

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
 Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
 Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
 Hilding Elmqvist, Dynasim AB, Sweden.
 Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
 Michael Tiller, Ford Motor Company, Dearborn, USA.
 Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Michael Tiller
Ford Motor Company:
Parsing and Semantic Analysis of Modelica Code for Non-
Simulation Applications
pp. 411-418

Parsing and Semantic Analysis of Modelica Code for
Non-Simulation Applications

Michael Tiller
Powertrain Research Department, Ford Motor Company

ABSTRACT

While most discussions involving Modelica focus on its technical capabilities (i.e. object-oriented
modeling, handling of DAEs, standard libraries, etc.), the benefits of having a formal specification of the
language syntax and semantics for non-simulation applications are often overlooked. Unlike many
proprietary modeling technologies, where the syntax and semantics of the models change according to the
whims of the tool vendor, the syntax and semantics of Modelica models are clearly spelled out in the
Modelica specification and considerable effort is made to maintain backward compatibility while adding new
capabilities to the language. Not only does this allow vendors to develop simulation environments that
independently support a common language, it also allows for the development of ancillary tools to support
the model development process. Recognizing some of the best practices in software development, this paper
discusses a set of utilities used to analyze existing Modelica models and provide feedback on the structure of
the models. These analyses can highlight problematic or unused code, check that code is compliant with
specific style guidelines or generate "intelligent" reports on differences between different versions of a
model.

1 Motivation
For years, Ford Motor Company has been

developing several proprietary Modelica libraries.
While we have a talented team of developers and
we meet on a regular basis to discuss the evolving
structure of our model libraries, it is still difficult
to contain the "entropy" that develops due to code
fragments that are no longer actively maintained.

After many years focusing on development, it
was necessary to take a step back and consider
how to manage the growing complexity of our
model libraries. Recognizing the common
challenges between software development and
model development, we have always tried to
leverage the best practices from software
engineering and incorporate them into our model
development. For example, we use a version
control system internally to manage releases of our
model libraries and we have a web-based issue
tracking system that we use to log bugs and feature
enhancements. However, these capabilities were
easy to leverage because of the availability of
general-purpose, out-of-the-box tools (e.g. CVS).

Unfortunately, there are many code analyses
that we would like to perform that are not
supported by general-purpose software engineering
tools because they require language specific
information. Furthermore, existing Modelica tools
focus mainly on simulation-oriented capabilities.
As a result, we decided to implement our own
utilities to assist us in maintaining our code base.

2 Syntax and Semantics

2.1 Introduction
This section will discuss the steps, tools and

ideas involved in taking Modelica code as it
appears in a file and creating a representation that
captures the underlying "meaning" (e.g. type,
baseclasses, scope) of the various structural
entities.

It should be noted that the analysis capabilities
described in this paper do not implement and/or
check all the semantics defined in the Modelica
specification. Instead, they assume that the code is
legal Modelica code generated by a tool (e.g.
Dymola) that conforms to the Modelica
specification. Ideally, we hope that our semantic
processing may eventually encompass all the
semantics discussed in the Modelica specification
but fortunately the analyses described in the paper
do not require a complete implementation, only the
capability to definitively resolve the types of
entities during instantiation.

2.2 Tools
Before presenting additional details about the

individual steps involved in processing Modelica
code, it is useful to include some discussion of
ANTLR [1], the tool used to automate the process
of parsing Modelica code. The ANTLR toolset
can generate software objects for performing

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

lexical analysis, grammar parsing and tree parsing
(these tasks will be discussed in detail in the
remainder of this section). ANTLR includes
several useful features including:

• Java, C++ and C# as target languages
• Portable and readable generated code
• Automatic syntax tree construction.
• Active community
• Ongoing development

A surprisingly common question people ask is

"Why was Modelica developed with its own
unique grammar? Why not simply use XML to
describe the format of Modelica files?" Indeed, the
wealth of available eXtensible Markup Language
[2] (XML) parsers and tools [3] would make the
parsing of Modelica files almost trivial. Terrence
Parr, author of ANTLR, has provides an excellent
discussion of this question in his essay "Humans
should not have to grok XML" [5]. The short
answer is that XML only addresses the issue of
syntax, not the meaning of the constructs
themselves. Furthermore, XML is best applied to
file formats that are automatically read and written
by computers not humans. It is for these reasons
that the vast majority of programming languages
(e.g. Java, C++, Haskell, C#, Python, Perl and Tcl)
choose to define their own unique syntax (that is
intuitive to human readers and writers) while only
a handful of languages like XSLT [4] employ
XML syntax. Viewed in this way, the approach
taken when developing Modelica is completely
consistent with how programming languages, in
general, are developed.
That being said, a very compelling argument can
be made for using XML to represent data
structures needed by or resulting from semantic
processing [6]. For example, one tool could be
responsible for reading the Modelica code and
generating an XML representation of the abstract
syntax tree. Such a file could then be read by other
tools and transformed into representations of
instantiated models, hybrid differential-algebraic
equations and pseudo-simulation code, etc. Such
an approach would allow a clean partitioning of
tasks and formal description of the various
intermediate representations (i.e. using Document
Type Definitions (DTDs) or XML Schemas).

2.3 Lexical Analysis
The first step in our process to uncover the

meaning in Modelica code is to break the code into
"tokens". Conceptually, tokens are the words that
exist in Modelica (i.e. strings of characters

delimited by whitespace). It is very easy to
identify the tokens in a given file, but it is also
necessary during this step to classify these tokens.
Some tokens are easily recognized as keywords
(e.g. replaceable, parameter, final).
Other categories of tokens include literals (i.e.
integers, reals, strings and Boolean values),
punctuation (i.e. semicolons, periods, parentheses,
etc.) and so on. Section 2.1 of the Modelica
specification discusses the categories of tokens
involved and the patterns used to recognize them.
Using ANTLR, our lexical specification for
Modelica required 12 non-trivial rules to identify
tokens.

2.4 Grammar Definition
Previously, lexical analysis was described as

the process by which "words" are extracted from
Modelica code. Extending this analogy,
grammatical analysis is the process of constructing
meaningful "sentences". These sentences can
describe definitions of new Modelica types,
declarations of components or variables in a class,
equations, modifications and so on.

Just as with lexical analysis, the patterns used
to describe the grammar of the Modelica language
can be found in Section 2.2 of the Modelica
specification. An important aspect of creating or
processing a grammar definition is avoiding any
potential ambiguity. When described using an
LL(k) grammar (as required by ANTLR), it is
necessary for the parser to look two tokens ahead
in order to resolve any ambiguities.

Using ANTLR, our description of the
Modelica language involved 35 tokens (and their
associated regular expressions), 70 rules and 32
fundamental node types.

2.5 Syntax Trees

2.5.1 Tree Construction
While processing lexical tokens and matching

them to grammatical rules, ANTLR includes
features to automatically generate a syntax tree to
represent the underlying structure of the file being
parsed. During tree construction, the goal is to
filter out tokens that are only of syntactic
significance (e.g. semicolons, which only exist to
explicitly terminate certain structures) and preserve
information that is necessary to fully understand
the intent of the code. ANTLR provides a
shorthand notation for tree construction that is very
convenient, but there are still a few common
operations that lack a shorthand representation.

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

2.5.2 Data Structures
ANTLR builds trees out of nodes and then

associating these nodes through child and sibling
relationships. By default, ANTLR assumes these
nodes are homogenous (i.e. they are all of the same
type in the target language). This approach works
well for "text-to-text transformation" applications
(where specific patterns of nodes are simply
transformed into other patterns of nodes without a
lot of semantic information). However, if the
nodes in the resulting tree are likely to have a wide
range of different types of information and/or
methods associated with them, it is possible to
instruct ANTLR to use specific node types (in the
target language) for specific structural entities in
the tree. The result is a heterogeneous tree
structure. As mentioned in Section 2.4, the
resulting trees are composed of 32 fundamental
node types.

One of the advantages of using heterogeneous
node types is the ability to "promote" entities that
would normally be tokens into member data
associated with that node. For example, Modelica
definitions must include the name of the class
being defined. One approach would be to store
this name token as a child node of the definition
node in the constructed tree. However, since this
is an element that is always present, you can save
some complexity in the tree structure (and some
lookup time during processing) by storing this
information directly as just a string in the
definition node itself (as opposed to a child node).
We use heterogeneous trees and reserved the use of
child and sibling nodes for those structures that are
variable (i.e. elements whose presence is not
known a priori).

2.5.3 Tree Walking
ANTLR includes support for creating tree

walker objects. Such "tree grammars" are typically
much simpler than the formal grammar because
they do not include strictly syntactic elements like
punctuation and keywords. While tree parsers can
be quite useful, we have chosen to use a more
programmatic approach for most of the analysis.
Rather than walking the tree, most of our analyses
involve searching the tree structure for specific
elements and then performing operations on those
elements. The one case where we currently employ
a tree parser is as a validator for our generated tree.
By constructing the tree grammar we expect as a
result of tree construction, we can apply that tree
parser to any tree available (either from directly
parsing Modelica code or resulting from

programmatic manipulation of an existing tree
structure) and identify any structures not described
in the tree grammar. This is analogous to using a
DTD or XML schema to validate an XML file.

2.6 Semantic Analysis
As mentioned previously, we assume that all

code being parsed is syntactically and semantically
legal. In this way, we can avoid implementing the
complete semantics of the Modelica specification.
Nevertheless, it is still necessary to implement
many of the semantics in order to understand what
is implied by the code. Without this knowledge, it
would be impossible to perform the analyses
described in Section 3.

The semantics in the Modelica specification
[7] cover all aspects of the language necessary to
translate a Modelica model into a system of hybrid,
differential-algeabraic equations (DAEs).
Fortunately, for non-simulation applications only a
handful of these semantics are required.
Specifically, we have implemented a set of
semantics that allows us to instantiate all the
components in a model (even those affected by
redeclarations). We have neglected all semantics
associated with equations and algorithms. As a
result, the main task required as part of this
instantiation is name lookup as described in
Section 3.1 of the Modelica specification.

2.7 Issues
While creating these tools, there were several

issues that we uncovered both in both the Modelica
specification and ANTLR that are worth
mentioning.

2.7.1 Modelica
In Modelica, comments are lexically

significant but not grammatically significant and
this can make the preservation of comments while
rewriting Modelica code a challenge. One way to
address this situation would be to make comments
grammatically significant. Given the availability
of descriptive strings for documentation purposes
in Modelica, comments are really only necessary
for "commenting out" definitions, declarations,
equations or algorithmic statements. As such, they
could be inserted as elements in the grammatical
rules for those entities. While this would constrain
the situations where comments could be used, it
would make their preservation much simpler.

In addition, there are some features described
in the Modelica specification that have never been
implemented. Examples of such features include

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

the within statement and the
analysisType() function. If a feature goes
unimplemented for several years, it is probably
worth revisiting that feature to see whether it is
truly necessary or desirable. Weeding rarely used
or unnecessary features out of the language helps
minimize the work associated with developing
parsing and semantic analysis tools which, in turn,
makes Modelica easier to adopt.

Finally, there are a handful of rules in the
Modelica grammar that make the task of resolving
ambiguities difficult. Specifically, the use of
"initial" as both a keyword and a function name is
problematic since the same string, 'initial',
can fall into two different token categories (and
this depends on where it appears grammatically).
Another example of this kind of problematic
"reuse" is the 'end' string which can be used to
close a long definition or appear as an element in
an expression. Once again, this ambiguity presents
a burden for the parser developer.

2.7.2 ANTLR
We chose to generate heterogeneous trees

while processing the Modelica grammar. While
ANTLR supports heterogeneous trees, using them
with C++ as the target language presented many
problems. For example, a bug in the garbage
collecting mechanism of the AST base classes
appears when using heterogeneous trees. In
addition, even though ANTLR allows node types
to be associated with specific tokens, this applies
only during creation of the nodes. When they are
referenced from within a rule, a cast is necessary.
It is worth mentioning that C++ language support
for heterogeneous node types in ANTLR are
relatively new. All things considered, these are
only minor annoyances and hopefully future
versions of ANTLR will include improved support
for heterogeneous AST construction.

3 Analyses
Most of the analyses described in this section

require that models can be instantiated according
to the instantiation process described in the
Modelica Language Specification. As a result of
this process, a syntax tree is generated to represent
the structural elements of the instantiated model. It
is then possible to conduct an analysis of the model
by "walking the tree" looking for certain patterns
and/or performing specialized calculations. This
section discusses several specific types of analyses
that are applicable to Modelica code.

3.1 Simple Metrics
The idea of "software metrics" has been

around for many years [8]. We will begin our
discussion with a few simple code metrics that can
also be found in non-modeling contexts.

3.1.1 LOC
A common metric in software engineering is

"lines of code" (LOC). While easy to measure, the
metric itself is normally not that meaningful. For
our purposes, we will count lines in each non-
package definition and tally these lines for each
package. Furthermore, we will define a "line" as
any statement that ends in a semicolon. In other
words, since line feeds and carriage returns are not
grammatically significant, we will focus on the
number of statements which is roughly equivalent
to the number of lines.

3.1.2 Restricted Class Breakdown
Another statistic that is easy to collect but not

very meaningful, is the breakdown of definitions
by restricted class (RCB). This metric mainly
serves how heavily utilized each restricted class
type is within a given package hierarchy. This
metric is similar to lines of code because it
measures the "volume" of the code but does not
accurately assess its complexity.

3.1.3 Inheritance Complexity
A more useful metric (and one that requires

implementing instantiation semantics) is
quantifying inheritance complexity. Inheritance
complexity is a reflection of how confusing the use
of inheritance would be to a user. While
inheritance is useful for promoting reuse and
avoiding the maintenance issues associated with
redundant code, it can also make it difficult for
users to understand the complete details of a
model. Ideally, inheritance should be restricted to
definitions that are:
• Used often – Definitions that developers are

likely to be familiar with them.
• Necessary – To avoid base classes that

introduce unnecessarily fine distinctions.
• Minimal – To keep the number of classes that

developers must be familiar with to a
minimum.

• Easily resolved – Modelica features such as
replaceable types, dynamic scoping and lookup
in enclosing scopes can make it hard for
developers to easily figure out or remember
what the base classes really are.

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

The inheritance complexity (IC) is computed
as follows1. First, it is assumed that a definition
that does not extend from another definition has an
IC value of 1. For each extends clause, various
adjustments are made to this score. If the
definition being extended is used by fewer than 10
definitions, the IC is incremented by 1. If the
definition being extended is used by fewer than 5
definitions, the IC is incremented by an additional
1. If the definition being extended contained less
than 3 declarations and less than 3 equations then
the IC is again incremented by 1. The IC value for
the definition being extended is then multiplied by
a scaling factor and added to the IC for the current
definition. If the type being extended is
replaceable and locally defined, the scale factor is
2. If the type is replaceable but defined outside the
scope of the current definition, the scale factor is 3.
Finally, if the definition being extended is declared
outer, the scale factor is 2.

3.2 Style Guidelines
Looking beyond simple metrics, another type

of analysis is to check for conformance to style
guidelines. Style guidelines are formulated to
promote reusability and consistency of code and
many of these style guidelines can be formulated in
such a way that they can be automatically verified.
Any definitions that contain non-conforming code
can be identified in automatically generated
reports.

At Ford, we have an extensive set of style
guidelines. In this section, we will preset a few of
these guidelines, discuss why these guidelines
were adopted and explain how we automatically
check for conformance.

3.2.1 Naming Conventions
According to our style guidelines, all Modelica

definitions must begin with a capital letter while
declarations must begin with a lower case letter
unless they contain only a single letter in which
case they should be capitalized. This rule was
adopted because it makes it easy to recognize
whether a fully qualified name corresponds to a
type or an instance.

To check naming conventions, we visit each
definition in memory and process the list of
enclosed definitions and declarations looking for
non-conforming names.

1 This is just an initial algorithm to demonstrate how such a metric
could be calculated. With time, a better algorithm could probably be
developed.

3.2.2 Documentation
For a model library to be generally useful, it is

important for model libraries to be well
documented. Using the tools described in this
paper, we are able to automatically review all
definitions and declarations and check for the
existence of documentation annotations.
Futhermore, this analysis can check to see if
descriptive strings have been associated with each
definition and declaration so that generated GUI
dialogs include additional useful information.

3.2.3 Mixing Equations and Components
The last guideline we will discuss is a

restriction against representing behaviour both
textually and graphically in the same model. To
accomplish this, we must classify each declaration
as either textual or graphical. For the purposes of
this analysis, connector definitions that appear
graphically are ignored. The point of this guideline
is to avoid confusion that can develop when trying
to grasp the behaviour of a model when aspects of
that behaviour span both the text layer and the
diagram layer.

As of Dymola 5.x [9], it has been possible to
quickly assess this restriction visually by
inspecting the Modelica source layer. By default,
everything that appears in the diagram layer is
filtered out. As such, if you see equations and
graphical icons in the Modelica source, the
definition you are viewing violates this rule.
Nevertheless, visual inspection for entire model
libraries is not practical and that is the motivation
behind having a tool capable of automatically and
exhaustively checking an entire library.

3.3 Coverage Analysis

3.3.1 Background
The most elaborate analysis possible with our

tools is what we call "coverage analysis". For each
of our model libraries (i.e. libraries composed of
component, subsystem or system model), we try to
maintain a companion test suite library. The goal
of the test suite library is to include tests of every
model in the model library.

These test suites are useful for several reasons.
First, they provide us with a way to assess whether
recent bug fixes and/or enhancements to our model
library have not corrupted any of the models. In
addition, we perform similar checks across tools or
tool versions. Finally, we can analyze the test suite
library identify any coverage gaps (i.e. any
components that are not tested).

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

3.3.2 Analysis Algorithm
The first issue that must be addressed is which

models to apply the analysis algorithm to. Stated
another way, which models are the test cases?
Some rather obvious criteria are:

• Any model in a test suite library.
• Any model that extends from certain base

classes (e.g. extends TestCase;).
• Any model that does not contain

connectors.
Of these, the last criteria is the most general

and requires the least discipline on the part of the
test suite developer. However, because of the time
required to conduct the analysis and the large
amount of potential data generated as a result, it
may be desirable to use one of the more restrictive
criteria. Regardless of the criteria chosen, the
algorithm is the same.

The first step in the process is to instantiate
each test case. Although the complete instantiation
process is described in detail in the Modelica
specification, the basic principle is to construct the
component tree for each model (factoring in
redeclarations, base classes, etc.). As a result of it,
it should be possible to identify the type of every
instantiated component. The set of instantiated
types is recorded as each test case is instantiated.

When every test case has been instantiated,
you are left with the set of all types that were
instantiated by at least one test case. You can then
iterate over the set of all type definitions in your
model library and check to see if they are in the set
of instantiated types. Any definition that was not
instantiated represents either a gap in coverage by
the test suite or a definition that should be
deprecated.

Coverage analysis is a good way to make sure
that your model library doesn't contain any unused
or unnecessary definitions. It also provides
feedback on whether a given test suite provides
accurate coverage.

4 Results

4.1 Running the Analysis
Normally, the use of our models is scattered

over a number of different packages. Obviously,
we would like to have a complete test suite that
exercises every single model we have. A more
reasonable near-term goal would be that every
model is used in one of the many packages (most
of them application specific) that we have
developed.

To support this possibility, the command line
syntax of our tool requires the first argument to be
the package being analyzed and all other
arguments are assumed to be packages that may
potentially use components in the first package. A
typical command line invocation might look
something like:

% Metrics Ford FordTestSuite AppLib1 … AppLibN

4.2 Sample Library Results
To demonstrate the results that are generated

from our tool, consider the sample package shown
in Figure 1. The details of the models are not
particularly meaningful for the purposes of
evaluating the metrics for the code. Running our
Metrics program tells us that the library includes
3 models, 1 type definition and 1 package. For a
simple package like the one shown in Figure 1, this
is obvious. These kinds of statistics are interesting
for larger packages where counting definitions
becomes impractical. While we will get to
additional metrics in subsequent sections, for now
let us focus on coverage analysis. Assume we use
the package in Figure 2 as our set of regression
tests for package in Figure 1. The results of the
analysis are shown in Table 1.

Figure 1: Sample Component Library

package CompLib "Component Library"
 model A "Simple model"
 Real x;
 annotation(
 Documentation(info="Simple model"));
 equation
 der(x) = 2.3*time;
 end A;
 model B "Typical model"
 type GrowthRate = Real(min=0);
 Real x;
 parameter GrowthRate c=2.3;
 equation
 if time<1.0 then
 der(x) = c*time/2;
 else
 der(x) = c*time;
 end if;
 end B;
 model C "Detailed model"
 Real x, y;
 parameter Real Alpha=0.1, Beta=2;
 parameter Real Gamma=4, Delta=0.4;
 equation
 der(x) = Alpha*x*y-Beta*x;
 der(y) = Gamma*y-Delta*x*y;
 end C;
end CompLib;

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 2: Sample Test Suite

Definition Name Times
Used

Is
Documented

CompLib.A 3 Yes
CompLib.B 0 No
CompLib.B.GrowthRate 0 Not

Applicable
CompLib.C 1 No

Table 1: Sample Coverage Analysis

4.3 Ford and Modelica Libraries
We thought it would be interesting to compare

the metrics of our proprietary Ford powertrain
library with the Modelica standard library. For the
purposes of this analysis, only the examples in the
Modelica standard library were used. The results
from this analysis are shown in Figure 3. The X-
axis in each plot lists a series of categories and the
Y-axis indicates the percentage of definitions in
each library that fall into that category.

The documentation and naming convention
metrics cannot be applied to type definitions.
That is why, for each of these metrics, two sets of
results shown. One set includes the all possibilities
while the other set only considers the cases where
the metric can be applied meaningfully. This
highlights the number of type definitions in the
Modelica library (e.g. Modelica.SIunits).

Some interesting results found in Figure 3 are:
• Nearly all the models in both libraries are

represented by either strictly textual or strictly
graphical information.

• Over 70% of the Ford library isn't covered by a
test case.

• The biggest difference between the libraries in
the documentation. About 90% of the
definitions that can be documented in the Ford
library do not include documentation while
this is true for less than 40% of the definitions
that can be documented in the Modelica
standard library.

• Naming convention compliance is surprisingly
similar for the libraries.

5 Future Applications
The analyses described in this paper are just a

few of the many non-simulation related tasks that
can be automated with an appropriate library for
parsing and processing Modelica code. Other
potential applications could include command-line
compilers, "lint" like analysis for undesirable
construct, pretty-printing tools, ETAGS generators
for Emacs, intelligent differencing tools and so on.
Although unimplemented, these tasks further
justify the utility of such capabilities. Rather than
discuss each of these detail, we will present one
example in some detail.

5.1 Obfuscation and Filtering
So far, none of the analyses that have been

discussed involved rewriting Modelica code.
However, for reasons related to protecting
intellectual property, it is quite likely that
developers of Modelica code may wish to
somehow obfuscate or remove certain sensitive
models. Note that even with tools capable of
encrypting Modelica models, there may still be a
need for obfuscation (e.g. exporting models to a
Modelica tool or environment that doesn't support
encryption).

The most extreme course of action would be to
filter models out. Another more moderate
approach would be to obfuscate models so that
they functioned properly but were hard to
understand. To filter models, it would only be
necessary to remove their definitions from an
existing tree structure before writing that tree
structure back out as Modelica code.

Obfuscation is a bit more difficult to
implement. The first step would be to identify
which definitions needed to be obfuscated (e.g.
using a special annotation) and then which
elements of that definition were impacted (e.g.
only protected elements). For the elements to be
obfuscated, several actions are possible
programmatically. First, you would almost
certainly want to strip off any descriptive strings.
Second, for real variables you would probably
change their type to Real rather than something
that hinted at their units. Finally, you could
change the names of these elements so that their
names did not hint at their meaning. This last
requirement is very tricky because it would require
changing any references to the previous name.

6 Conclusions
While the emphasis in most Modelica

applications is on modeling, as Modelica becomes

package CompTestSuite
 import CompLib.*;
 model System1
 A a1, a2;
 end System1;
 model System2
 A a;
 C c;
 end System2;
end CompTestSuite;

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

used for "enterprise scale" activities it will be
increasingly necessary to have tools capable of
analyzing the quality of the underlying code. This
paper highlights several practical analyses that are
currently in use and several other potential
analyses that could be facilitated by such tools.

7 Acknowledgments
Peter Aronsson and Peter Fritzson from

PELAB at Linköping University provided me with
the source code for their Open Source Modelica
project. Although I did not use the code directly, I
it was useful as a reference in developing the tools
discussed in this paper.

Adrian Pop, also from PELAB, has done
considerable work in understanding the role of
XML in processing Modelica code. His work
discusses the ideas about XML presented in
Section 2.2 in greater detail.

Finally, I would also like to thank Hans Olsson
at Dynasim AB for helping to explain, in
implementation terms, the details described in the
Modelica specification.

8 References
1. T. Parr, "ANTLR 2.7.2 Reference Manual",

http://www.antlr.org/doc/index.html
2. "Extensible Markup Language (XML) 1.0,

Second Edition", World Wide Web
Consortium, http://www.w3.org/TR/REC-xml

3. L. M. Garshol, "XML tools by name",
http://www.garshol.priv.no/download/xmltools
/name_ix.html

4. "XSL Transformations Version 1.0", World
Wide Web Consortium,
http://www.w3.org/TR/xslt

5. T. Parr, "Humans should not have to grok
XML", http://www-
106.ibm.com/developerworks/library/x-
sbxml.html

6. A. Pop, P. Fritzson, "ModelicaXML: A
Modelica XML Representation with
Applications", Modelica'2003 Conference
Proceedings.

7. "Modelica Language Specification, Version
2.0", Modelica Association, 2002,
http://www.modelica.org/documents/Modelica
Spec20.pdf

8. C. Jones, “Applied Software Measurement :
Assuring Productivity and Quality,” McGraw
Hill, 1991.

9. "Dymola User's Manual, Version 5.0a",
Dynasim AB, Sweden, 2002

Strictly Textual or Graphical

0

20

40

60

80

100

120

Yes Mostly Mixture Even Mix

P
er

ce
nt

ag
e

of
 L

ib
ra

ry
 [%

] Modelica

Ford

Coverage Analysis

0

10

20

30

40

50

60

70

80

Not Covered Covered
once

2-10 times 11-100 times >100 times

P
er

ce
nt

ag
e

of
 L

ib
ra

ry
 [%

] Modelica

Ford

Documentation

0
10
20
30
40
50
60
70
80
90

100

N/A No YesP
er

ce
nt

ag
e

of
 L

ib
ra

ry
 [%

] Modelica

Ford

Modelica (-N/A)

Ford (-N/A)

Nam ing Convention Com pliance

0

10

20

30

40

50

60

70

N/A 100% 99%-75% 74%-1% 0%

P
er

ce
nt

 o
f L

ib
ra

ry
 [%

]

Modelica

Ford

Modelica (-N /A)

Ford (-N/A)

Figure 3: Comparing Ford and Modelica
Libraries

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

