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Abstract 
 
This paper describes typical modeling and real-
time simulation issues that occur in automotive 
applications.  Real-time simulations of detailed 
Modelica benchmark models for chassis and 
powertrain are presented. They demonstrate the 
powerful real-time capabilities of Dymola and the 
Modelica modeling language. One of the 
benchmark models for vehicle dynamics is a 
detailed model with 72 degrees-of-freedom with 
bushings in both the front and rear wheel 
suspensions.  It was simulated in real-time with a 
sample rate of 500 Hz on the RT-LAB 
environment from OPAL-RT using a Pentium 4, 
3066 MHz processor. This is made possible by 
Dymola‘s unique and elaborate symbolic 
processing of the model equations. 

1 Introduction 
Hardware-in-the-loop simulation (HILS) has 
become common practice in automotive 
development.  In order to cope with the real-time 
constraints, only rough models are often used.  In 
this paper, we present means to symbolically 
manipulate models with a high level of detail in 
such a way that the simulation can be performed in 
real-time.  The effectiveness is demonstrated by 
several benchmark examples and by corresponding 
simulation results. 

The methods are implemented in the simulation 
environment Dymola [3, 4] that uses the Modelica 
[7] modeling language for describing the models.  
It is described how Dymola solves certain difficult 
problems in hardware-in-the-loop simulation of 
automotive systems.  Two types of benchmark 

models have been chosen to demonstrate the 
capabilities of Dymola: a transmission model and a 
set of vehicle dynamics models. 

A transmission gearbox is somewhat special 
because the connection structure changes due to 
the engagement of clutches and brakes.  Further-
more, effective inertias need to be calculated for 
each of the possible structures.  Dymola handles 
this by appropriate preparation of the equations by 
symbolic methods before generating the code for 
the target HILS system. 

Vehicle models of different complexities can be 
used for analysis. Traditionally, idealized models 
of wheel suspensions have been used, neglecting 
fast dynamics due to bushings and replacing them 
with ideal joints or just look-up tables.  Dymola 
has special numeric methods to handle such cases.  
These methods require elaborate symbolic 
preprocessing of the equations.  One of the 
benchmark models has 72 degrees-of-freedom with 
bushings in both the front and rear wheel 
suspensions.  It was simulated in real-time with a 
sample rate of 500 Hz. 

Dymola generates C code which can be used in 
Simulink and by use of RealTime Workshop 
downloaded to different HILS targets.  Evaluation 
of the benchmark problems has been made on RT-
LAB from OPAL-RT [8], demonstrating real-time 
performance of complex models. 

2 Power train simulation 
We will consider modeling and simulation of 
automatic gearboxes. The figure below shows a 
typical Modelica model of a gearbox (Lepelletier 
wheelset, 6-speed, from the commercial Modelica 
PowerTrain library [10] available from Dynasim; 
usable, e.g., for the automatic gear box ZF 6 HP 26 
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from ZF). The model includes planetary and 
Ravigneaux gear sets, clutches, brakes and inertias. 

 

 
Figure 1: Gearbox model 

2.1 Special problems 

Simulation of gearbox models in real-time poses 
special problems. If detailed models of the friction 
of the clutches and brakes are used, the models 
become stiff. Typically, ideal friction models are 
used instead. This means that the number of 
degrees-of-freedom (DOF) changes if a clutch or 
brake is stuck or not. This can be handled by 
constraining the relative acceleration, when in 
stuck mode, to be zero. 

Fast sampling 
The differential equations of the gearbox need to 
be solved at a high speed. The electronic control 
unit (ECU) for the transmission typically samples 
its inputs and calculates new control signals every 
10 milliseconds. In order to reduce effects of 
delays due to lack of synchronization, the model 
variables need to be determined every millisecond. 

Accuracy and discontinuities 
Special attention is needed to accurately calculate 
angular velocity. This is important because the 
angular velocities of the various wheel sets are 
typically output from the model to the hardware 
and input to the ECU. The control algorithm of the 
ECU acts differently when the angular velocity is 
close to zero. Thus it is important to calculate 
small velocities accurately. Another reason to 
achieve high accuracy is that one might otherwise 
get drift in the angle calculations. The difficulty in 
achieving high accuracy in the angular velocities 
close to zero is the highly nonlinear behavior when 
a clutch sticks. The torque of the clutch in sliding 
mode is calculated as a function of angular 
velocity. When the clutch sticks, the constraining 
torque is instead calculated in such a way that the 

relative angular acceleration stays zero. There are 
thus jumps in the relative angular acceleration. 

Event handling 
Integration algorithms for non-real-time simulation 
typically handle discontinuities, such as the one 
above for friction, by detecting when certain 
variables cross a boundary. They then calculate the 
time of the event by iteration and then change the 
step size to advance the time exactly to the time of 
the event (crossing). Also for real-time 
applications, the Dymola run-time system includes 
handling of calculation of the event time. This is 
done with little overhead and without iteration. The 
normal solving of the differential equations is for 
the real-time case performed with fixed step size. 
However, at an event the step size is decreased to 
hit the time of the event. In order to synchronize 
with real-time again, the size of the next step is 
increased such as the sum of the two steps around 
the event is equal to two normal steps. This 
procedure introduces a small synchronization error 
during one step, but gives better accuracy in the 
solution. It has successfully been utilized for 
gearbox HIL simulations for ECU testing. 

Event propagation 
After an event, for example if a clutch begins to 
slide, there might be an immediate event as a 
consequence. Another clutch might get stuck 
because its torque decreases below a certain 
threshold. Before a numerical solution of the 
differential equations is resumed, event 
propagation needs to be performed in order that all 
variables get consistent values. Dymola generates 
code for iterating the equations, called event 
iteration, until all Boolean mode variables have 
converged. This typically takes 1-3 extra 
evaluations of the equations, i.e., the calculation 
time to handle such an event might exceed the 
available time for the step. This is typically 
handled by configuring the HILS system to allow a 
certain number of overruns.  

Effective inertia calculation 
The effective inertias depend on the selected gear. 
Calculation of effective inertias shows up as 
systems of equations that need to be solved 
simultaneously.  

Dymola symbolically converts the differential 
and algebraic equations (DAE) to an algorithm for 
calculating the derivatives. The integration 
algorithm uses the derivatives to update the state 
variables. Many times, the derivative algorithm is 
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just a sequence of assignment statements for 
algebraic variables and derivatives. However, the 
conditional constraint equations for torques and 
accelerations in the clutch and brake models 
implies that, in order to solve for the accelerations, 
a system of simultaneous equations needs to be 
solved. Dymola automatically calculates the 
coefficients of the linear system of equations and 
invokes a numerical solver for larger systems of 
equations. Small systems of equations are solved 
by producing symbolic code. The effective inertia 
typically shows up as the determinant of such a 
coefficient matrix. It should be noted that this is 
not a domain-specific procedure, but Dymola does 
it automatically by solving the systems of 
equations. 

Underdetermined models  
In certain cases, several clutches are engaged, 
giving parallel paths for the power. In such cases, 
the torque at each clutch cannot be determined 
individually; only the sum can be determined. 
Mathematically, this shows up as a singular system 
of equations. However, it is possible to find 
consistent solutions. Dymola determines one such 
consistent solution. 

2.2 Transmission example 

As a benchmark example, we will consider 
modeling of a 6 speed gearbox (Lepelletier wheel-
set, e.g. ZF 6 HP 26) together with a simple 
vehicle and driver model. This model is suitable  
for carrying out driving cycle shift strategy 
analysis and is available in the Powertrain library.  
The hierarchical structure of the model and the 3D 
representation used for animation is shown in the 
picture below. 

The engine model is based on steady-state 
engine maps. The ECU function included in this 
model controls idle and maximum speed, both 
constant limits, by a proportional controller. The 
transmission is a detailed model of an automatic 
transmission and incorporates a torque converter 
with a lock-up clutch. The gearbox itself is of 
Lepelletier type, which provides six different gear 
ratios. It is modeled using basic gearbox elements, 
inertia elements and different clutches and brakes. 
The different gear ratios are a result of applying 
different pressures to the clutches and the brakes in 
order to engage or disengage them. 

 
 

 
 Figure 2: The transmission example with the gearbox model and its animation 
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The driveline model is essentially a rigid model 
with no compliance in the drive shafts and no tire-
slip modeling. The vehicle is in this example 
modeled as a lumped mass and the resistance 
forces associated with the vehicle are modeled as 
different physical effects. The control system 
determines the shift point based on throttle position 
and vehicle speed when compared to the defined 
shift map. The driver model is based on a PI 
controller.  

The model has 689 nontrivial equations and 15 
state variables. There is a linear system of 77 
simultaneous equations corresponding to the mass 
matrix inversion. After evaluating all parameter 
values and simplifying, the system reduces to 50 
simultaneous equations. Symbolic manipulation 
reduces the size of the linear system of equations 
that has to be solved numerically to 7. The model 
was simulated with the explicit Euler method with 
a step size of 1 ms.  As shown, the car follows the 
desired velocity very well. 

 
 

Figure 3: Desired velocity (blue) velocity ( red) 
 

The results are shown with a comparison to offline 
simulation using DASSL with a required relative 
tolerance of 10-6. The difference is as shown below 
very small. 
 

 
Figure 4: Velocity error (Explicit Euler – DASSL) 

 
The gearshift is identical for explicit Euler and 
DASSL. 

 
 

Figure 5: Gear shift 
 

 
Figure 6: Engine speed 

 
Also for engine speed, the agreement with the 
DASSL result is good. 
 

 
Figure 7: Engine speed error (explicit Euler –
DASSL) 

Real-time simulation 
The benchmark model was run in the RT-LAB 
environment from OPAL-RT using a Pentium 4, 
3066 MHz processorThe plot below shows the 
actual CPU time needed per step. 
 

 
Figure 8: CPU time/step (microseconds) 

The plot shows that the simulation runs in real 
time, because the time needed for each step is well 
below 1 ms. The CPU time needed per step is not 
constant, because of event handling due to locking 
or unlocking of clutches or brakes during gear 
shifting.  Moreover, the linear system of size 7 
being solved numerically has a coefficient matrix 
or a Jacobian, which does not depend on any 
continuous time variables, it changes only when 
there are discrete events. Its elements are in fact 
weighted sums of terms of the type 

 
if axle.Break.locked then 1 else 0; 

   if transmission.wheelset_E.locked  
      then 0 else 1; 

 
Dymola exploits the fact that the Jacobian does not 
change during continuous time simulation. It 
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generates simulation code that only calculates the 
Jacobian and its LU-factorization during event 
iterations. This saves CPU time because the QR 
factorization is a major effort compared to the back 
substitution. The number of operations to factorize 
is proportional to the cube of the number of 
unknowns, i.e., O(n3), where n is the number of 
unknowns, which in this case is seven. Back sub-
stitution to calculate the solution when having the 
factorized Jacobian is much less computationally 
demanding.  

To illustrate the importance of symbolic 
manipulation, a test was done where Dymola did 
not reduce the original system of 77 equations, but 
utilized that the Jacobian of the system only 
changed at discrete events. The plot below shows 
the actual CPU time needed per step. 

 

 
Figure 9: CPU time/step (microseconds) for the 
non-reduced case. 

The plot shows that the CPU time needed per step 
varies a lot. This simulation does not run in real 
time. At certain steps the CPU time is nearly 25 
ms. Much CPU time is needed, when there are 
discrete events and the Jacobian of the linear 
system with 77 unknowns needs to be calculated 
and LU-factorized. During continuous time 
simulation, the linear system is solved using the 
factorized Jacobian for back substitution, which is 
as shown a fast calculation. 

3 Vehicle Dynamics Simulation 
 

The free Modelica library VehicleDynamics [1] is 
used as basis for the evaluations in this report. This 
library is based on the multibody systems library 
ModelicaAdditions.MultiBody. The library is 
flexible since it is easy to replace wheel 
suspensions, tire models, etc. In particular, wheel 
suspensions are available with different levels of 
detail. 

3.1 Special problems 

Symbolic simplifications 
Symbolic simplifications are very important for 
handling of multibody systems models. The model 
equations are written in the most general form. 
However, a motion could, for example, be 
constrained to be a rotation around a certain axis 
(e.g. {1,0,0}) in a local coordinate system. 
Parameters that are exactly zero are important to 
utilize symbolically; certain terms in the general 
model equations are cancelled and thus better 
efficiency can be achieved. The number of 
operations in the generated code is typically 
reduced by a factor of 3 to 10. 

Mass matrix inversion 
The differential-algebraic equations for a 
multibody system have a special structure. For a 
tree-structured mechanism, a large system of 
simultaneous equations involving accelerations, 
forces and torques will be present. It is important 
that such systems can be identified and reduced in 
size. It can typically be reduced in size to the 
number of degrees-of-freedom. This corresponds 
to finding the mass matrix of the mechanism. 

Closed kinematic loops 
Closed kinematic loops typically occur in 
suspensions with ideal joints. In such cases, the 
equations contain a nonlinear system of equations 
for each loop involving positions and orientations 
of the parts belonging to the loop. A linear system 
of equations involving velocities also appears. On 
acceleration level, equations from each loop appear 
in one large system of equations (corresponding to 
the mass matrix for tree-structured mechanisms 
accompanied with the constraint equations on 
acceleration level). 

The non-linear system of equations is special in 
the sense that it involves trigonometric relations. It 
turns out that analytical solutions can be found [9]. 
The multibody library has been extended with 
composite joint models, for which the equations 
have been rewritten to give the analytical solution 
for a large class of kinematic loops occurring in 
vehicles and mechanisms. 

Stiff models – Bushings 
High fidelity models use bushing models instead of 
ideal joints. Such bushings are very stiff. This 
means that the differential equations are also stiff, 
i.e., that the corresponding linearized model has 
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eigenvalues in a large range. The explicit Euler 
method is not feasible for these models since a 
very small step size needs to be utilized (typically 
less than 50 microseconds). Implicit Euler allows a 
larger step size, but the accuracy is often not good 
enough. If neither the explicit nor the implicit 
Euler method is satisfactory, Dymola can utilize 
methods with higher order or mixed 
explicit/implicit methods for such models. 
 

Tire models 
The VehicleDynamics library [1, 2] contains two 
types of tire models: the standard tire model of 
Pacejka and the tire model of Rill. The Rill tire 
model is about 1 to 2 orders of magnitudes faster 
than the Pacejka tire model and should therefore be 
used when speed is important, such as for real-time 
simulation. The Rill tire model is based on the 
steady-state force/torque characteristics of a tire 
together with a simple transient tire deflection 
model. 

 

3.2 Realtime Simulation Benchmarks 

A mid-sized sedan with a front MacPherson 
suspension and a rear MultiLink suspension has 
been chosen as a benchmark model for vehicle 
dynamics simulations. 

 

 
Figure 10: Front MacPherson suspension and rear 

MultiLink suspension. 
 

The hierarchical structure of the vehicle models is 
shown in Figure 11.  

 
 

 
Figure 11: The hierarchical structure of the vehicle models  
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We have investigated models with different levels 
of detail. 

1. Suspension is modeled by tables defining 
polynomials for Camber and toe-in angles. 
Steering is defined by an Ackermann 
function. 

2. Suspension is modeled by linkages with 
ideal joints. 

3. Suspension is modeled by linkages joined 
by bushings. The mass and inertia of the 
bar connecting two bushings are neglected. 

4. Suspension is modeled by linkages joined 
by bushings where the small mass and 
inertia of the bar connecting two bushings 
are taken into account. 

Level 1 – Linkage tables 
The wheel suspensions are described by tables 
defining Camber and toe-in angles as functions of 
wheel bounce, i.e., a vertical motion of the wheel 
with constrained changes of the Camber and toe-in 
angles. This could easily be extended to handle 
also Camber and toe-in as functions of side force, 
which would make it possible to mimic the 
behaviour of suspensions with bushings and other 
flexible elements. This has been the common way 
to model vehicle dynamics in order to keep model 
complexity low for realtime simulation. Note, this 
method requires that the characteristics must either 
be measured, meaning that the suspension has to 
be built, or that the suspension characteristics have 
to be calculated from a more detailed model. This 
approach is justified if the simulation model is 
utilized, e.g., for improving controllers and ECUs 
for an existing vehicle. It is not useful, if the 
suspension and steering system shall be improved, 
e.g., based on optimization or parameter studies of 
a simulation model. 

Steering is defined by an Ackermann function. 
The tables for Camber and toe-in angles are 
implemented as scaled polynomials. Dymola’s 
symbolic engine differentiates these polynomials 
twice to handle the reduction of degrees-of-
freedom. 

The chassis has 6 degrees-of-freedom (DOFs), 
each wheel has 2 DOFs (bounce and rotation each) 
and the steering 1 DOF. The total DOF is 15. The 
tires each have 2 state variables for the deflection 
in x and y directions, i.e., 4*2 = 8 states. The total 
number of states for the vehicle dynamics itself is 
thus 2*15 + 8 = 38. 

The steering in the benchmark model is a 
parameterized, given function which is filtered by 
a second order low pass filter to model driving 
behavior. The driver model of the benchmark 

model contains two additional state variables for 
the accelerator behavior. This is not used in this 
model since the vehicle maneuver is made with 
idle gear. The total number of state variables is 
thus 38 + 2 = 40. 

Level 2 – Linkage with ideal joints 
The table description used in level 1 is limited to 
only Camber and toe-in angles. It would of course 
be possible to extend to Castor angle trail as well 
as track width and wheel base translations. 
However, in many cases, in particular when trying 
new designs, it’s easier to describe the suspension 
in terms of the linkage that is used. 

The suspensions in level 2 consist of rigid 
mechanical components, i.e., all flexible elements, 
except for the struts, are replaced by ideal joints. 
Instead of a multi-link suspension, a trailing arm 
with similar geometry is used. The advantage over 
level 1 is that the suspension can be modelled with 
physical data and no precalculations or 
measurements are therefore needed. 

The level 2 model uses a MacPherson type 
front wheel suspension, with the wishbone 
attached to the chassis via an ideal revolute joint (1 
DOF). A strut is placed between the chassis and the 
wishbone via two spherical joints. The 
eigenrotation of the strut around its axis (1 DOF) is 
constrained by the distance constraint of an 
additional rod with two spherical joints on each 
end (1 constraint). One of the spherical joints of 
this rod is attached to the steering. In total, the 
suspension has therefore one degree of freedom, if 
the steering angle is given. The anti-roll bar is 
approximated by a spring/damper combination 
where the vertical force acting at its mount point 
on the lower part of the MacPherson strut is 
proportional to the relative vertical distance of the 
left and the right mount points. The rear 
suspension is a type of trailing arm with one DOF, 
the anti-roll bar is modeled like in the front 
suspension. 

When using base elements of the MultiBody 
library to build up the MacPherson suspension, 
several non-linear algebraic loops appear. By using 
composite joint models (e.g., an aggregation of a 
revolute, a spherical and a universal joint) that 
contain analytic solutions of the non-linear 
kinematic relationships within the aggregation, the 
non-linear algebraic loops no longer occur in the 
generated code [9]. Note that this simplification is 
transparent to the end user. 

The total DOF is 15 as for the level 1 model; 
The wheel bounce DOFs are replaced by the DOFs 
of the two trailing arm rotations and the two 
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wishbone rotations. The model has also 40 states. 
Note, that the elasticity of the tires in vertical 
direction has been modified slightly (both for the 
level 1 and the level 2 cars) in order to 
approximately compensate for the neglected 
bushings. 

Level 3 – Linkage with bushings and 
massless bars 
Using ideal joint models for the linkage is not 
accurate enough for severe driving conditions since 
bushings with certain flexibility are used in the real 
vehicle. Flexible elements are introduced in the 
suspensions of the level 3 model. The front 
suspension has bushings in the A-arm mounts. The 
rear multilink suspension has no ideal joints and 
the links are modelled as mass-less bars. If the 
mass and inertia of the rod connecting two 
bushings were not neglected 6 DOF would be 
added for every such pushrod. However, the mass 
and inertia are usually very small compared to the 
wheel and carrier masses, and therefore it is a good 
approximation to neglect the pushrod masses and 
inertias.  

If the bushings were described solely by 
springs, then no states would be added, since 
springs in series connection lead to algebraic 
equations to solve for the spring deflections. Since 
bushings have a damping part, there are the states 
of the dampers (= 2*6). Once the states of one 
damper are known, the states of the other damper 
can be computed by relative kinematics. To 
summarise, a pushrod has 6 states, if the mass and 
inertia of the rod connecting the two bushings is 
neglected. There are 3 such bushing pairs at each 
rear wheel, i.e. the number of states is 2*3*6 = 36 
states. 

Additionally, the elasticity in the steering is 
taken into account by having a spring/damper 
system in the rack steering adding one additional 
DOF.   

The total DOF is 36 and the model has 118 
states. 

Level 4 – Linkage with bushings and non-
massless bars 

A slightly more detailed model is obtained by 
not neglecting the masses of the push rods. The 
total DOF is 72 and the model has 2*72 + 8 + 2 = 
154 states. 

3.3 Simulation results 

The benchmark models have been studied under a 
double lane change maneuver. The steering wheel 
has been operated as shown in Figure 12. 

Figure 12: Steering wheel angle (rad) 
 

We first show a comparison of the behavior of the 
four models. Below are shown plots of the side 
accelerations for the four cases. 
 

 
 

Figure 13: Side accelerations for level 1-4 models. 
 
The level 3 and 4 models show a different 
behaviour than level 1 and 2. The differences can 
be spotted especially in the section between the 
lane changes: While the level 1 and 2 cars reach 
zero yaw and lateral acceleration, level 3 and 4 are 
too slow to get back to zero before the second lane 
change is started. This is essentially because of the 
elasticity in the suspensions. The level 1 and 2 
models behave very similar. The tables used in 
level 1 were generated from suspensions close to 
those used in level 2. The behaviour of the level 3 
and 4 models is practically identical. The 
oscillations of the links with small masses have 
very little effect on the deformation of the bushings 
that carry the wheel.  

Real-time simulation 
Let us discuss the problems of using these four 
models for real-time simulation.  

It is possible to use explicit Euler with a step-
size of 1 ms for the models of level 1 and 2. 
Comparisons with results from offline simulation 
with DASSL (relative tolerance=10-6) show that 
the error in side acceleration is less than 0.25%. 
The major task when using the explicit Euler 
method is the calculation of the derivatives. Each 
of the level 1 model and the level 2 model has a 
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linear system of simultaneous equations corre-
sponding to the mass matrix inversion. Dymola’s 
symbolic processing reduces this  system of 
equations to a system of about 10 equations. There 
are no nonlinear systems of equations, because the 
equations for the closed kinematics loops of level 2 
have been solved analytically in the model library. 
The RT-LAB environment from OPAL-RT using a 
Pentium 4, 3066 MHz processor runs these two 
models easily in real-time, because it needs only 
0.1 ms for an Euler step for the level 1 model and 
0.3 ms for the level 2 model.  

It is not possible to use explicit Euler to 
simulate the level 3 model or the level 4 model, 
because these models use bushing models instead 
of ideal joints. The bushings introduce very fast 
modes. Explicit Euler requires the step size to be 
smaller than the shortest time constant utilized 
(typically less than 50 microseconds). Typically, 
the fastest modes are not excited to a degree that it 
is necessay to resolve them for the intended 
purpose. In such cases the problem is referred as 
stiff. The implicit Euler method solves the 
numerical stability problem and allows larger step 
sizes to be used. It is the accuracy required that 
restricts how large step sizes can be used. Using 
the implicit Euler method, on the other hand, 
implies that a nonlinear system of equations needs 
to be solved at every step. The size of this system 
is at least as large as the size of the state vector, n. 
Solving large nonlinear systems of equations in 
real-time is somewhat problematic because the 
number of operations is O(n3) and the number of 
iterations might vary for different steps. Reducing 
the size of the nonlinear problem is advantageous. 
The method of inline integration [5, 6] was 
introduced to handle such cases. The discretization 
formulas of the integration method are combined 
with the model equations and structural analysis 
and computer algebra methods are applied on the 
augmented system of equations. Implicit Euler 
allows larger step size, but the accuracy is often 
not good enough. If neither the explicit nor the 
implicit Euler method is satisfactory, Dymola 
utilizes methods with higher order or mixed 
explicit/implicit methods for such models. 

Each of the level 3 model and the level 4 model 
has a linear system of simultaneous equations 
corresponding to the mass matrix inversion. 
Dymola’s symbolic processing reduces this system 
of equations to a system of about 20 equations. 

The level 3 model and the level 4 model have 
been simulated with a special inline mixed 
explicit/implicit method, developed by Dynasim. 
This results in a nonlinear system of equations. For 

the level 3 model the size is about 130 and for the 
level 4 model the size is about 80. The level 4 
model has 154 state variables. The large possible 
reduction of the size of the implicit non-linear 
system of equations from 154 to about 80 is due to 
the fact that certain subsystems are linear even 
after ammendment of the corresponding 
discretization formulas. Dymola automatically 
detects such structures during the structural 
analysis of the equations. The remaining nonlinear 
system of equations has to be solved by a Newton 
method; 2-3 iterations are typically needed, i.e. 3-4 
residual calculations need to be performed. The 
step size was chosen to 2 ms. Comparisons with 
results from offline simulation with DASSL 
(relative tolerance=10-6) show that the error in side 
acceleration is less than 0.5%.  
 

 
Figure 14: Side accelerations for the level 4 model 
 
The difference between the results of the implicit 
method and DASSL is less than 0.5% 

 
Figure 15: Side acceleration erros for the level 4 

model (Euler – DASSL) 
 

The realtime benchmarks were run on a computer 
equipped with a Pentium 4 processor running at 
3066 MHz and a 333 MHz single-channel memory 
architecture. 

As shown in Figure 16, the execution time is 
shorter for some time intervals, because of slower 
dynamics there requiring a smaller number of 
Newton iterations. 
 

 
Figure 16: CPU time/step, when simulating level 4  
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It is worth noting that the level 4 model runs faster 
than the level 3 model, for which 1.7 ms per step is 
needed, although the level 4 model is more 
detailed. Obviously, the neglection of the push rod 
masses is not useful when Dymola’s inline 
integration method together with its symbolic 
transformation capabilities are used. For offline 
simulations it is the opposite: the level 3 model 
runs faster as the level 4 model when using 
DASSL.  

4 Conclusions 
The paper has described typical efficiency issues  
in automotive real-time and HIL simulations. The 
examples given demonstrate the powerful real-time 
capabilities of Dymola and the Modelica modeling 
language. The models presented may indeed serve 
as benchmark examples as they are in the front-line 
of what can be simulated in real-time today. One of 
the benchmark models for vehicle dynamic 
simulation has 72 degrees-of-freedom with 
bushings in both the front and rear wheel 
suspensions.  It was simulated in real-time with a 
sample rate of 500 Hz. The presented examples 
show that it is possible to simulate high-fidelity 
models in real-time for power trains and vehicle 
dynamics simulations. This is made possible by 
Dymola‘s unique and elaborate symbolic 
processing of the equations. 
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