping,
2003.

[2] T. Bunte, D. Odenthal, B. Aksun Giivenc, and
L. Giivenc, “Robust vehicle steering control de-
sign based on the disturbance observer,” Annual
Reviews in Control, vol. 26, pp. 139-149, 2002.

[3] P. Riekert and T. Schunck, “Zur Fahrmechanik
des gummibereiften Kraftfahrzeugs,” Ingenieur
Archiv, vol. 11, pp. 210-224, 1940.

[4] S. Beiker, “Verbesserungsmoglichkeiten des
Fahrverhaltens von Pkw durch zusammen-
wirkende Regelsysteme.” Fortschritt-Bericht,
2000.

The Modelica Association

Modelica 2003, November 3-4, 2003

The Modelica Association 28 Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

Real-time Simulation of Detailed Automotive Models

Hilding Elmqvistl, Sven Erik Mattssonl, Hans Olssonl,
Johan Andreasson”, Martin Otter’, Christian Schweiger’, Dag Briick'

lDynasim AB, Research Park Ideon, 223 70 Lund, Sweden, http://www.dynasim.se/,
{Hilding.Elmqvist, SvenErik.Mattsson, Hans.Olsson, Dag.Bruck} @Dynasim.se
*KTH Vehicle Dynamics, 100 44 Stockholm, Sweden
http://www.ave.kth.se/, Johan@fkt.kth.se
’German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen,
82234 WeBling, Germany,
http://www.robotic.dlr.de/control/, {Martin.Otter, Christian.Schweiger} @dlr.de

Abstract

This paper describes typical modeling and real-
time simulation issues that occur in automotive
applications. Real-time simulations of detailed
Modelica benchmark models for chassis and
powertrain are presented. They demonstrate the
powerful real-time capabilities of Dymola and the
Modelica modeling language. One of the
benchmark models for vehicle dynamics is a
detailed model with 72 degrees-of-freedom with
bushings in both the front and rear wheel
suspensions. It was simulated in real-time with a
sample rate of 500 Hz on the RT-LAB
environment from OPAL-RT using a Pentium 4,
3066 MHz processor. This is made possible by
Dymola‘s unique and elaborate symbolic
processing of the model equations.

1 Introduction

Hardware-in-the-loop simulation (HILS) has
become common practice in automotive
development. In order to cope with the real-time
constraints, only rough models are often used. In
this paper, we present means to symbolically
manipulate models with a high level of detail in
such a way that the simulation can be performed in
real-time. The effectiveness is demonstrated by
several benchmark examples and by corresponding
simulation results.

The methods are implemented in the simulation
environment Dymola [3, 4] that uses the Modelica
[7] modeling language for describing the models.
It is described how Dymola solves certain difficult
problems in hardware-in-the-loop simulation of
automotive systems. Two types of benchmark

models have been chosen to demonstrate the
capabilities of Dymola: a transmission model and a
set of vehicle dynamics models.

A transmission gearbox is somewhat special
because the connection structure changes due to
the engagement of clutches and brakes. Further-
more, effective inertias need to be calculated for
each of the possible structures. Dymola handles
this by appropriate preparation of the equations by
symbolic methods before generating the code for
the target HILS system.

Vehicle models of different complexities can be
used for analysis. Traditionally, idealized models
of wheel suspensions have been used, neglecting
fast dynamics due to bushings and replacing them
with ideal joints or just look-up tables. Dymola
has special numeric methods to handle such cases.
These methods require elaborate symbolic
preprocessing of the equations. One of the
benchmark models has 72 degrees-of-freedom with
bushings in both the front and rear wheel
suspensions. It was simulated in real-time with a
sample rate of 500 Hz.

Dymola generates C code which can be used in
Simulink and by use of RealTime Workshop
downloaded to different HILS targets. Evaluation
of the benchmark problems has been made on RT-
LAB from OPAL-RT [8], demonstrating real-time
performance of complex models.

2 Power train simulation

We will consider modeling and simulation of
automatic gearboxes. The figure below shows a
typical Modelica model of a gearbox (Lepelletier
wheelset, 6-speed, from the commercial Modelica
PowerTrain library [10] available from Dynasim;
usable, e.g., for the automatic gear box ZF 6 HP 26

The Modelica Association

29

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

from ZF). The model includes planetary and
Ravigneaux gear sets, clutches, brakes and inertias.

lossyRavigheaux

]
77?* ICH

i_0=-1.9189

Figure 1: Gearbox model

2.1 Special problems

Simulation of gearbox models in real-time poses
special problems. If detailed models of the friction
of the clutches and brakes are used, the models
become stiff. Typically, ideal friction models are
used instead. This means that the number of
degrees-of-freedom (DOF) changes if a clutch or
brake is stuck or not. This can be handled by
constraining the relative acceleration, when in
stuck mode, to be zero.

Fast sampling

The differential equations of the gearbox need to
be solved at a high speed. The electronic control
unit (ECU) for the transmission typically samples
its inputs and calculates new control signals every
10 milliseconds. In order to reduce effects of
delays due to lack of synchronization, the model
variables need to be determined every millisecond.

Accuracy and discontinuities

Special attention is needed to accurately calculate
angular velocity. This is important because the
angular velocities of the various wheel sets are
typically output from the model to the hardware
and input to the ECU. The control algorithm of the
ECU acts differently when the angular velocity is
close to zero. Thus it is important to calculate
small velocities accurately. Another reason to
achieve high accuracy is that one might otherwise
get drift in the angle calculations. The difficulty in
achieving high accuracy in the angular velocities
close to zero is the highly nonlinear behavior when
a clutch sticks. The torque of the clutch in sliding
mode is calculated as a function of angular
velocity. When the clutch sticks, the constraining
torque is instead calculated in such a way that the

relative angular acceleration stays zero. There are
thus jumps in the relative angular acceleration.

Event handling

Integration algorithms for non-real-time simulation
typically handle discontinuities, such as the one
above for friction, by detecting when certain
variables cross a boundary. They then calculate the
time of the event by iteration and then change the
step size to advance the time exactly to the time of
the event (crossing). Also for real-time
applications, the Dymola run-time system includes
handling of calculation of the event time. This is
done with little overhead and without iteration. The
normal solving of the differential equations is for
the real-time case performed with fixed step size.
However, at an event the step size is decreased to
hit the time of the event. In order to synchronize
with real-time again, the size of the next step is
increased such as the sum of the two steps around
the event is equal to two normal steps. This
procedure introduces a small synchronization error
during one step, but gives better accuracy in the
solution. It has successfully been utilized for
gearbox HIL simulations for ECU testing.

Event propagation

After an event, for example if a clutch begins to
slide, there might be an immediate event as a
consequence. Another clutch might get stuck
because its torque decreases below a certain
threshold. Before a numerical solution of the
differential equations is resumed, event
propagation needs to be performed in order that all
variables get consistent values. Dymola generates
code for iterating the equations, called event
iteration, until all Boolean mode variables have
converged. This typically takes 1-3 extra
evaluations of the equations, i.e., the calculation
time to handle such an event might exceed the
available time for the step. This is typically
handled by configuring the HILS system to allow a
certain number of overruns.

Effective inertia calculation

The effective inertias depend on the selected gear.
Calculation of effective inertias shows up as
systems of equations that need to be solved
simultaneously.

Dymola symbolically converts the differential
and algebraic equations (DAE) to an algorithm for
calculating the derivatives. The integration
algorithm uses the derivatives to update the state
variables. Many times, the derivative algorithm is

The Modelica Association

30

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

just a sequence of assignment statements for
algebraic variables and derivatives. However, the
conditional constraint equations for torques and
accelerations in the clutch and brake models
implies that, in order to solve for the accelerations,
a system of simultaneous equations needs to be
solved. Dymola automatically calculates the
coefficients of the linear system of equations and
invokes a numerical solver for larger systems of
equations. Small systems of equations are solved
by producing symbolic code. The effective inertia
typically shows up as the determinant of such a
coefficient matrix. It should be noted that this is
not a domain-specific procedure, but Dymola does
it automatically by solving the systems of
equations.

Underdetermined models

In certain cases, several clutches are engaged,
giving parallel paths for the power. In such cases,
the torque at each clutch cannot be determined
individually; only the sum can be determined.
Mathematically, this shows up as a singular system
of equations. However, it is possible to find
consistent solutions. Dymola determines one such
consistent solution.

driver

Driver

engine

&

shiftschedule

f*s
Gr”

loc<UpContol

i

B
¥

flange_a

flange_b

lepelletier

\

2.2 Transmission example

As a benchmark example, we will consider
modeling of a 6 speed gearbox (Lepelletier wheel-
set, e.g. ZF 6 HP 26) together with a simple
vehicle and driver model. This model is suitable
for carrying out driving cycle shift strategy
analysis and is available in the Powertrain library.
The hierarchical structure of the model and the 3D
representation used for animation is shown in the
picture below.

The engine model is based on steady-state
engine maps. The ECU function included in this
model controls idle and maximum speed, both
constant limits, by a proportional controller. The
transmission is a detailed model of an automatic
transmission and incorporates a torque converter
with a lock-up clutch. The gearbox itself is of
Lepelletier type, which provides six different gear
ratios. It is modeled using basic gearbox elements,
inertia elements and different clutches and brakes.
The different gear ratios are a result of applying
different pressures to the clutches and the brakes in
order to engage or disengage them.

lossyRavigneaux

“ &1
lossyPlanetary | -
& A 5
,,,,,,, - H_JHI i
;;;4

flange_b

N

flange_a e

Figure 2: The transmission example with the gearbox model and its animation

The Modelica Association

31

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

The driveline model is essentially a rigid model
with no compliance in the drive shafts and no tire-
slip modeling. The vehicle is in this example
modeled as a lumped mass and the resistance
forces associated with the vehicle are modeled as
different physical effects. The control system
determines the shift point based on throttle position
and vehicle speed when compared to the defined
shift map. The driver model is based on a PI
controller.

The model has 689 nontrivial equations and 15
state variables. There is a linear system of 77
simultaneous equations corresponding to the mass
matrix inversion. After evaluating all parameter
values and simplifying, the system reduces to 50
simultaneous equations. Symbolic manipulation
reduces the size of the linear system of equations
that has to be solved numerically to 7. The model
was simulated with the explicit Euler method with
a step size of 1 ms. As shown, the car follows the
desired velocity very well.

Desired velocity (blue) and welocity (red)
250

200

1804

-50 T T T T T T T T
0 40 a0 120 160

200
Figure 3: Desired velocity (blue) velocity (red)

The results are shown with a comparison to offline
simulation using DASSL with a required relative
tolerance of 10°. The difference is as shown below
very small.

01

e

0.1 T T T T
0 40 80

T T
120 160 200

Figure 4: Velocity error (Explicit Euler — DASSL)

The gearshift is identical for explicit Euler and
DASSL.

0 T T T T
u] 40 a0

Figure 5: Gear shift

T T
120 160 200

G000

5000+
4000+
30004
20004

1000 -

T T T T T T
u] 40 80 120 160

Figure 6: Engine speed

200

Also for engine speed, the agreement with the
DASSL result is good.

40

204
04

-20

] I 4ID I EID 12|D 1éD 200
Figure 7: Engine speed error (explicit Euler —
DASSL)

Real-time simulation

The benchmark model was run in the RT-LAB
environment from OPAL-RT using a Pentium 4,
3066 MHz processorThe plot below shows the
actual CPU time needed per step.

1000 ‘ , : ; . . . T T
| ' ! ! ! ' ' !
800 b
700k
B0 -
500 F
400
300 b
200k
00k,

1] 20 40 EO a0 1 60 1 éD 1 :10 1!"50 1 éD 200
Figure 8: CPU time/step (microseconds)

The plot shows that the simulation runs in real
time, because the time needed for each step is well
below 1 ms. The CPU time needed per step is not
constant, because of event handling due to locking
or unlocking of clutches or brakes during gear
shifting. Moreover, the linear system of size 7
being solved numerically has a coefficient matrix
or a Jacobian, which does not depend on any
continuous time variables, it changes only when
there are discrete events. Its elements are in fact
weighted sums of terms of the type

if axle.Break.locked then 1 else 0;
if transmission.wheelset E.locked
then 0 else 1;

Dymola exploits the fact that the Jacobian does not
change during continuous time simulation. It

The Modelica Association

32

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

generates simulation code that only calculates the
Jacobian and its LU-factorization during event
iterations. This saves CPU time because the QR
factorization is a major effort compared to the back
substitution. The number of operations to factorize
is proportional to the cube of the number of
unknowns, 1i.e., O(n3), where n is the number of
unknowns, which in this case is seven. Back sub-
stitution to calculate the solution when having the
factorized Jacobian is much less computationally
demanding.

To illustrate the importance of symbolic
manipulation, a test was done where Dymola did
not reduce the original system of 77 equations, but
utilized that the Jacobian of the system only
changed at discrete events. The plot below shows
the actual CPU time needed per step.

2684

2E4
1.6E4 4

1E44

5000 || ‘ |
Ll M Ju\ |
u] a0

1
40 120 160

I

200

Figure 9: CPU time/step (microseconds) for the
non-reduced case.

The plot shows that the CPU time needed per step
varies a lot. This simulation does not run in real
time. At certain steps the CPU time is nearly 25
ms. Much CPU time is needed, when there are
discrete events and the Jacobian of the linear
system with 77 unknowns needs to be calculated
and LU-factorized. During continuous time
simulation, the linear system is solved using the
factorized Jacobian for back substitution, which is
as shown a fast calculation.

3 Vehicle Dynamics Simulation

The free Modelica library VehicleDynamics [1] is
used as basis for the evaluations in this report. This
library is based on the multibody systems library
ModelicaAdditions.MultiBody. The library is
flexible since it is easy to replace wheel
suspensions, tire models, etc. In particular, wheel
suspensions are available with different levels of
detail.

3.1 Special problems

Symbolic simplifications

Symbolic simplifications are very important for
handling of multibody systems models. The model
equations are written in the most general form.
However, a motion could, for example, be
constrained to be a rotation around a certain axis
(e.g. {1,0,0}) in a local coordinate system.
Parameters that are exactly zero are important to
utilize symbolically; certain terms in the general
model equations are cancelled and thus better
efficiency can be achieved. The number of
operations in the generated code is typically
reduced by a factor of 3 to 10.

Mass matrix inversion

The differential-algebraic equations for a
multibody system have a special structure. For a
tree-structured mechanism, a large system of
simultaneous equations involving accelerations,
forces and torques will be present. It is important
that such systems can be identified and reduced in
size. It can typically be reduced in size to the
number of degrees-of-freedom. This corresponds
to finding the mass matrix of the mechanism.

Closed kinematic loops

Closed kinematic loops typically occur in
suspensions with ideal joints. In such cases, the
equations contain a nonlinear system of equations
for each loop involving positions and orientations
of the parts belonging to the loop. A linear system
of equations involving velocities also appears. On
acceleration level, equations from each loop appear
in one large system of equations (corresponding to
the mass matrix for tree-structured mechanisms
accompanied with the constraint equations on
acceleration level).

The non-linear system of equations is special in
the sense that it involves trigonometric relations. It
turns out that analytical solutions can be found [9].
The multibody library has been extended with
composite joint models, for which the equations
have been rewritten to give the analytical solution
for a large class of kinematic loops occurring in
vehicles and mechanisms.

Stiff models — Bushings

High fidelity models use bushing models instead of
ideal joints. Such bushings are very stiff. This
means that the differential equations are also stiff,
i.e., that the corresponding linearized model has

The Modelica Association

33

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

eigenvalues in a large range. The explicit Euler
method is not feasible for these models since a
very small step size needs to be utilized (typically
less than 50 microseconds). Implicit Euler allows a
larger step size, but the accuracy is often not good
enough. If neither the explicit nor the implicit
Euler method is satisfactory, Dymola can utilize
methods with higher order or mixed
explicit/implicit methods for such models.

Tire models

The VehicleDynamics library [1, 2] contains two
types of tire models: the standard tire model of
Pacejka and the tire model of Rill. The Rill tire
model is about 1 to 2 orders of magnitudes faster
than the Pacejka tire model and should therefore be
used when speed is important, such as for real-time
simulation. The Rill tire model is based on the
steady-state force/torque characteristics of a tire
together with a simple transient tire deflection
model.

—
.,..*'E] m
sitResist..

3.2 Realtime Simulation Benchmarks

A mid-sized sedan with a front MacPherson
suspension and a rear MultiLink suspension has
been chosen as a benchmark model for vehicle
dynamics simulations.

Figure 10: Front MacPherson suspension and rear
MultiLink suspension.

The hierarchical structure of the vehicle models is
shown in Figure 11.

flange_4

MacPherson

frontSuspension

flange_SW

ground

springJoint

rCh=rChil

frontBar

ZLT swiey

\

frame_ S

flange_1 .
X

i

frame_UJ_2

Ve ey

Figure 11: The hierarchical structure of the vehicle models

The Modelica Association

34

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

We have investigated models with different levels
of detail.

1. Suspension is modeled by tables defining
polynomials for Camber and toe-in angles.
Steering is defined by an Ackermann
function.

2. Suspension is modeled by linkages with
ideal joints.

3. Suspension is modeled by linkages joined
by bushings. The mass and inertia of the
bar connecting two bushings are neglected.

4. Suspension is modeled by linkages joined
by bushings where the small mass and
inertia of the bar connecting two bushings
are taken into account.

Level 1 — Linkage tables

The wheel suspensions are described by tables
defining Camber and toe-in angles as functions of
wheel bounce, i.e., a vertical motion of the wheel
with constrained changes of the Camber and toe-in
angles. This could easily be extended to handle
also Camber and toe-in as functions of side force,
which would make it possible to mimic the
behaviour of suspensions with bushings and other
flexible elements. This has been the common way
to model vehicle dynamics in order to keep model
complexity low for realtime simulation. Note, this
method requires that the characteristics must either
be measured, meaning that the suspension has to
be built, or that the suspension characteristics have
to be calculated from a more detailed model. This
approach is justified if the simulation model is
utilized, e.g., for improving controllers and ECUs
for an existing vehicle. It is not useful, if the
suspension and steering system shall be improved,
e.g., based on optimization or parameter studies of
a simulation model.

Steering is defined by an Ackermann function.
The tables for Camber and toe-in angles are
implemented as scaled polynomials. Dymola’s
symbolic engine differentiates these polynomials
twice to handle the reduction of degrees-of-
freedom.

The chassis has 6 degrees-of-freedom (DOFs),
each wheel has 2 DOFs (bounce and rotation each)
and the steering 1 DOF. The total DOF is 15. The
tires each have 2 state variables for the deflection
in x and y directions, i.e., 4*2 = 8 states. The total
number of states for the vehicle dynamics itself is
thus 2*15 + 8 = 38.

The steering in the benchmark model is a
parameterized, given function which is filtered by
a second order low pass filter to model driving
behavior. The driver model of the benchmark

model contains two additional state variables for
the accelerator behavior. This is not used in this
model since the vehicle maneuver is made with
idle gear. The total number of state variables is
thus 38 +2 =40.

Level 2 — Linkage with ideal joints

The table description used in level 1 is limited to
only Camber and toe-in angles. It would of course
be possible to extend to Castor angle trail as well
as track width and wheel base translations.
However, in many cases, in particular when trying
new designs, it’s easier to describe the suspension
in terms of the linkage that is used.

The suspensions in level 2 consist of rigid
mechanical components, i.e., all flexible elements,
except for the struts, are replaced by ideal joints.
Instead of a multi-link suspension, a trailing arm
with similar geometry is used. The advantage over
level 1 is that the suspension can be modelled with
physical data and no precalculations or
measurements are therefore needed.

The level 2 model uses a MacPherson type
front wheel suspension, with the wishbone
attached to the chassis via an ideal revolute joint (1
DOF). A strut is placed between the chassis and the
wishbone via two spherical joints. The
eigenrotation of the strut around its axis (1 DOF) is
constrained by the distance constraint of an
additional rod with two spherical joints on each
end (1 constraint). One of the spherical joints of
this rod is attached to the steering. In total, the
suspension has therefore one degree of freedom, if
the steering angle is given. The anti-roll bar is
approximated by a spring/damper combination
where the vertical force acting at its mount point
on the lower part of the MacPherson strut is
proportional to the relative vertical distance of the
left and the right mount points. The rear
suspension is a type of trailing arm with one DOF,
the anti-roll bar is modeled like in the front
suspension.

When using base elements of the MultiBody
library to build up the MacPherson suspension,
several non-linear algebraic loops appear. By using
composite joint models (e.g., an aggregation of a
revolute, a spherical and a universal joint) that
contain analytic solutions of the non-linear
kinematic relationships within the aggregation, the
non-linear algebraic loops no longer occur in the
generated code [9]. Note that this simplification is
transparent to the end user.

The total DOF 1is 15 as for the level 1 model;
The wheel bounce DOFs are replaced by the DOFs
of the two trailing arm rotations and the two

The Modelica Association

35

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

wishbone rotations. The model has also 40 states.
Note, that the elasticity of the tires in vertical
direction has been modified slightly (both for the
level 1 and the level 2 cars) in order to
approximately compensate for the neglected
bushings.

Level 3 — Linkage with bushings and
massless bars

Using ideal joint models for the linkage is not
accurate enough for severe driving conditions since
bushings with certain flexibility are used in the real
vehicle. Flexible elements are introduced in the
suspensions of the level 3 model. The front
suspension has bushings in the A-arm mounts. The
rear multilink suspension has no ideal joints and
the links are modelled as mass-less bars. If the
mass and inertia of the rod connecting two
bushings were not neglected 6 DOF would be
added for every such pushrod. However, the mass
and inertia are usually very small compared to the
wheel and carrier masses, and therefore it is a good
approximation to neglect the pushrod masses and
inertias.

If the bushings were described solely by
springs, then no states would be added, since
springs in series connection lead to algebraic
equations to solve for the spring deflections. Since
bushings have a damping part, there are the states
of the dampers (= 2*6). Once the states of one
damper are known, the states of the other damper
can be computed by relative kinematics. To
summarise, a pushrod has 6 states, if the mass and
inertia of the rod connecting the two bushings is
neglected. There are 3 such bushing pairs at each
rear wheel, i.e. the number of states is 2*3*6 = 36
states.

Additionally, the elasticity in the steering is
taken into account by having a spring/damper
system in the rack steering adding one additional
DOF.

The total DOF is 36 and the model has 118
states.

Level 4 — Linkage with bushings and non-
massless bars

A slightly more detailed model is obtained by
not neglecting the masses of the push rods. The
total DOF is 72 and the model has 2*¥72 + 8 + 2 =
154 states.

3.3 Simulation results

The benchmark models have been studied under a
double lane change maneuver. The steering wheel
has been operated as shown in Figure 12.

1

T T

0 4 B

2 g
Figure 12: Steering wheel angle (rad)

10

We first show a comparison of the behavior of the
four models. Below are shown plots of the side
accelerations for the four cases.

Figure 13: Side accelerations for level 1-4 models.

The level 3 and 4 models show a different
behaviour than level 1 and 2. The differences can
be spotted especially in the section between the
lane changes: While the level 1 and 2 cars reach
zero yaw and lateral acceleration, level 3 and 4 are
too slow to get back to zero before the second lane
change is started. This is essentially because of the
elasticity in the suspensions. The level 1 and 2
models behave very similar. The tables used in
level 1 were generated from suspensions close to
those used in level 2. The behaviour of the level 3
and 4 models is practically identical. The
oscillations of the links with small masses have
very little effect on the deformation of the bushings
that carry the wheel.

Real-time simulation

Let us discuss the problems of using these four
models for real-time simulation.

It is possible to use explicit Euler with a step-
size of 1 ms for the models of level 1 and 2.
Comparisons with results from offline simulation
with DASSL (relative tolerance=10"°) show that
the error in side acceleration is less than 0.25%.
The major task when using the explicit Euler
method is the calculation of the derivatives. Each
of the level 1 model and the level 2 model has a

The Modelica Association

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

linear system of simultaneous equations corre-
sponding to the mass matrix inversion. Dymola’s
symbolic processing reduces this system of
equations to a system of about 10 equations. There
are no nonlinear systems of equations, because the
equations for the closed kinematics loops of level 2
have been solved analytically in the model library.
The RT-LAB environment from OPAL-RT using a
Pentium 4, 3066 MHz processor runs these two
models easily in real-time, because it needs only
0.1 ms for an Euler step for the level 1 model and
0.3 ms for the level 2 model.

It is not possible to use explicit Euler to
simulate the level 3 model or the level 4 model,
because these models use bushing models instead
of ideal joints. The bushings introduce very fast
modes. Explicit Euler requires the step size to be
smaller than the shortest time constant utilized
(typically less than 50 microseconds). Typically,
the fastest modes are not excited to a degree that it
is necessay to resolve them for the intended
purpose. In such cases the problem is referred as
stift. The implicit Euler method solves the
numerical stability problem and allows larger step
sizes to be used. It is the accuracy required that
restricts how large step sizes can be used. Using
the implicit Euler method, on the other hand,
implies that a nonlinear system of equations needs
to be solved at every step. The size of this system
is at least as large as the size of the state vector, n.
Solving large nonlinear systems of equations in
real-time is somewhat problematic because the
number of operations is O(n’) and the number of
iterations might vary for different steps. Reducing
the size of the nonlinear problem is advantageous.
The method of inline integration [5, 6] was
introduced to handle such cases. The discretization
formulas of the integration method are combined
with the model equations and structural analysis
and computer algebra methods are applied on the
augmented system of equations. Implicit Euler
allows larger step size, but the accuracy is often
not good enough. If neither the explicit nor the
implicit Euler method is satisfactory, Dymola
utilizes methods with higher order or mixed
explicit/implicit methods for such models.

Each of the level 3 model and the level 4 model
has a linear system of simultaneous equations
corresponding to the mass matrix inversion.
Dymola’s symbolic processing reduces this system
of equations to a system of about 20 equations.

The level 3 model and the level 4 model have
been simulated with a special inline mixed
explicit/implicit method, developed by Dynasim.
This results in a nonlinear system of equations. For

the level 3 model the size is about 130 and for the
level 4 model the size is about 80. The level 4
model has 154 state variables. The large possible
reduction of the size of the implicit non-linear
system of equations from 154 to about 80 is due to
the fact that certain subsystems are linear even

after ammendment of the corresponding
discretization formulas. Dymola automatically
detects such structures during the structural

analysis of the equations. The remaining nonlinear
system of equations has to be solved by a Newton
method; 2-3 iterations are typically needed, i.e. 3-4
residual calculations need to be performed. The
step size was chosen to 2 ms. Comparisons with
results from offline simulation with DASSL
(relative tolerance=10"") show that the error in side
acceleration is less than 0.5%.

-4 ! ! ! ! ! ! . . ;
0 2 4 6 8 1

Figure 14: Side accelerations for the level 4 model

The difference between the results of the implicit
method and DASSL is less than 0.5%

0.02

D%
002 ——
0 2 4 B B 10

Figure 15: Side acceleration erros for the level 4
model (Euler — DASSL)

The realtime benchmarks were run on a computer
equipped with a Pentium 4 processor running at
3066 MHz and a 333 MHz single-channel memory
architecture.

As shown in Figure 16, the execution time is
shorter for some time intervals, because of slower
dynamics there requiring a smaller number of
Newton iterations.

2000 . , . , . . : : T
1an0 | N B N . N N
1600 |
1am0 [
1200 |
000 |
oot
GO0k
oot
200

a i i i i ; i i ; i
1] 1 2 3 4 5 G 7 g | 10

Figure 16: CPU time/step, when simulating level 4

The Modelica Association

37

Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al.

Real-time Simulation of Detailed Automotive Models

It is worth noting that the level 4 model runs faster
than the level 3 model, for which 1.7 ms per step is
needed, although the level 4 model is more
detailed. Obviously, the neglection of the push rod
masses is not useful when Dymola’s inline
integration method together with its symbolic
transformation capabilities are used. For offline
simulations it is the opposite: the level 3 model
runs faster as the level 4 model when using
DASSL.

4 Conclusions

The paper has described typical efficiency issues
in automotive real-time and HIL simulations. The
examples given demonstrate the powerful real-time
capabilities of Dymola and the Modelica modeling
language. The models presented may indeed serve
as benchmark examples as they are in the front-line
of what can be simulated in real-time today. One of
the benchmark models for vehicle dynamic
simulation has 72 degrees-of-freedom with
bushings in both the front and rear wheel
suspensions. It was simulated in real-time with a
sample rate of 500 Hz. The presented examples
show that it is possible to simulate high-fidelity
models in real-time for power trains and vehicle
dynamics simulations. This is made possible by
Dymola‘s unique and elaborate symbolic
processing of the equations.

Acknowledgements

This work was in parts supported by Bayerisches
Staatsministerium fiir Wirtschaft, Verkehr und
Technologie under contract AZ300-3245.2-3/01
for the project Test und Optimierung elektroni-
scher Fahrzeug-Steuergerdte mit Hardware-in-the-
Loop-Simulation.

5 References

[1] Andreasson, J.: VehicleDynamics library,
Proceedings of the 3™ International Modelica
Conference, Modelica 2003, Modelica homepage:
http://www.Modelica.org.

[2] Beckman, M. and J. Andreasson: Wheel model
library in Modelica for use in vehicle dynamics
studies, Proceedings of the 3™ International
Modelica Conference, Modelica 2003, Modelica
homepage: http://www.Modelica.org

[3] Briick, D., H. Elmgqvist, S.E. Mattsson, H.
Olsson: Dymola for Multi-Engineering Modeling
and Simulation, Proceedings of Modelica 2002.
Modelica homepage: http://www.Modelica.org.

[4] Dymola. Dynamic Modeling Laboratory,
Dynasim AB, Lund, Sweden,
http://www.Dynasim.se

[5] Elmgqvist, H., F. Cellier, M. Otter: Inline
Integration: 4 new mixed symbolic/numeric
approach for solving differential-algebraic
equation systems. Proceedings: European
Simulation Multiconference. June 1995 Prague,
pp: XXII-XXXIV.

[6] H. Elmqvist, S.E. Mattsson, H. Olsson. New
Methods for Harware-in-the-loop Simulation of
Stiff Models. Proceedings of Modelica 2002.
Modelica homepage: http://www.Modelica.org.

[7] Modelica, http://www.Modelica.org.

[8] OPAL-RT, http://www.opal-rt.com.

[9] Otter, M., H. Elmqvist, S.E. Mattssson: The
New MultiBody Library. Proceedings of the 3™
International Modelica Conference, Modelica
2003. http://www.Modelica.org.

[10] PowerTrain Library 1.0 - Tutorial, German
Aerospace Center (DLR), Oberpfaffenhofen, 2002,
http://www.dynasim.se/www/PowerTrainTutorial.pdf/

The Modelica Association

38

Modelica 2003, November 3-4, 2003

Session 2B
Thermodynamic Systems - 1

The Modelica Association 39 Modelica 2003, November 3-4, 2003

The Modelica Association 40 Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

M odelica open library for power plant smulation:
design and experimental validation

Francesco Casella, Alberto Leva*
Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio, 34/5 - 20133 Milano (Italy)

Abstract

The open Modelica library ThermoPower for the sim-
ulation of thermal power plants is presented, by illus-
trating the modelling principles and the main features
of the developed models. The library has been vali-
dated against experimental data coming from a labora-
tory drum boiler, and the main results are shown in the
paper. The library, plant model, and validation data are
publicly available through the Web.

1 Introduction

Dynamic simulation plays a key role in the design of
the control system of thermal power generation plant,
in particular when innovative design efforts are under-
taken. There is a long track of research and engineer-
ing effort in this field, dating from the pioneering paper
[8] through [12, 16, 1, 15] and numerous other works.
Also, many software packages have been developed
in the academic as well as commercial field, see e.g.
[4,7,21,3,2,22,19, 13, 17] and, in particular, [18].
Commercial modelling tools often suffer from the
drawback of being opaque: it is not clear to the user
which equations are actually been used to describe
a certain component, and it is hard, if not impossi-
ble, to incorporate the user’s specific know-how in the
model library [6]. Conversely, in university laborato-
ries many tools have been developed, in which the user
has full control over the model equations; however,
due to the intricacies of modelling thermo-hydraulic
systems and to the difficulty of integrating the corre-
sponding equations [16], ad-hoc modelling paradigms
and software packages are employed, which are nei-
ther interchangeable nor interoperable with each other,
not to mention their actual availability.

Moreover, when it comes to validating the models, it
is very difficult to obtain complete and accurate ex-

*Corresponding author, e-mail leva@elet.polimi.it

perimental data sets from real plants [14]. Therefore,
there is a strong need for shared and agreed-on mod-
els, which can be actually run by by currently avail-
able simulation tools, as well as of benchmark data for
model validation. The adoption of the Modelica lan-
guage is a great opportunity in this direction.

The goals of the research work presented in this paper
can be summarised as follows.

1. Develop an open Modelica library for the mod-
elling of thermal power plants based on first prin-
ciple models, which is highly readable and ex-
tensible, and where models of the same physical
component with different level of detail may co-
exist.

2. Demonstrate that models of real-life complexity
can be dealt with by current Modelica tools.

3. Validate the library against experimental data
from a laboratory plant.

4. Make the library code and the experimental data
available to the scientific community.

The paper is organised as follows: Section 2 sum-
marises the principles by which the entire library has
been structured; Section 3 discusses the modelling
assumptions and the main features of the developed
models, while Section 4 is devoted to a brief descrip-
tion of the laboratory plant and of the experimental
data set; in Section 5, the main results obtained with
the plant simulator are shown. Conclusions and per-
spectives for future work are given in Section 6.

2 Thelibrary principles

This section outlines the principles of the presented li-
brary, motivating the adoption of Modelica as the host
environment. A more detailed discussion is reported in
[6], to which the interested reader is referred, while a

The Modelica Association

41

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

longer explanation of the modelling principles adopted
in the library can be found in [15], the correspond-
ing methodological foundations being discussed e.g.
in [11].

Use of first-principle equations. The equations of
the library models are derived from mass, energy and
momentum balances, and (when necessary) from well
established empirical correlations. Therefore, all the
quantities involved in the models can be given a phys-
ical meaning.

Openness and transparency. The features of Model-
ica are exploited to obtain a code that tightly matches
the way describing equation are written on paper. This
greatly facilitates documenting and maintaining the li-
brary, and allows the users to understand exactly what
they are simulating. Also, Modelica’s powerful syn-
tax can be exploited to investigate different modelling
options quickly, and the inherently open nature of the
environment permits modifications and improvements
with a limited effort.

Readability-reusability trade-off. The inheritance
mechanism is used sparingly, and with great care.
Even though inheritance appears very attractive when
structuring a component library, it is very difficult to
define sufficiently general basic models in the appli-
cation domain addressed here. Moreover, in a com-
plex hierarchy of models, modifying the equations of
some ancestor could have unexpected effects on the
siblings, potentially impairing readability, not to say
correctness. Since even fairly complex models can be
described with a few dozen lines of code, it is advis-
able that the behaviour of a single component be de-
scribed in a single place, rather than scattered through
many different classes. Inheritance should be limited
to the definition of ‘prototype’ components, i.e. par-
tial classes containing connector declarations and aux-
iliary equations such as Ap = An — Pout- In the library
there is one notable exception to this design principle,
see section 3.4.1.

Partial Differential Equations. For the purposes of
this work, models based on 1-dimensional partial dif-
ferential equations are needed, which are not sup-
ported by Modelica in their native form. Therefore,
such equations are reduced to ordinary differential
ones by appropriate methods (e.g. finite volumes, fi-
nite elements) prior to their insertion in a Modelica
model.

Standard interfaces. In the library, connectors are de-
signed so as to be totally independent of the modelling
assumptions adopted for the component. The same ter-
minals are used no matter whether the fluid is assumed

to be one- or two-phase, the model is lumped- or
distributed-parameter, the momentum balance is static
or dynamic, the cross-sectional fluid velocity distribu-
tion is uniform or not, the phases in two-phase flows
are assumed to have the same velocity or not, and so
forth. To clarify with an example, we report the defini-
tion of the waterFlangeA and waterFlangeB con-
nectors, which describe the flanges of the components
that carry a water/steam flow:

connector WaterFlangeA
Pressure p;
flow MassFlowRate w;
input SpecificEnthalpy hBA;
output SpecificEnthalpy hAB;
end WaterFlangeA
connector WaterFlangeB
Pressure pi
flow MassFlowRate \
input SpecificEnthalpy hAB;
output SpecificEnthalpy hBA;
end WaterFlangeB

In the code p is the fluid pressure, w is the mass
flowrate entering the component, hAB and hBA are the
specific enthalpies of the fluid in case its direction is
from an A-type flange to a B-type flange and vice-
versa. Correct models are obtained by always connect-
ing two flanges of complementary type. These connec-
tors support flow reversal.

The paradigm of connectors is exploited to standardise
also the interfaces involving 1-dimensional distributed
quantities used in modelling components like heat ex-
changers. Such connectors are characterised by a num-
ber of uniformly spaced nodes, and contain the nodal
values of the quantities under question, no matter how
the spatial discretisation is dealt with inside the com-
ponent. An example is the DHT connector, whose defi-
nition is
connector DHT;

parameter Integer N=2 "Number of nodes";

Temperature T[N];

flow HeatFlux phi [N];

end DHT;

Flexible level of detail. Encapsulation is exploited to
allow for models with different degrees of detail, and
fully interchangeable. This means that, in different sit-
uations, the same component or part of the plant can
be modelled with different detail levels, with a small

The Modelica Association

42

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

effort on the part of the analyst.

Substance property calculation. Medium models for
water, steam, and ideal gas mixtures are already pro-
vided by the free Thermofluid library [23]. Simula-
tion efficiency could possibly be increased by using
third-party property calculation packages written in C
or FORTRAN. The library is open to such extensions.
Models for different fluids. It would be possible
to make the equations of a component highly in-
dependent of the fluid contained, thus reducing the
total number of library components. This is not very
convenient for the presented library, however. In
thermal power plants there are essentially two fluids
(water/steam and ideal gas mixture), and the thermo-
hydraulic phenomena involving these fluids are
described by equations that can be very different also
from the structural standpoint. Therefore, attempting
to write equations in a ‘general’ form involves a
significant complication of the equations themselves.
It is preferable to write specialised models for the two
fluids, and this is the approach adopted. The same
specialisation applies to connectors, of course.

A great number of modelling environments and li-
braries for power plant simulation are available in the
literature, see e.g. [4, 7,21,2,22,13,17, 5], and in the
last years several were developed within the Modelica
environment (a remarkable example is [23]). There is
not the space to give an exhaustive review here. How-
ever, two peculiarities of the proposed modelling ap-
proach, and therefore of the library, are worth point-
ing out. The first, as already mentioned, is the ‘flat’
structure of the model hierarchy, aimed at maximis-
ing the readability. The second is that, by writing the
models as is done here, one can (but is not obliged to)
reach the maximum level of detail that is advisable for
simulations aimed at system-oriented studies, i.e., for
example, at the synthesis and validation of the control
system.

3 Developed models

3.1 Boundary conditions

Ideal pressure sources and sinks have been defined
(Sourcep, SinkP), as well as mass flowrate sources
and sinks (SourceW, SinkW); note that the difference
between source and sink is purely conventional, as
both of them can handle flow in either direction. Hy-
draulic and thermal variables can be either constant, or
determined by external signals.

3.2 Branching components

Flange terminals only support connection of
two components; therefore, the FlowJoin and
FlowSplit components are provided to model flow
branching. The model are based on static mass and
energy balances equations, supporting all the feasible
flow directions and avoiding numerical singularities.

3.3 Elementary physical components
331 Valves

The ValveLiqg and ValveVap models are based on
the standard IEC 535 sizing equations for valves with
liquid and vapour flow, respectively [10]; critical flow
can be modelled in both cases, as well as check valve
behaviour. Flow reversal is supported, avoiding nu-
merical singularities for small or zero pressure drop.
The opening characteristic can be customised.

3.3.2 Mixers, collectors, tanks

The Mixer and Collector models are based on stan-
dard mass and energy balances, assuming uniform
pressure and temperature in the control volume; they
differ only by the number of connecting flanges. Heat
exchange with the metal wall can be also accounted
for. Tank models a gas-pressurised tank, with gas
charge and discharge valves.

3.3.3 Pumps

Since storage of mass and energy are negligible, the
PumpMech model is expressed by algebraic character-
istic equations derived from the manufacturer’s design
data, that relate the pump head and the resistant hy-
draulic torque applied by the fluid to the shaft to the
rotation speed and the volumetric flow rate. A boolean
parameter allows to account for the total rotor inertia,
when required. It is also possible to use the simpler
model Pump, where the rotation speed is an input sig-
nal, the hydraulic torque is not computed, and a con-
stant efficiency is assumed to determine the enthalpy
difference between the inlet and the outlet.

3.34 Drum

The Drum model is the core of drum boilers models [9,
16]. In order to describe correctly the dynamics of fast
transient, the model does not assume that the liquid
and vapour phase are in thermodynamic equilibrium,
i.e. at saturation state. Referring to figure 1, the basic

The Modelica Association

43

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

Figure 1: Steam drum.

equations are mass and energy balances for the liquid
and vapour phases:

dMm
dtv = er+We/_WV_WC_WCS (1)
dm
d—tl = Wi+ Wy +We+Wes—Wg —Wp—Wey, (2)
dE
d—'[v = Wryhry + Wea/hys — Wyhy — Wehjs — Weshys +
d\v,
+Qmv—Qu — pd_tv)
dE
d_tl = Wrhs + Wby +wehis + Weshys — Wghg +
avi
~Wph — Wevhys + Qmi + Qui — pE “4)
dE
5 = ~Qm—Qm—Qme ®)

where My, M, Ey, E, Wy, V| are the mass, internal
energy, and volume of the vapour and liquid phase
holdups, En, is the thermal energy of the metal wall,
p is the drum pressure, W is a mass flowrate, h is a
specific enthalpy, Q is a heat flow. The meaning of
the subscripts is: rv: risers (vapour fraction), rl: risers
(liquid fraction), |: liquid phase, v: vapour phase, C:
condensation, CS superficial condensation, ev: evapo-
ration, f: feed, d: downcomer, b: blowdown, vs: satu-
rated vapour, |s: saturated liquid.

The bulk and superficial condensation flowrates, evap-
oration flowrate and convective heat exchange be-
tween the two phases are computed according to

We = w (6)
e = Kehap(WP)-T)) ()
Wey = Xli)lvl)
Qu = Kw:Awp (Tv=T))

where py, py, 1|, Ty are the liquid and vapour densities
and temperatures, X, X, are the steam qualities in the

liquid and vapour phases, T, Tey are suitable time con-
stants, Agqp is the area of the liquid surface, and Kes,
Ksup are suitable coefficients. The (non ideal) phase
separation at the risers outlet is modelled as follows:
hr) is the saturated liquid enthalpy at the drum pres-
sure, while hy is such that the corresponding steam
quality is 1 — (py/p1)%.

The model is implemented in order to have the follow-
ing state variables: drum pressure, liquid and vapour
entropy, level, and metal wall temperature.

3.4 Building blocks for complex components
3.4.1 1-dimensional fluid flow

The FlowlD model describes the 1-dimensional flow
of single-phase water in a tube of constant cross-
section. The basic equations are the distributed-
parameter mass, momentum, and energy balances:

op ow
T = 0 (@10

ow d dz Cio B
§+Aa—+ gAd—X—FWW|W| = 0 (11

oh oh Jdp
pA§+pAu&—A§ = 0 (12)

where p is the fluid density, wis the mass flowrate, pis
the pressure, A is the tube cross-section, g is the accel-
eration of gravity, zis the elevation, C; is the Fanning
friction coefficient, ® is the tube perimeter, U is the
fluid velocity, h is the fluid enthalpy and @ is the heat
flux entering the tube across the lateral surface. Equa-
tions (10)—(11) describe the fast pressure and flowrate
wave dynamics, while Eq. (12) describes the slower
dynamics of heat transport with the fluid velocity; the
equations are then discretised with the finite volume
method, considering a single volume for the former
two (which need a coarser approximation in the fre-
quency range of interest for power generation models),
and many volumes for the latter.

Among the relevant features of this model, the follow-
ing ones are worth mentioning: flow reversal is fully
supported; the dynamic momentum term ow/dt can be
switched off to avoid fast pressure oscillations; the G
coefficient can be either constant or computed by the
Colebrook equation; the compressibility effect result-
ing from the finite volume approximation of (10) can
be associated to either the upstream or downstream
pressure; a bank of identical tubes in parallel can also
be modelled.

The FlowlD2ph model can also deal accurately with
two-phase flow; although being based on the same

The Modelica Association

44

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

equations (10)—(12), the significant differences with
respect to to F1owlD suggest writing two completely
independent models.

The FlowlD2phDB model extends (in Modelica’s
terms) FlowlD2ph by also computing the heat trans-
fer coefficient y via Dittus-Bolter equation; corre-
spondingly, the DHT connector (which is replaceable)
is substituted bye the extended DHThtc connector,
which makes the values of vy visible to the outside.

3.4.2 Pressuredrop

The PressDrop model provides the model for a
generic pressure drop proportional to the kinetic pres-
sure. The equation is modified by adding a small
linear term, to avoid singularities with small or zero
flowrates, thus reading:

Kt (Jw| + Kl)w

5 (13)

Pin — Pout =
The same modification also applies to the models de-
scribed in section 3.4.1.

3.4.3 Metal wall

The MetalWall model describe a generic cylindri-
cal metal wall, accounting for the thermal resistance
due to heat conduction and for the heat storage due to
thermal capacity; uniform temperature is assumed in
the radial direction. More sophisticated models could
be derived to better reproduce the actual radial temper-
ature dynamics, e.g. in thermal stress studies.

3.4.4 Heat exchange modules

The heat flux exchanged between two (or more) ob-
jects, such as a fluid flow and a metal wall, is in general
a function of the corresponding surface temperatures;
therefore, it can be computed by a model interfaced via
DHT connectors. The ConvHTe and ConvHTc models
provide simple examples for co-current and counter-
current 1D configurations, with given heat exchange
coefficient y. ConvHTe_gamma extends the former by
using a variable value of v, provided by the connected
object through its DHT_gamma connector. More com-
plex configurations can be easily described with a few
lines of code.

3.5 Complex physical components

A whole range of heat exchanger models can be as-
sembled using the components described in Section

Superheater

oy

ES

Throttling valve

Drum

Down
comer

3-phase
electric
heater

ESigil

L T

&

Feed—water pump

Feed
water
valve

Figure 2: The laboratory plant.

3.4, depending on physical configuration, operating
conditions and desired degree of detail. None of these
models probably deserves to be included in the library
as such; if a specific aggregate model is to be used
many time, the user can easily define it as a new model
inside his plant model. Some of them may neverthe-
less be included in the library to serve as examples.

4 Thelaboratory plant and data

41 Overview

The laboratory plant employed to validate the pre-
sented library is a physical model of the evaporating
section of a heat-recovery boiler, with a power scaling
factor of 1:600. The laboratory plant layout is shown
in fig. 2.

To be precise, only the circulating loop of the labo-
ratory plant exactly reproduces the thermo-hydraulic
conditions of the real boiler. The other components
(preheater, valves, pumps, etc.) provide the correct
boundary conditions for the evaporator. In particular,
the superheater supplies the necessary (limited) steam
superheating to allow a reliable measurement of the
steam flow upstream of the throttling valve.

The steam generation takes place at a nominal oper-
ating pressure of 60 bar, as in the real plant. The
evaporator is made of six electrically heated parallel
tubes, one downcomer and a vertical-axis drum, plus
the necessary headers and connection tubes. A feed-
water valve may be used for drum-level control, and
the throttling valve to control the drum pressure. The
heat rate to the evaporator is modulated by a power
regulator.

The Modelica Association

45

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

Drum

Throttling valve
Superheater @ L
(3) LEGEND:
riser Pv Pd
r pressures
Upper DP1 DP2
N N N differential pressures
g M (4 M
Evaporating W, W W
tubes mass flow rates
Down
@P} comer Tt Tv
temperatures
Heater
1 Lev
e level
o) o
Lower i f ‘,@
header

Figure 3: The available plant measurements.

The relevant process measurements are summarised in
fig. 3; the measurement of the electric power released
to the evaporator is also available.

4.2 Plant tests

Many static and dynamic tests were performed on the
plant. These tests are plant responses obtained by im-
posing step variations to the evaporator electric power,
the throttling valve position, and the feed-water con-
trol valve position. During these tests, the plant was in
an open loop. Step variations were given, starting from
two different sets of steady-state conditions: the for-
mer at high load (around 100% of the maximum load),
and the latter at about half load. The boiler pressure
was kept nearly proportional to the load: full-load tests
were done at about 60 bar, and half-load tests at about
30 bar. Step variations were always imposed both up-
wards and downwards, their amplitude being in the
range 10-15%. Altogether, seventeen step-response
tests were executed and logged.

4.3 Datareconciliation

Experimental data comong from the tests were anal-
ysed, in order to build a consistent database. The main
problem evidenced was a discrepancy between the
feed-water and the superheated steam flow rate mea-
surement. Those flow rates must balance at any steady
state, and even a small imbalance between causes a
significant modification of the drum-level transients.
Hence, it is very important that the corresponding
measurement errors be corrected. In the case at hand,
it is assumed that the feed-water flow is error-free (it is
in fact much more accurate than the steam flow mea-

surement).

On the basis of steady-state measurements, the cal-
ibration constant of the instrument was recomputed.
Moreover, to compensate for unpredictable measure-
ment errors, the record of steam flow rate relative to
every step response was biased, so as to impose per-
fect balance at the initial steady state.

A further problem is that the heat rate to the super-
heater (supplied by an electrical resistor) is not mea-
sured. At any steady state, the heat rate Q may be
estimated by means of the thermal balance

Q= w (hy(pv, Tv) —ha),

where Wy is the superheated steam mass flow rate, hy
the fluid enthalpy at the drum outlet, and h,(py, Ty) the
steam enthalpy at the superheater outlet, evaluated at
the local steam temperature T, and pressure p,. Unfor-
tunately, hy is not easy to evaluate because the fluid at
the drum outlet is generally wet steam, whose quality
Xg is close to one, but unknown. It has been assumed
that the steam quality is 1, and hy = hys(pg), where
hus(pg) is the vapour saturation enthalpy at the drum
pressure Pg. Note that a (realistic) wetness of 3%, at
60 bar, yields hs(pg)) — hg =~ 47 kJ/kg, i.e. a tem-
perature difference of about 14°C at the superheater
outlet. In addition, the analysis of experimental data
shows that Xy is not constant when the operating con-
dition is changed, but the information available is not
sufficient for deriving an empirical correlation for .
This is the most important uncertainty in the experi-
mental data, that could not be removed. Fortunately,
this uncertainty is relevant only for the superheated
steam temperature, while it is almost negligible for the
evaluation of the other process variables. The heat rate
to the superheater was generally kept constant during
any dynamic test. Therefore, its value was computed
from the initial steady state, using (14) and the approx-
imation hq ~ hys(pq).

The experimental data records, completed with the
corrected steam flow rate and the superheater heat rate,
were assumed as the validation database.

(14)

5 Experimental validation

5.1 Thesimulation model

The Modelica diagram of the simulation model is
shown in figure 4. This model proves that cases of re-
alistic complexity (i.e., hundreds of differential equa-
tions) can be treated effectively. There is not the space
to give details. For further information, the reader is
referred to the library and model code.

The Modelica Association

46

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

R

Pig2.

o
BN

Pipe...

AR UODFAD]

Qﬁﬁan

SHEX...

Figure 4: Modelica diagram of the simulation model.

5.2 Modd calibration

Steady-state measurements were used to estimate the
process parameters affected by an intrinsic uncertainty,
i.e. the friction coefficients for the different compo-
nents in the circulation loop, the friction correlation in
the superheater, and the heat losses of the evaporator.
For the evaporator, it was assumed that friction obeys
to Colebrook’s law, and a concentrated pressure drop
was introduced upstream of the evaporating tubes, to
account for the flow measurement orifices and other
flow discontinuities. A multiplicative corrective co-
efficient was introduced in the second flow equation,
and was calibrated with steady-state data to match the
circulation flowrate.

The calibration of the friction correlation for the su-
perheater was done selecting the tube roughness so
that the relation between the Reynolds number and the
friction coefficient matched the points computed from
experimental data. As for the evaporator heat losses,
considering the evaporator thermal balance at different
steady states, it was found that the experimental data
fit the formula

Qlost = I((de - Tamb)) (15)

where Q|og is the lost heat rate, Ty, the ambient tem-
perature, and Tyg the drum metal wall temperature.
Note that Qo is typically around 10% of the input
electrical power, and varies significantly with the drum
pressure.

5.3 Individual validation of components

Individual validation of a component can be carried
out for components when the available measurements
supply complete boundary conditions for that compo-
nent. In the case presented, only the model of the
chocked-flow valve could be validated individually,
since all its boundary conditions (inlet steam pressure,
flow rate and temperature) were measured.

5.4 Global validation of the plant model

The global validation of the whole plant model is
aimed specifically at the analysis of relevant alterna-
tives in terms of component modelling and overall
model structuring. In the following the validation tests
are listed, together with the results achieved from the
point of view of modelling. It is important to notice
that the tests were made in open loop and applying step

The Modelica Association

47

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

stimuli: this leads to very informative results on the
model correctness, as no control system can conceal
discrepancies between the model outputs and experi-
mental data, and the stimuli cover a frequency range
wide enough to evidence the model behaviour with re-
spect to phenomena that are ‘fast® with respect to the
dominant plant dynamics. It is also worth stressing
that the model was calibrated only once (at high load),
and non modification to the model parameters was
made to perform the various simulations presented.

54.1 Heat ratesteps

Negative step variations were applied at high load to
the electrical power fed to the heating system. Feed-
water was not regulated, so the pressure variation due
to the heat rate perturbation caused also a variation of
the feed-water flow rate. To reproduce the actual con-
ditions, the simulator was fed with the measured feed-
water flow rate as an input.

The main result is that the process behaviour is re-
produced very accurately, except for the superheated
steam temperature. Its measurement is very noisy,
however, and its variations are comparable with the
errors due to uncertainty on the steam quality at the
drum outlet. Recall also that the heat rate released to
the superheater is not measured. These facts confirm
that the uncertainty exists, is relevant, cannot be elimi-
nated with the available measurements, but is confined
to the outlet steam temperature.

An example of these tests is shown in figures 5 and
6, depicting the drum pressure and level transients, re-
spectively. Notice that the pressure dynamics are re-
produced correctly over the frequency range that is in-
teresting for control (corresponding to a typical time
scale of some tenth or a few hundreds of seconds).
This is true thanks to the non-equilibrium model of the
drum.

5.4.2 Throttling valve steps

Responses to positive and negative throttling valve
steps, both at high and low load, showed good agree-
ment between the model output and data. For the rea-
son above, in these tests the feed-water flow rate (that
acts as a disturbance) was an input for the simulator.
In particular, the non-equilibrium phenomena repre-
sented in the drum model allow to reproduce both low-
and mid-frequency dynamics in the pressure responses
correctly, and are necessary for this purpose, as wit-
nessed by the effects of the involved parameters (e.g.,
Tey) ON the responses. Also the effects of thermal ex-

Drum Pressure (bar)
60 T

600
Time (s)

1200

Figure 5: Drum pressure transient for a -10% heat rate
step at high load (simulated vs. experimental data).

Level (m)
0.2 T

-0.15

. .
400 600 1000
Time (s)

800 1200

Figure 6: Drum level transient for a -10% heat rate
step at high load (simulated vs. experimental data).

changes between the fluid in the drum and the drum
metal wall were investigated, showing that the corre-
sponding heat transfer coefficient has a significant in-
fluence on the superheated steam temperature. This
phenomenon is often neglected in the simulation mod-
els proposed in the literature.

Figures 7 and 8 reports the drum pressure and the level
transients in one of these tests, namely a negative valve
step at low load, and confirm the considerations made
in the previous section. Notice that in this particular
transient bulk boiling actually takes place within the
liquid drum subvolume.

The Modelica Association

48

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva

Modelica open library for power plant simulation: design and experimental validation

Figure 7: Drum pressure transient for a throttling valve
step leading to a 13% pressure reduction at low load
(simulated vs. experimental data).

5.4.3 Feed-water valve steps

Positive and negative feed-water valve steps were ap-
plied. Figure 9 shows the drum level transient in one
of these tests, demonstrating good accordance between
model and data.

6 Conclusionsand work in progress

An open Modelica library for the simulation of ther-
mal power plants has been presented. The library has
been used to build a high-fidelity model of a labora-
tory drum boiler, which has been successfully vali-
dated against available data.

The library has been conceived in order to emphasise
model readability and extensibility; it contains a lim-
ited number of components which nevertheless allow
modelling a wide range of different physical compo-
nents. It should be stressed that the Modelica language
allowed translating sophisticated modelling concepts
into working code with remarkable ease.

The library is being released to the public, and is open
to contribution from other research groups (see URL:
http://www.elet.polimi.it/upload/casella/thermopowery).
The benchmark boiler model together with the experi-
mental data is being released as well.

The development of component models using gases as
working fluid (compressor, turbine, combustion cham-
ber, basic components for heat exchangers etc.) and of
finite element models for the 1-dimensional fluid flow
model is planned for the near future. It could also be

Level (m)
-0.01

-0.02

-0.04

it &
Ut

-0.05

-0.06

h
Wi

L
600

-0.07

—-0.08

-0.09

L L L L
0 200 400 800 1000 1200

Time (s)

Figure 8: Drum level transient for a throttling valve
step leading to a 13% pressure reduction at low load
(simulated vs. experimental data).

interesting to investigate the combined use of the Ther-
moPower library with control libraries and electro-
mechanic libraries to build complete models of power
generation equipment.

7 Acknowledgements

The authors are grateful to W. Prandoni and D.
Laudato, who realised the physical experiments, and
to the CESI research centre (particularly to G. Benelli),
who made the relative data available. Many thanks are
also due to prof. C. Maffezzoni, for inspiring the pre-
sented research and contributing to it with numerous
ideas, hints, discussions, and constructive criticisms.

References

[1] Astrom, K.J. and Bell, R.D. (1993), “A nonlinear
model for steam generation process”, Prepr. 12th
IFAC World Congress, Sydney, 3, 395-398.

[2] Bartolini, A., Leva, A. and Maffezzoni, C.
(1995), “Power plant simulator embedded in a
visual programming environment”, Proc. IFAC
Conf. SIPOWER 95, Canciin, 119-124.

[3] Barton, P.I. and Pantelides, C.C. (1994), “Model-
ing of combined discrete/continuous processes”,
AiChE Journal, 6, 966-979.

[4] Breitenecker, F. and Solar, D. (1986), “Models,
methods, experiments - modern aspects of simu-

The Modelica Association

49

Modelica 2003, November 3-4, 2003

F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

Level (m)

0

-0.05

-0.15

-0.21

-0.31

-0.35-

-04f

-0.45
0

L L L L L
200 400 600 800 1000 1200

Time (s)

Figure 9: Drum level transient for a feed-water valve
step leading to a 40% feed-water mass flow rate reduc-
tion at low load (simulated vs. experimental data).

lation languages”, Proc. 2nd European Simula-
tion Conference, Antwerpen, San Diego, 195-
199.

[5] Carpanzano, E., Ferrarini, L. and Maffezzoni,
C. (1999), “Simulation environments for indus-
trial process control”, Proc. ESS ’99, Erlangen-
Nuremberg, 443-450.

[6] Casella, F. and Leva, A. (2003), “Modelling
of distributed thermo-hydraulic processes using
Modelica”, Proc. MathMod’03, Wien.

[7] Casti, J.L. (1992), “Reality rules - picturing the
world in mathematics: I, II”, Wiley, New York.

[8] Chien, K.L., Ergin, E.I., Ling, C. and Lee, A.
(1958), “Dynamic analysis of a boiler”, Trans.
ASME, 80, 1809-1819.

[9] Collier, J.G. (1981). “Convective boiling and
condensation (2nd ed.)”, McGraw-Hill, New
York.

[10] ISA (1986). “Flow equations for sizing con-
trol valves”, Instrument Society of America, Re-
search Triangle Park.

[11] Incropera, F.P. and De Witt, D.P. (1981), “Funda-
mentals of heat and mass transfer”, Wiley, New
York.

[12] Lausterer, G.K., Franke, J. and Eitelberg, E.
(1983), “Modular modelling applied to a Benson

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

boiler”, Proc. 1st IFAC workshop on Modelling
and Control of Electric Power Plants, Como.

Leva, A., Bartolini, A. and Maffezzoni, C.
(1998), “A process simulation environment
based on visual programming and dynamic de-
coupling”, Simulation, 71(3), 183-193.

Leva, A., Maffezzoni, C. and Benelli, G. (1999),
“Validation of drum boiler models through com-
plete dynamic tests”, Control Engineering Prac-
tice, 7, 11-26.

Leva, A. and Maffezzoni, C. (2003), “Modelling
of power plants”, in D. Flynn (Ed.), “Thermal
power plant simulation and control”, IEE, Lon-
don, 17-60.

Maffezzoni, C. (1992), “Issues in modelling and
simulation of power plants”, Proc. IFAC Sym-
posium. on Control of Power Plants and Power
Systems, Munich, 1, 19-27.

Maffezzoni, C. and Girelli, R. (1998), “MOSES:
modular modelling of physical systems in an
object-oriented database”, Mathematical Mod-
elling of Systems, 4(2), 121-147.

Mattsson, S.E., Elmqvist, H. and Otter, M.
(1998), “Physical system modeling with Mod-
elica”, Control Engineering Practice, 6 (1998),
501-510.

Oh, M. and Pantelides, C.C. (1996), "Modelling
and simulation language for combined lumped
and distributed parameter systems”, Computers
& Chemical Engineering, 6-7, 611-633.

Perry, R.H. (1984), “Perry’s Chemical engineer’s
handbook”, McGraw-Hill, New York.

Sage, A.P. (1992), “Dynamic systems”, in Ather-
ton, D.P. and Borne, P. (Eds.),“Concise Encyclo-
pedia of Modelling and Simulation, Pergamon,
Oxford, 91-92.

Troch, 1. (1995), “Modelling for optimal control
of systems” Surveys on Mathematics for Indus-
try, 5, 203-292.

Tummescheit, H., Eborn, J. and Wagner
FJ. (2000), “Development of a Model-
ica base library for modeling of thermo-
hydraulic systems”. Proc. the Modelica Work-
shop 2000, Lund, 41-50. Library URL:
http://sourceforge.net/projects/thermofluid.

The Modelica Association

50

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

Simulation of Liquid Food Processes in Modelica

Tomas Skoglund
Tetra Pak Processing Systems, Ruben Rausings gata, S-22186 Lund, Sweden,
tomas.skoglund@tetrapak.com, www.tetrapak.com

Abstract

Traditionally, liquid food processing equipment has
been designed and engineered from a static
perspective, where it has been taken for granted
that dynamic behaviour easily could be handled by
“add on” of control equipment such as sensors and
computers with control programs including control
loops. However, as production demands, e.g.
mixing accuracy, are escalated, this approach fails,
and the importance of simulating the dynamics of
the system becomes crucial. A tool that makes it
possible to minimise the cost and time for building
prototypes and making experiments would be of
considerable value, particularly if the tool enables
reuse of earlier work. Equally important is the
possibility to test various design ideas to improve
the equipment performance to en extent that
otherwise would not be conceivable.

This article describes how the Modelica based
tool Dymola' has been used to build up a library
(“FoodProcessing”) primarily aiming at simulating
certain dynamic behaviour in liquid food
processing plants, particularly characterised by
incompressible fluids with complex rheologic
behaviour, transport delays and dynamically
changing concentrations.

1. Introduction

When starting a project aiming at building a model
library for simulation of liquid food processes, an
analysis should be performed to define:

1. Which processes and phenomena are

involved?

2. Which physical properties are involved?

3. Which product (fluid) properties

relevant?

4. Which components shall be included?
Another important aspect to consider is to whom
the library is directed, i.e.:

1. Who is the user?

2. Which symbol standards are relevant?

3. How shall model variations be handled?

In this work the above premises were evaluated as
a base for the creation of a food processing library.

arc

! Dymola by Dynasim AB in Lund, Sweden

2. Basic library structure

To meet the demands from the analysis of above
mentioned questions, two major library design
decisions were taken:

1. To facilitate the wusage of the
“FoodProcessing” library for process and
automation engineers, the library should:

— separate models “ready to use”, from
models used for building other models
(Fig. 2.1).
— use relevant symbol standards as much
as possible (see paragraph 6.3).
HEIR

FoodProcessing - package FoodProcessing
File Edit

FoodProcessing V1.00x
Capyright (c) 2001-2003, Tetra Pak Processing Systermns AB

[

Fillers

& Process

Leell| |

Examples

Cantrollers

== |=I e @ I
Injectors PipesAndFittings Frocesshbdules Fumps
=
=W\ =
SFC Valves Vessels AiarkBerich
Fig. 2.1 The ‘top view’ of the library where the

coloured (grey) boxes contain models ready-to-use and
the black box contains models for model builders only.

2. New connectors must be created to enable
fluids with rheologic complex characte-
ristics and dynamically changing concen-
trations. The connectors contain inform-
ation about:

— Flow rate

— Pressure

— Thermal energy

— Fluid concentrations

— Fluid properties
There is more than one way to represent
these, but to facilitate the understanding
from the user group point of view, the
most commonly used physical properties
have been chosen. The Modelica code for
the connector Productln is:

The Modelica Association

51

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

connector ProductIn

flow SIunits.VolumeFlowRate Q;
SIunits.VolumeFlowRate Qs;
SIunits.Pressure p;
FoodProcessing.BasicStructure.Phys
Data.ProductData PrData;

end ProductlIn;

where ProductData is:

record ProductData

SIunits.Density rho;

SIunits.ThermalConductivity

lambda;

SIunits.SpecificHeatCapacity cp;

SIunits.CelsiusTemperature TempC;

Real n "Flow behaviour index,
dynamic viscosity power law
n-value [-]";

Real K "Consistency, dynamic
viscosity power law K-value,
[Pa.s”n]";

Real Conc[5] "Concentration
[weight %] of component 1-5";

end ProductData;

The across variable Qs is used as a copy of the
through (flow) variable Q to be able to easily “pick
up” the flow rate with flow sensors, something that
cannot be done directly with through variables.
(For sensor aspects, see paragraph 7.) The copying
of Q to Qs is done in the component models with
the simple equation:

ProductInl.Qs = ProductInl.Q;

3. Physical equations

The fundamental physical equations governing a
fluid system are partial differential equations. By
limiting the main scope to one-phase
incompressible fluids (even though some gas
phases also have to be dealt with), the room
discretization need only consider dynamically
change of fluid concentrations and temperature. In
other words, to obtain ordinary time differential
equations, the control volumes often can be quite
large. Furthermore, since this library is aiming at
bulk properties, only one-dimensional discretiz-
ation is required along the flow channels, such as
pipes and heat exchangers.

For the model description of the components
(with one ore more control volumes) groups of
relationships are included

e Conservation equations:

— mass conservation

— energy conservation (thermal)

— volume conservation (incompressibility)

— momentum conservation (dynamically from
Newton’s 2™ law). In a pipe with the length

L and the same cross section area throughout
the whole pipe we have:

dv
'OLE =p,— D, +Ap, + pghh

where:

v = flow velocity [m/s]

p = density [kg/m’]

p1 = pressure at pipe inlet [Pa]

p2 = pressure at pipe outlet [Pa]

Ap,, = pressure drop due to wall friction [Pa]

g = gravity constant of acceleration [9,81 m/s*]
Ah= difference in level between pipe inlet and
outlet [m]

This whole set of conservation equations is a
result of approximations (simplifications) due to
certain limitations in the aim of the simulation
objectives, i.e. neither kinetic energy nor comp-
ressibility is included. So far, in this scope, also
effects of chemical reactions can be ignored.
Constitutive equations:

— pressure drop

— heat flow

— component characteristics

— etc

These equations are typically unique for
individual components and express relations
between the above variables and component
parameters/variables. Many times algebraic
equations are enough, but sometimes dynamic
effects need to be addressed, i.e. differential
equations are required.

The pressure drop model in pipes handles the
flow regime from laminar to turbulent for
smooth pipes.

Transport delay:

As concentration and temperature may vary
when a fluid flows through a system, the
transport time from one point to another
becomes an important effect that needs to be
included in models of pipes etc. Including true
transport delay in the models reduces the need
for very high degree of discretization, which is
an approximation that converges as the discreti-
zation goes to infinity:

In case of constant flow; let the transfer

function G(s) represent the concentration in a

volume V through which there is a constant

flow rate Q, and in which there is a perfect
mixing. Then with T=V/Q we have
G(s) = 1/(1+s7)

Suppose now that a pipe is seen as this

volume, but sliced into n pieces of volumes.

Then we get:

Gu(s)=[1/(1+stm)]" — €™ as n— o

Which proves the statement.

The Modelica Association

52

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

4. Media models

Many liquid food-stuffs behave strongly non-
Newtonian where only one viscosity parameter is
not enough, and the main concern is to choose
relevant rheologic model. A model that covers
many liquid foods is the Ostwald de Waele “power
law” model [7]:

c=Kj" and u=2=kp
v

where:

O = shear stress [Pa]

7 = shear rate [s”]

n = flow behaviour index [-]

K = consistency [Pas"]

At this stage this is the chosen model, but in the
future probably it has to be extended to a more
complex model such as “Herschel-Bulkley”. This
needs to be considered in the library structure to
facilitate a future “upgrade”.

In typical food processes the food is heated,
cooled or mixed. To be able to handle these
changes in temperature and concentration, models
are required for how relevant fluid properties
depend on these. In other words the relationships:

Fluid property = f(Temperature, Concentration)
is required for:

e Rheologic properties such as viscosity or,
for the Ostwald de Waele (power law)
model, consistency and flow behaviour
index. More complex fluids require more
parameters.

e Thermal properties. (Specific heat capacity
and thermal conductivity. Since the specific
heat capacity is well approximated with a
straight line dependency of the temperature
for relevant food stuffs, the thermal energy
can be handled by using just the specific
heat capacity and the temperature.)

e Density

Approximate models for these have been included
in the library.

5. Approximations and

simplifications

Generally speaking, the physical relationships and
media models have to be approximated/simplified
with the target in mind to get a library with
components and media that, when used within the
simulation scope, meet relevant demands concer-
ning the following aspects:

e accuracy

e speed

e robustness
In this library, models with more or less
approximations are built for conservation
equations, constitutive equations and media
models.

6. Component models

A library structure can be built in many different
ways. As mentioned above, this library structure is
built to facilitate simulations from a user
perspective. Therefore the components are divided
into component groups on the top level (Fig. 2.1).
In each group, models with different complexity
(more or less approximations) can be chosen. Fig.
6.1 shows the content of a sub library
“PipesAndFittings” containing various components
such as pipes and bends etc.

0
I ESESR
D= D= D= D=

PipeSiiced PipeSiicedHeatlos PpT pD\ eeeeeeeeeeeeeeeeee

| . |
D= D—

Pipe PipeHeatlos

-::-.JL.JL.-l

Tpipelin2out Tpipe2inlout

PpT rbPurge

Fig. 6.1 Component sub library “PipesAndFittings”.

6.1 Variations in models

Sometimes there is a wish to easily run simulations
with different model types (e.g. more or less
approximations) without having to swap compo-
nent. Modelica has various features for that.
However, using such a feature would require that
the users write the Modelica code for it, e.g.
“replaceable....“ and “redeclare....”. Because of
this, some alternative model types are included in
one model and handled via parameters to change

The Modelica Association

53

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

the type with just a simple change of a (Boolean)
parameter. For example a PID-controller is
developed that handles both analogue and sampled
control depending on just a Boolean parameter.
(Fig 6.2 and 6.3)

= PIDgeneric2 x|
Camponent harme: IPIDgenericZ K

i

Clazs: FoodProcessing Controllers. PID generic Cancel

Sampled/continuous PID controller on parallel farm with feed farward and On/OfF Info... |
with start value

Parameter Default |%alue | Description -

Fesol 4096 Fiesolution of output signal if flag LimFesolution is true

Reverse falze True means reverse action =» increasing setpoint gives dec

Sampled fale |BHE | True means sampled contraller, false means continuous

Tz 01 0.05 [Sample period of component [5]

Mi 03 2 Ni*Ti iz time constant of anti-windup compensation

InitStartalue |0 10 Initial start value the first mament if 'On' and if nathing is caor:
-

4 »

Modifiers: I

Camment: I

Fig. 6.2 Parameter list where the parameter “Sampled”
is set to “true”

2! Plot [17]
File Diagram Setup Help

=] E3

PlDgenernct outPaort. signal[1] PIDgeneric? outPaort. signal[1]

12

o 1 2 3 4 4

Fig. 6.3 Simulation results with plotted output from a
PID-controller in a certain scenario with parameter
“Sampled” set to “false” (smooth curve) and “true”
(stepwise curve). In the sampled case, the simulation is
slower due to a heavier computation task than in the
continuous (not sampled) approximation.

6.2 Parameter settings

To facilitate the work for the user, some of the
characteristics for the commercially available and
used flow components are stored in data files
referred to by a string parameter (the component
type name). In this way the user can easily choose
and change the type and size of the component,
e.g. valve type and size. (Fig 6.4)

I Burkert2632 [read-only) x]

Component name: IBurkert2832

Class: FoodPracessing Valves Burkert2632

Burkert control valve type 2632 with positianer 1067

Parameter |Default |Value | Description

ValveSize |"DNZ5" Size in rm according to datasheet, DN13, DM 20, DM25, DM32, DNAO, DNSO
Charact "linear Canrective charactenistic curves:5001, 2501, linear, 1:25 or 1:50

Deadband |0.5 Deadband in %, Max = 5%

nOpen false walue zetta 1 [llue] glves MO acllon and

Smin a Signal range El 100% ar 4 20méd, or similar, min value

Smax 100 Signal range 0-100% ar 4-20md, or similar, max walue

4 »
Modifiers: I

Comment: I

Fig. 6.4 The single string parameter “ValveSize” points
on several valve parameters in a data file.

6.3 Component icons

Within the industry there are different standards for
symbols (e.g. ISO 3511, “Process measurement
control functions and instrumentation — Symbolic
representation”). Further more, within Tetra Pak,
these standards have been adapted to a branch and
company standard. To increase the intuitive
understanding the library icons follow these as
much as possible (Fig 6.5).

Valves - package FoodProcessing Yalves
Fil= Edit

=] 3

Camilex]| ChECkVaIVE PM2

T rﬂ

i
M

Burket2f32

SRC21B

H SRC2 mix '?C% simple

Fig. 6.5 Component sub library “Valves” with Tetra Pak
standard symbols built on ISO, branch and company
standards.

Also sequential function control charts (SFC)
(=Petri nets) have its industry standard symbols
(IEC 848, “Preparation of function charts for
control systems”). Fig 6.6 shows the limited sub
library SFC, e.g. parallel and alternative handling
are missing.

The Modelica Association

54

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

S5FC - package FoodProcess . !Elm

File Edit
¥ 4
End: initial |- | Stepr
Timer eneric ’ ;

n=ition
H-:-Ti@ i '%u

Fig. 6.6 Component sub library “SFC” for sequence
control.

7. Sensor and transmitter models

Sensors with transmitters are also important to
model since they are a part of closed loop systems.
They are also not perfectly describing the property
they are aimed for. Two “distortion” factors are
involved:

e dynamic behaviour

e inaccuracy
Another user aspect is that they should be able to
connect as standard symbols on a drawing, i.e. like
“pick-ups” on the measured point (Fig 7.1).

D=0.0486

Fig. 7.1 Flow sensor with transmitter (FT11) connected
as a “pick-up” on a pipe in a flow rate control loop.

The possibility to simulate inaccuracy is valuable
for high performance control when the transmitter
accuracy or noise is in the same range as the target
of the control accuracy. Fig 7.2 shows a simulation
of start-up of a blending system with and without
noisy information from a concentration transmitter.

121 Plot [17]
Eie Diagram Sstup Help

- [ox]

FipeTranspDell.Prout PrData.Co. PipeTranspDell Prout PrData. Co. FPipeTranspDel!.Prout PrData.Co.

12

Fig. 7.2 Concentration in a pipe when the concentration
transmitter in the control loop is “perfect” or noisy.

8. Interfacing other libraries

Liquid food processing involves heating with
steam and an existing library handling that is
ThermoFluid [8]. Therefore, instead of developing
new models for steam systems, this model domain
is interfaced with the FoodProcessing domain by
certain components, such as steam injectors (Fig.
8.1), which are used to inject steam directly into
the food stream.

Injectors - package FoodProceszing. Injectors !H m

Eil= Edit

ThermoFluid connec

for steam flow

tor

Steaminjectar

for liquid food flow

FoodProcessing connectors

Fig. 8.1 Component “SteamInjector” with connectors to
interface FoodProcessing with ThermoFluid [8].

The Modelica Association

55

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

9. Simulation example “in-line
blending”

In-line blending is commonly used as an efficient
way to produce standardised food such as standard
milk with a predefined content of fat. Modern
systems are designed in different ways depending
on flexibility requirements etc, but are typically
accurate and responsive to disturbances. To reach
the high control performance, the control system
sometimes becomes quite complex, as well as the
process systems. Fig. 9.1 shows a “top view” of a
simpler type of such a system. Fig. 9.2 shows the
process part of it and fig 9.3 and 9.4 show a 5-
minute simulation result of the same system.

5P FTz1 |

Yo FT

LCo1_t

Proc

Control model Process model

Fig. 9.1 “Top view” with “process” and “control” of a
system model for milk blending.

Piifreq
FC21_SP FT21_hY
ooo
Ciea
AtastON W4 L
AlfastGo FipEﬁBE
|
-
start'l'lme=ij.. Pl lfreq
AfastINIT aT
’—P{ 1 D=0.0456
Pipel
startTime={...
o
5
iy
L=1m
n=1
FC11_SP FT11_h%
LCO1_5P
k=347
LCO1_5...
'_q? W LCoi_ouT
I35 = _
wé = k=TS000
@

e

Fig. 9.2 View of the “process system” model for milk blending.

The Modelica Association 56

Modelica 2003, November 3-4, 2003

Tomas Skoglund

Simulation of Liquid Food Processes in Modelica

= Plot [17]
File Diagiam Setp Help

Proc FCT 1inPort_sPsignall1]

om0 Proc LCO1.outPortsignalll]_ Proc FC2TinPort_sP signail1]

7000
6000
5000

4000

3000

2000

o

T T
o 100 200 300

Fig. 9.3 Simulation result of the system model for milk
blending. Flow rates: solid line = set point of total flow,
broken line = set point of skim milk flow and dotted

line = set point of cream flow.
H=E

Proc BT0 Prin1 PrData.Conc(4]

= Plot [17]
File Diagiam Setp Help

Contr LOF ATghg_SP out Port signal Proc Tpipe Prout Prata Cono[4]

i
i
)
3

]

T T
0 100 200 300

Fig. 9.4 Simulation result of the system model for milk
blending. Fat concentration: solid line = set point,
broken line = process value at mixing point and dotted
line = process value 11 m downstream before a buffer
tank.

10. Conclusions

This article has described how simulation has a
great potential to contribute significantly to the
development of liquid food processing equipment
such as:

pasteurizers for milk and juice

sterilizers for milk and juice

milk standardisation systems

juice blending systems

aseptic tank systems

complete lines (evaluation of performance,
e.g. product loss)

Modelica/Dymola has shown many advantageous
possibilities within the area of liquid food process

simulation. This goes for model/library builders as
well as model/library users.

The described “FoodProcessing” library is
handling non-Newtonian fluids with characteristics
depending on concentration and temperature. It
also handles transport delays in fluid channels.
Today the library contains about 250 models
totally with approximately 2000 equations.

Beside simulation for development of food
processing equipment, further potential spin offs
have been identified, useful for manufacturers of
food equipment:
training of operators
education of process and control engineers
demonstrations and sales
testing of control systems (hardware-in-the-
loop)

e trouble shooting

The development of the “FoodProcessing” library
will proceed whereas the question concerning how
the potential spin offs are going to be explored,
will be answered by the future.

11. Acknowledgements

For discussions, ideas and help; Thank you Carl Coster,
Jonas Eborn, Ivar Gustavsson and Hubertus
Tummescheit.

12. REFERENCES

[1]J. Eborn, On Model Libraries for Thermo-hydraulic
Applications, PhD thesis ISRN LUTFD2/TFRT - - 1061
- - SE, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden, (2001).

[2] H. Tummescheit, Design and Implementation of
Object-Oriented Model Libraries using Modelica, PhD
thesis ISRN LUTFD2/TFRT - - 1063 - - SE,
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, (2002).

[3] M. Tiller, Introduction to Physical Modeling with
Modelica, Kluwer Academic Publishers, Massachusets,
USA, ISBN 0-7923-7367-7, (2001).

[4] J. Eborn and K. I. Astrém, Modelling of boiler pipe
with two-phase flow instabilities, In Fritzon, Ed.,
Modelica 2000 Workshop Proceedings, pp. 79-88,
Modelica Association, Lund University, Lund, Sweden,
(2000).

[5] S.M.O. Fabricius and E. Badreddin, Modelica
Library for Hybrid Simulation of Mass Flow Transfer in
Process Plants, In Otter, Ed., Proceedings of the ond
International Modelica Conference, pp. 225-234,
Modelica Association and DLR, Oberpfaffenhofen,
Germany, (2002).

The Modelica Association

57

Modelica 2003, November 3-4, 2003

Tomas Skoglund Simulation of Liquid Food Processes in Modelica

[6] Coulson, J. M. and Richardson, J. F., Coulson &
Richardson’s CHEMICAL ENGINEERING Volume 1,
Sixth edition, Fluid Flow, Heat Transfer and Mass
Transfer (Butterworth Heinemann, 1999).

[7] Bolmstedt U., Viscosity & Rheology — Theoretical
and practical considerations in liquid food processing,
New Food, Volume 3 Issue 2, pages 15-20, Russel
Publishing Ltd.

[8] J. Eborn and H. Tummescheit, Modelica library
ThermoFluid available via the Modelica home page
www.modelica.org.

The Modelica Association 58 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski

Thermo hydraulic library for power systems applications

Thermo hydraulic library for power systems applications

Martin Réberg

Jan Tuszynski

Carl Bro Energikonsult AB
SE 205 09 Malmo, Sweden
martin.raberg@carlbro.se jan.tuszynski@carlbro.se

Abstract

The thermo hydraulic library presented here has a
long history starting in the 70’s with dynamic
simulations of servo systems and power plants at
ASEA (ABB), then with parallel efforts in the 80’s
at Sydkraft, to finally in the 90’s move into the
ENERGY library of the Sydkraft group. The library
was initially implemented in the Dymola language
of Dynasim, and in recent years transformed
gradually into Modelica. This paper presents the
basic rules and structures of the library, and
provides examples of the dynamic modeling ordered
by the power industry from Carl Bro Energikonsult
AB' in Sweden. The examples show both the
suitability of the rules of the ENERGY library, and
give important feedback of ‘lessons learned’ for
further library development and for identification of
missing features of Modelica and generally of
dynamic simulation capabilities today.

1 Introduction

The history of modeling energy systems at Carl Bro
Energikonsult AB traces back to the application of
MMS? by Sydkraft and development of the Dymola-
based ENERGY library in the 90’s. The library was
originally developed to model the complex thermo
hydraulic processes of thermal power plants, but it
proved applicable to energy systems in general
where various fluid media transport energy
throughout processes. Such a general “non-
intended” application of the library is modeling of
the ventilation system of complex buildings.
Various rules to model media transportation were
developed, and cover today different cases of heat
transfer, mixing media, chemical reactions etc.

! Carl Bro Energikonsult was formerly Sycon
Energikonsult AB - technical consultants of Sydkraft
utility.

* Modular Modeling System, EPRI, Babcock

The structure and rules of the library establish a base
for easy use and consistent applications. The rules
were defined at the initial establishment of the
library and developed further based on practical
experience of the library use. We also found out that
when people used the library they found it difficult
and wanted to take short cuts, e.g. “I can do it
simply for this application only”, “ I have no time to
study handbooks...”, etc. We are now convinced that
this individual approach is the way to trouble —
missed quality, reuse not possible, poor
documentation, etc.

This paper will firstly present structures, rules and
components of the library, and then go through a
number of typical models delivered to Carl Bro
Energikonsult AB’s customers. The examples cover
model descriptions, results and ‘lessons learned’.
Conclusions of our applications address missing
features of the Modelica as experienced by us, and
general needs for complementary tools required for
efficient and cost effective modeling of the energy
systems.

2 Energy Lib

2.1 Model structure

The Energy library is a component archive for the
basic simulation tool Dymola / Modelica. The
foundation of the library is the classic concept of a
network of interconnected nodes, or finite thermo
dynamical control volumes.

External_Energy_
exchange

VOL

[, T(h), e
media]

00’3

Energy_in_media

=AY

Figure 1 Basic network

The Modelica Association

Modelica 2003, November 3-4, 2003

mailto:martin.raberg@carlbro.se
mailto:jan.tuszynski@carlbro.se

Martin Raberg, Jan Tuszynski

Thermo hydraulic library for power systems applications

The state of the media transported through the
network, is calculated mainly in nodes, while node-
connecting elements calculate mass and energy
exchanged between the nodes. The main objective
of the modeling is then to simulate energy flows
carried in the media and energy flows passed
between the media containments and the
environment (energy sources and sinks)
The model structure builds then on a number of
basic rules / assumptions, where those most
important are the following:
e The state of the media (liquid, gas or both) is
presented in a state vector of dynamically
calculated primary elements: pressure [pl],

2.2 Structure of the Energy library

The library is composed basically of four library
levels.

Level 0: ModelComponent

Level 1: SubUnit

Level 2: Unit

Level 3: System,

Shown in figure 2

CutLib CompartmentLib
IconLib FlowLib
SuperClassLib MediumLib
EndTerminalLib AuxiliaryLib

/ / ActuatorLib
ModelCompon%b,

EnergyLib— SubUnitLib

SteamContainerLib
FurnaceAreaLib

; UnitLib

enthalpy/temperature [h/T], and media SystemLib —

1t1 TurbineLi
Comp osition [X] . . TurbineSysLib \ PumpCompressorLib

e Media properties are derived from media BoilerSysLib clomainerumtsub/ TubeValveLib

. . F L —
‘tables’ identified by X and [p, T] / [p, h] states. GaSIﬁgl;)Sn};]S)];éts)sorSysle Hgamgg{}?‘lltlilth—» g&i%@g’gﬂ%g%:ﬁjﬁ)
The media property vector and state vector will ¥§§tev’facfvlgg§,‘;%’§Ll AL OtherHeaterCoolorLib
accordingly provide complete description of the L \ BumLib

. ucleéarSysLi g

node behavior. FuelAshLib

e FEach node is identified by the node pointer
(node identifier) available through node ports
for any component in the network. In the other
words, any component of the model can read
both node state and node media properties by
knowing node identifier only.

e Connecting elements transfer basically media
mass flow [w (m_dot)], and media energy
content [h] on the outlet.

e Outlet energy content depends naturally on the
inlet energy and on the energy transfer between
the connecting element and the environment,
and can follow one of the basic “iso-
transformations”. Note that all energy content of
the media is expressed in the static enthalpy [h];
it is assumed that the media transform all their
kinetic energy (v*/2) into ‘h’.

e Connecting elements will normally not change
media composition, and accordingly outlet
media is assumed the same as on the inlet. This
assumption has implications for the simulation
of reversible flows.

e Each node (VOL) can change its media through
mixing of incoming media and through the
chemical reactions between the same

e Simplified nodes are allowed by inheriting
selected components of the node state vector of
the other nodes. E.g. Pressure calculated
dynamically in VOL, (figure 1) could be
inherited by VOL, and VOL,

e In the same way the connecting element can
inherit mass flow from other element, reducing
calculations to energy content only

Figure 2 Structure of the Energy Lib

The components level 0 includes various basic sub-
components specific for energy models. The
original formulation, which builds on the object
inheriting features, is now redone to Modelica
formulations.

The sub-unit level 1 includes all basic thermo-
dynamical concepts of the basic structure introduced
above. The library is divided into four groups:
CompartmentLib, FlowLib, MediumlLib,
ActuatorLib and AuxiliaryLib. Some details
concerning compartments (i.e. VOL of figure 1) and
flows (connecting elements) are discussed below.

MediumLib covers ‘tables’, or modules describing
media properties. Initially the tables could be read
directly or indirectly. The direct method means high
resolution read-up by direct use of the media
properties tables of the external programs. Indirect
methods build on the polynomial or splines
matching of the selected working area of the media
table. The purpose of using polynomials instead of
table interpolation is to speed up calculations,
especially in calculations of derivatives, as C,
(dh/dT) or the coefficients oy (dp/dh) and o
(dp/dp). As media calculations recently generally
have improved and the modern algorithms address
derivability efficiently, we are going to reformulate
our original concepts accordingly.

The Modelica Association

Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski

Thermo hydraulic library for power systems applications

ActuatorLib, and AuxiliaryLib cover various types
of valve actuators and e.g. auxiliary calculations of
heat transfer between different media and materials.
Here the heat transfer dynamics of the walls is
represented. Other modules of this group represent
chemical calculation (e.g. balance coefficients for
different groups of chemical reactions) and
calculations of special phenomena as (e.g. gas/steam
moisture removal, fast particle separators etc.)

The unit level 2 includes models of machinery and
equipment used at power plants (energy processes).
The library is structured basically in four groups:
ContainerUnitsLib, FlowUnitsLib, HeatingUnitsLib
and AuxUnitsLib.

The system level 3 covers mainly complex
machinery or whole plants. The library is filled up
gradually with models of the actual simulations and
only to a lesser extent as a result of library
development effort. It should be noted that the
specific solutions taken in plant simulation cases are
usually the supplier’s properties and general
availability of those for the Energy library must be
negotiated.

Levels 2 and 3 are introduced below through the
presentation of the actual simulation cases

2.3 Selected features of the basic
components

Basically all models of the Energy library are
derived of the local conservation equations (mass,
energy and momentum) converted to ordinary
differential equations valid for the distinct, separable
control volumes of the library modules. This
approach can be exemplified on the basic
components of VOL and the connecting element.

Node /Volume/
The basic structure of the VOL module is the
following:

1. Calculate media property [MP] vector according
to the node state vector [p, h, X]. This is
basically a call to media ‘tables’ of the media
identified by X. The MP-vector is composed of
the normally required property data as e.g.
density, entropy, viscosity, and saturation data
for steam (x — steam content in water, p_s, T s,
etc). Our tables calculate as well a number of
derivate properties, e.g. C,=dh/dT. The
derivates used for pressure and enthalpy

calculations are elasticity coefficients dp/dp and
dp/dT (p — density)

2. Two basic calculations characterizing the
particular node can now be expressed in,
- The sum of all mass flows (Xw;) connected to
the node
- The sum of all energy flows (Ze;) passing
through the node®

3. As the media in the node is assumed to be in

rest (which is actually not necessarily true) mass
and energy conservation equations are used
here, but in an extensive form valid for the
whole volume. Those equations describing
dM/dt (M-total media mass in the node), and
dU/dt (total internal energy of the node), are
converted to state equations of, dp/dt and dh/dt,
functions of (Zw;, Ze;, X_properties)’

Using Xw; and Xe; as the inputs to the state
calculating equations allows easy adaptation of the
basic node model to the particular kind of the sought
after module.

ZWi :gwi +pcil—I:

and

Se, =Yk +0-W—(h-p-p)- 2L
pay dt

where:

n number of ports connected

w; mass flow from (-) / to (+) the port

V node volume

0 heat energy flow in (+), out (-) of the
node

w work energy flow in (-), out (+) of the
node

Please note now that for simple, constant volume
nodes dV/dt = 0, and no additional heat transfer is
expected, = 0. On the other hand nodes with
moving pistons (as in compressors) can be modeled
by adding the term dV/dt, and Q can be given by
simple heat transfer through the walls (A*a*AT), or
by the heat of the chemical reactions (combustion).

Adapting node dynamics to model frequency
It is quite well known that the models should be
adapted to the frequency range actual for the

3 Both Tw; and Ze; should be treated as ‘auxiliary
variables’ and not strict physical meaning implied by
‘mass’ and ‘energy’

* For single phase media we use states of [p, T];
derivative of dh/dt is then replaced then by dT/dt

The Modelica Association

61

Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski

Thermo hydraulic library for power systems applications

particular application. The approach used in the
Energy library is through switching off dynamics of
nodes of frequencies out of the range simulated.
That switching off was done originally by replacing
derivatives by residua, e.g. residue(p) = Xw;; and
residue(h) = Ze;. In the modern Modelica version the
same effect will be reached by simple zero setting of
both Xw; and Xe;.

Elementary ‘Connecting Module’

Connecting element in its elementary form
transports media from the inlet to the outlet and
behaves according to the equation of the momentum
conservation,

% = Win"Vin ™ Wour" Vour +(Ainp[n = Aout Powi™ Ff)
For normal frequency ranges d(Mv)/dt can be
assumed = 0, and all pressure drop accounted to Fg;
loss on friction. Assuming F; = Kloss*wz, the basic
form for calculation of pipes and valves will get into
the form of w= K*sqrt(Ap). Calculation of K is
based on the common knowledge of pipe and valve
characteristics.

In case media inertia should be considered, the basic
momentum equation can be rewritten into a
differential equation of dw/dt,

d_wzl.(A
dt L in

.pin-Aom.pout-Ff)

where L is the length of the pipe.

Note that having ‘w’ as a state variable of the
connection will actually simplify calculation of F¢,
which requires knowledge of the Reynolds number
and depends accordingly on the mass flow in the
first place.

Special cases of the connecting module
Pretty straight forward calculations of connecting
elements get complicated if,

Compressible media transported at the over-
critical pressure drops over the element.
This case is solved by introducing in w-form
factor @ allowing similar structure to the one
given above; w = K*®*sqrt(p;,). Note that for p-
ratios higher than critical the ®-factor will be
constant and ‘w’ will depend on p;, only. The
form for ‘w’ is not reversible, as the known ‘w’
will not allow calculation of poy. Furthermore
the form is strongly non-linear close to pressure
ratios 1.

Junctions, or direct coupling of pipes and
valves.

The junction problem can be described as
forcing calculations into non-relevant stiff nodes
where several pipes meet. Introducing a non-
dynamical node described above can solve the
problem, which means that we solve algebraic
equations instead of integrating state vector
derivatives. The library approaches junctions
through simple methods of finding resultant C
coefficient of the above forms, or by special
handling of pipe-valve-pipe group
approximating pressure drop over the valve
Changing energy content of the media along the
connection.

For simple connectors we assume that no heat
exchange is taking place and accordingly
hou = hi,. This is of course not true in case of a
change of energy content in the media. The
special modules are provided to calculate outlet
energy content at the isentropic (turbine
exhaust), isenthalpic or isothermal transitions.
The module is strongly coupled to the media
table modules

A heat exchanger is a case of connector where
heat of the media is exchanged with the
environment. The basic heat flow is simple to
calculate as Q = C*(Tiusige- Toutside), the problem
is anyhow serious as both temperatures are
varying along the connector, and Iumped
parameter approach is not longer valid. Two
solutions are applied;

1. By assuming logarithmic temperature
profile along the connector
2. By dividing the whole length of the

connector in segments, each segment
composed of a node and single connector.
The nodes of this solution will calculate
dh/dt only inheriting average pressure of the
boundary nodes. In a similar way,
connectors will inherit common ‘w’ and
transport changing energy along all
segments.
Examples of our models presented below show
the second solution most often applied. The first
method takes no consideration of time aspects
of stabilizing the logarithmic temperature
profile, and can therefore not model the rapid
transients we have simulated.
Chemistry is actually a case of changing media
composition when media components are
reacting with each other in the node. Typical
examples are in burner chambers of gas
turbines, or in gasifiers. The problem is
addressed through the following:

The Modelica Association

62

Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

1. The (dominating) chemical reactions are empirical function of media state (normally
identified [p,T]

2. Reaction equilibrium form is defined, with 3. Mass balance equation is now expressed in
equilibrium coefficient expressed as an mole form, XN;.

3 Experience and Lessons Learned

3.1 Short overview

All modeling examples introduced here originate from our assignments from conventional and nuclear power
plants, from local utilities, or from using simulation models as a validation tool during research of the new
concepts of energy systems.

All modeling was done on commercial basis, where costs of the modeling were critically evaluated against
potential advantages. The following were the main reasons cited by our customers:

Tool for designing control systems

As above, for the control system evaluation including formal validation of concepts proposed
Preparation of commissioning. Evaluation of tests proposed, selection of controller parameters, etc.
Training and education

The examples below address those purposes and give the experience feedback of the lessons learned.

3.2 Controller Design

Customer: Barsebick Kraft AB.

The customer required a model of the process for design and testing of the reactor water level controller for
the auxiliary feed-water system. There was no access to the real process during controller development.
Controller design through predefined load cases on models using pre-validated equations. The controller
parameters where then used on the real process with good result.

At the start of the project it did not include a modeling phase. Parameters from Oskarshamn Nuclear Power
Plant should be used with slight adjustments.

The controller strategy is fairly simple, it contains a reactor level controller connected in cascade with a flow
controller that acts on a valve. The flow controller can be tested on a cool reactor with a good result. The
dynamics of the level control loop changes with the reactor temperature and pressure. This could not be
tested on a cool reactor. A heated reactor is expensive and should be in operation.

A model is built to tune the level controller. The controller is tuned to be able to handle predefined load cases
in particular ways. To achieve this the model is changed several times as the load cases get more and more
complicated. In figure 3 the final model is shown.

The Modelica Association 63 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

nncenser
tagn=1

bt

oncEnsermip @@Q_‘ I\E 121 ,_
D —=C=— @ 1\t
tagnr=t L _| L ‘Eﬂﬁﬁ_l L &3&‘

Figure 3. The model of the reactor and the main- and auxiliary feed water systems, (312) and (327).

L o | 2018313

The reactor model started as a model of an expansion vessel. The model was then upgraded in several stages
to accommodate the increased demands on the result.

DE1ES327 dbo

DE165527 ibo

4.36

t
1.15E4 1.2E4

: : H H H H : H H : : :
S000 2500 1E4 1.05E4 1.1E4

Figure 4. The plot shows the simulated reactor level with two sets of controller parameters. The transient
originates from the start of the auxiliary feed-water pumps.

The Modelica Association 64 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

The solid line is the filtered reactor level from the simulated controller. The line is from a simulation with the
controller parameters designed through simulation.

The dashed line is the reactor level from a simulation with the implemented controller parameters. The
derivative part was decreased in the implemented controller since it was thought to be too aggressive.

The controller implemented today is faster and more robust than the controller used before the start of the
project.

Lessons Learned: Pre-validated models can be used in other, not directly related, projects with good result.

3.3 Validation of the new concept

Customer: Elforsk AB and Sydkraft AB, Miljo och Utveckling.

Development and validation of models used to comprise an Evaporative Gas Turbine process (EvGT) model.
The plant is a research plant, with extensive instrumentation, located at Lund Institute of Technology. This
model includes non-linear processes, e.g. evaporation and condensation into a gas mixture with a fully
dynamic gas composition.

The model was developed over a period of several years and started within a licentiate thesis. The plant
model is composed of several, separately validated, component models, which consists of several sub
models.

_____________________ ES

| GasTurbi =T %5 A
W [l =} =i\ aterBrakes -y i
_ ’_Lj ! Gear=38398 1311500 [T
e %4 : |
e el e L == il

EL

@CF\ow
Figure 5 The model of the pilot plant at LTH.

The Modelica Association 65 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

The validation of component models was carried out through test benches. These test benches were fed with
series of measurements for flow, pressure, temperature, composition and so on. The result was then
compared with the measurements.

Figure 6 The test bench for the gas turbine.

In the test bench for the gas turbine several simplified component models had to be used to generate good
boundary conditions. These simplified component models used measurements during the simulation to get
the right boundary conditions. Please notice that the model is fed with measurements of the mass flow of fuel
and torque and that the shaft speed is free.

gan- 211

510+

500

490

430

470+

460

t t t t t t
0 100 200 300 400 500 B00 700

Figure 7 The exhaust gas temperature from the gas turbine in un-validated load case. The solid black line
is the measurement and the dashed line is the simulated values.

The Modelica Association 66 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

The reason that there is a mismatch in the beginning is that the initial condition does not correspond with the
load case. The load case is a load change from 50 to 60% shaft power. The faster responses that can be
observed in the model are thought to depend on the transmitter, which is not included in the model.

The model shall be used to predict test runs on the pilot plant, stability tests and design tests on future plants.

Lessons Learned: The model delivers results with an error within 5% in load cases that the model was not
validated against. The dynamic model of the evaporation tower delivers better results than the static design
methods used.

3.4 Check of a complex pre-validated model

Customer: Virmeforsk AB (Vixjo Energi)
Dynamic modeling of a direct condenser at Véxjo Energi. A direct condenser is used to condense steam
during a turbine trip instead of letting it out to the atmosphere. This specific direct condenser heats the
district heating system, this means that the even the heat are used. The direct condenser is exposed to
powerful transients almost without any preceding sign. Still it is supposed to keep a stable steam pressure
and a steady temperature on the district heating water leaving the condenser.

pat
28 W]
-
|
‘

|a.f\|e,\ e

Taghlr = 12 - (1246

Figure 8 The direct condenser test bench. The control system is modelled as islands according to their
function.

The Modelica Association 67 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski

Thermo hydraulic library for power systems applications

=iubey

1ube]

Figure 9 Inside the direct condenser.

The tube model used here handles several parallel . ! ! ! !
identical tubes. It is divided in to six segments to get b -1 -—————— - N ..
a temperature profile in the flow direction to use in =< - - =T F T
the heat transfer calculations. LT i TE]
The condenser and the involved parts of the process ! ! ! !
and control system where modelled using only l Lo
documentation available before commissioning. - 7------ -G -r-—qooo---——oooo -
When Carl Bro Energikonsult AB was ready the - j - 1‘ ********* 1‘ - F - :‘ ****************
model where sent to Virmeforsk and Vixjo Energi ; Lo

delivered measurements from a turbine trip, to be
used in the model, to Carl Bro Energikonsult AB.

SatCondCalc

Taghr = Tagnr+1 - (Tagnr+1+1)

Figure 10

The pressure in the direct condenser in
bar.

There are some assumptions, e.g. regarding the heat transfer during condensation on vertical tubes, which
were not tuned to this particular case. Normally the uncertainty of a heat transfer calculation is £10 to 20%.

The Modelica Association

68

Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

In this case dynamic factors of such complex processes as the build up of the condensate film on the tubes
have to be considered.

Lessons Learned: Although not a perfect fit the model delivers a result good enough to allow tuning of
control parameters and preventing design and commissioning problems.

3.5 Modeling of a small project (pressed for time)

Customer: Sydkraft Virme Syd AB:

Testing of the control scheme for solar collector system with a total area of 1 200 m* with demands on high
availability. The problem was to interconnect five separate solar panels. The panels are an integrated part of
the walls on a recreation facility named Kockum Fritid.

This modeling was part-task in a project stage pressed for time and crucial for the final design of the system.
As a result of the wall integration collectors faced east, south and west.

tagnr=18
tagnr=17

| e]

>
i

Figure 11 The model of the solar collector side of the system.

This first model was too complex to handle in this project. The decision to go right to the core of the problem
was taken. This meant that the design work should carry on as in a normal project but the question if the flow

The Modelica Association 69 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

from all solar collectors could be mixed should be answered through simulation. The model used to answer
the core question is shown below.

POn18731

Figure 12 The basic model of the solar collector side of the system.

From this model the conclusion that the solar collectors could be connected to one system was taken. While
the solar collector experts recommended a solution with five completely separate systems, the selected
solution validated in the model, showed to be more efficient and cheaper, more robust and easier to maintain.
The final system has a documented availability well above 99%.

Lessons Learned: The use of simulation can have a profound influence on the outcome when used in the
early design phase of a project. Simulation can be used as a design tool even in small projects pressed for
time and money.

3.6 Design through simulation.

Customer: Sydkraft Varme Syd, Kungsbacka

Simulation of a typical district heating system with several production units and an atmospheric heat
accumulator, allowing evaluation of the complete process architecture, including design data and control
system. The main idea behind the simulation was to study the interaction between the atmospheric heat
accumulator, the boilers and the rest of the district heating system. The atmospheric heat accumulator has
two functions; to store and distribute heat and maintain a constant pressure in the system.

The Modelica Association 70 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski Thermo hydraulic library for power systems applications

Mazsflbde
dm/dt="(dp.diameter Jingd osv..]
Gt t=eil

? PCWalve

Figure 13 The model used to simulate the interaction of the atmospheric heat accumulator and the rest of
the district heating system.

The model showed that some of the valves were too small and that there is a problem in determining the
minimum pump speed. Besides this, the model delivers approximate controller parameters.

The load case shown in figure 14 and 15 is a boiler brake down during loading of the accumulator. The first
transients are caused by the fact that the initial condition does not correspond with the load case.

DistributionsPump. Pump.m Bypass.ml Controlvalve.m1

a0

t t t t t t t t t t t t t t t t t t t
0 1000 2000 3000 4000 5000 B000 7000 a000 9000 1E4

Figure 14 The mass flows in the district heating system.

The Modelica Association 71 Modelica 2003, November 3-4, 2003

Martin Raberg, Jan Tuszynski

Thermo hydraulic library for power systems applications

The solid line is flow through the distribution pump, the dashed line is flow through the bypass valve and the

doted line is the flow through the boiler.

a0

TryckPump. Purmp.m

t t t t t t t t
0 1000 2000 3000 4000

T T T T T T T T T T
5000 6000 7000 8000 9000 1E4

Figure 15 The mass flows in connection with the atmospheric heat accumulator

The solid line is flow through the pump used for pressurization and the dashed line is flow through the
pressure control valve. The dotted line is the mass flow through the pump used for un-loading heat and the
dash-dotted line is the flow through the valve used for loading heat.

Lessons Learned: The method works and the results where trusted.

4 Conclusions

This paper provides a number of examples that
Dymola / Modelica is well suited to industrial
modeling of Energy systems. Our experience shows
that the technical and calculation issues can be
addressed and solved, and that the simulations show
a very high degree of correspondence between
models and measurements.

In the projects above it has been proven that the
method is commercially competitive. This is a
possibility only thanks to the structured Energy
library, providing not only reusable components but
also thoroughly tested modeling methodology.

We still need to improve efficiency of the modeling,
mainly in two areas The first one is the degree of
common understandability — here mainly making
systems simple enough to allow process engineers
to use models in their daily work of designing,
validating and commissioning.

The second is in the area of tools facilitating
modeling and simulations. A tool for calculation of
the initial, start-up conditions of the complex
systems we work with is our primary request.

Modelica development moves certainly in the
direction fulfilling our needs, and we are today fully
committed to base our future modeling and library
development on both Dymola tools and Modelica.

The Modelica Association

Modelica 2003, November 3-4, 2003

Session 3A
Automotive Simulation — I1

The Modelica Association 73 Modelica 2003, November 3-4, 2003

The Modelica Association 74 Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

Development of a Vehicle Model Architecture in
Modelica

Michael Tiller'

Paul Bowles'

Mike Dempsey*

"Ford Motor Company, Powertrain Research Department
*Claytex Services Limited

ABSTRACT

The real power and flexibility that comes from
using Modelica for physical modeling stems from
the combination of the acausal approach to
formulating physical connections combined with
sets of standard connector definitions in various
engineering domains. These features are important
because they help avoid a priori causality
assumptions (which promotes reuse of components)
and ensure physical compatibility across
connections. ~ However, complex systems are
generally made up of several complex, multi-
domain subsystems with numerous connectors.
Such systems also benefit from having standardized
subsystem interface definitions. This paper will
focus on an initial proposal for a vehicle model
architecture for vehicle system applications.
Ultimately, we hope that feedback on this proposal
from other groups doing vehicle modeling will lead
to a consensus on the appropriate subsystem
interfaces such that we can achieve the same level of
flexibility and reusability for vehicle subsystem
models that we currently have with component level
models.

1 Motivation

Vehicle system modeling is an important part of
optimizing overall vehicle performance. To avoid
building up complete vehicle models from scratch
repeatedly, it is useful to develop a pre-wired
vehicle model architecture. We had two goals in
mind when formulating such a vehicle model
architecture. First, it should allow the exchange of
subsystem models between different organizations
(e.g. part/subsystem vendors, design organizations,
universities) without the need to "rework" the
models to fit into existing vehicle system models.
Second, it should greatly simplify the handling of
alternative vehicle system configurations by
allowing substitution of one particular subsystem or
strategy implementation for another.

Ideally, we hope that this architecture will
develop to the point that other groups, outside of
Ford, will adopt it. Given the growing number of
automotive related libraries in Modelica [1-4], both
freely available and commercial, such a vehicle
model architecture will be a practical necessity to
allow subsystem models from these libraries to be
easily assembled into complete vehicle models.

Previous efforts at Ford have focused on
providing a vehicle model architecture for models
developed in Simulink [5]. While not disputing the
value of a corporate standard for vehicle subsystem
models, groups working with Modelica were not
willing to give up the acausal flexibility in Modelica
for an approach that required a priori causality
assumptions. Furthermore, most existing vehicle
level modeling applications using Modelica at Ford
involved details (e.g. modeling the motion of the
powertrain mounts) that were was not possible with
the Simulink framework.

As a result of internal discussions, it was agreed
that an acceptable compromise would be to develop
a purely Modelica architecture using essentially the
same subsystem decomposition, as was done in
Simulink, but avoiding a priori causality
assumptions. In cases where Modelica models
would be useful to someone working in Simulink,
we hope to develop a set of standard "wrappers" for
each subsystem that will allow us to impose the
required causality on an otherwise acausal
subsystem model and then convert these into an S-
function using Dymola [6].

2 Architecture Structure

A complete vehicle system model must take into
account the response of the various physical
subsystems, the function of the controller modules
(both subsystem and vehicle level) as well as other
"external" influences like the environment and the
driver. The following sections will discuss the
decomposition in each of these categories.

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

2.1 Physical Subsystems

The first category we will be discussing
includes all the physical subsystems in the vehicle.
This section will provide some discussion for each
physical subsystem and some explanation of what is
contained within each subsystem. The order of the
subsystems corresponds, roughly, to the order that
they appear (from left to right) in Figure 1.

Note that each physical subsystem is connected
to a subsystem controller. We will defer the
discussion of this connection until Section 2.2.3 and
instead focus, for now, on the physical connections
associated with each subsystem.

nnnnnnnnnnnnn

=
I

i

|

electrical * |electrical_cortrol

Figure 1: Vehicle Model Architecture

prvironment]

2.1.1 Accessories

The accessory subsystem is composed of those
components typically connected to the front end
accessory drive (FEAD) of an engine. Examples of
such components would include an alternator or AC
compressor. As shown in Figure 1, the accessories
are connected to the front side of the powerplant.
As a result, any torque required by these
components will be taken from the powerplant. The
accessories are also connected to the electrical
subsystem and they typically represent a significant
influence on the charging and discharging of the
electrical system.

2.1.2 Electrical

The electrical subsystem is composed of the
various purely electrical components in the vehicle.
Typical examples would include the battery, radio
and/or headlights. In addition to being the location

for all purely electrical components, the electrical
system is also the source of electrical power for
every other physical subsystem in the vehicle and,
as such, is subject to "external" influences that may
charge or deplete the battery (e.g. alternator,
regenerative braking).

2.1.3 Powerplant

The powerplant subsystem represents the
primary source of motive torque for the vehicle.
Typically, this would be an internal combustion
engine although it could also be, for example, an
electric motor. Like the battery, the powerplant
model provides power to the rest of the vehicle. As
such, there are physical connections from the
powerplant to the accessories and the transmission.

The powerplant is also connected to the
electrical subsystem. Although the electrical
influence of an internal combustion engine is
normally quite small (e.g. spark plug energy, etc), if
the powerplant were an electric motor, the
connection to the electrical system would become
quite important. In the case of hybrid electric
vehicles, additional electrical components, such as
electric motors, may be included in the powerplant
or they may be lumped into the transmission
(depending on the powertrain topology).

The physical connection between the driver and
the powerplant includes a signal representing the
physical position of the accelerator pedal.
Typically, this signal is translated directly into a
throttle position. However, in "drive by wire"
applications, it is assumed that the pedal position
sensor would be associated with the powerplant
subsystem and that sensor information would be
relayed to the powerplant subsystem controller
and/or vehicle controller where, for example, the
commanded throttle position (or motive torque, in
the case of an electric vehicle) would be calculated
and returned as an actuator command.

Finally, Figure 1 shows that the powerplant has
a third mechanical connection. This connection is
to the powertrain mounts and accounts for reaction
torque to the powertrain mount system.

2.1.4 Transmission

The transmission subsystem represents any
"gearing" done to deliver power from the
powerplant to the wheels. One side of the
transmission is connected to the powerplant while
the other side is connected to the driveline. Any
hydraulic function associated with the transmission
is assumed to be encapsulated within the
transmission subsystem.

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

Like the powerplant, the transmission is also
connected to the powertrain mounts. This is an
important aspect that differentiates this architecture
from most vehicle level models because it accounts
for the influence of reaction torques in the
powerplant, transmission and driveline on the
motion of the powertrain. This is particularly
important for the transmission because it can be the
source of large amplitude, low frequency
disturbances not effectively isolated by the
mounting system [11].

As with all the physical subsystems, the
transmission subsystem is connected to the electrical
subsystem. In addition, the transmission is also
connected to the driver. The driver connection
represents the shifting mechanism for either a
manual or automatic transmission depending on the
configuration options chosen for the vehicle (these
will be discussed later in Section 3.3).

2.1.5 Driveline

The driveline subsystem is responsible for
modeling the distribution of transmission output
torque to each of the wheels. For many vehicles,
this distribution is determined by simple mechanical
connections (e.g. differentials in strictly front-wheel
or rear-wheel drive vehicles). In other cases, this
distribution is actively controlled (e.g. on-demand
four wheel drive systems).

Physically, the driveline is connected to the
output side of the transmission and generally has the
potential to influence each of the wheels. In order to
avoid a complex series of graphical connections, all
wheels are lumped into a single connector which is
also physically connected to both the brake and
chassis subsystems. Note that the driveline
subsystem is also connected to the mounting system
and the electrical system.

2.1.6 Brakes

The brake subsystem represents not only the
friction used to decelerate the vehicle but also, as
with the transmission, any encapsulated hydraulic
function. The brake subsystem is physically
connected to each wheel (via the single connector
described in Section 2.1.5), the electrical subsystem
and the brake pedal (associated with the driver). As
with the powerplant, the connection to the driver
could represent either direct actuator control by the
driver or a "brake by wire" configuration where the
brake pedal position sensor would be contained in
the brake subsystem with pedal position information
communicated to the brake subsystem controller
and/or vehicle controller.

2.1.7 Chassis

The chassis subsystem represents the vehicle
body, frame, wheels and suspension system. One
remaining issue with the decomposition described in
[5] is the handling of the steering mechanism. It is
still an open issue what the physical interface
between the steering mechanism and the suspension
system should be. For now, we have kept the
steering components inside the chassis while we
collect feedback from experts on the best way to
separate these two systems.

While for many applications the chassis may be
modeled as a simple unsprung mass constrained to
move longitudinally, the goal of this architecture is
to provide sufficient flexibility to accommodate
complex vehicle dynamics models ([1, 9]). The
chassis subsystem is physically connected to the
wheels and also to the powerplant, transmission and
driveline through the mounts. The modeling of the
mounts is handled inside the chassis system.
Furthermore, the actual physical type of the
mounting connections is configurable (e.g. 1D, 3D,
etc). The modeling of the road-tire interface is also
handled inside the chassis subsystem.

Physically, the chassis system is also connected
to the electrical system and the steering wheel. As
with the brake and powerplant models, the
connection to the driver may represent a "by wire"
connection.

2.2 Controllers

While analysis performed during the subsystem
design process can sometimes be accomplished
using simple open-loop control strategies for a
single subsystem, it is much more important that
vehicle level models include closed-loop control to
capture communication between each subsystem
plant and controller pair as well as physical
interactions across the various physical subsystems.

The subsystem controllers are decomposed
along similar lines as their physical counterparts.
Rather than categorize the controllers by subsystem,
we will focus on the controller hierarchy and how
the controllers communicate both with each other
and with the physical subsystems.

2.2.1 Vehicle System Controller

This vehicle architecture includes a hierarchy of
controllers. At the top of this hierarchy is the
vehicle system controller. The vehicle system
controller exists to control vehicle level functions
and deal with arbitration and apportioning of
subsystem functions (e.g. balancing how much

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

motive torque is delivered from the internal
combustion engine versus how much is delivered by
electric motors in a hybrid electric vehicle).

In order to function, a vehicle system controller
(if present, not all vehicles implement one) must
communicate with each of the subsystem controllers
on the vehicle. In an actual vehicle, this kind of
communication would be done through a vehicle
level communication bus (e.g. a Controller Area
Network, or CAN, bus). Although the behavior of
the bus itself can have a significant impact on
overall vehicle performance, modeling of the bus is
not currently within the scope of this architecture.

2.2.2 Subsystem Controllers

As shown in Figure 1, associated with each
physical subsystem 1is a controller for that
subsystem. These controllers are responsible for
controlling the function of their particular
subsystem. For example, for a vehicle with an
internal combustion engine, the powerplant
subsystem controller would be responsible for
determining spark timing, injector timing and other
specialized functions like cam phasing control.

Each subsystem controller must communicate
with its associated physical subsystem to exchange
sensor and actuator information. In addition, each
subsystem may receive supervisory commands from
a vehicle system controller. Finally, the architecture
should accommodate any combination of
continuous controllers (e.g. formulated using block
diagrams) and/or discrete controllers (e.g.
employing Petri-nets, z-domain blocks or embedded
code).

2.2.3 Communication Buses

As mentioned previously, bus behavior can have
a significant impact on vehicle performance.
Although we would like to capture these effects, we
feel it is important to focus initially on the
interactions between the physical subsystems and
controllers.

Even if we ignore the behavior of the
communication bus, we still need to represent the
information exchanged on the bus. This is
complicated by the fact that each subsystem design
can potentially have a wide variety of signals that
must be communicated between the subsystem
controller and its physical counterpart. For
example, one powerplant may contain an internal
combustion engine that has cam phasing while
another one does not (while a third may have an
electric motor as a powerplant and therefore an
entirely different set of sensor and actuator signals).

For each case, the subsystem controller must have
the appropriate architecture to deal with the varying
sets of sensors and actuators in each case. As a
result, the set of signals exchanged between the
controller and its physical counterpart must be
customizable on a per configuration basis.

In a similar way, the information exchanged
between the vehicle system controller and each of
the subsystem controllers will also depend on
whether a vehicle system controller is present and, if
so, what features are implemented at the system
level.

2.3 External Influences

Apart from the physical subsystems and
controllers, a vehicle system model must account for
two important external influences. The first
influence is the driver. While the driver is not
strictly part of the vehicle, the driver obviously has a
tremendous influence over the response of the
vehicle. The other external influence is the
environment. The environment could potentially
influence things like air temperature and
composition (used in predicting engine
performance), road surface effects (e.g. changes in
elevation, traction characteristics), obstacles or other
vehicles (potentially necessary in evaluating
intelligent cruise control and other active safety
features).

In some sense, the driver is both a physical
subsystem and a controller. Both of these functions
are lumped into a single driver model. The
environment is assumed to be purely autonomous
typically based purely on time and vehicle position.

3 Modelica Features

3.1 Acausal Modeling

The rich set of physical modeling and
configuration management features associated with
the Modelica modeling language [10] provide great
potential for vehicle system analysis [11].

Vehicle systems are typically modeled from
either a "forward" [12] or "backward" [13]
perspective. This limits the reusability of
component models because they must be developed
with these perspectives in mind. From a purely
physical perspective, the ability to build components
and subsystems without a priori causality
assumptions allows these components and
subsystems to be used in both "backward" and
"forward" vehicle modeling applications. Beyond

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

the reusability of components that results from this
acausal approach, the use of inheritance, subtype
constraints and the ability to declare replaceable
components and subsystems is often useful in
practice for large scale modeling projects. In this
section, we will discuss how these features allow us
to satisfy important requirements for our vehicle
model architecture.

3.2 Replaceable Subsystems and
Controllers
The cornerstone of configuration

management in Modelica is the ability to declare
types and components as replaceable. In fact,
all the physical subsystems, controllers and external
influence components shown in Figure 1 are
declared replaceable so that alternative
configurations can be easily created. Furthermore,
constraining types are also defined for each of these
components to prevent inappropriate substitutions
from being made.

One problem with making each component
replaceable is that it leaves open the possibility
that novice users will attempt to pair plant and
controller models together that are not compatible
with each other (e.g. the controller expects an
automatic transmission but the actual transmission
plant is a manual transmission). So, in addition to
making each component in Figure 1
replaceable, the set of models associated with
each subsystem (i.e. the plant, local controller bus
signals, local controller and global bus signals) are
grouped together (using replaceable packages) so
that entire subsystem configurations can be changed
in a single operation. This allows users to select
from pre-packaged, consistent and compatible
collections of these models that can be changed in a
single operation.

Ultimately, vehicle level models will extend
from the template shown in Figure 1 and then use
redeclarations (as class modifications) to create each
specific vehicle configuration. Furthermore,
alternative vehicle configurations can then extend
from each other ad infinitum to create many
different variations on a baseline design. This
approach allows users to easily control
configuration options while at the same time
maximizing reuse. In turn, this minimizes
redundant code and/or configuration options across
different configurations which greatly eases
maintenance of the models.

3.3 Subsystem Configuration Options

As mentioned in Section 2.2.3, the set of signals
communicated on each bus depends on the specific
set of features implemented in each subsystem. To
address this issue, our architecture contains a set of
replaceable packages that are used to propagate
specific definitions for connectors and/or records
that are configuration specific.

For example, the powerplant configuration
package includes a definition for the connector used
to communicate information between the physical
powerplant and the powerplant subsystem
controller. ~ That definition, in turn, can be
customized (using replaceable type definitions) to
specify what kind of information is required for
each control feature. In this way, the fact that a
particular powerplant has, for example, a dual
independent cam phasing feature can be stated as a
configuration option which then automatically adds
the necessary signals to the connectors used on both
the physical powerplant and the powerplant
controller. In other words, for any given vehicle
model there is a single top-level configuration
option for each subsystem that ensures consistent
bus definitions throughout the vehicle model.

This is essentially the same idiom, utilizing
replaceable packages, that is sometimes used to
model different media in fluid modeling
applications [14].

3.4 Common Environment

The ambient environment in this architecture
contains information that is potentially relevant to
every subsystem. Since the environment is a model
(potentially with its own equations and states), it
isn't possible to propagate the environment
component through the vehicle hierarchy. Instead,
an inner qualifier is used to make the information
available to other components in the hierarchy.

3.5 Documentation

The ability to embed documentation about a
package, subsystem, connector, etc. into its
definition has already been utilized in this package
to provide model developers with a useful online
reference for the various interface definitions as well
as HTML versions of the same information which
can be posted, for example, on a corporate intranet
site for reference.

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

4 Sample Application

To demonstrate how this architecture can be
used to build a specific vehicle, we started from the
base vehicle configuration shown in Figure 1 and
added specific engine, transmission, driveline,
brakes and chassis models. Along with these
physical subsystem models, controllers for the
engine and transmission were included to handle
spark timing and gear shifting. The accessory and
electrical subsystems were neglected in our
example. The purpose of the model is to evaluate
performance characteristics such as 0-60 MPH times
and 0-400 meter times.

v

aaaaaa

aaaaaaaaaa

ntake_manifold

10

aaaaaaaaaa o

Spark
EGR
Lambda

aaaaaaa

Figure 2: (a) Powerplant Interface; (b) Sample Engine

4.1 Engine

The engine model used in this example
includes simple "filling and emptying" dynamics for
the engine manifold and uses a table to lookup

engine torque as a function of spark timing, air fuel
ratio and recirculated exhaust gas. Figure 2a shows
the basic interface definition for a powerplant.
Figure 2b shows our sample model which extends
from the interface definitions so it can inherit all the
physical and control system connectors required for
compatibility with the overall architecture. Since,
for this example, we are only interested in simple
1D rotational dynamics of the powertrain, the
powertrain mount connection has been redeclared as
a 1D rotational flange. Once this is done, the
subsystem model is populated with component
models which are connected to each other and to the
interface connectors. Note that this particular
subsystem translates driver accelerator pedal
position directly into a throttle angle, reads the
engine control parameters (i.e. spark, intended air-
fuel ratio and command exhaust gas recirculation)
from the subsystem control bus and writes the
engine speed back onto the subsystem control bus.

sssssssssss

input_shaft outpt_shaft

mushat . @ N B = ot

(b)

Figure 3: (a) Transmission Interface; (b) Sample
Transmission

The Modelica Association

80

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

4.2 Transmission

The transmission model represents a six
speed automatic transmission. The basic
transmission interface is shown in Figure 3a. By
extending from the interface, redeclaring connectors
and adding components we eventually end up with a
complete transmission model as shown in Figure 3b
which includes the torque converter, bypass clutch
and gearbox. The gearbox is further composed of a
series of planetary gear sets, inertias and clutches
(not shown). Note that in this model we assume that
the gear selection information is propagated back to
the transmission subsystem controller which, based
on this information, command the engaging and
disengaging of specific clutches inside the gearbox.

4.3 Remaining Subsystems

The remaining subsystems do not contain
much detail. Rather than presenting the interface
and implementation for each subsystem, we will just
summarize the behavior represented in each:

e Accessories — No accessory loads are
considered in this analysis.

e Electrical — The electrical system provides a
constant 12V to the other components (although
none of these simple models draw any current).

e Brakes — The brakes are modeled as simple
friction elements (from the Modelica standard
library).

® Driveline — The driveline provides power to the
front axle of the vehicle through a final drive
gearset and a simple differential element

® Chassis — The chassis response is purely
longitudinal. The tire behavior uses the Pacejka
characterization [7] and the vehicle mass is
represented by a single lumped mass. No
weight distribution effects are included.

4.4 Control

The only control functions required for this
analysis are spark control (to maximize mean engine
torque), shift scheduling and clutch control (i.e.
engaging and disengaging clutches depending on the
currently requested gear). In addition, the chassis
subsystem provides vehicle speed to its local
subsystem controller that transmits the information
to the transmission subsystem controller via the
vehicle level communication bus.

4.5 Results

The models used to demonstrate the
capabilities of this vehicle model architecture are
part of the training materials used within Ford to
familiarize engineers and model developers with
Dymola and Modelica. As such, it is important to
point out that the subsystem specifications and
system simulation results do not represent or reflect
the performance of any particular Ford vehicles. In
fact, the controller calibrations are intentionally
made sub-optimal to allow students to further refine
them.

The training exercise that these models were
taken from focuses on vehicle acceleration
performance. Figure 4 shows the vehicle
acceleration plotted as a function of time. From this
plot we can clearly see the "torque holes" that occur
while the transmission is shifting. In addition, the
upper limit on acceleration seen at the start of the
simulation represents the limited longitudinal
traction provided by the tires before they start to
slip.

Acceleration [m/s”21
IS

Time [sec]

Figure 4: Vehicle Acceleration vs. Time

It is also interesting to examine the engine speed
during the simulation as shown in Figure 5.
Studying the RPM signal we can clearly see an
"engine flare" at about 5 seconds into the
simulation. Such flares occur when the shifting of
the clutches in the transmission is not well
controlled. As a result of poor control, the overall
torque capacity of the transmission is less than the
torque generated by the engine and the engine
accelerates rapidly until the clutches engage.

In addition to examining the physical signals
within the system (e.g. torques, speeds, efc), it is
also interesting to examine the communication
between the controllers. Figure 6 shows the clutch
and band engagement requests sent from the
transmission controller to the physical transmission.
These are actuator commands instructing the
hydraulic controllers within the transmission to
engage specific clutches and/or bands.

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

2400 powerplant.eng RPMinPort.signall 1]
— 2200 4
g
ov, 2000 4
)
.S 1800
of
=1
F-U 1600
“w 4+
0 25 5 75 10
Tinme [sec]
Figure 5: Engine Speed
...ission_bus.clutch_control.engage_clutch[1]
4
] |
T T T T T T T
0 25 5 75 10

...ission_bus.clutch_control.engage_clutch[2]

0,—J
T T T T T T
0 25 5 75 10

...ission_bus.clutch_control.engage_clutch[3]

1-
: |
T I T T T T T T

0 25 5 75 10

...ission_bus.clutch_control.engage_band[1]

14
0
T f T T T T T

0 25 5 7.5 10

Time [sec]
Figure 6: Clutch/Band Engagement

Similarly, in Figure 7 we can see the internal
decision making process of the transmission
subsystem controller by plotting its selection of gear
during the simulation. This information is what

ultimately dictates the detailed clutch/band
engagements show in Figure 6.
5 ...mission_control.shift_schedule.gear.signal[
4
24
0 T T T T T T T T
0 25 5 75 10

Time [sec]

Figure 7: Gear Selection

Finally, many insights can be gained by plotting
some of the simulation variables with respect to
each other. For example, if an engineer knows at
approximately what speed the peak in the engine
power curve appears, he might plot the commanded
gear selection as a function of engine speed, as
shown in Figure 8 for this example, to make sure
that the shift strategy appropriately straddles that
peak.

...I[1](pow erplant.eng_RPM.inPort.signal[1])

0

\ \ \ \
1400 1600 1800 2000 2200

Figure 8: Gear Selection vs. Engine RPM

This section demonstrates just a few of the
possible results that a vehicle level analysis can
uncover. Having a standardized set of interfaces not
only makes the exchange of models easier, it also
assures, to some degree, that signals will have
common names (at least those associated with the
provided interfaces).

5 Usability Considerations

Some of the more advanced Modelica language
features used in this architecture (e.g. replaceable
packages, choice annotations, subtype definitions
for classes, etc) are not necessarily accessible or
intuitive for end users. In this section, we describe
some ideas for representing the complex structure of
the vehicle so that end users can easily configure
and reconfigure vehicle models.

5.1 Handling User Choices

5.1.1 Link Choices to Component Icons

First, it should be possible to select a component
in a vehicle model and browse a set of compatible
alternative components. In other words, the set of
alternatives should be easily accessible from the
graphical icon associated with that component
rather than requiring users to find components in,
for example, the component browser (which
requires knowledge of what classes the components
were inherited from).

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

5.1.2 Consistent Handling of Choices

For complex "template" models (i.e. models that
are designed so that end users can merely "fill in the
blanks"), it is important that users be presented with
a complete view of the model including all
redeclarations/customizations they have made.
Redeclarations can affect many different "visual"
aspects of the model including its inheritance, its
component hierarchy, the parameter dialogs,
graphical appearance, results structure, associated
scripts, etc. It is important for tools to make sure
that all of these possibilities are always consistent
with the choices made by the end user when
customizing the models.

When interface definitions are influenced by
top-level choices (e.g. the physical powerplant
interface is altered by the choices made in the top
level powerplant configuration package), this should
influence the set of possibilities generated with the
choicesAllMatching annotation in the
models. For example, if the top-level configuration
specifies a powerplant with dual independent cam
phasing, the set of choices generated when
redeclaring the powerplant should only include
powerplant models that can satisfy that interface.

5.1.3 Carryover and Memory of Choices

While exploring alternatives, graphical tools
should perpetuate user modifications for identical
parameters and/or choices when possible and, when
not possible, remember those modifications in case
the same options reappear. For example, if a user
configures a model to use one particular 5 speed
transmission model and then switches to a different
5 speed transmission model, it should be possible to
carryover any common parameters (e.g. gear ratios)
or choices (e.g. torque converter model) between
the two alternatives. In addition, if they explore the
idea of a continuously variable transmission (CVT),
the tool should remember the gear ratio settings if
they decide to revert back to a 5 speed transmission.

5.2 Visualization

5.2.1 Decision Tree Visualization

With a template model as complicated as the
one shown in Figure 1, the options and possibilities
open to the end user can be quite disorienting. For
these kinds of models, it would be very useful to
have a compact representation of the tree of possible
choices open to the user. Such a tree would need to
be hierarchical and each decision that is made
should be reflected in the tree (i.e. the tree should
respond dynamically to user choices). Ideally, such

a tree should show, in a single comprehensive view,
choices that influence topological changes (e.g.
what transmission model is used) as well as
parameters.

5.2.2 Visualizing Configurations

Another issue with template models is the
proliferation of variations. It should be possible to
visualize in a coherent way the modifications
associated with a "tree" of configurations (in this
case, a tree based on the inheritance hierarchy as
opposed to the tree discussed in Section 5.2.1 which
is based on the compositional hierarchy).

6 Limitations

While Modelica provides some powerful
features to support the architecture described in this
paper, there are still some areas where the existing
features are still not sufficient. In this section, we
will discuss some of the limitations we encountered
and some ideas for overcoming those limitations.

As described in Section 3.3, we have chosen to
propagate configuration information from the top
down. In other words, decisions about connector
definitions are made at the top level and then
propagated to subsystems. This is awkward because
it is often unnatural for this information to either
appear or originate at the vehicle level. For
example, information about signals exchanged
between the powerplant and the powerplant
controller is really determined by the set of sensors
and actuators present on the powerplant itself but we
were not able to find a way of expressing this in
Modelica.

Along similar lines, the set of signals
communicated on the vehicle control bus should be
the union of all signals broadcast from each
subsystem controller. From a user perspective, it
would be best to simply choose the controller and
physical subsystem and have the information about
broadcast messages "propagate up" automatically to
the vehicle level controller bus.

In the current design, the subsystem bus
connector on the physical subsystems is always
declared inner. This is done to allow the use of
the SignalBus idiom [8] which allows sensors
and actuators to reference only the specific signals
they require (as opposed to all signals
communicated in that subsystem). Unfortunately,
the relationship between the bus connector and these
sensors and actuators is not explicit because it relies
on using inner and outer qualifiers. A better
solution would be to allow direct connections.

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

Unfortunately, the current Modelica specification
requires each connector to contain exactly the same
signals. By relaxing this requirement and, for
example, allowing one connector to be a subtype of
the other, such connections would be possible and,
as a result, clearer.

One of the biggest problems in developing such
a framework is how to represent the fundamental
engineering assumptions present. For example, the
powertrain mounts might be represented as either
1D or 3D connections. Likewise, the electrical
system may support multiple voltage levels. Several
subsystem models can be impacted by these choices
and there is no easy way of understanding what
assumptions are made for particular models and
how that affects the assembly and compatibility at
the vehicle level. Rather than relying on complex
nested replaceable type definitions and interfaces,
the entire process might be more coherently
represented with features (e.g. layers) that provide
configuration based on a fixed set of possibilities.

7 Future Work

It is important to reiterate that the structure
defined in this document is merely a proposal and
that further discussion is required. @ Once a
consensus is reached on the appropriate subsystem
decomposition and interface definitions, there are
several potential directions for this work. For
example, it might be useful to extend the depth of
the current hierarchy to define architectures for each
of the various subsystems. For example, powerplant
templates could be developed for internal
combustion engines (e.g. [-4 or V-6 cylinder
configurations) and transmission templates could be
developed that decompose automatic transmissions
into individual models for a torque converter,
bypass clutch and gearbox (with interface
definitions for each). Finally, other top-level
architectures could be developed that reuse the
subsystem interface definitions. These architectures
may choose to use a subset of the subsystems shown
in Figure 1 (e.g. an engine connected to a
dynamometer) or they may choose to add additional
subsystems for more exotic vehicle configurations
(for towing applications, fuel cell vehicles, etc).

8 Acknowledgments

The architecture presented in this paper is
heavily based on a Ford Motor Company internal
initiative, by Mark Jennings, Judy Che, Bradley
Hieb, Tim Mortimer, Ken Butts, Chris Belton, Pete

Burchill, Peter Bennet, David Copp and Nick
Darnton, to develop a vehicle model architecture for
Simulink [5]. This work leverages a great deal from
the system decomposition and thorough analysis
that was done as part of that work. As a result, the
authors would like to recognize the significant
influence and impact that work had on the material
in this paper.

The authors would also like to thank John
Batteh, Chuck Newman, Erik Surewaard, Graham
King, Johan Andreasson, Christian Schweiger,
Martin Otter, Jonas Hellgren, Jonas Karlsson, Jonas
Fredriksson, Bengt Jacobson and Lars Eriksson for
their work in developing automotive component and
subsystem models which we hope will, at some
point, be compatible and freely exchangeable
through this architecture.

9 References

1. J. Andreasson, A. Moller and M. Otter,
"Modeling of a Racing Car with Modelica's
Multi-Body Library", Modelica Workshop 2000
Proceedings,
http://www.modelica.org/workshop2000/procee
dings/Andreasson.pdf

2. M. Otter, M. Dempsey and C. Schlegel,
"Package PowerTrain. A Modelica library for
modeling and simulation of vehicle power
trains", Modelica Workshop 2000 Proceedings,
p. 23-32,
http://www.modelica.org/workshop2000/procee
dings/Otter.pdf

3. P. Treffinger and M. Goedecke, "Development
of Fuel Cell Powered Drive Trains With
Modelica", Proceedings of the 2" Modelica
Conference, p.125-131,
http://www.modelica.org/Conference2002/paper
s/pl6_Treffinger.pdf

4. J. Hellgren, "Modelling of Hybrid Electric
Vehicles in Modelica for Virtual Prototyping",
Proceedings of the 2™ Modelica Conference, p.
247-256,
http://www.modelica.org/Conference2002/paper
s/p32 Hellgren.pdf

5. C. Belton, P. Bennet, P. Burchill, D. Copp, N.
Darnton, K. Butts, J. Che, B. Hieb, M. Jennings
and T. Mortimer, "A Vehicle Model
Architecture for Vehicle System Control
Design", SAE Congress 2003, SAE-2003-01-
0092.

6. "Dymola 5.0 User's Manual", Dynasim AB, p.
206.

The Modelica Association

Modelica 2003, November 3-4, 2003

Michael Tiller, Paul Bowles, Mike Dempsey

Development of a Vehicle Modeling Architecture in Modelica

7.

10.

11.

12.

13.

14.

H. B. Pacejka and E. Bakker, "The magic
formula tyre model.", Proceedings of the st
Tyre Colloquium, Delft, October 1991.

M. Tiller, W. E. Tobler and M. Kuang,
"Evaluating Engine Contributions to HEV
Driveline Vibrations", Proceedings of the 2"
Modelica Conference, p. 19-24,
http://www.modelica.org/Conference2002/paper
s/p03_Tiller.pdf

S. Drogies and M. Bauer, "Modeling Road
Vehicle Dynamics with Modelica", Modelica
Workshop 2000 Proceedings, p. 161-168,
http://www.modelica.org/workshop2000/procee
dings/Drogies.pdf

"Modelica Language Specification, Version
2.0", Modelica Association, 2002,

M. Tiller, "Introduction to Physical Modeling
with Modelica", Kluwer Academic Publishers,
2001.

K. Wipke, M. Cuddy and S. Burch, "Advisor
2.1: A User-Friendly Advanced Powertrain
Simulation Using a Combined
Backward/Forward Approach", IEEE
Transactions on Vehicular Technology: Special
Issue on Hybrid Electric Vehicles, 1999,
http://www.ctts.nrel.gov/analysis/pdfs/advisor 2

1.pdf
A. Rousseua, S. Pagerit, G. Monney and A.

Feng, "The New PNGV System Analysis
Toolkit V4.1- Evolution and Improvement",
SAE 2001 Future Transportation Technology
Conference, SAE 2001-01-2536.

C. Newman, J. Batteh and M. Tiller, "Spark-
Ignited-Engine Cycle Simulation in Modelica",
Proceedings of the 2" Modelica Conference, p.
133-142,
http://www.modelica.org/Conference2002/paper
s/pl7 Newman.pdf

The Modelica Association

85

Modelica 2003, November 3-4, 2003

The Modelica Association 86 Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

Modelling of Generic Hybrid Electric Vehicles

Leo Laine, CTH, Sweden, laine @mvs.chalmers.se
Johan Andreasson, KTH Vehicle Dynamics, Sweden, johan @fkt.kth.se

Abstract

The software development of the control functions will
be a large part of the work when developing future ve-
hicles. Therefore, it is of great importance to be able
to reuse the control architecture for different hardware
configurations. In this work, a generic! control ar-
chitecture for Hybrid Electric Vehicles has been mod-
elled with Modelica. Functional decomposition was
used to develop the generic control architecture. Func-
tions are identified and placed into a hierarchical par-
titioning structure. Three functional levels are sug-
gested; main control level, subsystem level, and actua-
tor/sensor level. The main control contains a driver in-
terpreter, energy management, vehicle motion control
and a strategic control. These main functions are made
independent of hardware and of hybrid configuration.
The subsystem level contains driver interface, chassis,
power supply and auxiliary systems. Two models, a
parallel and a series hybrid electric vehicle, are used
to demonstrate the implemented architecture.

1 Introduction

In order to handle the complexity of several actua-
tors/sensors interacting in future Hybrid Electric Ve-
hicles (HEVs) and to allow easy change of hard-
ware configuration, a control architecture with suitable
functional partitioning is necessary.

There are three main types of architectures for par-
titioning; centralised, hierarchical, and peer, as shown
in Figure 1. The centralised architecture collects in-
formation from all sensors and computes references
for all actuators. The benefit is that all signals are
available simultaneously. The drawback is the lack of
modularity that makes it hard to add new functionality.
The hierarchical structure consists of a top level con-
trol block and several low level control blocks. This
allows good modularity and also a central controller
is available to coordinate the interaction between the
actuators/sensors. The peer-to-peer architecture is the
most modular one, but without a coordinator between

Generic: hardware and configuration independent

’ Central controller ‘ ’ Central controller ‘

bbdode HEk

Local Local
controller| | controller

]| codeos

Local Local
controller| | controller

Local
controller

Local
controller

®

Figure 1: Centralised, hierarchical and peer-to-peer archi-
tecture.

the different actuators/sensors conflicts will be hard to
avoid.

The architecture should be generic and work for
several types of HEV configurations such as parallel,
serial, and split etc and must therefore be modularised.
It must also fulfill the requirements on interfaces be-
tween automotive suppliers and manufacturers so that
brand specific qualities can be kept in-house. For both
these demands, the hierarchical control architecture is
suitable.

The purpose with the suggested control architec-
ture is to easily handle the variety of vehicles that the
authors believe will be found a decade from now and
further on. These future vehicles could be serial HEV's
with fuel cell as primary power unit, and with wheel
units that can apply driving, steering, and suspension
forces independently. However, to be really useful, the
architecture must also be able to handle today’s vehi-
cle in a well defined way.

Modelica [1] was chosen as a platform for test and
validation of ideas concerning generic modelling of
HEVs. The aim is to study how HEVs can be mod-
elled as a complete system and combine different areas
of interest, such as: control, energy management, and
vehicle dynamics. The first step is to evaluate if the
suggested generic control architecture really is generic
by modelling different hardware configurations with
Modelica. The second step is to study how the specific
strategies within Main Control should be designed. Fi-
nally, the sensibility to faults and inaccuracies will be
studied. In this paper the ideas behind the architectures
are first briefly described” and then the implementation

2See [2] for a more thorough explanation.

The Modelica Association 87

Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

Dlp

Figure 2: Main model architecture illustrating the main
functions within functional levels 1 and 2.

in Modelica is discussed.

2 Main modd architecture

The main model architecture is divided into differ-
ent functional levels. The highest functional level is
called main control and includes the following func-
tions; Driver Interpreter (DIp) interprets the driver’s
demands as a desired path, Vehicle Motion Control
(VMQO) that controls the vehicle according to these de-
mands and Energy Management (EM) assures that this
is done in an energy efficient way. Additionally there
is the Strategic Control (SC) which finalizes the orders
from Vehicle Motion Control and Energy Management
to the lower functional levels. It is only Strategic Con-
trol that can send orders to lower functional levels.
This to uphold the causality of the orders. If a criti-
cal state is recognised by Energy Management or Ve-
hicle Motion Control, Strategic Control will give pri-
ority to suggested signals from either part. The func-
tional level 2 contains the following: Driver Interface
(DIf), Chassis (Ch), Power Supply (PS), and Auxiliary
Systems (Aux).

In Figure 2 the main model architecture imple-
mented in Modelica shows functional levels 1 and 2.
All functions exchange generic signals via a bus, and
the chassis, power supply and auxiliary systems are
coupled with standardised mechanical and electrical
connectors. This allows each model to be changed
without having to redesign the others. In Figure 3
this is illustrated by a menue that shows how different
HEV configurations can be set up. Figure 4 shows the
signal flow between functional levels 1 and 2. Aux-
iliary systems and Driver Interface are here excluded
for simplicity.

vehicle in Generic¥ehicle.Examples.¥ehicle_simple

2l

General I Add Modifiers
— Component lcon

N arme: |veh|c:|e

Comment I

&

—todel
Path
Comment

Genericehicle. Examples.Vehicle

P,
F

driver driver[startTimeR ampDrive=1] »

—Functional level 2

DIf x|» Diver Interface
Ch redeclare GenericVehicle. Chassic. Chassisdw/2D Ch > » Chassis

Al v Ausilian systems
PS | redeclare GenericVehicle. PowerSupply. PS_FCbuffi2 PS5 =|» Power Supply

[Func 45 PS5 _simple

M| % PS_ICEISE

sc | PSICEISG2
1 PS_FChuff

Blp | 5 Ps_Frhumz

‘ehicle Mation Contral

trategic Control

river [nterpreter

=

Energy Management

Ok Cancel

Figure 3: The generic vehicle menue easily allows chang-
ing the Power Supply.

Driver Vehicle Motion Control Strategic Chassis
Interpreter Controller WU,
DEMANDS M
N
(Fo b M) e Jeyi
Path Force wu, wy,
Controller Distributor Controller Plant
(
FoF M)y, Jimax Siest
< — : L
.
LiMITS H
Place
orders

Chassis states |

Power Supply

PS
Controller |

ma PPU

Energy Management
DEMANDS

F, P4

ETF, ERB

Force/Power
Controller

Soc
Controller

< &

e
LmITs

| Power Supply states |

Figure 4: Signal between functional levels 1 and 2. Only
signals to Power Supply and Chassis are shown for simplic-

1ty.

3 Modelicaimplementation

The Modelica implementation is gathered in the
Modelica library GenericVehicle. According to
Section 2 the main model consist of nine functions
and in the library, these represent a sub-packages each.
DriverInterpreter, VehicleMotionControl,
StrategicControl and

cover the functional level 1.

EnergyManagement
Additionally there
are DriverInterface, Chassis, PowerSupply

The Modelica Association 88

Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

and AuxiliarySystems for level 2. Finally the
Bus package contain the models necessary for the
information exchange.

3.1 DriverInterpreter

The Driver Interpreter communicates with the driver
interface by interpreting the driver’s signals and by
sending proper feed-back. The driver’s intentions are
interpreted as a desired path, taking into account limi-
tations set up by the Vehicle Motion Control and exter-
nal inputs such as e.g. cruise control. The desired path
is defined by the velocity v, the vehicle’s slip angle J3,
and the curvature p.

3.2 VehicleMotionControl

The Vehicle Motion Control includes a controller that
follows the desired path by the derivation of desired
global forces (Fx,Fy,Mz). These forces are then dis-
tributed between the wheels within the allowed limits
for each wheel unit. Thus, there is an optimisation task
and a control task. These are currently handled as de-
scribed in [3].

3.3 EnergyManagement

Energy Management controls the energy flow from the
Primary Power Unit (PPU) and the flow to the Buffer
(Bf). The simple version of Energy Management cal-
culates a State-Of-Charge (SOC) target by considering
the vehicle speed, see Equation 1. By comparing SOC
target with actual SOC simple strategies are used to
calculate how much Electrical Regenerative Braking
(ERB) and how much Electrical Traction Force (ETF)
should be applied. Both parameters are nominal val-
ues. The desired tractive force and the total desired
power needed from PS are the signals sent to Strategic
Control which places the orders to Power Supply. EM
Simple also calculates a power limit value for Auxil-
iary Systems.

SOCTarg=Cy —C, 'em
where V(t) is the current vehicle speed, and Cy = 0.75,
C; =0.1, and C, = 6 are constants.

ey

3.4 StrategicControl

The Strategic Control is responsible for the commands
from level 1 to level 2 and handles the priorities be-
tween VMC and EM. The simple SC only places the
orders to functional level 2. Strategies about safety and
reliability will be located at SC, checking the critical
state signals from EM and VMC.

3.5 DriverInterface

The driver interface contains the actuators and sensors
that the driver can influence. These could be steering
wheel and pedals as well a joystick. DIf is here seen
as a full drive by wire subsystem. The longitudinal,
lateral and yaw signal are measured and then sent to
DIp.

3.6 Chassis

The chassis (Ch) is thought of as a body onto which
a number of wheel units are mounted. Each wheel is
then considered as an autonomous unit and is by de-
fault decoupled from the other wheels. Depending on
the linkage carrying the wheel as well as the available
actuators, there are different possibilities to generate
ground contact forces. A very simple example is a
wheel with only brakes and no steering possibility and
passive suspension, while other wheel units may have
drive, steering, camber control and active damping.

The Modelica implementation is based on the
VehicleDynamics library [4] components for three
dimensional Multi Body System (MBS) chassis mod-
elling. Additionally the PlanarMultiBody li-
brary [5] has been used to model simpler planar chas-
sis models. The latter are suitable when influences of
load transfer due to roll or pitch can be neglected since
these models speeds up simulation time considerably.

The distributed forces from the SC is realised at
each wheel unit that also sends information about max-
imum achievable force. For a future vehicle with in-
dependent wheel units, this is straightforward, but to-
day’s vehicles uses many passive components that in
some case limits the wheel motion and also couples
the wheels together. To deal with this, restrictors are
introduced to limit the degrees of freedom (DOF) of
the wheel.

3.6.1 Wheel Units

At each Wheel Unit (WU), the force commanded by
the SC should be generated. To avoid saturation, the
wheel unit provides the VMC with information about
it current limitations. From the desired forces, the de-
sired steering angle and wheel spin velocity are calcu-
lated 3.

To generate the wheel spin velocity, the wheel unit
checks how much rotational torque is available di-
rectly at the drive shaft from the PS and then coordi-
nates the available actuators to meet the desired order.

In Figure 5, three different WU models are shown,
illustrating the variety of modelling detail. The left-

3Details are found in [3].

The Modelica Association 89

Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

control

control

data data

control

Figure 5: Wheel units with different level of detail. Left: A 3D MBS model of a control, linkage and wheel
with an electric motor, middle: a 2D MBS model with linkage replaced by a steering joint, and right: an ideal

Wheel Unit that generates the desired forces directly.

4

“1p

Figure 6: Screen shot of an animation showing a four
wheeled HEV with independent wheel corners. The path
(p,Vv,P) is indicated as well.

most example is a full 3D-model of a wheel and a link-
age, e.g. a MacPherson or a DoubleWishBone. Here, a
linkage suggested in [6] is used and an animation view
of a vehicle with these wheel unit models can seen in
Figure 6.

In many cases, when the details of the linkage are
of less importance, simulation time can be reduced by
using a simpler model as illustrated in Figure 5, mid-
dle. The linkage is reduce to an equivalent king-pin
(steer) axis and no vertical motion is considered.

Still, these two models have in common the need
to find steering angle and wheel spin velocity. The
model in Figure 5, right, instead applies the desired
forces directly.

3.6.2 Restrictors

As mentioned earlier, it is straightforward to use the
WU concept as long at each wheel is independent of
the others. This is not the case for today’s vehicles and

the restrictors are used to describe these relations. Typ-
ical restrictors are rack steerings and differentials that
constrains the steering angle and the force distributed
from the PS, respectively. To make the VMC aware
of their existence, they are connected to the bus and
send information about a) between what WU they act
and b) how they act. Active restrictors also receive in-
formation about the WU state and commands to figure
out how they should act. In Section 4, the usage of
restrictors is exemplified.

3.6.3 Bodies

The body is the frame that carries the WUs. It also
sends information about its states to the VMC. The
reason it is treated as a separate unit, and not just as
a least common divider of all chassis, is because there
will be an extension that handles more than one body,
coupled by restricors. Typical cases when this is rele-
vant are tractor-trailer combinations, articulated buses
and vehicles with a frame that cannot be considered as
rigid.

3.7 PowerSupply

The conventional power train concept with a combus-
tion engine, transmission, and drive line is not a valid
description for a HEV. The HEV concept includes han-
dling of a major electricity source in combination with
a conventional or parts of a conventional power train.
A more suitable name of this function is Power Sup-
ply. The PS includes both the Primary Power Unit and
a buffer and can be anything from an internal combus-
tion engine to a fuel cell. The buffer can be an electric
buffer such as a battery, super capacitor or a mechani-
cal one e.g. flywheel.

The Modelica Association

90

Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

3.8 AuxiliarySystems

The Auxiliary systems is a gathering of all systems
that are not involved in the vehicle’s motion. Exam-
ples are air conditioning and lights. Aux calculates the
actual power needed and sends this information to EM.
EM limits the maximum power available for the Aux
and PS provides the needed electricity by a standard-
ised electrical connector.

3.9 Bus

The Bus contain generic information and orders that
are exchanged between functional levels 1 and 2. The
signals are named after their origin as exemplified be-
low:

EM Pauxlimit EM calculates a maximum power
limit for Aux.

SsC_Pauxlimit SC finalise the order to Aux.

Aux_Pactual The actual power consumption from
Aux.

It is important that the signals are made hardware
independent to allow easy change of functions. The
Modelica implementation is based on the bus connec-
tors available in the standard library. All models of a
specific function e.g. EM, VMC, PS, and Ch share the
same base, defining the send and receive signals.

The signals on the bus give an idea of what infor-
mation is necessary for any kind of hardware configu-
ration for the specific function.

4 Examples

To demonstrate the suggested architecture’s ability to
handle different hardware configurations, two differ-
ent HEV configurations have been implemented. The
first one is a parallel HEV with wheel motors on the
front wheels, see Figure 7, left. As indicated in the
figure, the front and rear wheels are constrained by re-
strictors. The front wheels have a rack steering that
couples the steering angle of the two wheels. At the
rear wheels there is also a rack steering, but in this case
the range is set to 0, making the vehicle front wheel
steered. Additionally, there is also a differential that
distributes the driving torque from the PS.

The second case is a series HEV with wheel mo-
tors on all wheels, see Figure 7, right. Here no restric-
tors are used and each wheel is individually controlled.

The body weight and inertia for both cases is rel-
evant for a sports utility vehicle. For both cases, the
same models within functional level 1 are used.

SC_soCtarg PS_Pact PS_Pactual

send

receive F receive p send]
PS_Pmaxi PS_Pmax
receive p send
PS_SOC

iE

Ground1

Figure 8: PS with ICE, ISG, and a GB.

Figure 9: Petri net used for the shift strategy for the 5
speed gear box.

4.1 Theparalle HEV case

The parallel HEV is equipped with PS containing an
Internal Combustion Engine (ICE) as a PPU, and an
Integrated Starter Generator (ISG), automated manual
Gear Box (GB), and a battery, see Figure 8. There is a
local controller that coordinates ICE, ISG and GB. The
gearshift strategy is based upon a petri net which uses
actual vehicle speed and desired torque for the boolean
expressions. The petri net is shown in Figure 9.

The ICE model uses one dimensional look up ta-
bles for maximum and minimum torque. The fuel con-
sumption is calculated by using the actual torque and
rotational speed as input for a two dimensional look up
table. The model is shown in Figure 10.

The Chassis contains wheel units with wheel mo-
tors for the front wheels and the rear wheels have a dif-
ferential restrictor applying the torque provided by PS,
see Figure 7, right. In this case the PS supplies both
mechanical torque and electrical power to the chassis.

The Modelica Association

91

Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

K
!
—L

||
=

L]
.

|
-p
|

Figure 7: Chassis with independent wheel units used in the parallel HEV case, left and the serial HEV case,

right.

Figure 10: The ICE model.

42 Theserial HEV case

The Chassis contains wheel units with wheel motors
on all four wheels. In this case PS submits only elec-
tric power to the chassis, see Figure 7, left. The PS
contains a Fuel Cell (FC) as a PPU and a battery as
buffer, see Figure 11.

4.3 Simulation

Figure 12 shows results from a ramp simulation of the
parallel HEV vehicle starting from standstill. It is ac-
celerated to 10 m/s in 4 s and then the velocity is kept
constant for 1 s. Finally the velocity is decreased to
stand still at t = 8 s. The first graph shows the de-
sired speed from DIp and the actual speed. During the
first 2 s of the deceleration the actual speed is higher
than the desired. The second graph shows the actual
torques from the ICE and ISG. Third graph shows the
actual gear of the GB. Finally the fourth graph shows
the SOC level of the battery.

SC_SOCtarg

PS_Pactual

I

receive F

Figure 11: PS with FC and battery .

The same simulation is also made for the serial
HEV configuration, see Figure 13. The first graph
shows the desired speed from DIp and the actual
speed. The second graph shows the desired power and
the generated power from FC. The third graph shows
the actual SOC level of the battery. The fourth graph
shows the instant and accumulated fuel consumption.
During deceleration the FC is shut down.

The results show that it is possible to use the same
VMC, EM, DIp and SC for both configurations. The
performance of the models are not optimal since the
scope of work have not been on sizing on components
nor to find the optimal strategies.

5 Conclusions and discussion

Modelica has been a useful way to describe, model
and test the architecture. It is a good platform because
it allows easy interaction of different domains such as

The Modelica Association 92

Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson

Modelling of Generic Hybrid Electric Vehicles

Figure 12: Ramp simulation for the parallel HEV configu-
ration.

multibody, electrical, mechanical, and control.

The sample cases demonstrates the architecture.
The results show that the architecture manage differ-
ent hardware configurations and that exchanging hard-
ware does not affect the highest functional level, i.e.
Main Control.

Even though the over-all impression is positive,
some limitations have been found. The size of the bus
is dependent on the number of wheel units, bodies and
restrictors and should thus be defined by the chassis
itself. Since the size of the bus must be fixed, this is
currently not possible. It would also be desirable to
be able to send the equations defining the restrictors
directly through the bus.

6 Futurework

An extension of this work will mainly involve a) De-
velopment of a method to evaluate the reusability and
constraints applied by using the suggested architec-
ture. b) Verification of the reusability of the suggested
architecture for different configurations of HEVs. Es-
pecially different configurations of PS. c¢) Studies on
what control strategies within Main Control would ap-
ply for the foreseen HEV configurations. d) Studies
on how critical states could be handled so that they
are recognised by EM and/or VMC. e) More flexible
description of restrictor information from functional
level 2 to 1. f) Compensation for non-ideal sensors.

7 Acknowledgements

This work is financed by the Driving Dynamics and
Main Control projects within the Swedish National
Research Programme “The Green Vehicle/FCHEV”.

Figure 13: Ramp simulation for the serial HEV configura-
tion.

References

[1] Modelica Association. http://www.modelica.org.

[2] L. Laine and J. Andreasson. Generic control ar-
chitecture applied to a hybrid electric sports util-
ity vehicle. To be presented at the 20th Interna-
tional Electric Vehicle Symposium, Long Beach,
CA, November 15-19, 2003.

[3] J. Andreasson and L. Laine. Driving dynamics for
hybrid electric vehicles considering handling and
control architecture. 18th Int. Symp. IAVSD, Dy-
namics of Vehicles on Roads and Tracks, Japan,

August 2003.
(4]

J. Andreasson. VehicleDynamics library. In
Peter Fritzson, editor, Proceedings of the 3rd
International Modelica Conference, Linkoping,
November 2003. The Modelica Association and

Linkoping University.
(5]

J. Andreasson and J. Jarlmark. Modularised tyre
modelling in Modelica. In Peter Fritzson, edi-
tor, Proceedings of the 2nd International Model-
ica Conference, Oberpfaffenhofen, March 2002.
The Modelica Association and Deutches Zentrum

fiir Luft- und Raumfahrt.

[6] S. Zetterstrom. Electromechanical steering, sus-
pension, drive and brake modules. VTC 2002-

Fall,Vancouver, Canada, September 24-28, 2002.

The Modelica Association 93

Modelica 2003, November 3-4, 2003

The Modelica Association 94 Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

Advanced Electric Storage System Modeling in Modelica

Erik Surewaard and Eckhard Karden
Ford Forschungszentrum Aachen (FFA)
Energy Management Group
Stisterfeldstrasse 200
52072 Aachen, Germany

1 Abstract

This paper will discuss two important components in
the future electrical system of an automobile: the
battery and supercapacitor. Models of these
components have been developed in the Modelica
language. The power of the Modelica language is
shown by simulating a so-called dual storage
system, consisting of a supercapacitor and battery.
This paper also shows the comparison between the
simulation and measurement results.

2 Introduction

Due to the increased amount of electric content in a
vehicle, the electric powernet will have a significant
influence on the fuel economy of a vehicle. In
addition, new power supply/starting systems such as
Integrated Starter Generators (ISG) will enable new
features that improve fuel economy and emission
attributes of a vehicle. It is therefore necessary to
develop models that capture the detailed behavior of
the electric powernet.

This paper will discuss models of two important
components of the future powernet: the battery and
supercapacitor. A description of the models will be
given after which a simulation is performed with a
so-called dual voltage storage system (also known as
14+x). This is an electric storage system consisting
of a supercapacitor and battery in parallel, which
allows a Belt-driven Integrated Starter Generator (B-
ISG) to operate on two voltage levels. Such a system
has been published by Sebille in [1]. Finally,
simulation results will be compared with
measurement results.

Michael Tiller
Ford Motor Company
Powertrain Research Department
2101 Village Road
48121 Dearborn MI, USA

3 Battery

At the Ford Forschungszentrum Aachen (FFA), a
battery model has been developed in Modelica,
which is based on work of the Aachen University
RWTH. This section describes both the model
background as well as the implementation in
Modelica.

3.1

The battery behavior is characterized using
impedance spectroscopy. As part of this process,
the battery is excited with currents at different
frequencies. Different operating points are also
taken into account: temperature and State of
Charge (SOC). A schematic of an impedance
spectroscopy measurement of a battery is displayed
in Fig. 1.

Model Background

-Im(2)
increasing
frequency
0
Re(Z)
Fig.1 Schematic plot of an impedance measurement

of an automotive battery

A method has been developed by Buller et. al. [2],
[3] to represent the impedance measurement into
an electric equivalent circuit. This procedure is
schematically displayed in Fig. 2a. The electric
equivalent circuit for this representation is
displayed in Fig. 2b.

The Modelica Association

Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

“Im(7) R
; increasing
frequency
7 , ZZarCQ
0
Re(2)
(a)
(b)
Fig.2 (a) Approximation of a measured impedance

spectroscopy line by electrical elements, (b) electric
circuit representation for a battery

The measured impedance of the battery is
approximated by an internal resistance R;, an
inductance L,, and two depressed semi-circles in
the complex impedance domain: Z,.; and Z,...
Inaccuracy arises at low frequencies where the
modeled impedance does not approximate the
measured impedance. Fig. 2b also includes the
open circuit voltage Vocy and the gassing reaction
(Rgas and V) 4,). The gassing reaction is mainly
important for overcharging situations, where the
charging efficiency of the battery decreases. This is
the result of current that is lost in the gassing
reaction. In the case of a valve-regulated lead-acid
battery, e.g. in Absorbent Glass Mat (AGM)
technology, other parasitic reactions have to be
added in the gassing branch (especially oxygen
recombination), but the topology remains valid.
The two depressed semi-circles (Z,,.; and
Z..2) are represented using specialized RC-
circuits. The number of RC-circuits that are used in
series to represent the depressed semi-circle is
described by N; and N, (Fig. 3). This number of

RC-circuits is critical for both simulation speed
and model accuracy.

Fig.3 Representation of the two semi-circles in the
complex impedance domain (Z,.; and Z,.,) by RC-
circuit elements

3.2 Model Implementation

The model as displayed in Fig. 2b is constructed in
Modelica. The result is displayed in Fig. 4.

The structure of the model is basically the
same as the structure displayed in Fig. 2b. On the
left you can see the internal resistance of the
battery, after which the main branch is divided into
two sub-branches. The upper branch shows the
gassing reaction. The lower branch shows an
element that calculates the SOC, the two depressed
semi-circle elements (Z,,.; and Z,,.,) and the Open
Circuit Voltage (OCV) element. The battery
inductance is not taken into account since the
inductance of cabling and connectors to the battery
are much more significant.

O Data

. n

battery_signals

Fig. 4 Implementation of the battery model

The SOC element (circle in Fig. 4) has been added
to monitor the energy content of the battery. Since

The Modelica Association

96

Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

gassing current is not stored in the battery, this
SOC element is positioned in the lower branch.

Also added to the components of the
battery model are thermal connectors (going to the
'outside' thermal connector node). Not only the
behavior of the battery is dependent on
temperature, but the battery also generates a heat
flow. If the heat capacity of the battery is known,
the self-heating effect of the battery can be
simulated. This self-heating effect is of minor
effect (on the timescale of for instance a NEDC
drivecycle) for a regular flooded battery. When
however a more advanced lead-acid battery of the
AGM-type is used, the self-heating effect can
become significant. More detailed information of
thermal battery modeling can be found in Berndt
[4].

Since each battery type needs its own
impedance spectroscopy measurement and
parameterization, the battery model has been
programmed in a way that allows to change the
battery type (and its corresponding parameter set)
in the parameter window (Fig. 5).

2|

i Model "
Path ErikSurewsaard Electrical Battery. BatteryModel
Comment

3 BatteryModell in Unnamed

Genera\ IAdd Modifiers |

rCormpa lco
|EaneryMndeH

MName:

Comment |

- Parameter

S0C_ini »
Parameters j 2
GasReaction 3
Z_Arcl b L3
Z_Arc? 3

Initial battery SOC [*]

Battery type
Model used for gas reaction

Model used for Zarc]

Model used for Zarc?

0K Cancel

Fig. 5 Parameter window for the battery model

In this parameter window it is possible to change
the battery initial charge (SOC ini), its parameter
set (Parameters), the models that are used for the
gas reaction (GasReaction) and the description of
the first and second depressed semi-circle
(Z Arcl, Z_Arc2). Currently, there are three types
of parameter sets available:

= Ford Motorcraft SLI flooded battery, 12V,
70Ah

= Hoppecke AGM, 36V, 27.5Ah

= JCI Optima Red Top, AGM, 12V, 44Ah

It is also possible to 'design' new batteries by
changing the voltage and capacity in the parameter
set. This should however be done very carefully,
since differences in technology and construction
over different type of batteries exist.

The model enables replacing the model of
the first and second depressed semi-circle (Z.;
and Z,,.,). This makes it possible to (i) change the
number of RC circuits (Fig. 3) and (ii) remove the
capacitance of the Z,.; element. When larger
simulation time-steps are taken (in the order of
0.01s), the capacitance of the first Z,.; element
can be neglected since their time constants are
typically smaller than 0.01s. Removing this
capacitance will increase simulation speed.

4 Supercapacitor

As was the case with the battery model, the
Modelica supercapacitor model is based on work
of the Aachen University RWTH. Both model
background and the Modelica implementation are
discussed in this section.

4.1 Model Background

As with the battery model, use has been made of
impedance spectroscopy measurements to
characterize the supercapacitor behavior. For this
purpose, the supercapacitor is excited with AC
currents in different operating points: temperature
and voltage. Fig. 6 shows a typical impedance
curve for a supercapacitor.

-Im(Z)
increasing
frequency
0
Re(2)

Fig. 6 Schematic plot of an impedance measurement
of an automotive supercapacitor

To represent an impedance measurement of a
supercapacitor with an electric circuit, Buller
suggests in [5] to use the equivalent circuit shown
in Fig. 7. For the pore impedance Z,,. there are
two implementation forms possible: (i) with an
RC-series networks and (ii) an RC-ladder network.

The Modelica Association

97

Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

Fig. 7 Equivalent electric circuit for a supercapacitor
cell and the two implementation forms for the pore
impedance Z,,,. (RC-series and RC-ladder circuits)

4.2 Model Implementation

The model, as described in the previous section, is
constructed in Modelica. The number of RC-circuit
in either the RC-series or RC-ladder network can
be chosen. A for-loop has been used to connect
these RC-circuits. A code fragment of the
supercapacitor where the RC-circuits are
connected is:

connect (p, R.p);
connect (R.n, Rpore[l].p);
for i in 1:numberRC loop
connect (Rpore [i] .n, Cporel[i] .p);
connect (Cpore[i] .n, n);
if (i < numberRC) then
connect (Rpore [i] .n,Rpore [i+1] .p) ;
end if;
end for;

First the positive connector on the supercapacitor
is connected to the resistor (R). After that the pore
impedance is represented by the RC-ladder
method. The number of RC-ladders is determined
by the parameter numberRC. The inductance of
the supercapacitor is not taken into account in the
model, since it is assumed that it can be neglected
compared with the inductance of the connection
and the cabling to the supercapacitor.

As with the battery, a parameter window is
made available in which the parameter set (for the
specific supercapacitor) can be chosen. This
window is displayed in Fig. 8. The number of cells,
initial cell voltage, number of RC-circuit for the
approximation of the pore impedance Z,,.. and the
parameter set (type of supercapacitor) can be
chosen. Currently, the following parameter sets
are available:

= Montena 1400F
= Montena 2600F
= NESS 5000F

5 supercapacitorPackl in Unnamed 7lx|
{General IAddMDdMem |
~Companent lcan
MNarme |SuperCapaanrPack‘\
Comment I —%
~hodel
Path ErikSurewaard.Electrical. SuperCapacitor. SuperCapacitarPack
Cormment
i Parameters
NumberCells 3
InitialCellvoltage L%
numberRC 3
Farameters j 3
SuperCapacitorCell j 3
Ok Cancel
Fig.8 Parameter window for the supercapacitor

model

5 Simulation results

The battery and supercapacitor model will be
simulated in a model of the so-called dual storage
system. This section will first describe the dual
storage system after which the Modelica
implementation and the simulation results are
displayed.

5.1 Dual Storage System

The dual storage system, also known as the 14+x
system, is displayed schematically in Fig. 9. More
information on the idea behind the dual storage
system can be found in [1].

DUAL STORAGE SYSTEM

=

Q

: Ly

_ DCDC conv.

e

S DC

|5}

5] DC 1
(D 71 Battery i

Supercapacitor

14V powernet side

Fig. 9 Electric circuit representation for the dual

storage system (14+x)

The Modelica Association

98

Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

The dual storage system is particularly interesting
for use with a B-ISG. The B-ISG is actually an
advanced alternator, which has a higher efficiency
and facilitates both generating and motoring mode.
In this way the B-ISG can be used to crank the
engine (i.e. the starter motor can be omitted). To
deliver a high torque up to a high engine speed
during engine cranking, it is beneficial to have the
B-ISG operate on a higher voltage during cranking
than is the case during generating. A storage
system that can supply the B-ISG with two voltage
levels for cranking and generating mode is the dual
storage system:

* During motoring of the B-ISG, switch Al is
closed and A2 open. In this case the B-ISG is
connected to the voltage of the supercapacitor.
Since the supercapacitor voltage is not
connected to the powernet, this voltage is
therefore allowed to fluctuate significantly.
The lower voltage-level of the supercapacitor
is determined by the minimum required for
cranking. The upper voltage level is
determined based on the nominal
supercapacitor voltage (lifecycle).

= During generating of the B-ISG, switch Al is
open and A2 closed. In this case the B-ISG is
connected to the battery and the powernet,
which are at a relatively constant voltage of
14V compared to the supercapacitor voltage,
which is allowed to fluctuate.

A Dbi-directional DC-DC converter is used to
enable a current flowing between the battery and
supercapacitor and vice versa.

5.2 Modelica Implementation

A model of the dual storage system, as displayed in
Fig. 9, is constructed in Modelica. The DC-DC
converter is modeled with a table lookup model.
The MOSFET switch has been modeled as the
parallel connection of an ideal switch and an ideal
diode with treshhold voltage Vd. The code for this
MOSFET switch is:

model IdealMosfetSwitch
import Modelica.Electrical.Analog;
import Modelica.Blocks.Interfaces;
extends Analog.Interfaces.OnePort;
parameter Real Ron(final min=0) =
parameter Real Goff = 1E-5;
parameter Real Vd;

protected
Real s;
Boolean on;
Boolean u;

1E-5;

public
Interfaces.BooleanInPort BooleanInPortl;
equation
u = BooleanInPortl.signall[l];
on = not (u) or not (s < Vd);
if not (on) then
v = s;
i = s*Goff
else
if u then
v = Vd + (s - Vd)*Ron;
i =8 - Vd;
else
v = (s - Vd)*Ron;
i =8 - Vd;
end if;
end if;

end IdealMosfetSwitch;

The resulting model is displayed in Fig. 10. Since
this model will be used in fuel economy studies in
Simulink', input and output connectors have been
used for the switching and sensoring signals.

attery_Current
o Load_Current
I
SuperCap_Cunent By Vineen
otert
SuperCap_oltage uuiy) [>
T Battery_SOC
Ground1 =
2 g Ground2
2 3 2 7
DB =
= E H g &
BEE L 3 e
2 5
Q 2
x i
- 2

DCDC_Mode

Fig. 10 Modelica model for the dual storage system

The model displayed in Fig. 10 is compiled to a
Simulink native S-function block (Fig. 11):

Switches. A2 Battery.Voltage
Battery.Current
Switches.A1

SuperCap.Current

Generator.Current SuperCap.Voltage

Battery.SOC
DCDC.Mode

DCDC.CurrentToSCAP

Load.Current DCDC.CurrentToBattery

Dual storage system

Fig. 11 Simulink block, compiled from the Modelica
model, which represents the dual storage system

' Simulink is a registered trademark of The MathWorks,
Inc.

The Modelica Association

99

Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

The reason for making a Simulink S-function of
the dual storage system, is that presently Simulink
is the standard for control systems development
within the Energy Management Group of FFA.
That constructing the physical plant model in
Modelica has advantages compared with plant
modeling in Simulink is shown in [6].

5.3 Simulation Results

Simulation has been performed in Simulink using
the block in Fig. 11. Model inputs are taken from a
measurement that is performed with hardware of
the dual storage system. The results for the battery
are displayed in Appendix A. It should be
mentioned that the results for the battery voltage
do not completely agree due to the fact that the
overcharging behavior of the battery has not yet
been completely modeled. This will be improved
in future versions of the battery model. In [6] it is
already shown that the battery model shows
excellent results in discharging operation.

6 Conclusions

This paper shows complex models for a battery
and supercapacitor. These models are based on
impedance spectroscopy and have been modeled in
Modelica. Using these models, a dual storage
system is constructed and simulated. The
simulation results have been compared with
measurement results.

Acknowledgement
The authors gratefully acknowledge the
collaboration with Aachen University of

Technology, Institute of Power Electronics and
Electrical Drives (RWTH-ISEA), especially
Stephan Buller, Marc Thele and Dirk Linzen who
developed the theory behind the physical
representation of the battery/supercapacitor model
used in this paper, and the method of its
parameterization.

The authors also wish to thank Daniél Kok,
team leader of the Energy Management Group of
FFA for his support and ideas.

Contact

Erik Surewaard is a member of the Energy
Management Group of FFA. He graduated his
studies of mechanical engineering at Eindhoven

University of Technology in February 2002 on a
model, which he developed for describing what
occurs during cold cranking of an internal
combustion engine. He continued working for the
Energy Management Group and now develops
models, using Simulink and Dymola, to describe
(i) the electric powernet and (ii) the engine
cranking process. He can be reached by mail on:

Erik Surewaard

Ford Forschungszentrum Aachen (FFA)
Stisterfeldstrasse 200

52072 Aachen, Germany

Email is also possible: esurewal @ford.com

References

1. Sebille, D., "Electrical Energy Management:
42V Perspective", MIT 42V meeting
Dearborn, March 6th, 2003
http://mit42v.mit.edu/Members/Meetings/2003
-03-Dearborn/Presentations/Sebille Valeo.pdf

2. Buller, S., "Impedance-based simulation
models for energy storage devices in advanced
automotive power systems", Shaker-Verlag,
Aachen, 2003

3. Buller, S., Thele, M., Karden, E., De
Doncker, R.W., "Impedance-based non-linear
dynamic battery modeling for automotive
applications", Journal of Power Sources 113,
pp. 422-430, Elsevier, 2003

4. Berndt, D., "Valve-regulated lead-acid
batteries", Journal of Power Sources 100, pp
29-46, Elsevier, 2001

5. Buller, S., Karden, E., Kok, D. and De
Doncker, R.W., "Modeling the dynamic
behavior of supercapacitors using impedance
spectroscopy", IEEE transactions on Industry
Applications, Vol. 38 No. 6 Nov/Dec. 2002, pp
1622-1626

6. Surewaard, E., Tiller, M. and Linzen, D., "A
Comparison of Different Methods for Battery
and Supercapacitor Modeling", SAE paper
2003-01-2290, 2003

The Modelica Association

100

Modelica 2003, November 3-4, 2003

Erik Surewaard, Eckhard Karden, Michael Tiller

Advanced Electric Storage System Modeling in Modelica

Appendix: Simulation Results

Difference is caused by
overcharging: is being solved

Battery

% \ Battery voltage Battery current
145 . : ; ; : 100 . ‘ - ‘ r
—— measured —— measured
141 simulated || —— simulated
50+
13.5¢
= sl < 0
- 13 = -IF
g o
S 1250 5 50l
12+
-100+ -
11.6
11 L L L L L -150 L | L | L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
time [s] time [s]
Supercapacitor
Supercapacitor voltage Supercapacitor current
16 : . - : 150 T r - -
—— measured
—— smulate 100} — simulated
151 1
50+ -
141
s < 9
13 5 50
s g |
s 3100}]
12+
-150+ .
B -200} 4
% 20 a0 e s 10 120 % 20 40 60 & 100 120
time [s] time [s]
DC-DC converter
DCDC current - Supercapacitor side
30 ‘ ‘ . .
—— measured
—— simulated
20t g
10+ 1
<
E o0
]
B
10+ 4
20+
e
-+
.30 . ‘ ; . .
0 20 40 60 80 100 120
time [s]
The Modelica Association 101 Modelica 2003, November 3-4, 2003

The Modelica Association 102 Modelica 2003, November 3-4, 2003

Session 3B
Tools — 1

The Modelica Association 103 Modelica 2003, November 3-4, 2003

The Modelica Association 104 Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

IDA Simulation Environment
a tool for Modelica based end-user application deployment

Per Sahlin

Pavel Grozman

Equa Simulation AB
Box 1376, 172 27 Sundbyberg, Sweden
http://www.equa.se/

Abstract

A new Modelica implementation based on IDA
Simulation Environment (IDA SE) is presented.
IDA SE is primarily used for development of equa-
tion based simulators for end-users with limited
modeling skills but provides interesting features also
for the advanced user. A recently developed Mode-
lica application for simulation of tunnel ventilation
for commuter rail networks illustrates IDA usage.
Excerpts of models from this application are pre-
sented in some detail as well as a list of present
limitations of the IDA based Modelica implementa-
tion.

1 Introduction

Modelica has proven to be of excellent service to
advanced modelers in several domains. However,
presently, there is usually close contact between
model developers and end-users. In fact, they fre-
quently coincide in a single person. As Modelica
uptake evolves, the need to deploy Modelica based
simulators among less experienced users is likely to
increase. IDA Simulation Environment (IDA SE)
has been developed to facilitate this process. Origi-
nally based on a Modelica predecessor, NMF [1],
IDA SE has been used for equation based end-user
application development since the early nineties.
Several real-scale simulation applications have been
developed, some of which have earned leading roles
in their respective markets.

IDA SE is based on the concept of pre-compiled
component models, i.e. most IDA application end-
users work only with fixed' component models that
may be combined into arbitrary (input-output free)
configurations without need for compilation. Simu-
lators do not require a working compiler installation.

1
array sizes, including connector arrays, can be modified
after compilation

Encryption is not needed to preserve component
model secrecy. The new Modelica implementation
which has been included in the IDA SE package
retains this structure, separating the typical roles of
the model developer and end-user.

A large majority of potential simulation users
have little appreciation of the beauty and generality
of an advanced modeling language. They have a
design problem to solve and want quality answers
with minimum effort. Quite often the full mathe-
matical formulation of the problem is of less inter-
est. A good simulation application must communi-
cate in terms natural to the user and in most situa-
tions this does not involve any modeling language
but rather physical concepts from the target applica-
tion. Pipes, pumps and valves may well be the opti-
mal elements of communication rather than differ-
ential-algebraic equations.

The structure and main features of IDA Simula-
tion Environment are presented in the next section.
In Section 3, a sample IDA application is presented,
followed by a discussion about the current state of
the Modelica implementation. Some code details
from train traffic modeling are discussed in an Ap-
pendix.

2 1IDA Simulation Environment

Figure 1 shows the three main software modules
of IDA SE:

IDA Modeler: the interactive front-end
IDA Solver: the numerical DAE solver
IDA Translator: the model source code editor and

processor

A development version contains all three, while a
runtime installation lacks IDA Translator. The de-
veloper uses IDA Translator to generate a set of C

The Modelica Association

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

or F77 routines for each component’, for equation
evaluation, analytical Jacobian evaluation and gen-
eral information about the model. The code is com-
piled from the translator into a Windows DLL
which is then linked to IDA Solver. The Modelica
(or NMF) source may or may not be shipped with
the application, depending on the desired level of
confidentiality. Also generated are native class de-
scriptions for IDA Modeler, containing structural
information about the model library. This code may
then be complemented by application specific ex-
tensions.

Application definition files
Application specific source

Component description file

Component
source
— —
* TDA System * NMF
descrip- Translator * MO
——— fion file —

Component equations

iiiggoéver |E
é Results

Figure 1: Structure of IDA Simulation Environment

Applications may be shipped stand alone, includ-
ing an IDA runtime environment or as separate
plug-ins for an existing IDA environment. Both the
model library and the user interface of an applica-
tion may be amended and altered by multiple extra
separate installations, for customizations and appli-
cation extensions. This allows efficient management
of complex version structures.

The cost of the runtime environment for each in-
stallation is significantly lower than that of the full
development environment, normally only a small
fraction of the cost of the end-user product.

2 A component or a compilation unit becomes an indi-
visible building block in the end-user application. The
Modelica source of a component model may be a com-
posite, hierarchical model. It is also possible to define
hierarchical models in IDA Modeler containing multiple
components.

IDA Simulation Environment is presently avail-
able as an off-the-shelf product only with NMF for
Microsoft Windows 98 or NT 4.0 and higher. IDA
Solver and Translator have previously been ported
to Unix platforms but are not maintained in this
setting. Modelica is presently supported only for
specific customers. We will return to the state of the
Modelica implementation in Section 4.

2.1 1IDA Solver

In tools, such as Dymola, where equations are
globally reduced prior to integration, the numerical
solver will deal with a fairly dense system of equa-
tions but where each equation can be quite complex.
One can generally expect equation evaluations to
take some time while factorization of Jacobian ma-
trices is likely to be faster due to the dense problem
structure. In a pre-compiled setting, the situation is
the opposite: functions are rather simple (simple
enough to differentiate analytically!) while Jacobi-
ans are typically large and sparse.

IDA relies on standard software components for
sparse Jacobian factorization. Since large sparse
matrices occur in many technical and scientific ap-
plications a range of powerful solvers are readily
available for scalar as well as parallel architectures.
Available solvers for IDA are: SuperLU [2],
MUMPS [3] and UMFPACK [4]. The graph theo-
retical analysis of system structure is done by these
external solvers rather than in the context of a global
symbolic preprocessing.

There are many implications of this difference in
solution strategy. A thorough discussion of this is
beyond our current scope and we will merely point
out a few aspects:

+ Component structure is maintained during
integration. This allows for example: (1)
Exploitation of special component structure
by tailored methods. (2) Component level
co-simulation with external tools such as
FEMLAB (see Figures 2 and 3). (3) Com-
ponent level debugging.

+ Equation topology may change during simu-
lation. Since the graph theoretical analysis
may be done in each timestep, discontinui-
ties that alter the system structure can be ac-
cepted.

+ For few-timestep simulations, global compi-
lation may take a significant part of the total
execution time.

The Modelica Association

106

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

- Pre-compiling component models precludes
some operations that are natural in a setting
where a global symbolic analysis is done.
The most serious limitation concerns index
reduction. Although index 2 systems gener-
ally can be simulated without any problems
in IDA Solver, serious high-index problems
are most likely better solved by means of
global symbolic analysis.

=l8]x]

9
i

Thermostat Relay
setting

Exterior
Temp

Variation of
Exterior Temp

i

% SENSTHPORO || e | fvena.| Prs.. | Wismien. | Becane...| &5, e \lmm-\%--’l DASDESE 0o
Figure 2: A FEMLAB-Simulink standard case
“Thermal controller.“ A heat source in a 2D region
is controlled by a thermostat.

TIME
10*
10° [-e-bA]
| —— Simulink |
10? /
10" /6
—=
0

10' 10° 10
NODES

Figure 3: Execution time vs. FEMLAB spacial reso-
lution in the “Thermal controller case®. The original
Simulink model is compared to an identical FEM-
LAB-IDA model (from [5]).

IDA Solver is a variable timestep and order
solver based on the MOLCOL implicit multistep
methods, which include the most common implicit
methods such as BDF. Explicit methods are cur-
rently not available for the global integrator but may
be implemented for individual components.

A selection of methods for initial value computa-
tion are available: damped Newton, line-search,
gradient and homotopy (embedding) methods

2.2 IDA Modeler

IDA Modeler provides a framework for interface
development. It may be used to write simulation
oriented applications of sufficient quality for com-
petition with tools written from scratch but at a frac-
tion of the cost. IDA Modeler exploits the fact that
many tasks are common to most simulation applica-
tions: building and presenting models, editing pa-
rameters, interacting with a data base, making simu-
lation experiments, viewing results as diagrams and
reports, checking user licenses etc.

More elaborate IDA applications, divide the user
interface into three levels, to serve users with differ-
ent needs and capabilities:

Wizard Least demanding. Each required input

level: is presented in a sequence of user input
forms.

Standard | Intermediate. The user is required to

level formulate a model, but in terms that are
natural to the domain.

Advanced | The user builds a model using equation

level based objects. Facilities for model
checking, automatic mapping of global
data, selection of given variables and
similar tasks are available.

In such an IDA application, the Advanced level
interface offers a model-lab work bench similar to
that offered by other DAE environments, providing
the user with direct contact with the individual equa-
tions, variables and parameters of the mathematical
model. However, a great majority of end-users pre-
fer the tools of the Standard and Wizard level inter-
faces, where the basic mental concept is that of a
physical system and not of a mathematical model.

The kernel of IDA Modeler is written in Com-
mon Lisp but most application programming is done
interactively or by writing native scripts. Extensive
facilities are available to simplify common tasks
such as: building user interfaces in multiple natural
languages; defining a data bases for input data ob-
jects; report generation; data mapping etc. Some
user interface elements, such as dialog boxes with
complex logic, may be written via an API in other
languages.

The Modelica Association 107

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

eral| Envelope Zone | lmate|
lentation, exterior wall(s), window(s)

Figure 4: Applications may have multiple Wiz-
ard level interfaces for typical simulation tasks.
Each interface has a separate data model and a tai-
lored script language for data mapping between
levels is provided.

Special emphasis has been laid on tools for de-
velopment of web clients, running in a browser,
powered by an IDA based simulation engine on the
(Windows) server. A large portion of the native data
structures have been mapped to Java script, facilitat-
ing advanced web development with minimum ef-
fort.

Several examples of full-complexity applications
written in IDA Modeler are available. Equa markets
two such applications: IDA Indoor Climate and
Energy (IDA ICE) and IDA Road Tunnel Ventila-
tion. Others have been developed for specific cus-
tomers. IDA ICE is with more than 2000 users a
leading international tool for thermal building simu-
lation, available in six languages.

3 Ventilation and fire in com-
muter rail tunnel networks

The first full-complexity Modelica based IDA
application concerns prediction of air flows in tun-
nels and on platforms of commuter rail networks.
Results are needed for several reasons: hygienic
ventilation, thermal comfort, smoke propagation in
fire scenarios and for gas and particle dispersion
studies.

A primarily pulsating air movement through the
system is driven by train piston effect. Secondary
driving forces are thermal stack effect, wind pres-
sure on portals and openings and possible fan opera-
tion.

In this application, air has been modeled as,
weakly compressible, i.e. propagating pressure
waves have infinite speed but the temperature-
density relationship is modeled (perfect gas law) in
order to capture the stack effect. Solving the fully
compressible equations is often required for rail
tunnel studies to predict the effects of interacting
pressure waves but this has not been done here since
the solution of the resulting hyperbolic equations is
likely to be time consuming and otherwise problem-
atic.

Pressure drop in tunnels is modeled in 1D with
conventional pipe flow theory: With the fluid is
transported a series of fractions for computation of
CO,, age of air etc. Flows with altering directions,
often fluctuating around zero, may be numerically
difficult to handle in branched systems with high
Reynolds number since coarse approximations of
viscous losses tends to produce discontinuities. To
overcome these problems Gardel [6] empirical for-
mulae have been implemented for viscous loss coef-
ficients, providing continuity around zero flow
situations. Bulk air inertia is modeled leading to an
index 2 system. Figure 5 shows a model of a four-
station section.

A convenient way of expressing train traffic
through the system is essential. A design principle
has been to separate the models of the tunnel system
from the traffic models. Input data for a train route
through the system is depicted in Figure 6, including
line segmentation, speed limits, accelerations, dwell
times at stations etc. To add a new route, the user
selects a sufficient number of objects in the direc-
tion of the traffic to unambiguously determine a
path. The segmentation of the Route need not corre-
spond to the segmentation of the physical tunnel.
(The latter may e.g. depend on needed resolution of,
e.g., a smoke front.)

The Modelica Association

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

&, Maria_Lilicholmen_test10_HJ: C:\Program Files\IDA40\samples\Tuna
Schema | Qutine |

=1olx|

Project [\faria_Lijeholmen_test10_HJ
Description: Routes

Tunneldel mellan ;I
Mariatorget och
Lilighalmen.

Simulation data| Start simulation'

Results.

’E RESULTS

Add route
Trains

Ambient |

Figure 5: A model of a four-station underground
section of the Stockholm subway. Tunnels and other
airflow paths are modeled.

Each Route through the system is contained in a
single instance of the Route block (code extract in
Appendix). This block is then automatically con-
nected to each segment of the physical tunnel using
application specific code. The connection lines are
not visible, since the number of tunnel segments
may be exorbitant.

2 Route: nmf equation object in Maria_Liljieholmen_test10_HJ] =13}
General | Qutline | Code |

= Route: Entryd - Entry2 =]

- Route
=

Parameters
vehicleType l:' Train type on this route Details
nextDep 00 Jsec Delay between simulation start and the first train
interval sec Interval between trains Bindto ...
nRun trains Max number of sheduled vehicles
Seg 0 720 Jkmh strtspees
Segn kFI"Ifh Number of route segments
Route segments

€0, Length Max speed Acceleration Retardation End speed Dwell time

[m] [km/h] [m/s2] [mis2] [km/h] [s]

1 180 T2 1.0 1.1 0 40 =

2 9685 72 1.0 1.1 a 40

3 710 72 1.0 1.1 0 40

4 740 72 1.0 1.1 0 40

5 825 72 1.0 1.1 720 0.0

=

Figure 6: The IDA form for description of a train
route through the system.

The management of train routes is a good exam-
ple of application specific programming, where the
standard drag, drop and connect functionality needs
to be complemented. The Route form in Figure 6 is
an example of a native IDA form, which first has
been automatically generated and then subsequently
interactively altered. In the Outline tab, the user can
see all available parameters, variables and interfaces
of the block and in the Code tab, the Modelica code
can be browsed (but not edited).

2 RESULTS: output object in Maria_Liljeholmen_test10_HJ
Diagram | Table | Outline |

=10l x|

T T T T T T T T Uy Uy T
0.00 005 0.10 0.15 020 025 030 035 0.40 0.45 0.50

——&——Tunnel 1, m3/s
Tunnel 2, m3/s
——=a—— Schakd, m3/s
Rullirappa 1, m3/s
——— Rulltrappa 2, m3/s
Tunnel 4, m3/s
——+—— Tunnel 3, m3/s

Figure 7: Computed airflows at station Mariator-
get, with five minute traffic of C20 trains in one
direction.

4 Present state of Modelica in IDA

The current IDA Modelica implementation has
been developed to cater to the immediate modeling
needs of ongoing projects like the mentioned sub-
way ventilation study. It is our intention to continue
to enhance the tools in the scope of cooperative
modeling projects and then, at some future point,
release an off-the-shelf product.

The design of the Modelica language itself has
for natural reasons been centered around the only
presently available implementation by Dynasim. In
this section, we will outline a few issues where the
present Modelica design is less well suited to usage
in the pre-compiled setting of IDA and where
Modelica extensions have been introduced. Present
shortcomings of the implementation are also dis-
cussed.

4.1 Interpretation of Modelica code

The IDA Translator compiles classes, not com-
plete systems. Compiled models normally contain:

The Modelica Association

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

public connectors

more variables than equations
outer elements

arrays with non-constant sizes

All public non-partial and non-local classes de-
clared with keywords class, model or block
are compiled to IDA components. Blocks are pres-
ently compiled to IDA algorithmic models. Public
non-partial and non-local atomic types and connec-
tor classes are similarly compiled to IDA quantity
and link types.

A compiled model may be extended after compi-
lation by inserting and connecting submodels.

Public top-level connectors in compilation units
are preserved by the compiler available for connec-
tions.

Compilation units may contain unresolved outer
components. Such compiled models should be used
only as elements of models that contain correspond-
ing inner components. Unresolved outer classes are
not supported.

For each compilation unit, a symbolic analysis is
performed where as many variables as possible are
solved for symbolically, effectively removing them
from the global system of equations. Resulting
equations are differentiated and code for evaluation
of analytical Jacobians is generated. Although prin-
cipally possible, no index reduction is currently
done at this stage.

It is possible to allow the IDA Translator to
process entire simulation problems, resulting in just
a single compilation unit. However, this is not the
intended usage of the tool since the topological
flexibility of being able to re-configure pre-
compiled units is an essential feature of most IDA
applications.

4.2 1IDA driven Modelica extensions

Events in functions and pre operator

The previous IDA language, NMF, supports
events in functions, also in foreign functions. This is
possible because the variables that monitor events
are explicit in NMF models. In Modelica, these
variables are automatically generated and not avail-
able for the programmer.

We have implemented events using the special
function mo_event(var, expr). The variable var is a
special kind of variable (called assigned state in

NMF) that keeps its value from the previous
timestep. The function modifies the value of var and
generates an event whenever it changes sign. In
order to be used in a function, the previous value of
var should be passed to the function and the modi-
fied value should be returned. To make this possi-
ble, we have changed the semantic of the pre opera-
tor. In our implementation, pre(v) is always the
value of v at the previous successful time step; this
is also valid for non-discrete variables.

The modified pre operator may also be used for
several other purposes, for example:

e To calculate a maximum value during the simu-

lation:
xMax = max(x, pre(xMax)) ;

e To break an algebraic loop in order to simplify

solution of an equation with weak dependences:
RhoAir = 1/287.0 * pre(PAir) / Tair;

e To implement local integration methods, for
efficency or for limiting numerical dissipation in
PDE:s

A full account of the arguments for the extension
of the pre operator is beyond the scope of this pa-
per. However, uncontrolled numerical dissipation
due to large and variable timesteps is a fundamental
problem for many Modelica applications that should
be further discussed.

Conversion to strings

In Modelica 2.1 there are functions that converts
scalar values to strings, but there are no functions
for converting arrays and matrices. We have imple-
mented automatic conversion of non-strings to
strings. Example:

assert (x>0, "x = "+ x + " should be positive")

Graphics

e More named colors

e Arrow: Closed, Left, Right, {type,side}. The
size may be a vector

e lineThickness=0 - non-scaled minimal thickness

e Transformation: negative scale and aspectRatio
may be used instead of flip.

4.3 Features yet to be implemented

The following list is intended to give a flavor of
the present state of development.

Available variable and parameter types

* All variables and non-scalar parameter declared
as Integer or Boolean are converted to Real.
These variables cannot be used as arguments of
function calls.

The Modelica Association

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

IDA Simulation Environment - a tool for Modelica based end-user application deployment

* Boolean scalar parameters are converted to In-
teger.

* String variables are not implemented (string
parameters are supported)

» Attributes (except value and start) should be
constant. They cannot be used in expressions.

» Attributes displayUnit, fixed, enable, nominal,
stateSelect are not used.

Connections

* Connection of subconnectors is not yet sup-
ported

Modification and redeclarations

* Modifications of class elements are not sup-
ported (i.e., when instantiating or extending a
class, it is not possible to modify local classes in
that class).

* No subtype checking in redeclarations. The
constraining clause is ignored.

* Choice annotations not supported.

Expressions
* Record constructors are not supported.
Iterations

[T3R1)

* Multiple iterations (separated by “,””) not yet
supported.

* Ranges with step from:step:to are not supported.

* Vectors in indices only partially supported.

* The index end is not supported.

* Deduction of range is not implemented.

Arrays

* Array expressions (not instances) may not be
used as arguments to non-built-in functions.

Functions

* Optional arguments are not supported (except in
some built-in functions)

* Record arguments are not supported.

* Protected variables in functions are not sup-
ported.

* The annotation derivative is not yet supported.

* Some restrictions on external functions.

* Not all Modelica utility functions are imple-
mented.

» External objects are not implemented.

Initialization
* Initial equation/algorithm not implemented
Built-in functions and operators

* Not implemented functions: initial, terminal,
smooth, sample, edge, change, reinit, termi-

nate, div, rem, integer, cardinality.
Graphics
» Attribute visible and smooth is ignored.

* Cylinders and Sphere fill patterns are not sup-
ported.

* BorderPattern shown as rectangle with 3D bor-
der

¢ No line pattern if lineThickness >= 0.375

* Text rotation is not implemented

* Filled text is not implemented.

* Bitmaps: may be rotated by 90 degrees only,
imageSource not implemented, fileName just
copied (no directory information added).

S Summary and further work

The present IDA Modelica implementation is a
sufficient base for complex application development
and delivery. Several partner projects are underway,
where Equa supports developers with needed new
functionality. Perceived user demand will determine
when a public product is released.

Equation based simulation is presently limited by
fragmentation into disparate single-vendor user
communities. As a technology, Modelica is suffi-
ciently neutral and powerful to break the presnet
status quo. Hopefully, another reasonably complete
independent implementation will aid this process.
However, it is vital that the present Modelica com-
munity focuses on the truly critical success factors
rather than on yet another intriguing technical issue.

References

1. P.Sahlin, E.F.Sowell, ,,A Neutral Format for Buil-
ding Simulation Models*, Proceedings of the IBPSA
Building Simulation '89 conference, Vancouver, Ca-
nada, 1989

2. J.W.Demmel, J.R. Gilbert and X.S. Li, “SuperLU
User’s Guide”, Technical Report, UC Berkeley,
USA, 1997

3. P.R. Amestoy, L.S. Duff, J.-Y. L’Excellent,
“MUMPS Multifrontal Massively Parallel Solver v.
2.0”, Technical Report, CERFACS, France, 1998

4. T.A. Davis, “UMFPACK v. 4.0 User Guide”, Tech-
nical Report, Univ. of Florida, Gainesville, USA,
2002

5. C. Panagiotopoulos “Finite element models in a
lumped model simulation environment. An interface
between FEMLAB and IDA S.E.” Technical Report,
KTH, Stockholm, 2001

6. Gardel, A. (1957), “Les Pertes de Charge dans les
Ecoulements au Travers de Branchements en Te”,
Bull. Tech. De la Suisse Romande, 83, 123-130, 144-
148, 1957

The Modelica Association

Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

Appendix - Structure of commuter rail model

The Traffic connector transmits information about train location, speed and acceleration between the Route
block and the physical tunnel model:

connector Traffic "Traffic line in tunnel segment"

Velocity speed(start=0) "traffic speed";

Real nFront "no of vehicle fronts per segment';
Real nBack "no of vehicle backs per segment";
Length 1Body "total length of vehicles per segment";
Acceleration acc(start=0) "traffic acceleration";

end Traffic;

Below is the template for a Tunnel system. The end user may add instances of different models (sections,
platforms, ventilation shafts, traffic routes) into a compiled Tunnel system and then connect and simulate the
system (see Figure 5).

// The template for Tunnel document
model Tunnel "Tunnel Document"

inner parameter ArraySize nFract = 2 "Number of air fractions";
inner parameter ArraySize nVeh=1 "Number of vehicle types";
inner parameter Vehicle [nVeh] wveh "Description of wvehicles";
inner parameter Fraction[nFract] fract "Description of air fractions";
Ambient amb "Properies of ambient air";

end Tunnel;

A traffic route is modeled as a Modelica block. Each instance describes a route in one direction. The model
is connected (using traffic connector) with segments in tunnel sections and platforms (a tunnel section
may consist of several segments). The connection is done by the application; the user only draws the route on
the tunnel schema.

The route block is translated to an algorithmic model. It does not add equations to the tunnel system, but
only supplies the system with input data series (like a table). IDA SE supports also post-processing algo-
rithmic models, used for collecting and transforming measurements on a model.

block Route
// Array sizes
parameter ArraySize
nSched = 2 "Number of points in route schedule",
nSeg = 1 "Number of tunnel segments",
nRun = 5 "Max number of scheduled vehicles";
final parameter ArraySize nPos = nSeg + 1 "Number of segment ends";

// Route schedule

parameter Time tSched[nSched] = {O, 3600} "time column in schedule";
parameter Velocity vSched[nSched] = {10, 10} "speed column in schedule";
parameter Length xSched[nSched] "position column in schedule";
parameter Length xSchedO =0 "start position for schedule";

// Tunnel segments
parameter Length 1Seg[nSeg] "segment lengths";
parameter Boolean reverse[nSeg] = fill(false,nSeg) "traffic direction";
parameter Length xSeg[nPos] "segment ends";

// Time schedule

Integer lastRun(start=0) "last scheduled vehicle";
discrete Time
nextDep (start=time.start) "Next departure time",
interval (start=300) "departure interval",

depTime [nRun] (each start=-1) "Departures time";

parameter input Integer vehicleType = 1;

output Traffic[nSeg] traffic;

outer parameter ArraySize nVeh;

outer parameter Vehicle[nVeh] veh "Description of vehicles";

protected
Length xFront, xBack, xF, xB;
Velocity v;
Acceleration a;
parameter Length 1Veh = veh[vehicleTypel .length;
parameter Time tMax "max route time";
parameter Time tFront [nPos], tBack[nPos];

The Modelica Association 112 Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

// parameter processing
algorithm
// Calculate the train position at scheduled time points

xSched [1] := xSchedoO;

for i in 1:nSched-1 loop

xSched [i+1] := xSched[i] + 0.5%* (vSched[i] +vSched[i+1])* (tSched[i+1]-tSched[i]) ;

end for;
// maximal time per route

tMax := tSched[nSched] +

(if vSched[nSched]==0 then 0 else 1Veh/vSched[nSched]) ;

// segment lengths

1Seg := xSeg[2:nSeg+l] - xSegl[l:nSeqgl];
// the time then the train passes tunnel segments

for i in 1:nPos loop

tFront [i] := RouteTime (xSeg[i], nSched, tSched, xSched, vSched) ;
tBack[i] := RouteTime (xSeg[i]+1Veh, nSched, tSched, xSched, vSched) ;
end for;
algorithm

// calculate the traffic parameters on each segment
// the tunnel segments reads them (using traffic connector)
// Launch the next train
when time>=nextDep then
lastRun := mod(lastRun, nRun) + 1;
assert (depTime [lastRun] <0, "The max number of scheduled trains is exceeded") ;
depTime [lastRun] := nextDep;
nextDep := nextDep + interval;
end if;
// Initialize output variables
for iSeg in 1:nSeg loop
traffic[iSeg] .speed := 0.0;
.nFront := 0.0;

traffic[iSeg
traffic[iSeg] .nBack := 0.0;
= 0.0;

traffic[iSeg] .dSpeed := 0.0;
traffic[iSeg] .acc := 0.0;
end for;
// loop over all running trains
for iRun in 1:nRun loop
if depTime[iRun]>=0 then // if not removed
if time >= depTime[iRun] + tMax then
// the train is out of tunnel, remove it
depTime [iRun] := -1;
else
// calculate the position, speed, and acceleration
(xFront, v, a) :=
RouteInt (time - depTime[iRun], nSched, tSched, xSched, vSched);
xBack := xFront - 1Veh;
// loop over tunnel segments
for iSeg in 1:nSeg loop
// calculate the position of the train in the segment
XF := xSeg[iSeg+1];
XB := xSegl[iSeq];
// is the train on the segments (with events)?
if time>depTime [iRun]+tFront [iSeg] and time < depTime [iRun]+tBack[iSeg+1l] then
traffic[iSeg] .speed := if reverse[iSeg] then -v else v;
traffic[iSeg] .acc := 1f reverse[iSeg] then -a else a;
if time<=depTime [iRun]+tFront [iSeg+1l] then
// count the train fronts

]

]
traffic[iSeg] .1Body

]

]

XF := xFront;
traffic[iSeg] .nFront := traffic[iSeg] .nFront + 1;
end if;

if time>depTime [iRun]+tBack[iSeg] then
// count the train backs

xB := xBack;
traffic[iSeg] .nBack := traffic[iSeg] .nBack + 1;
end 1if;
// count the total length
traffic[iSeg] .1Body := traffic[iSeg].lBody + (xF - xB);
end if;
end for;
end 1if;
end if;
end for;
protected
function RouteInt "Integrates the train movement along the route"
input Time t "time elapsed from the start point";

The Modelica Association 113 Modelica 2003, November 3-4, 2003

P. Sahlin, P. Grozman

input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp [n] "position column in schedule";
input Velocity vp[nl] "speed column in schedule";
output Length x "train position";
output Velocity v "train speed";
output Acceleration a "train acceleration";
external;

end Routelnt;
function RouteTime "Returns the train time at given position"

output Time t "the calculated train time";
input Length x "the given train position";
input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp [n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";
external;

end RouteTime;
end Route;

The tunnel segments and platforms are connected using TunnelCut connector:

connector TunnelCut

outer parameter ArraySize nFract "Number of air fractions";
Pressure P;

flow MassFlowRate m_dot (start=0) ;
Temp_ C T (start=10) ;

flow HeatFlowRate M Q;
Real vf [nFract] ;

flow MassFlowRate vf_dot [nFract];

end TunnelCut;

IDA Simulation Environment - a tool for Modelica based end-user application deployment

The bi-directional flow of air with fractions (of CO2, NO, dust, smoke etc.) is modeled in a similar way as in
the Modelica Fluid package, but the implementation is different.

Here the end-user (working with pre-compiled components) is able to define media properties, especially
number of air fractions. Therefore the number of fractions nFract is defined as a parameter and not as a
constant as in the Modelica Fluid package.

The Modelica Association

114 Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

Automatic trandation of S mulink modelsinto M odelica
using Simelica and the AdvancedBlocks library

Mike Dempsey
Claytex Services Limited
5 Marston Close, Leamington Spa, UK
mike.dempsey @cl aytex.com

http://www.claytex.com/

Abstract

A new tool, Simelica™, is presented for converting
Simulink® models into equivalent Moddica®
models. The converson is achieved while
retaining the original structure of the Simulink
model. The equivalent Modelica models are built
from a new libraay of components, the

AdvancedBlocks™ library.

The AdvancedBlocks library is designed to work
with Simelica but aso brings a new range of
control system component models to the Modelica
environment. The blocks are designed to enable
the calculation method used to be varied in each
particular instance that the block is required. For
example, in the Discretelntegrator block you can
choose from 3 different integration agorithms,
whether to apply limits to the integrator or not, and
how the initial condition is specified amongst
many other options. The main focus is on
delivering a user-friendly library to aid control
system modelling.

Some example applications will be discussed to
illustrate how effective the trandation process can
be.

1 Motivation

The use of system modeling and simulation is
increasing in the automotive industry as we strive
to reduce product development times whilst
increasing the complexity and quality of the
product. As the use of these simulation techniques
increases so does the requirement to include more
and more detail into the models and to ensure that
the interaction between the different systems is
being model ed adequately.

For many years Simulink has been the tool of
choice for much of the automotive industry to
develop both physica and control system
model§[1,2,3]. The main attraction of Simulink
has been its flexibility and the range of toolboxes
available to ad control system design,
development and calibration. However, many
users of Simulink are finding that as the physical
system models increase in complexity, the task of
developing these models further is becoming
increasingly difficult and time consuming. Many
are now looking at aternative systems and
Modelica based tools are well placed in the market
to meet these needs.

The adoption of the Modelica tools is currently
limited to those departments within automotive
manufacturers that are currently pushing forward
the development of complex physical system
modelg[4,5]. This is leading to problems within
these companies where the control system
engineers are still developing models in Simulink
while the design engineers are developing physical
system models using Modelica.

Currently tools such as Dymola™ provide methods
to generate S-functions from the Modelica
modelg[6] and this then enables the models to be
simulated together in one environment. In our
experience this method has not been completely
successful. We have found that, with our more
complex physical models, the Simulink solvers are
unable to cope reliably with the generated S
function models. This has led to smulations
effectively stalling where the time step becomes so
small that the simulation is no longer making
progress.

We then simply asked ourselves, why don't we
make the process work the other way round? Why
not convert the control system model into

The Modelica Association

115

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

Modelica and use that environment to simulate the
interactions between control system and physical
system. After all Modelica can support a block
diagram modeling style and our physica models
are working reliably in the Modelica environment.

2 Sim€lica

2.1 Overview

Simelica is a trandation tool for converting
Simulink models into equivalent Modelica models.
It works as both a command line tool so that its use
can be incorporated into scripts and aso as a
windows tool complete with graphical user
interface (GUI).

The trandation works by reading the Simulink
.mdl file and interpreting this into a Modelica
model based on the AdvancedBlocks library.
Simelica is capable of deding with al the
modeling methods used in Simulink including:

* From-goto systems

e Signal Bus systems

* Muxed signals

o Data store read/write/memory systems

The magjority of the standard Simulink library can
be automaticaly trandated into an egquivaent
Modelica block although there are some exceptions
including the MatlabFen, Sfunction and

Stateflow® blocks.

2.2 Using Simelica

The command line version of Simelica provides
simple functions to trandate a single Simulink file
or al the Simulink files contained in a specified
directory. This version is useful for incorporation
into scripts but it does not provide many of the
features available through the GUI that most users
will find useful, such as highlighting unsupported
blocks. Figure 1 shows a screen shot of Simelica.

When running in GUI mode after the Simulink file
is read into the tool the structure of the model is
presented to the user. Any unsupported blocks are
highlighted to the user at this point along with a
brief explanation of what action the user must take
either now, or after the Modelica file is generated
to ensure that the trand ated model can be used.

Following trandlation, a log of the work done is
produced. This will list any problem blocks
encountered and include their full path in the
model. The user can then easily see what, if any,
parts of the trandated model need further attention
beforeit can be used.

Figure 1: Screen shot of Simelica
8 simulinc to Modeica Transiator

File Translate Help

=101

Task list

The following need to be corrected before the Modelica model
can be wiitten

Filename:
C:Aprojects\... \driveline_madel.mdl
Clock
:
Transmission
Engine
BusSelector
BusSelectorl
DampingChar
Mux
StiffChar
Sum1
Sum2
Sum3
Clutchtorque
[#- Engine
[#- Frontaxle

Block Parameters I

Block Name ICIulch

Block Type [System

This block is fully supported.
Torqueinput

[#- Transmission
[#- Vehicle

As well as the need to trandate a mode it is also
essential to trandate the data from the Simulink
environment into the Modelica environment. Data
can be imported and incorporated into a translated
model using Simelica. The model data has to be
stored as a Matlab® bi nary file, which can then be
read by Simelica and the data incorporated into the
model through the use of arecord that is available
in every subsystem.

An additional consideration in the trandation of
data is that Simulink can load different data files
into different points of the model through the use
of masked subsystems. In Simelica, masked
subsystems are identified and the user is given the
option of incorporating a data file directly into
each masked subsystem. In this case each masked
subsystem gains its own unique workspace record
to replicate the fact that Simulink defines local
workspaces for masked subsystems.

The Modelica models generated by Simelica are
based on the AdvancedBlocks library rather than
interpreting the model into a flat model file. This
ensures that the model appears similar and
maintains the same structure as the origina
Simulink model. Figure 2 shows a comparison of
a trandated model in Simulink and Dymola. It
shows that the model structure is preserved and the
layout and connection of blocks in the Moddica
version is similar to the original model.

The Modelica Association

116

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

Figure 2: Comparison of a translated
model in Simulink (top) and Dymola

[Cismalich_R12 2

File Edit View Smulation Format Tooks Help

DEHE sma 20 > oy REL®

[5, x| 1. order ommadel
R

Ba] 1. order roommadsl A1

2 12N
2 RN

Madel Bromwset
ER]

[100% ladet %

=loixi
=l8lx|

@i Windor Help
|zHMSE RINOOCARL 2 i e @B o

Unr
el Pblacks_smalich_R12

o S AdvancedBlocks

3 AdvancedBlocks Library

3.1 Overview

A new Modelicalibrary of control blocks has been
designed to provide equivalent blocks in Modelica
to those in the Simulink standard library. The
design of the library has focused on providing a
user-friendly library that can be used effectively as
a modeling library. The main focus has been on
providing smple ways to select the different
options available for each block, for example the
integrator method to be used, the port data type to
be used, etc. There are a number of areas of
interest in the design of the latest version of the
AdvancedBlocks library and these are described in
the following sections.

3.2 Connector Definition

The first step in developing the new library was to
define the connector for the blocks. A new
connector was required for a number of reasons,
firstly, Simulink supports the use of matrix, vector

and scdar dgnals whilst the origind
Modedica.Blocks.InterfacelnPort and OutPort
connectorg[7] only support vector signals.

Therefore we needed to change the connector
definition to support matrix signals. During the
trandation process Simulink scalar signals are
converted into Modelica matrices with only one
vaue and vector signals are converted into
Modelica matrices with only 1 row.

A second consideration was that Simulink cascades
sample times along the connections. This means
that a block can inherit a sample time from its
driving block. To achieve this in Modelica we
needed to add an additiona signal to our connector
to carry the sample times from block to block. Itis
necessary for this sample time signal to be a matrix
because when muxed signals are used in Simulink
it is possible for each signal to be carrying with it a
different sample time. To replicate this behavior in
the AdvancedBlocks library we actually pass a
sample trigger along the connections that tells the
connected block at which point in time it should
calculate its output.

Thefinal consideration for designing the connector
was that Simulink signals could be different data
types. We therefore needed to find away to define
a connector in which we could easily change the
data type. We aso needed to find a structure that
would alow the connectors to be replaced even
though the basic data type of the signal might be
changing. The syntax for replaceable classed8]
would specifically prohibit the simple swapping of
connectors if the basic types are different.
Fortunately it is possible to replace classes that
extend from the same base class.

To overcome the constraints of the language and to
meet the design regquirements the connectors are
defined in packages and are created in a two-stage
process. Each connector package specifies either
an input or output connector for a specific data
type. All the connector packages are extended
from an appropriate base package that defines a
base connector and a base data type conversion
function. There is one base package for input
connectors, and one for output connectors. Figure

The Modelica Association

117

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

3 shows the base package definition for the output
connectors.

Figure 3: Base Connector Package
Definition

partial package Base
partial connector Outport "Output signal”
parameter Integer n=1 "Dimension 1 of signal matrix";
parameter Integer m=1 "Dimension 2 of signal matrix";
output Integer sampletrigger[n, m] "Sample trigger to be
passed between blocks";
end Outport;
partial function Convert
end Convert;
end Base;

The data type conversion function is used to apply
the correct data type to the output signal. The
blocks within the AdvancedBlocks library al use
variables of type Red internaly to handle the
caculations. To correctly convert the internal
signal type to that required in the connector a
function is used that changes the signa data type
and applies any limits to the value that may be
required for a specific datatype.

A connector for each required data type is then
defined within its own package. This package
must include a connector and function definition
that extends from those in the base package.
Figure 4 shows how the output connector for the
uint8 (unsigned 8 bit integer) data type is defined
in the AdvancedBlocks library.

Figure 4: Definition of the uint8 connector

Outport connector is instantiated from this
replaceable package. The constraint on the
replaceable package ensures that we will only ever
be able to replace the connector package with

another valid package.

This structure to the design of the connectors and
data type conversion function means that each
connector in a block in the AdvancedBlocks
library can use a different data type and this is
achieved by smply redeclaring the relevant
package that defines that connector to match the
desired data type.

Figure 5: Example use of a connector

block OutputExample
replaceable package OutlDataType =
AdvancedBlocks.Interface.Connectors.Outputs.uint8 extends
AdvancedBlocks.Interface.Connectors.Outputs.Base;
OutlDataType.Outport outl(n=1, m=1);
protected
Real y1[1,1] "Result of internal calculation”;
equation
outl.signal = OutlDataType.Convert(yl);
end OutputExample;

package uint8 "uint8 (unsigned 8 bit integer) output signal"
connector Outport "uint8 output signal”
extends Base.Outport;
output Types.uint8 signal[n, m] "Signal value";
end Outport;
function Convert
extends Base.Convert;
input Real u;
output Types.uint8y;
algorithm
y := integer(if u > 255 then 255 else if u < 0 then 0 else u);
end Convert;
end uint8;

By declaring the different connectors within their
own package it makes it possible to replace both
the connector and conversion function using one
redeclare statement. By ensuring that the
connector and function names are the same in each
package, the replaced package automatically
changes the connector and conversion function to
the chosen data type. In figure 5 the replaceable
package OutlDataType is defined and then the

Unfortunately this design cannot be implemented
in the current version of Modelica because the data
conversion function does not generate an event but
integer values, such as those in the connector, are
only alowed to change at events. This means that
where we would like to use an Integer or Boolean
data type in the connector we are unable to do so.
The work around in the current version of the
library is that all the connectors use a Real data
type. The conversion functions also output a Real
data type regardless of the actual data type desired
but internally they apply the limits and round
values as appropriate, i.e. round to the nearest
integer if an integer datatype is requested.

3.3 Continuous and Discretetime
modes

A large proportion of the blocks in the Simulink
standard library can run in different time-modes,
i.e. either continuous or discrete time modes. In
addition where blocks are able to run in discrete-
time mode they can be defined to run at a set
sample rate or they can inherit their sample time
from their parent system or from their driving
block.

The Modelica Association

118

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

To enable blocks within the AdvancedBlocks
library to support running in these different time
modes they have been defined so that they extend
from a replaceable block that governs the
calculation method used. Within each block that
supports running in different time modes there is
an encapsulated package that contains the different
definitions required for operating in the different
time modes. Figure 6 shows how the
AdvancedBlocks.Math.Abs block is defined with
the ability to switch between continuous and
discrete time mode.

Figure 6: Block structure to support
different time modes

block Abs "Abs block"

extends TimeMode;

replaceable block TimeMode = Options.Continuous extends
Options.Base;

encapsulated package Options
import AdvancedBlocks.Interface;

partial block Base "Base class and calculation function"”
extends Interface.BaseBlock "lcon and common properties";
extends Interface.lOLayers.Sl.Inports “Input definition";
extends Interface.lOLayers.SO.Outports "Output definition";
protected
Real y[nout[1, 1], nout[1, 2]] "Result of internal calculation";
equation
y = abs(ul);
end Base;

block Continuous "Continuous time mode"
extends Base;
equation
yl=y;
ylst = -ones(nout[1, 1], nout[1, 2]); // Sample trigger to next
block
end Continuous;

block Triggered "Discrete time mode"
extends Base;
protected
outer Boolean sampletrigger[1];
equation
ylst = if sampletrigger[1] then ones(nout[1, 1], nout[1, 2]) else
zeros(nout[1, 1], nout[1, 2]); // Sample trigger to next block
when sampletrigger[1] then
yl=y;
end when;
end Triggered;
end Options;
end Abs;

When the user then drags the Abs block into their
model for use they can simply switch time modes
by redeclaring the block TimeMode to be any of
the versons contained in the Options package.
This is made even easier in tools such as Dymola
where the version of TimeMode to be used can be
selected from a pull-down menu. In the Abs block
shown in Figure 6 it is possible to choose between
a Continuous time mode and a Triggered time

mode. In the Triggered time mode the sample time
is inherited from the parent system through the
outer variable sampletrigger.

The structure of the Modelica code means that the
actual equations defining the behaviour of the
block are separate to the equations that force the
block to act in a particular time-mode. This eases
the maintenance of the library by not repeating
blocks of code This becomes a mgor
consideration in the more complicated blocks.

3.4 Integrator Block

The continuous time integrator in Simulink is one
of anumber of blocks that can function in a variety
of different ways depending on the choices made
by the user each time the block is added to a
model. The options for the integrator block include
applying limits to the output, initialising with
interna or external initial conditions, alowing for
externa reset signals, outputting state information
and information on the limit condition[9]. To
define all thisin Modelicain away that is easy to
use has been achieved by extending the ideas
described and used to change the time mode of the
Abs block. This has led to the encapsulated
package within the Integrator block becoming
much more complex including severa levels of
hierarchy.

Each Integrator method is an extension of the same
base class defined in the encapsulated package.
The base block contains the definitions for the
input and output connections and instantiates these
from replaceable packages. This structure ensures
that each integration option can redeclare the input
and output layers to have the required number of
connectors for this method. For example, if an
externa initial condition is required then two
inputs are needed rather than one.

The result of this structure for the user is that they
can easily choose what functionality they want
within the integrator block in each instance.
Figure 7 shows the dialog box produced by
Dymola for the integrator block. Each option can
be changed through the use of a pull-down menu
showing the available options.

This same structure idea has also been used for
many other blocks in the AdvancedBlocks library
including the discrete integrator, math function
block, trigonometric function block and many
others.

The Modelica Association

119

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

Figure 7: Dymola dialog box for the
Integrator block

ol

|8 x:

I x|

b | AddModiiers |
nert

[inegratort

Path AdvancedBlocks Continuous Integrator
Conment Dutputs the integral of the input signals

a
i
sF

nin Ty Input signal dimensions.
InDataType] |

nouk > Ouput signal dimensians
OutiDataTppe I
s »

Il aulput

b Upperintegrator Imit
lawerlmic >

Lower integator It

dheenoo

»

[RA | RA[RA (K]

3

oK Carcel

i 15 Modeling. | y# simulation

3.5 Iterator Systems

The latest version of Simulink includes for-iterator
and while-iterator subsystems. In these
subsystems the blocks are executed a number of
times at each time step. The actua number of
times that the sub-system interates at each time
step can vary from time step to time step. The
iterator subsystems have been introduced into
Simulink to encourage its use as a control system
software design and development tool. The key
improvement for users in introducing these blocks
is to facilitate the auto-coding of control system
software. These subsystems along with the range
of if-then-else and switch-case blocks make it
much easier for controls engineers to design and
devel op the control system software.

Iterator subsystems can be trand ated into Modelica
where a fixed number of iterations are specified
such as in some instances of for-iterator
subsystems. In these cases the blocks within the
subsystem are instantiated into an array of blocks
where the size of the array equals the number of
iterations to be performed. For example, figure 8
shows how a simple subsystem would be defined if
it was required to iterate 5 times at each time step.
The output from this subsystem at the first time
step would be 25, after the second time step it
would be 50, etc.

In this example the constant, sum and memory
blocks are declared as component arrays where the
size of the array is equa to the number of
iterations. Each block within the component array
forms a different iteration of the for loop. The
subsystem output connector is only connected to

the Sum block in the final iteration of the for loop
so that we get the full value of the loop passed out
of this subsystem. The memory block is connected
so that it effectively spans the iterations. The input
to the memory block comes from the output of the
Sum block in the current loop. The output from
the memory block is connected to the input of the
Sum block in the next iteration. In the final
iteration of the loop the output from the memory
block is connected to the input of the Sum block on
thefirst loop.

To use thisidea for while-iterator subsystems and
for-iterator subsystems where the number of
iterations can vary at each time step would require
the component arrays to vary in size at each time
step. It is not currently possible to implement this
type of system in Modelica where the number of
iterations varies at each time step.

Figure 8: Example Iterator subsystem

18]

==

Conztant]

emory

model ForlteratorSubsystem
extends AdvancedBlocks.Interface.Subsystem;
public
constant Integer Numlterations ={5} “Number of iterations”;
Sources.Constant[Numlterations] Constant(each k=[5]);
Math.Sum[Numlterations] Sum;
Continuous.Memory[Numlterations] Memory;
Interface.Connectors.Outputs.Double.Outport out1;
equation
foriin 1: Numlterations loop
connect(Constant[i].outl, Sumli].in1);
end for;
foriin 1: Numlterations loop
connect(Sum[i].outl, Memoryl[i].in1);
end for;
foriin 1: Numlterations - 1 loop
connect(Memory[i].outl, Sum[i + 1].in2);
end for;
connect(Memory[Numiterations].out1, Sum[1].in2);
connect(Sum[Numlterations].outl, outl);
end ForlteratorSubsystem;

4 Example models

Aswell as alarge number of relatively simple test
cases a number of complex red-world examples

The Modelica Association

120

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

have been trandated. Two examples of trandating
rea-world models are presented in the following
sections and the simulation performance and
results have been compared.

4.1 CruiseControl Simulation

In this example we have combined a detailed
physical powertrain model with the actual cruise
control function from an engine control system, see
figure 9. The cruise control function is developed
by the system supplier in Simulink and then used
by both the customer and supplier to develop and
calibrate the system into the end product.
Ultimately the actual code downloaded into the
engine control unit is generated automatically from
the Simulink model and so the latest version of the
cruise control strategy will always be available in
Simulink.

Figure 9: Powertrain model and converted
controller system model

ECU
n.ur
.-.:.; I
} e |
o

R
TCuU
L [] []
_'& ! >
+
Driver - -

This cruise control function is designed to work as
part of a torque structure engine management
system. This means that the when the cruise
control function is active it demands an engine
torque and feeds this into the torque structure
function which converts this torque demand into a
throttle position, spark timing and amount of fuel
to inject. These quantities are determined so that
the engine will produce as close to the demanded
torque value as is physically possible within the
constraints of the calibration.

For this example we have chosen to convert just
the cruise control function from Simulink into
Modelicausing Simelica. Thisisthen coupled to a

detailed powertrain model that does not include an
engine model. The torque demand from the cruise
control model is applied directly to the engine
flywheel. In this way we can eliminate the need to
calibrate the torque structure function on the
assumption that this will be calibrated to trandate
the demanded torque into the actua engine torque
produced at alater date.

The aim of this model was to enable the calibration
of the cruise control function early in the
development process. The task of calibrating the
cruise control function traditionally requires a
significant amount of test work to achieve good
results. This is due to the difficulties involved in
repeating each test exactly and the wide range of
conditions that need to be tested. It is therefore an
ideal candidate for applying simulation techniques
which can reproduce the same test conditions
repeatedly and help produce an initial calibration.

Figure 10: Comparison of Simulink (top)
and Modelica Controller models

100
§ {1
-100

T T T
a 25 s0 75 100

To trandate the controller model and validate the
generated Modelica model a Simulink model was
generated that played measured data into the
control system and recorded the outputs. This
model, its parameter data and the measured data
were then trandated into Modelica using Simelica
Figure 10 compares the outputs from the controller
function in both Simulink and Modelica. By
ensuring that the Modelica controller model
produces the same results as the original Simulink

The Modelica Association

121

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

model we can be sure that the trandated model is
accurate.

Once we are satisfied that the translated controller
model was behaving in the same way as the
original Simulink model the new Modelica model
could then be used to attempt to calibrate the
control system. There are many parameters within
the control system that need to be calibrated and by
repeating the same test exactly the effect of
atering these parameters can be assessed and a
calibration can be defined. Figure 11 shows the
effect of altering one of the gains in the control
system on a given test.

Figure 11: Effect of controller gain on a
Cruise Resume Event

a0

754

70+

65|

60|

55|

In this test the driver puts the vehicle into cruise
mode at 20 seconds but then presses the brake at
22 seconds forcing the vehicle out of cruise mode
and into a gentle deceleration. At 42 seconds the
driver presses the Resume button and the vehicle
enters back into cruise mode and attempts to regain
the speed it was travelling at when the driver first
put the vehicle into cruise mode. The three results
traces demonstrate the effect of altering one of the
gains in the cruise control function on the vehicle
response.

4.2 Central Heating System

The model shown in figure 8 was developed in
Simulink to predict the performance of a small

central heating system. The main motivator for
attempting to trandlate this model into Modelica
was to see if the simulation times would be
improved. As Dymola generates efficient
compiled models from the Maodelica models and
Simulink interprets the model at runtime it would
provide an interesting comparison of simulation
performance.

Using Simelica the model has been trandated into
Modelica and then compiled and simulated using
Dymola 5.1a. Figure 2 shows this model in both
Simulink and Moddica. It is clear from the
diagrams that the same model structure and layout
has been preseved during the translation process
and any visible differences in the two diagrams are
purely down to the way the two tools present the
models graphically.

Figure 12 shows the results traces produced by
both Dymola and Simulink versions of this model.
It can be seen that although the model has been
trandated into Modelica the results obtained are
the same. The time required to simulate a 24 hour
period for the Modelica version of the model is 31
seconds but Simulink required just 9 seconds to
carry out the same simulation on the same PC.

Figure 12: Comparison of Simulink (top)
and Dymola simulation results

T

B T L o e S LT e EEEEEE

1000 2500 3000

At T R outT signal[1, 1]

7O

B0

a0

A0

30+

20+

T T
a 1000 2000 3000

The Modelica Association

122

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

When comparing these simulation times it is aso
essential to consider that in Dymola 493 signals
were stored but in the Simulink version only 12
signals were stored. In more complex systems the
immediate availability of all this data would be
very useful to help diagnose problems. To carry
out the same investigation in the Simulink version
of the model would require the user to manualy
add scopes to areas of the model that they suspect
of causing the problem and then re-running the
model. This process of adding scopes and re-
running the model may have to be repeated several
times before the problem can be correctly
diagnosed.

5 Limitations

5.1 Limitationsof Simelica

There are also some blocks available in Simulink
that cannot be automatical trandated into
Modelica. These include blocks such as the
MatlabFcn and S-function. The MatlabFen block
cannot be trandated because it alows the user to
use any Matlab script or command in the model,
many of which do not have an equivalent in
Modelica The SHfunction block cannot be
automatically translated because the c-code might
need to be changed significantly to work as an
external function in Modelica. It is possible to do
this manually though. There are a number of other
blocks that are currently unsupported but through
the continual development of the tool the majority
of these will be incorporated.

Another feature that cannot be automatically
handled is the initialisation commands that can be
fed into models and masked blocks. These cannot
be supported because they alow any Matlab
command to be used and executed during the
model initidisation and many of these commands
do not have an equivalent in Moddica. Rather
than attempt to handle this and get it wrong,
Simelica opts to simply copy all the commands
from the initialisation layer into a comment in the
block and then flag this to the user as a problem
requiring attention.

The fina limitation in the trandation process
currently is that matrix signals and signal data
types are not supported. Although many of the
features exist in the AdvancedBlocks library it is
not yet possible for Simelica to correctly trandate

models that include these features. Where data
types other than the Matlab data type double are
used in the model the different data type will be
ignored by the translator and the converted model
will use the double data type. Models that contain
matrix signals will have the signa dimensions
incorrectly set. From the point-of-view of the
AdvancedBlocks library and Simelica a matrix
signal is any signa that has more than one row.
Many of the blocks within the AdvancedBlocks
library will not currently function correctly when
matrix signals are used. These issues will be
addressed in future versions of Simelica and the
AdvancedBlocks library.

5.2 Limitations of the Modelica
language

There are some key differences between the
Moddica language and what is possible in
Simulink. Modelica does not support the same
flexibility in block naming as Simulink does. For
example Simulink can use any specia character in
the block names;, names can also start with
numbers, names can contain white space
characters. Some transformations therefore have to
be made by Simelica to ensure that a block name
conforms to the Modelica specification. The
difficulty here can be that blocks that were named
differently in Simulink purely because of the
incluson of a special character, or series of
characters that are prohibited in Modelica could
end up with the same name in the Modelica model
leading to errors.

Although many of the modelling methodologies
used in Simulink can be translated into a form for
usein Modelicait is not aways possible to provide
an equivalent methodology in Modelica. For
example, signal buses are trandated into simple
muxed signal systems where the bus selector is
defined to extract particular signals by index rather
than by name. In Simulink the names of the
signals are passed along the connection include the
heirarchy within the bus system. Signals can then
be extracted by selecting a particular signal name.
This feature is widely used in Simulink[10] as it
provides a powerful way to pass large groups of
signals around a model.

A large number of the blocks within the
AdvancedBlocks library contain encapsulated
packages that would idedly be hidden from the
user. This could be achieved by declaring the

The Modelica Association

123

Modelica 2003, November 3-4, 2003

M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

package as protected but then al replaceable
classes and parameters would not be visible in the
GUI dialogs produced by Dymola. To get around
this al the parameters and replaceable classes
would then have to be declared in the block
containing the encapsul ated package but this would
mean that the user is presented with options and
parameters that might not be valid because of other
selections they have aready made. Another
method of hiding these packages from the user
whilst still making the parameters and replaceable
classes visible in the tool dialogs is required.
Ideally it would aso be possible for the available
options and required parameters to change as
selections are made by the user.

6 Future

It is important to note that this paper refers to the
curent version of Simelica and the
AdvancedBlocks library and that they will
continue to evolve and support more features.
They will both be continually developed to support
the latest versions of Simulink and Modelica.

7 Acknowledgments

Many people have provided support during the
design and development of Simelica and the
AdvancedBlocks library and | would like to extend
my thanks to them. Specificaly Hilding EImqvist,
Hans Olsson, Sven Erik Mattsson and Dag Bruck
from Dynasim, Martin Otter from DLR and Mike
Tiller from Ford Motor Company.

Matlab, Simulink and Stateflow are registered
trademarks of The Mathworks Inc. Modelica is a
registered trademark of The Modelica Association.
Dymola is a trademark of Dynasim AB. Simelica
and AdvancedBlocks are trademarks of Claytex
Services Limited.

8 References

1. S.R. Anderson, C.R. Ciesla, D.M. Carey, R.
Shankar, “A powertrain simulation for engine
control system development”, 1996 SAE
International Truck and Bus Meeting and
Exposition, SAE 962171

2. P.M. Fussey, C.L. Goodfellow, K.K. Overshy,
B.C. Porter, J.C. Whedls, " Integrated
Powertrain (IPT) Modd — Stage 2: Systems

10.

Integration, Supervisory Control and
Simulation of Emissions Control Technology”,
SAE 2001 World Congress, SAE 2001-01-
0928

J.A. MacBain, J.J. Conover, A.D. Brooker,
“Full-vehicle simulation for series hybrid
vehicles’, Future Transportation Technology
Conference, SAE 2003-01-2301

M. Tiller, W.E. Tobler, and M. Kuang,
“Evaluating Engine Contributions to HEV
Driveline Vibrations’, Proceedings of the 2nd
International Modelica Conference

S. Sogima, “Examples of usage and spread of
Dymolawithin Toyota”, Modelica Workshop
2000 Proceedings

“Dymola 5.0 User'sManua”, Dynasim AB.
“Modelica Standard Library 1.5”, The
Modelica Association , 2002

“Modelica Language Specification, Version
2.0", The Modelica Association, 2002.
“SIMULINK Release 13" (documentation),
The Mathworks Inc.

C. Belton, P. Bennet,. P. Burchill, D. Copp, N.
Darnton, K. Butts, J. Che, B. Hieb, M.
Jennings and T. Mortimer, “A Vehicle Model
Architecture for Vehicle System Control
Design”, SAE Congress 2003, SAE 2003-01-
0092

The Modelica Association

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

DrModelica
An Interactive Tutoring Environment for Modelica

Eva-Lena Lengquist Sandelin, Susanna Monemar, Peter Fritzson, Peter Bunus
PELAB, Programming Environment Laboratory
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden
Email: {evale, x02susmo, petft, petbu}@ida.liu.se

Abstract

This paper states the need for interactive teaching
materials for programming languages within the
area of modeling and simulation. We propose an
interactive teaching material for the modeling
language Modelica inspired by existing tutoring
systems for Java and Scheme.

The purpose of this new teaching material, called
DrModelica, is to facilitate the learning of Modelica
through an environment that integrates
programming, program documentation — and
visualization. The teaching material is intended to be
used for modeling and simulation related courses at
the undergraduate and graduate level.

1. Background

The concepts of model, system, and experiment are
central in the area of modeling and simulation. “A
model of a system is anything an “experiment” can
be applied to in order to answer questions about that
system.” [1] “A simulation is an experiment
performed on a model.” [1]

Tools that are used for modeling and simulation are
becoming powerful aids in the product development
process. Using advanced tools and languages to
build a model of a product and then simulate its
behavior, before producing a physical prototype,
reduces the number of errors that can occur during
fabrication. This reduction consequently leads to a
decrease in the time needed to develop the final
product. Furthermore, the earlier the errors are
detected, the cheaper the corrections are.

Not too long ago in the history of modeling and
simulation technology, mathematical models were
implemented by hand. The models were usually

designed on paper using mathematical notation and
the programs written manually in a high-level
programming language, like C or Fortran, and stored
in text files. Much manual work was needed, making
not only maintenance of models expensive, but also
the modification of models hard in order to adapt to
new requirements [2].

2. Interactive Environments

Modelica helps solving problems concerning
modeling and simulation. In order for Modelica to be
used for this purpose, a modeling and simulation

environment is needed. In this section the
MathModelica environment is presented.
MathModelica is partly built on Mathematica

technology, which is also described below.

2.1. Mathematica
Mathematica [3] is a computer algebra system and
programming environment for performing

mathematical computations. The system can be used
in many different ways; the most basic functionality
involves using it as a “calculator”. The user types a
calculation and Mathematica performs it immediately.
However, there is a big difference between what a
traditional calculator can do and what Mathematica
can perform. The system seamlessly integrates a
numeric and symbolic computational engine, graphics

system, programming language, documentation
system, and advanced connectivity to other
applications.

Mathematica can also be used as a modeling and
simulation environment. When a model is simulated
in the environment, the results can be visualized in
various ways, using the P1ot function.

The Modelica Association

125

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

Mathematica is divided into two distinct parts: the
computer algebra engine and interpreter (“kernel”)
that receives and evaluates all expressions sent to it
and the user interface (“front-end”). The front-end
provides the programming interface to the user and
is concerned with such issues as how input is entered
and how computation results are displayed to the
user.

Mathematica’s front-end documents are called
notebooks. A notebook can contain specific
computations, text (including hyperlinks to other
notebooks), graphics, sounds and animations. Using
a hierarchical structure divided into sections,
subsections etc. A notebook can be made to look like
a traditional typeset document, with the advantage
that the calculations can remain active and can be re-
evaluated at any time.

2.2. MathModelica

MathModelica, from MathCore Egineering AB [4],
is a powerful engineering environment for physical
modeling, simulation, analysis and design [5, 6]. In
MathModelica, models are described using
Modelica. Dymola [7], developed by Dynasim [8], is
another powerful Modelica environment.

The MathModelica environment integrates modeling
and simulation with graphic design, advanced
scripting facilities, integration of code and
documentation, and symbolic formula manipulation
provided via Mathematica. Import and export of
Modelica code between internal structured and
external textual representation is supported by
MathModelica. The environment extensively
supports the principle of literate programming and
integrates most activities needed in simulation
design: modeling, documentation, symbolic
processing, transformation and formula
manipulation, input and output data visualization.

The user interface of MathModelica consists of the
Model Editor, the Simulation Center and
Mathematica notebooks. The Model Editor is a
graphical tool for designing models using predefined
library components. The Simulation Center is a
graphical user interface for running simulations and

plotting curves of the models. Mathematica
notebooks provide a text based programming
environment.

3. DrModelica

Understanding programs is hard, especially code
written by someone else. For educational purposes it
is essential to be able to show the source code and to
give an explanation of it at the same time [9].
Moreover, it is important to show the result of the
source code’s execution. In modeling and simulation
it is important to have the source code, the
documentation about the source code, the execution
results of the simulation model, and the
documentation of the simulation results in the same
document. The reason is that the problem solving
process in computational simulation is an iterative
process that often requires a modification of the
original mathematical model and its software
implementation after the interpretation and validation
of the computed results corresponding to an initial
model.

Most of the environments associated with equation-
based modeling languages focus more on providing
efficient numerical algorithms rather than giving
attention to the aspects that should facilitate the
learning and teaching of the language. There is a need
for an environment facilitating the learning and
understanding of Modelica. Also, users are reluctant
to using a programming language that does not
provide an adequate programming environment [10].
All the above-mentioned facts constitute our reason
for developing DrModelica [11], a teaching material
for Modelica. DrModelica is based on MathModelica
[4] and the ideas of Literate programming [12].

Literate programming is a programming methodology
that was introduced by Donald E. Knuth. It represents
the idea of organizing a source program in an “essay”
manner by combining the source code with the
corresponding documentation in the same document.
By doing so it is easier to read and understand the
program.

MathModelica has an interface allowing the user to
write source code as well as documentation in the
same document. The user does not have to switch to a
command prompt to compile the source code, since
this can also be performed in the environment. The
same document also contains plots of the simulation
results. Additionally, in DrModelica the whole
Modelica language is available to the user, unlike
many other tutoring systems, where it is common to
provide a subset of the language. Furthermore, we
have developed a web version of DrModelica, which

The Modelica Association

126

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

has a similar interface and includes most of the OpenModelica compiler has to be downloaded first.
functionality that can be found in MathModelica. The difference between the web version and the
The interface for the web version of DrModelica is MathModelica version of DrModelica is that the
currently available at http://www.DrModelica.org functionality of the web version is limited, for
although in order for the connection between the example there is no possibility to show plots of a
interface and the Modelica compiler to work, the simulated model.
£ DrModelicanb * =10l =]

DrModelica]

Susanna Monemar]

Eva-Lena Lengquist Sandelin

This notebook; is developed to facilitate the leaming of the Modelica language. 1t is o supplementayy material to
PFater Fritzson's book "Principles of Ohfect-Criented Maodeling and Simulation” so the page references balow
e from this book

1 Getting Started 1]

2 A Quick Tour of Modelica]

2.1 Getting Started - First Basic Examples

There iz a long tradition that the first sample program in any computer language is a tiwvial program printing the
World" (p. 17 Since MWodelica iz an equation based language, printing a string does not make much sence. Instead, our]
World Modelica program solves a trivial differential equation. The second example shows how you can write a model that solves a
Differential Algebraic Foquation System (p. 177, In the Van der Pol (p. 197 example declaration as well as initialization and prefiz
ugage are showr in a slightly more complicated way.

2,2 Classes and Instances]

It Modelica objects are created implicitly just by Declaring Instances of Clagses (p. 220, Almost anything in Modelica iz a class,
bt there are some keywords for specific use of the class concept, called Restricted Classes (p. 24). The concept Feuse of
Iodeling Knowledge (p. 257 15 an important part of Modelica. Modelica has several built-in types (like Read, Mteger, Boolean and
String), which has most of the properties a class has and it is possible to change the walue of them during run-time. You can read
more about classes in chapter 3.

2.2.1 Exercises j_

Exerrise 1
Exercise 2
Exercise 3

2.3 Inheritance]

Inheritance (p. 247 iz the ability to extend the behawvior and properties of an essting clags. This way the properties of a specific
clazs can be reused. See chapter 4 for additional details concerning inheritance,

2.3.1 Exercises i

2.4 Generic Classes 1]

In many situations it iz advantageous to be able to express Genenc Patterns (p. 26) for programs. By doing so a substanitial
amount of coding and software maintenance can be avoided by directly expressing the general structure of the problem and
providing the special cases as parameters. In Modelica the clags construct iz general enough to handle generic modeling and

rogramiming. In chapter 4 you can learn more abowt generic classes. *
100% ~ 4] | v 4

Figure 1. The front-page notebook of DrModelica.

The Modelica Association 127 Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

Furthermore, the web version is intended to be used
as a testing environment for evaluating Modelica
code. It is not a teaching material, since there is no
text or examples that the user can learn from.

DrModelica has a hierarchical structure represented
as Mathematica notebooks. The front-page notebook
is similar to a table of contents that holds all other
notebooks together by providing links to them. This

E HelloWorld.nb * I

particular notebook is the first page the user will see
(Figure 1).

In each chapter of DrModelica the user is presented a
short summary of the corresponding chapter of the
book “Principles of Object-Oriented Modeling and
Simulation with Modelica” by Peter Fritzson [1]. The
summary introduces some keywords, being hyperlinks
that will lead the user to another notebook describing
the keyword in detail.

First Basic Class

1 Helloworld

The program contains a declaration of a class called HelleoWorld with two fields and one equation. The first field 15 the vanable =
which is inttialized to a start value 2 at the time when the simulation starts. The second field 15 the wvariable a, which is a constant that
15 initialized to 2 at the beginming of the simulation. Such a constant s prefized by the keyword parameter m order to imdicate that it is
constant during simulation but i3 a model parameter that can be changed between sitmulations.

The Modelica program solves a trivial differential equation: =T

value over tine. The x ' is the tine dervative of 2.

- a * x. The variable % is a state variable that can change

zlass HelloWorld
Real x({start = 1};

parameter Real a = 1;
egquation
der{x) = - a * x;

end HelloWorld

2 Simulation of Helloworld

Simulate [HelloWorld, {t, 0, 4}]

HelloWorld :
{0., 4.} : 502 data points :

<8imulationData:
29:12

{a, = x'}

Z00Z-10-31 11:

1l ewvents :

1A

3 wvariables>

PlotSimulation[x[t], {t, 0, 4},

—x[t]

o oo o
L = e

t

1 i 3 @

125% = <l I

AxesOrigin = {0,

0}1]

Figure 2. HelloWorld class.

The Modelica Association

128

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

Now, let us consider that the link “HelloWorld’ in
section 2.1 in Figure 1 is clicked by the user. The
new notebook, to which the user is being linked (see
Figure 2), is not only a textual description but also
contains one or more examples explaining the
specific keyword. In the class, HelloWorld, a
differential equation is described.

B DiModelica.nb =100

No information in a notebook is fixed, which implies
that the user can add, change or remove anything in a
notebook. Alternatively, the user can create an
entirely new notebook in order to write his/her own
programs or copy examples from other notebooks.
This new notebook can be linked from existing
notebooks.

9 Algorithms and Functions

2.1 Algorithms

:

In Modelica, algorithmic statements can only occur within Algorithmn Sections (p. 2210, starting with the keyword algorith, T

Simple Assignmment 3atements (p. 2227 is the most common kind of statements in algorithen sections. Thereds a special form of
aszsigrrnent staternent that iz only used when the right hand side containg a call to a Function with Multiple Besults (po 2230,

The for-Statement (also called for-loop) iz a comvendent way of expressing iteration (p. 223). When using the for-loop for
iteration we must be able to express the range of values over which the iteration wariable should iterate in a closed form as an
iteration expression. For cases where thiz iz not feasible there is also a While-loop iteration construct in Dodelica (p. 2245 For
conditional expressions the if-Staternent (p. 225) is used. When-Staternents (p. 226 are used to express actions &t event
insterats and are closely related to when-equations. The Eeinit (p. 229) staternent can be used in when-staterments to define new
values for continuous-titne state variables of a model at an event.

The Assert (p. 231) staternent provides a convenient means for specifying checks on model validity within a model
The most common wsage of Tertninate (p. 2317 2 to give more appropriate stopping criteria for terrninating a simlation than a
fized point in time.

9.1.1 Exercises

Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise 5

9.2 Functions

The body of a Modelica function iz a kind of algorithen section that contains procedural algorithendc code to be executed when the
function i Called (p. 233} Since a function is a restricted and enhanced kind of class, it is posgsible to inhent an existing function
declaration in the declaration of a new function. In this way we can declare the common structure of a set of functions as a
Partial Base Function (p. 234) which can be inherited into the functions we warnt to define. A& function with more than one output
formal parameter has Multiple Fesults (p. 235). It iz possible to call functions defined outside of the Modelica language, so called
Esternal Functions (p. 23773

9.2.1 Exercises
Exerrise 1
Exercise 2
Exercise 3

10 Packages

What is a Package?

10.1 Packages as Abstract Datatypes
The notion of a package partly originates from the notion of Abstract Data Type (p. 2477

100z~ 4 |

Figure 3. Chapter 9 in the main page of DrModelica.

)

The Modelica Association

129

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

When a class has been successfully evaluated the
user can simulate and plot the result. These two
actions are performed by the Mathematica
commands Simulate and PlotSimulation.
compiles the code and
PlotSimulation shows a diagram of the result.
Figure 2 shows how HelloWorld uses the
Mathematica commands Simulate and
PlotSimulation.

Simulate

After reading a chapter in DrModelica the user can
immediately practice the newly acquired
information by doing the exercises that concern the
specific chapter. We have written the exercises in

B Exercizel.nb

order to elucidate language constructs step by step
based on the pedagogical assumption that a student
learns better “using the strategy of learning by
doing”. The exercises consist of either theoretical
questions or practical programming assignments.
All exercises provide answers in order to give the
user immediate feedback.

Figure 3 shows Chapter 9 in the teaching material.
Here, the user can read about language constructs,
like algorithm sections, when-statements and
reinit and then practice by solving the exercises
corresponding to the recently read section.

Exercise 1

1 using Algorithm Sections

Write a fimetion, Sum, which caleulates the sura of nrabers, in an arrvay of athitrary size. j

Write a fimction, Average, which caleulates the average of numbers, in an array of athitrary size. Average should use make a function call to Sum. j|

Write a class, Largestiverage, that has two arrays and calculates the average of each of thern. Then it compares the sverages and sets avarishle to true if pren

the first array is larger than the second and otherwise false.

1.1 Answer

100% = 4|

i

Figure 4. Exercise 1 in chapter 9.

Exercise 1 in section 9.1.1 is shown in Figure 4. In
this exercise the user has the opportunity to practice
different language constructs and then compare the
solution to the answer for the exercise. Notice that
the answer is not visible until the Answer section is
expanded. The answer is shown in Figure 5.

Figure 6 shows that circuits created in the Model
Editor of MathModelica can be inserted in
DrModelica as pictures and it can be used to
generate Modelica code from.

The Modelica Association

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

Exercizel.nb _|O

1.1 Answer

1.1.1 Sum

function Sum
input Real[:] x;
output Feal sum;

algorithm
for 1 in l:=zize(x,l) loop
sum = sum + H[1]:
end for;
end Sum;

1.1.2 Average

function Average

input Real[:] x:

output Real awverage;
protected

Real sum;

algorithm

average = Sumix] / size(x,l);
end Average;

1.1.3 LargestAverage

class Largesthverage
parameter Integer[:] AL = f1, 2, 3, 4, 5}:
parameter Integer[:] A2 = {7, &, 91:
Beal averageldl, averagedZ:
Boolean AlLargest(start = false):

algorithm

averagedl := Average (Al):

averaged? 1= hyerage (RZ2);

if averagedl > awveragedz then
Allargest 1= true;

else
AllLargest := false:;

end if:

end Largesthverage:

1.1.4 Simulation of LargestAverage

Simul ate[Largestiverage, {t, 0, 1}]

<SimalationData: Largestdwerage : 2002-10-10 11:

25:45 @ {0., 1.} : 502 data points : 1 ewvents : 13 wariables:
{A1[1] , A1 [2] , &ALl 3], A1 (4], &1 [5] , &AlLargest, AZ[1] ,

AZ[Z] , AZ[3] , averagedl, averageds, —derdunwy, . dunmsy}

Wher we look at the walues in the varishles we see that &2 has the largest average (2) and therefore the variahle £1Largest is

falze (= 0).

{All.argest[1], averagehl[1] , averageh?[1]}

(0., 3., 8.}

100z = 4 |

Figure 5. The answer section to Exercise 1 in chapter 9.

1A

-
.

b x|

The Modelica Association 131

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

I MultDCmotor.nb =

S[=[F3

| v

A DC-Motor by Connecting Components from

Multiple Domains

1 General Description

So far most of the presented models have been of the single domain type being constructed of components from a single application dorain. Howewver, one of the main T
advantages with Iodelica is the ease of constructing multi-dormain models simply by connecting corponents from different dowmains. & DC (direct current) motor is one of

the sirplest exammples illustrating this capability.

This particular raodel contains coraponents from the three domains: mechanical corponents such as inertial the electrical coraponents resistorl, inductorl, signalVoltagel

and ground] as well as pure signal components such as stepl.

[

]'_

| S

Resistort

;{}al\foltagﬁ

Step1

Inductor1

.

Ground

Figure 1 Amalti- domainDC - MotorCircuitmodel withmechanical, electrical and signal block components. 3_

100% « 4]

| H oz

Figure 6. Pictures from the Model Editor in MathModelica can be inserted in the environment.

4. Related Work

During the last two decades interactive teaching
materials have been developed with the purpose of
facilitating the learning process. For example,
DrJava and DrScheme are both interactive teaching
materials for Java and Scheme respectively. These
materials teach the language to the user both by
explaining the concepts of the language and by
letting the user write programs in a beginner-
adjusted environment [13, 14].

DrScheme [14] is a programming environment for
Scheme, providing a graphical user interface, in
which it is possible to edit and interactively evaluate
Scheme programs. The environment is especially
useful for students learning Scheme, since it guides
the student through Scheme in a way similar to an
introductory course [14].

DrJava is an open-source, pedagogic programming
environment for teaching Java. The environment is
influenced by DrScheme, which has served as a

model for DrJava [13]. To facilitate the learning of
Java, DrJava first introduces the concepts of coding,
as well as testing and debugging the source code, and
then focuses on the language semantics.

5. Evaluation of DrModelica

Evaluation methods are important tools for user
interface design. Such methods can be divided into
usability testing methods and usability inspection
methods. The difference between them is that users
are involved in usability testing methods but are not
involved in wusability inspection methods. For
evaluation of DrModelica, both methods have been
used, with specially developed questionnaires [15]
and performing a heuristic evaluation [16].

Using a questionnaire is a usability testing method
and reflects the users’ subjective opinions. It is a
cheap method for testing a system and can be
distributed to many users.

Heuristic evaluation is a usability inspection method,
which is performed by an evaluator, using a checklist

The Modelica Association 132

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

of guidelines to determine the usability of the user
interface. This method is easy to learn and
inexpensive to perform. Most of the general usability
problems can be identified using a heuristic
evaluation. The method requires some experience
with heuristic evaluation principles for an optimal
result. However, even a non-expert can find many
usability problems using a heuristic evaluation.

5.1.

Twelve students attending a graduate Modelica
course at Linkdping University tested DrModelica.
After a few weeks they were asked to answer a
questionnaire. All testers were engineering students,
either in the area of physics or computer science.
The questions in the questionnaire concerned their
expectations of the teaching material and if their
expectations were fulfilled, what they felt about the
approach using literate programming and the
structure and layout of the material. The results of
the questionnaire were positive. For example,
Literate programming was appreciated when
programming Modelica. The test group generally
found DrModelica to be a better way of learning a
programming language, compared to the way they
were used to.

Evaluation using Questionnaire

The structure of DrModelica and the way of
navigating between the notebooks was, according to
the test group, fairly easy. The exercises at the end of
each chapter were also appreciated by the students.
In this way the student was able to “directly use the
collected knowledge”, referring to one of the testers.

5.2.

Three usability experts from HCS (Human Centered
Systems), at the Department of Computer and
Information Science (IDA) have performed a
heuristic ~ evaluation on DrModelica. When
performing the evaluation, the evaluators used the
guidelines from “Ten Usability Heuristics” [17].
They are listed below:

Heuristic Evaluation

1. Visibility of system status: The system should
always keep users informed about what is going
on, through appropriate feedback within
reasonable time.

Match between system and the real world: The
system should speak the users' language, with
words, phrases and concepts familiar to the user,
rather than system-oriented terms. Follow real-

world conventions, making information appear in
a natural and logical order.

User control and freedom: Users often choose
system functions by mistake and will need a
clearly marked "emergency exit" to leave the
unwanted state without having to go through an
extended dialogue. Support undo and redo.

Consistency and standards: Users should not have
to wonder whether different words, situations, or
actions mean the same thing. Follow platform
conventions.

Error prevention: Even better than good error
messages is a careful design which prevents a
problem from occurring in the first place.

Recognition rather than recall: Make objects,
actions, and options visible. The user should not
have to remember information from one part of
the dialogue to another. Instructions for use of the
system should be visible or easily retrievable
whenever appropriate.

Flexibility and efficiency of use: Accelerators --
unseen by the novice user -- may often speed up
the interaction for the expert user such that the
system can cater to both inexperienced and
experienced users. Allow users to tailor frequent
actions.

Aesthetic and minimalist design: Dialogues
should not contain information which is irrelevant
or rarely needed. Every extra unit of information
in a dialogue competes with the relevant units of
information and diminishes their relative
visibility.

Help users recognize, diagnose, and recover from
errors: Error messages should be expressed in
plain language (no codes), precisely indicate the
problem, and constructively suggest a solution.

10. Help and documentation: Even though it is better
if the system can be used without documentation,
it may be necessary to provide help and
documentation. Any such information should be
easy to search, focused on the user's task, list
concrete steps to be carried out, and not be too

large.

The evaluation gave many valuable results. The
evaluators found that learning how to use DrModelica
was easy in general. However, realizing how some of
the functionality works was, according to the

The Modelica Association

133

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

evaluators, not so intuitive. For example it can be
hard to discover the ability to collapse and expand
sections. Though, once it was known how to use the
functionality they found easy. Furthermore,
according to the evaluators it might be confusing that
a link in some cases opens a new window and in
other cases refers to another chapter in the same
window. This is a problem concerning heuristic
number 4. Another problem, when being linked to
another page, is that there is no feedback telling the
user that a new page has appeared in front of the
previous one. This is a problem mostly concerning
heuristics number 1, 2 and 3. When a new window is
opened in front of the other the user is not properly
informed about what is going on, since there is no
feedback that the window was just being opened (see
heuristic number 1). This involves another problem,
taking the user back to the former window. This is
currently resolved by closing the window, but it
would be better solved by having a “back”-button,
following real-world conventions (see heuristics 2
and 3). Heuristics number 5, 8 and 9 concern
dialogues and error messages, none of which exist in
neither DrModelica nor MathModelica, but that is
why the environment does not have a need for it.
Heuristic number 10 concerns help and
documentation. There is a help section on how to
start using DrModelica, which was appreciated by
the users.

The evaluators also found that DrModelica was less
intimidating than other programming environments,
since the user is presented with an environment
similar to a document showing only a small amount
of functionality. This leads the user to believe that
DrModelica is a reading material. However, after
using the material for a while the user discovers that
DrModelica could be used for programming as well.
A common approach adopted by many programming
environments is to lead the user in the opposite
direction, by presenting all functionality from the
beginning. This approach can have a discouraging
effect on the user.

6. Future Improvements

Considering the results of the evaluation and
comparing our work with related work we have
discovered some possible improvements that can be
implemented in the future. Here follows a list of
these improvements:

A suggestion from the students, attending the
Modelica graduate course, is to extend DrModelica to
contain more exercises on simple as well as more
complex constructs in order for the student to get
more practice.

Since it can be difficult to learn how to use the
functionality in DrModelica, an idea is to make an
introductory exercise for practicing the basics step by
step instead of just reading a long introductory text.

Links between files containing different variants of
the same term should be added.

Currently the exercises in the material mainly concern
language specific constructs, it would be desirable to
add exercises reflecting the purpose of Modelica. The
material needs to be extended with more exercises in
general.

Features, like parenthesis matching and keyword
highlighting, used in DrScheme and DrJava, would be
helpful when programming.

7. Summary and Conclusions

In this paper we have presented the interactive
teaching material for Modelica, based on
MathModelica, called DrModelica. DrModelica has
the goal of teaching Modelica in an environment that
has the purpose of facilitating the learning process of
the language. Because of the complexity of learning
Modelica there is a need for such a material.

DrModelica is based on Literate programming, which
enables the user to write, document and execute the
source code in the same file or entity. This file or
entity becomes a Literate program. In DrModelica the
documentation about the source code is not embedded
as comments in the code, but instead separated from
the code in specific sections only with the purpose of
containing text.

The Literate programming approach is extended in
DrModelica, in such a way that the result of the
executed Modelica program is included in the same
file or entity. The results of the source code can be
shown in the form of diagrams. This is a necessary
part of DrModelica, since Modelica is a programming
language used for creating models of complex
physical systems and there is a need to check if these
models’ behaviour follows the specification or
comply with the user intent.

The Modelica Association

134

Modelica 2003, November 3-4, 2003

Eva-Lena Lengquist Sandelin et al.

DrModelica - An Interactive Tutoring Environment for Modelica

The evaluations of DrModelica resulted in many
valuable opinions. The members of the test group,
answering the questionnaire, generally found
DrModelica to be a better way of learning a
programming language compared to ways they are
used to. One conclusion that can be drawn from the
evaluation is that DrModelica is a good teaching
material for Modelica. The evaluators also found that
Literate programming is a methodology suitable for
learning Modelica. DrModelica is developed with
the programming environments DrJava (for Java)
and DrScheme (for Scheme) in mind.

There is a need for a programming environment for
Modelica and DrModelica will hopefully fill this
need and increase the usage of Modelica by
facilitating the learning process.

The interested reader can visit:
http://www.DrModelica.org, where a short version
of DrModelica is freely available for download. The
full version of the material is included in the
software MathModelica and in “Principles of
Object-Oriented Modeling and Simulation with
Modelica” by Peter Fritzson.

References

[1] Fritzson, P., Principles of Object-Oriented
Modeling and Simulation with Modelica. 2003:
IEEE Press and John Willey.

[2] Grubb, P. and A.T. Armstrong, Software
Maintenance Concepts and Practice (Second
Edition). 2003: World Scientific Pub Co.

[3] Wolfram Research, Mathematica. 4 ed. 1999,
Champaign, Illinois: Wolfram Research, Inc.

[4] Fritzson, P., J. Gunnarsson, and M. Jirstrand.
MathModelica - An Extensible Modeling and
Simulation Environment with Integrated
Graphics and Literate Programming. In
Proceedings of the 2nd International Modelica
Conference. 2002. Munich Germany.

[5] Jirstrand, M. MathModelica - A Full System
Simulation tool. In Preceedings of the 6th

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

Conference on Product Models, Global Product
Development. 2000. Link6ping, Sweden.
Fritzson, P., et al. The Open Source Modelica
Project. In Preceedings of the 2:nd International
Modelica Conference. 2002. Munich, Germany.
Elmgvist, H., D. Bruck, and M. Otter, Dymola -
User's Manual. 1996, Dynasim AB, Research Park
Ideon: Lund.

The Dynasim Home Page, Dymola for Your
Complex Simulations. Available at:
http://www.dynasim.se. Last accessed August,
2003.

Normark, K. Requirements for an Elucidative
Programming Environment. In Preceedings of the
International Workshop on Program
Comprehension, IWPC'2000. 2000. Limerick,
Ireland.

Ducassé, M. and J. Noy¢, Logic Programming
Environments: Dynamic Program Analysis and
Debugging. 1994. 19/20: p. 351-384.

Lengquist Sandelin, E.-L. and S. Monemar,
DrModelica - An Experimental Computer-Based
Teaching Material for Modelica, Master Thesis
Department of Computer and Information Science.
2003, Linkoping University, Sweden.

Knuth, D.E., Literate Programming. The
Computer Journal 1984. NO27(2): p. 97-111.
Allen, E., R. Cartwright, and B. Stoler. DrJava. A
Lightweight Pedagogic Environment for Java. In
Preceedings of the 33rd ACM Technical
Symposium on Computer Science Education
(SIGCSE 2002). 2002. Northern Kentucky, USA.
Findler, R.B., et al. DrScheme: A Programming
Environment for Scheme. A Preliminary Version
Appeared at Symposium on Programming
Languages: Implementations, Logics, and
Programs in 1997.2001.

Nielsen, J., Usability Engineering. 1993, San
Diego: Academic Press Inc.

Nielsen, J. and R.L. Mack, Usability Inspection
Methods. 1994: John Wiley and sons inc.
Nielsen, J., Ten Usability Heuristics. 1994.
Available at: http://www.useit.com/papers/
heuristic/heuristic_list.html. Last accessed
September 2003.

The Modelica Association

135

Modelica 2003, November 3-4, 2003

The Modelica Association 136 Modelica 2003, November 3-4, 2003

Session 4A
Automotive Simulation — I11

The Modelica Association 137 Modelica 2003, November 3-4, 2003

The Modelica Association 138 Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

Simulation of Engine Systems in Modelica

John Batteh

Michael Tiller

Charles Newman

Ford Motor Company, Powertrain Research Department
Dearborn, MI USA
{jbatteh, mtiller, cnewman } @ford.com

Abstract

This paper details the use of the Modelica
modeling language for the simulation of engine
systems. The first part of the paper briefly outlines
some of the challenging, multi-domain components
of engine system modeling and is followed by a
discussion of some of the connectors, interfaces,
and model templates that enable robust, efficient
model development. The remainder of the paper
presents selected modeling examples with
particular attention to the structure and
implementation of the models that promotes model
flexibility and re-use.

1 Introduction

As automobile manufacturers face increasing
pressure to reduce emissions, increase fuel
economy, reduce development costs, and enhance
vehicle performance and driveability, it has
become especially crucial to consider optimization
opportunities at the system level. While it is
conceptually possible to obtain system
improvements via prototype hardware fabrication,
this process is inefficient, costly, and sub-optimal.
With the development of modeling tools that allow
robust, multi-domain, system-level simulations, it
is becoming increasingly attractive to perform this
optimization process in the virtual environment.

Engine systems, in particular, contain a wide range
of multi-domain physical modeling challenges [1].
Table 1 contains a partial list of physical processes
and modeling domains that could be considered in
the modeling of a spark-ignited (SI) engine system
depending on the particular analysis and desired
level of detail. Due to the wide variety of physical
processes and modeling domains along with the
inherent interactions, it is imperative to have a
descriptive language that is capable of modeling
across the different physical domains. This need
only increases as more of the overall vehicle
system and associated attributes (e.g. NVH, safety,
etc.) are included.

Table 1. Physical processes and modeling
domains for an engine system

Modeling
Physical P . O
ysical Process Domain(s)
Intake and exhaust valve actuation
. M, F
mechanisms
Intake and exhaust flow past the T
valves
Piston and crankshaft motion M
Manifold dynamics in the intake
T,F
and exhaust systems
Injection and transport of liquid
T
fuel and fuel vapor
In-cylinder fluid motion T,F
Ignition and flame propagation in T Ch
the combustion chamber ’
Heat transfer between the gas, fuel,
Th
coolant system, and metal surfaces
Frlctlongl effects in engine, M, Th
valvetrain, and powertrain
Emissions formation and mitigation | T, Th, Ch
Thermal response of the intake
. Th
system, engine, and exhaust system
Coolant and lubrication flow F
Powertrain, chassis, and mount
dynamics
Legend
Ch = Chemical
F = Fluid (distributed)
M = Mechanical
T = Thermodynamic
Th = Thermal
Modelica' [2] with its high-level, acausal,

declarative formulation for physical modeling is an
ideal language for multi-domain system
simulations. The Modelica standard
Mechanical, Rotational, MultiBody, and
Thermal libraries contain the connector
definitions, interfaces, and basic models that
provide the framework for the modeling of engine
systems. The sections that follow discuss the use

! Modelica is a trademark of the Modelica Association

The Modelica Association

139

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

of these standard libraries along with the
supplemental connectors and associated models
that enable the formulation and simulation of
engine system models.

2 Physics Overview

For each of the physical processes described in
Table 1, models of varying level of detail can be
formulated. Due to the number of component
models used in a typical engine systems
simulation, it is impractical to discuss the physics
of particular models in detail. This section is
meant to give a very brief overview of some of the
physics involved in engine systems modeling.

Mechanical modeling in an engine system includes
a combination of 1D and multi-dimensional
dynamics. Typically, the multi-dimensional
dynamics are of interest in detailed models of the
vehicle dynamics and mounting systems. A 1D
approach is often used in modeling the engine
itself. Within the 1D framework, the model of the
valve actuation mechanism can either include
kinematic relationships (i.e. cam motion
constrained to the motion of the crankshaft with
valve lift prescribed as a function of the cam
motion) or dynamic behavior (see [3] for a
discussion of a dynamic, camless valve actuator
model). Similarly, the piston can be modeled as
massless using kinematic relationships between the
piston, crank-slider, and crankshaft or can include
the effects of piston mass from a force balance.

Modeling the thermodynamics is a crucial part of
engine systems modeling. Typically several
control volumes are formulated for which
fundamental equations for energy and mass
conservation are applied:

—=0-W 1

" 0 (1
i @
dt

A typical engine model might include one (or
several) control volumes in the cylinder, the intake
system, and the exhaust system with mass and
energy exchange between the volumes. Flow past
the valves in an engine is typically modeled using
isentropic relationships for flow past an orifice
with an experimentally determined discharge
coefficient [1]. The calculations of the requisite
thermodynamic properties come from models with
varying treatments of the species (i.e. fuel, fresh
air, etc.) and levels of detail (i.e. constant c, and c,,

polynomial property functions, chemical
equilibrium mixture calculations [4], etc.). Fluid
modeling is similar to thermodynamic modeling
but usually involves a larger number of distributed
control volumes and may involve the conservation
of momentum as well. For example, accurately
capturing the pressure dynamics of the flow in
induction and exhaust systems requires a high level
of discretization, perhaps even with specialized
numerical techniques for shock capturing.

Heat transfer and thermodynamics are intimately
linked in engine systems via Eq. (1). Convective
heat transfer between the gas and the metal
surfaces affect the volumetric efficiency of the
engine, heat losses during the power stroke, heat
losses in the exhaust system, and the thermal
response of the engine and exhaust system
components. The convective heat transfer is
modeled from the fundamental constitutive
equation:

O=hAlT, -T,) 3)
where the average convective heat transfer
coefficient comes from experimental correlations.
Cold start thermal response of the engine
components is key from the standpoint of both
mixture preparation and emissions formation and
mitigation.

Combustion is a highly complex process involving
thermodynamics, heat transfer, fluid motion, and
chemical kinetics. Combustion models come in
many flavors and with varying levels of fidelity.
The combustion process can be simplified to a
prescribed heat release process, such as a Wiebe
function [1] for mass fraction burned. More
detailed, predictive combustion models typically
can account for multi-zone combustion and heat
transfer, the effects of charge motion on the
combustion process, variations in the laminar
flame speed for different cylinder conditions, etc.
(see [4] and the references therein for a description
of a detailed combustion model in Modelica).

3 Interfaces

Standard interfaces are a key element for
developing flexible models. Experience has shown
that the most powerful and flexible Modelica
libraries are based on solid connector definitions.
The remainder of this section discusses some of the
modeling elements that comprise the engine
architecture.

The Modelica Association

140

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

3.1 Thermal Architecture

The heat transfer process plays a significant role in
engine systems modeling. The interaction between
the air in the cylinder and the metal surfaces in the
intake, exhaust, and cylinder affects the liquid fuel
preparation process along with the volumetric
efficiency, performance, and emissions of the
engine.

One challenge in modeling the thermal effects in
the engine is the variety of different models that
can be used to represent the thermal response of
the various pieces. For example, an engine thermal
response model could be formulated on a cylinder-
by-cylinder basis or could be a lumped model at
the engine level. To allow for both of these
formulations and to minimize the number of
connections between the engine or cylinder and the
thermal models, the special thermal connectors in
Figure 1 were developed. Modelica code
fragments for these connectors are shown in Figure
2. The CylinderTemperatures connector
is a “mega connector’- a connector that is an
aggregate of other connectors- and can be thought
of as a thermal bus. It contains a number of
thermal and friction connectors that comprise the
pre-defined standard thermal cylinder architecture.
This architecture defines the elements that are
included in every cylinder thermal response model
and is represented graphically in Figure 3. This
breakout box explicitly shows all the connectors
that are lumped into the single
CylinderTemperatures connector and is
used in the low-level cylinder heat transfer models
to facilitate the graphical connection of the
individual elements of the heat transfer model.
The ThermalEnvironment connector is the
engine-level connector and is an array of
CylinderTemperatures connectors. This
parametric representation scales with the number
of cylinders being modeled and, by consolidating
the signals onto one connector, allows for a single
connection between the engine and the engine
thermal response model at the top level. The
cylinder and engine connectors will be seen
repeatedly in the standard interfaces that follow.

-

(a) Cylinder

(b) Engine

Figure 1. Thermal connectors

connector CylinderTemperatures
import HeatTransfer=Modelica.Thermal.HeatTransfer;
outer parameter Ford.Types.EngineTopology
engine_topology;
HeatTransfer.Interfaces.HeatPort a head;

HeatTransfer.Interfaces.HeatPort_a intake_valves]|
engine_topology.intake valves];
HeatTransfer.Interfaces.HeatPort_a block _coolant;
HeatTransfer.Interfaces.HeatPort_a cylinder_liner;
HeatTransfer.Interfaces.HeatPort_a piston;

HeatTransfer.Interfaces.HeatPort a oil;
Ford.Engine.Interfaces.Friction valvetrain;

end CylinderTemperatures;

connector ThermalEnvironment
outer parameter Ford.Types.EngineTopology
engine_topology;
CylinderTemperatures
cylinder temperatures[engine_topology.cylinders];
end ThermalEnvironment;

Figure 2. Excerpts from the thermal connectors
models

Figure 3. Breakout box showing elements of
CylinderTemperatures connector

The thermal architecture in the engine provides the
framework for the interactions between the cycle
simulation models and the engine temperature
models, thereby allowing independent selection of
the either model. Roughly speaking, the cycle
simulation models are responsible for computing
the "metal-gas" thermal interactions while the
engine temperature models calculate the "metal-
fluid" interactions.

3.2 Cylinder Interface

The cylinder interface defines the framework for
the cylinder implementation process. The standard
interface is shown in Figure 4 and defines the
exterior connection points for the cylinder. The
partial model contains three 1D rotational
connectors, one each for the crankshaft, camshatft,
and engine block. The connection to the engine
block allows for the rotational motion of the engine
on the mounts. The interface also includes the

The Modelica Association

141

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

previously discussed CylinderTemperatures
connector for the cylinder thermal environment
along with thermodynamic connectors for both the
induction and exhaust systems. The
thermodynamic connectors contain pressure,
temperature, species mass fraction, species mass
flow rates, and convected energy along with
information related to fluid properties. It is
anticipated that these thermodynamic connectors
will be replaced with those from the Modelica

standard fluids library currently under
development [5].

Induction Exhaust
System VY A/_ System
A—L;

Camshaft Engine
[block
Cylinder []

environment . .
Crankshaft

R
L a

Figure 4. Cylinder interface

3.3 Engine Interface

The standard engine interface is shown in Figure 5.
This partial model contains two 1D
rotational connectors, one each for the crankshaft
and the engine block. In addition, the interface
contains a ThermalEnvironment connector
to represent the engine thermal behavior. Note the
absence of the induction and exhaust system
thermodynamic connectors in the engine interface.
These connectors have been omitted from the
interface definition so that derived models can
define their own plenum configurations (i.e. single
plenum, dual plenum, etc.). Section 4.2 describes
models that extend from this engine interface and
instantiate the needed components (i.e. cylinders,
etc.) for a complete engine implementation.

Engine
block
L Engine
Crankshaft /_ environment
‘ranksha
eoo
eoo

Figure 5. Engine interface

3.4 Medium Models

The working fluid is defined wusing the
MediumModel idiom [4]. This approach defines a
consistent set of models, functions, constants, and
connectors that contain all the medium-specific
information and thus define a particular
implementation of the MediumModel idiom. For
example, the material property calculations,
equations of state, chemical species representation,
combustion chemical kinetics, and associated
helper functions could be included in the
formulation. Implemented via replaceable
packages, the MediumModel idiom enables the
orthogonal development of property models and
the components that use them (i.e. the
decomposition of medium and machine) and
provides an organized, consistent framework for
the development of models with varying levels of
detail.

Because the medium-specific information is
contained wholly within the replaceable package,
the working fluid specification can be changed at a
single place at the highest level of the model with a
consistent application of the change reflected
throughout the model hierarchy. This "flip of a
switch" flexibility is enhanced by the addition of
the choices annotation in the Modelica
language. The MediumModel concept is currently
being used in the development version of the
Modelica standard fluids library [5].

3.5 ModelData Structure

Populating hierarchical model structures with
consistent data is a non-trivial task, especially
considering the different data required for models
of the same type but with varying levels of fidelity.
To ensure a consistent application of data
throughout the modeling structure, the
MediumModel concept [4] has been adapted to
organize data required for the engine models. A
new ModelData package has been created to serve
as the repository for the data required for the
various models in the main library. Inside this
package are sub-packages that correspond to the
various subsystems in the vehicle (e.g. Engine,
Transmission, efc.). Finally, packages exist that
contain the particular data for a given entity (i.e. a
vehicle, specific transmission, efc.). The various
components that use the model data contain a
replaceable package called EngineData
from which specific elements are instantiated.
Thus, a single redeclare of the EngineData package
at the top-level of the model hierarchy populates

The Modelica Association

142

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

the entire hierarchy with a consistent data set for
simulation of a particular system. The
redeclare is simplified by the support for the
choices annotation in the Dymola® [6] GUI.

3.6 SignalBus Concept

The SignalBus concept [7, 8] is used to pass
control signals throughout the model hierarchy.
This concept uses the inner and outer
semantics to propagate the control signals without
requiring connections at every level in the model

hierarchy. This technique facilitates the
propagation of the control signals for replaceable
components which typically require varying

control signals for different levels of model
fidelity. The SignalBus concept requires a top-
level definition that represents the union of all the
control signals and is coupled with selective
definition and use of the control signals at the
lower model levels. The interested reader is
referred to [7, 8] for more discussion of the
implementation of the SignalBus idiom.

4 Model Templates

While the standard interfaces discussed in the
previous section provide a nice framework for a
flexible, reusable modeling system, it is highly
desirable to have more extensive models pre-built
to establish a higher-level starting point for the
model developer. This section provides some
sample template and configuration models with a
focus on the key Modelica language features that
contribute to the flexibility. Additional details of
the templates and configuration options are given
in [8].

4.1 Cylinder Configurations

The majority of the work in engine modeling is
focused on establishing the proper model for the
cylinder. This process involves choosing the
intake and exhaust system models (including the
valve actuation mechanism), the combustion and
heat transfer models, and populating the models
with the appropriate data (i.e. bore, stroke,
compression ratio, valve timings, etc.). To
streamline the effort in assembling the cylinder
design model, it is desirable to create a baseline
cylinder model that can be used as the starting
point for many different variants via the Modelica
replaceable feature. Figure 6 shows the
MinimalCylinder model that serves as a base

* Dymola is a trademark of Dynasim AB

model for various cylinder designs (note the
components from the cylinder interface shown in
Figure 4). An excerpt of the Modelica code is
provided in Figure 7. Note the extensive use of
replaceable types. Currently, the modifiers
are applied to the instantiated components to
ensure that the modifiers are picked up during a
subsequent redeclare. In Modelica 2.1, the
semantics of redeclare have been defined
more explicitly to address the issue of modifiers
with replaceable and redeclare. The
combustion and heat transfer models are not
included in MinimalCylinder and are left to
be instantiated in an extending model. The
MinimalCylinder template provides a
flexible platform for creating cylinder models from
different configurations and fidelity levels.

intake_system exhaust_syst

eeeeeeeeeeee

e

L

Figure 6. MinimalCylinder template model

partial model MinimalCylinder
extends Ford.Engine.BaseClasses.Cylinder;
replaceable model ControlVolume =
Thermodynamics.VariableControlVolume;
Control Volume combustion_ chamber (modifiers) ;
replaceable model Piston=Drivetrain.MasslessPiston
extends Ford.Engine.Interfaces.Piston;
Piston piston(modifiers);
Mechanical.Crank crank (modifiers);
InCylinder.ChamberVolume chamber volume (modifiers);
replaceable model IntakeSystem =
Ford.Engine.Interfaces.IntakeExhaust;
IntakeSystem intake system(modifiers);
replaceable model ExhaustSystem =
Ford.Engine.Interfaces.IntakeExhaust;
ExhaustSystem exhaust system(modifiers);

éhd MinimalCylinder;

Figure 7. Code excerpt for MinimalCylinder

Figure 8 shows such an extension of the
MinimalCylinder model with the intake and
exhaust systems redeclared to be conventional,
fixed valve timing models and the instantiation of

The Modelica Association

143

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

Wiebe [1] combustion and Woschni-type [9] heat
transfer models. Taking advantage of the
replaceable components allows model
variants to be quickly created with a minimum
amount of model re-wiring, configuration, and
code duplication. This sort of "plug and play"
flexibility allows model assembly via simple
redeclare statements for existing components.
In terms of the valvetrain models, model variants
exist to account for different valve actuation
mechanisms, timing and phasing strategies, and
configurations. The ideal piston could be replaced
with a model that accounts for the effects of piston
mass. Liberal use of the replaceable
components is the key Modelica language feature
for establishing these sorts of template models for
"plug and play" configuration.

Figure 8. Fixed timing, Wiebe cylinder model

4.2 Engine Templates

Having established a flexible framework for the
cylinder design process, it naturally follows that
templates should be established for the various
engine configurations. Again, these templates help
to minimize the modeling effort for assembling
model variants, which at the engine level means
building an engine model using a new cylinder
design. Templates exist for various engine/plenum
configurations (i.e. single cylinder, 14, V6, V8,
etc.) as shown in Figure 9. Each template extends
from the engine interface in Figure 5 and includes
all of the connections between the cylinder(s) and
the external interfaces. The key feature in each of
the engine configurations is the replaceable
CylinderModel shown in the code excerpt in
Figure 10. This CylinderModel is then
instantiated repeatedly for multi-cylinder engines.

Therefore, creating a stand-alone engine model is
simply a matter of extending from the appropriate
engine template and redeclaring the
CylinderModel. This single redeclare of the
CylinderModel type is then used for the
instantiation of each cylinder in the engine.

(c) V6 engine with two intake plenums

Figure 9. Engine configurations

replaceable model CylinderModel =
Interfaces.Cylinder;
CylinderModel Cylinderl (shift=crank shift[1],
redeclare package MediumModel
= MediumModel)

Figure 10. Code excerpt for engine templates

The Modelica Association

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

4.3 Experimental Templates

Extending the template abstraction even further,
templates have been created for common types of
simulation experiments. Figure 11 shows
examples of an experimental setup for an engine
on a dynamometer (a) and for a cranking engine
(b). Code excerpts from the template base class
are shown in Figure 12. These generic templates
can be simulated for a particular engine
configuration and cylinder design by simply
extending from the appropriate template and
adding a redeclare for Configuration and
CylinderModel. This technique allows single
templates to be used for every existing engine
configuration and cylinder design that conforms to
the interfaces in Figures 4-5.

Dyrsno

soter_toraie
= starter crankshaft
L
N/
FARV

perod={1)

(b) Cranking

Figure 11. Templates for dyno and cranking
experiments

replaceable model CylinderModel =
Interfaces.Cylinder extends
Ford.Engine.Interfaces.Cylinder;

replaceable model Configuration =
Interfaces.Engine;

replaceable Configuration engine (modifiers);

Figure 12. Code excerpt from experimental
template base class

5 Model Examples

This section presents some examples of engine
system simulations. These examples illustrate the
use of the experimental templates and also show

how models of increasing complexity can be built
using the modeling framework discussed
previously. Each model was simulated using
Dymola [6].

5.1 Engine Cranking

The key-on crank of the engine is a complex,
dynamic process involving the electrical system
and controls, along with the actual engine itself.
Controlling and optimizing the engine cranking
behavior is crucial from the standpoint of both
emissions and customer feel. This section shows
some results from a detailed, multi-domain model
of a cranking engine.

The crank model shown in Figure 13 is built upon
the cranking template in Figure 11b. The
Configuration has been defined as a single-
cylinder engine with a CylinderModel that
includes detailed, multi-zone, predictive
combustion [4]. The intake reservoir has been
replaced by a dynamic model of the manifold and
throttle. The engine warmup model is a simple,
fixed temperatures model. The control and
electrical systems have been simplified such that
the starter applies the commanded torque for 0.5s
at 0.25s. The treatment of the engine friction is
simplified in this model to a constant opposing
torque starting at 0.5s. In this simulation, the
throttle is closed to represent idle conditions.
During the cranking process, the liquid fuel
dynamics are extremely important since mixture
preparation is inhibited at low speeds, high
manifold pressures, and under cold conditions.
While these effects can be considered within this
modeling framework [3, 10], they are not included
in these simulations.

© =

thrattle_angle

starter

N

crankshaft
N

1]

—

startTime=(0.5,

)

ical_friction |

51

tau

Figure 13. Model for cranking engine

simulation

The Modelica Association

Modelica 2003, November 3-4,

2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

This single-cylinder cranking simulation with fixed
metal temperatures has 207 components, 1033
time-varying variables, 1120 non-trivial equations,
and 53 states. Figures 14-15 show the response of
the engine speed and manifold pressure during the
first 3s of the cranking simulation. The starter
begins to spin the engine up at 0.25s. The
manifold starts at approximately ambient pressure
and then begins to pump down due to the emptying
and filling process between the upstream intake
reservoir (the ambient) and the engine. Note the
"oulping" from the manifold due to the single-
cylinder engine. A multi-cylinder engine results in
the smoothing of the pumping down of the
manifold due to the more frequent breathing from
the multiple cylinders. The engine speed increases
rapidly during the first few firing events since the
manifold pressure is still high, resulting in a large
amount of combustible mass in the cylinder. The
engine speed starts to drop as the manifold pumps
down and starts approaching a steady idle speed of
1700 RPM.

3000

2500 - - - -

2000 - - - -

1000} - - - -

Engine Speed [RPM]

500 - - -

|
|
+
|
|
n
|
|
|
1500 - - -~ *
|
4
l
l
|
|
|
!

I
NFr---r---r-~~71-~~71-~§7--"1

1.5
Time [s]

N
(3]
w

Engine speed response

Manifold Pressure [Pa]

Figure 15. Manifold pressure response

5.2 Exhaust System Warmup

Vehicle thermal management is a critical issue in
light of the recent legislation mandating lower
emissions levels. The optimization of the engine
system, from start-up strategy to component design
of the intake, cylinder, and exhaust systems, is a
key enabler to meeting more stringent emissions
standards by reducing engine-out emissions and
light-off time for the three-way catalyst. This
section shows an engine system, cold start
simulation from crank for evaluation of the thermal
response of the exhaust system.

The model used in this simulation extends from the
cranking engine model discussed previously
(Figure 13). This version replaces the fixed
temperatures model for the engine with the
dynamic thermal response model shown in Figure
16. This model is extended from the work in [11]
and includes models for the warmup of the piston,
head, block, and valves along with a simplified
representation of the oil and coolant loops. This
simulation also includes a model, shown in Figure
17, of the exhaust system, including the exhaust
manifold and downpipe leading to the catalyst.
This model is based on [12] and includes
distributed models for the thermal interaction
between the exhaust gas and the pipe wall. The
effects of forced convection between the gas and
the wall, conduction along the pipe wall, and
natural convection between the pipe outer wall and
the ambient are included.

hhhhhh

Figure 16. Engine thermal response model

The Modelica Association

146

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

Figure 17. Exhaust system model

The cold start, cranking model with variable metal
temperatures and an exhaust system has 924
components, 5476 time-varying variables, 5825
non-trivial equations, and 221 states. The increase
in the number of equations and states from the
cranking simulation discussed in Section 5.1
results mainly from the inclusion and discretization
of the pipes in the exhaust system. Each of the 8
pipes in Figure 17 was divided into 10 elements
along its length, and each element has 2 states (one
each for the temperature of the exhaust gas and the
temperature of the pipe wall in the element).

To simulate the start of the FTP drive cycle test for
emissions, the model was run for approximately 20
seconds. This test begins with a cold crank and
idle until approximately 20 seconds when the first
acceleration occurs. Figure 18 shows the thermal
response of some of the components in the engine
thermal model (Figure 16). Note that the
components that receive heat directly from the gas
in the cylinder (i.e. piston, head, liner) start to
warm first. The piston has a lower thermal
capacitance than does the liner and the head so it
warms more quickly. The temperature rise from
ambient is fairly modest due to the large thermal
capacitance of the engine and the short simulation
time (typical engine warm-up occurs over several
minutes).

The temperature of the exhaust gas as it traverses
the exhaust system is crucial as the thermal energy
in the gas is responsible for warming the three-way
catalyst to the elevated temperatures at which it
becomes effective. Figure 19 shows the transient
temperature of the exhaust gas as various points in

the system. The highest temperatures are at the
entrance to the exhaust port (just past the exhaust
valve) with temperatures decreasing along the
system due to heat loss to the cold pipe walls. The
highest exhaust gas temperature occurs roughly at
the maximum speed (see Figure 14) where
maximum amount of combustible mass is trapped
in the cylinder due to the high manifold pressure.
Note the large drops in temperature throughout the
system. Minimizing the amount of energy lost in
the exhaust manifold and piping leading to the
catalyst during a cold start is crucial for
minimizing catalyst light-off times. This sort of
engine system model can be used to effectively and
efficiently evaluate different engine startup
strategies and hardware designs and their effects on
exhaust system thermal response.

306 I \ \
— Piston : :Piston
—— Liner ! |
304- Y H----- oo
Head |
Coolant (head) |,
302 —o0il 00 T
®
2300 A
o
2
€298 Ao
[}
[

N
©
(=)

294

Figure 18. Thermal response of engine
components

1400~~~ SRR EEEEEEES
|
|

1200 \ — Exhaust Port

| — Runner Junction

[Manifold Exit

—— Catalyst Entrance
I

-
o
o
o

Exhaust Gas Temperature [K]

800 - -|-[-—- -~ ‘,,,,,,,,T,,,,RU_I’LD‘BIJUFICIIQD,
: : l
| | |
600 -1~ =" . I 1
! ! Catalyst Entrance
400 - f ————— To--—-—-- SREREEEEE
| | |
1 1 1
0 2 4 6 8
Time [s]

Figure 19. Thermal response of exhaust gas

The Modelica Association

Modelica 2003, November 3-4, 2003

John Batteh, Michael Tiller and Charles Newman

Simulation of Engine Systems in Modelica

6 Conclusions

This paper describes the use of the Modelica
modeling language for engine system simulations.
A robust, flexible, and re-usable modeling
framework of connectors, interfaces and templates
is described for multi-domain engine system
modeling. Results from the detailed simulations
of the engine cranking process yield some insight
into the types of models that can be realized using
this framework and the vast amount of information
that can be obtained from these types of
simulations. These multi-domain models are well
suited for the evaluation and optimization of
hardware design and control strategies, especially
during the early concept assessment stage of the
design process. Future work will focus on the
validation of the individual submodels and system-
level models.

References

1. Heywood, J.B., 1988, Internal Combustion
Engine Fundamentals. McGraw-Hill.

2. Modelica Association, 2002, "Modelica
Language Specifications (Version 2.0)",
http://www.modelica.org

3. Puchalsky, C., et al., 2002, "Modelica
Applications for Camless Engine Valvetrain
Development", 2" International Modelica
Conference Proceedings, pp. 77-86,
http://modelica.org/Conference2002/papers/pl
1_Puchalsky.pdf

4. Newman, C., Batteh, J., and Tiller, M., 2002,
"Spark-Ignited-Engine Cycle Simulation in
Modelica", 2" International Modelica
Con