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A Task Merging Technique for Parallelization of Modelica Models 
Peter Aronsson, Peter Fritzson  

PELAB – Programming Environment Lab, Dept. Computer Science 
Linköping University, S-581 83 Linköping, Sweden 

Abstract 
This paper presents improvements on techniques of 
merging tasks in task graphs generated in the ModPar 
automatic parallelization module of the OpenModelica 
compiler. Automatic parallelization is performed on 
Modelica models by building data dependency graphs 
called task graphs from the model equations. To handle 
large task graphs with fine granularity, i.e. low ratio of 
execution and communication cost, the tasks are 
merged. This is done by using a graph rewrite sys-
tem(GRS), which is a set of graph transformation rules 
applied on the task graph. In this paper we have solved 
the confluence problem of the task merging system by 
giving priorities to the merge rules. A GRS is confluent 
if the application order of the graph transformations 
does not matter, i.e. the same result is gained regardless 
of application order. 

We also present a Modelica model suited for auto-
matic parallelization and show results on this using the 
ModPar module in the OpenModelica compiler. 

1 Introduction 
Parallel computers have been used in simulations for a 
long time. In fact, many of the large simulation applica-
tions are driving the parallel computer industry, like 
modeling and simulation of atomic explosions, or mod-
eling and simulation for weather forecasting. These 
models are typically hand written for dedicated parallel 
computers. Modeling of such systems requires both 
knowledge of the modeling domain and knowledge in 
parallel programming. Thus, such models are mostly 
used by experts and the models tend to be used for a 
long period of time, since it is to expensive to change 
them. 

In this paper we instead present techniques that en-
able a fully automatic approach to parallel simulation. 
We have developed an automatic parallelization tool 
for Modelica that can translate a Modelica model into a 
platform independent parallel simulation program. By 
having a fully automated process of producing the par-
allel simulation code, parallel simulation is opened up 

to a new set of users, with little or no knowledge of 
parallel programming or even parallel computers. 

Our parallelization tool is plugged into the Open-
Modelica compiler developed at the Programming En-
vironments Laboratory (PELAB) at Linköping Univer-
sity. Figure 1 presents an overview of the components 
of the OpenModelica compiler and the parallelization 
tool which is called ModPar. The OpenModelica com-
piler reads Modelica models and produces a set of vari-
ables, equations, algorithms, blocks, etc. This is fed 
into the ModPar module which performs a set of op-
timizations on the equations. First, simple algebraic 
equations on the form a=b are removed, which can 
substantially reduce the number of equations and vari-
ables of the system. 

OpenModelica
frontend

ModPar

Equation opt.
BLT, Index
reduction

Task Graph
Builder

Task Merging Task
Scheduling

Code
Generation

Parallel
MPI

program

Figure 1. The ModPar Architecture.

The next optimization performed on the equations is 
the equation sorting. Equations are sorted in a Block 
Lower Triangular(BLT) form, resulting in a set of 
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equation blocks, where each block consists of one or 
more equations that need to be solved simultaneously. 

In conjunction with sorting the equations, index re-
duction using dummy derivatives is applied[6]. Index 
reduction is used on high index systems of equations, 
where some equations need to be differentiated in order 
to solve the system. The index of a system corresponds 
to how many times some equations needs to be differ-
entiated before the set of equations can be transformed 
into an ODE (also called the underlying ODE). 

A task graph is built, based on the sorted BLT form. 
A task graph is a Directed Acyclic Graph (DAG), with 
costs associated with edges and nodes. It is described 
by the tuple ),,,( τcEVG =  where 

• V  is a set of vertices (nodes), i.e. tasks in the task 
graph. A task is generated for each sub expression 
in the model equations. For instance, an addition be-
tween two scalar values  (a+b) or a function call  
(sin(x)) constitutes a task. In this paper tasks 
and nodes are used with the same meaning. 

• E  is a set of edges, which imposes a precedence 
constraint on the tasks. An edge  indi-
cates that node 1v must be executed before  and 
send data (resulting from the execution of ) to 

.  

),( 21 vve =
2v
1v

2v
• gives the communication cost of sending the 

data along an edge . 
)(ec

Ee∈
• )(vτ  gives the execution cost for each node 

. Vv∈
The immediate predecessors (or parents) of a node n 
are all nodes having an edge leading to the node n. 
They are denoted by pred(n). The immediate succes-
sors (or children) of a node n are all nodes having an 
edge leading to it from node n. They are denoted by 
succ(n). Similarly the predecessors of a node n is the 
transitive closure of pred(n), i.e. the set of all tasks 
having a path leading to the node n. Analogously, the 
successors of a node n are all the tasks having a path 
leading to them from the node n. These sets are denoted 
predm(n) and succm(n) respectively. 

Blocks containing more than one equation need to 
be solved before the task graph can be built. Such a 
block can either be a linear system of equations or a 
non-linear system of equations. For certain blocks the 
solution cannot be found at compile time and thus a 
numerical solver is integrated in the task graph itself. 
For example, the solution of a linear system of equa-
tions can be done in parallel, making the corresponding 
task possible to execute on more than one processor. 
Such tasks are referred to as malleable tasks. 

The next step in the ModPar tool is to perform task 
merging and task clustering. Task clustering performs a 
mapping of tasks to virtual processors by forming clus-

ters of tasks. This means that tasks that belong to the 
same cluster have a communication cost of zero, while 
tasks between clusters still have their original commu-
nication cost. Task merging differs from task clustering 
in the sense that tasks of the task graph are collapsed 
into a single node that represents the complete compu-
tational work of the included tasks. The data packets 
sent to and from the merged task are also combined. 
The goal of a task-merging algorithm is to increase the 
granularity, i.e., the relation between communication 
and execution cost of the task graph. This paper pre-
sents improvements on a task-merging algorithm based 
on earlier work in [1]. 

The result from the Task Merging algorithm is a 
new task graph with a smaller number of tasks (with 
larger execution costs). This is fed into the task-
scheduling algorithm that maps the task graph onto a 
fixed number of processors. Each task in the task graph 
is assigned a processor(s) and starting time(s). 

The final stage in the ModPar module is code gen-
eration. The ModPar outputs simulation code with MPI 
(Message Passing Interface) calls[7] to send and re-
ceive code between processors. Processor zero runs the 
numerical solver. In each integration step, work is dis-
tributed to other slave processors, which then calculate 
parts of the equations and send the result back to proc-
essor zero. Model parameters are only read once from 
file and distributed to all processors at the start of the 
simulation.  

The rest of the paper is organized as follows. Sec-
tion 2 introduces the method of merging tasks using a 
graph rewrite system formalism. Section 3 presents a 
Modelica application example suitable for paralleliza-
tion, followed by results in section four. Section 5 pre-
sents the conclusions of the work and section six shows 
how the work relates to other contributions. 

2 Task Merging using Graph Re-
write Systems 

In previous work we have proposed a task-merging 
algorithm based on a graph rewrite system (GRS). A  

RedexPattern
Condition

Invariants

Figure 2. The X notation for GRS.

GRS is a set of graph transformation rules with a pat-
tern, a condition, and a resulting sub-graph (called re-
dex). We use a graphical notation (called the X-
notation) depicted in Figure 2.  
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A GRS applies the transformation rules on the graph 
until there are no more matching patterns found in the 
graph. When this happens the GRS terminates. The 
termination of a GRS is an important property both 
theoretically and in practice. If it is not terminating, the 
GRS must be interrupted somehow in a practical im-
plementation.  

Our task merging rewrite rules are based on the 
condition that the top level of a task should not in-
crease. The top level of a task is defined as the longest 
path from the task to a task without any ingoing edges, 
accumulating execution cost and communication cost 
along the path. The communication costs are described 
using two parameters, the bandwidth B and the latency, 
L. The communication cost of sending n bytes becomes 

. The transformation rules, first presented in 
[2] are given below.  

LBn +/

1. The first and simplest rewrite rule is given in 
Figure 3. It merges a parent task that has only 
one child with the child. This can always be 
performed, i.e., without any condition, since 
such transformation will not reduce the level of 
parallelism in the task graph. 

 
 

p

c
p´

)(   )( pnpredjjtlevel ∈  
Figure 3. Merging of single children rule, called 

singlechildmerge.

2. The second rule handles join nodes, i.e., a task 
that has several incoming messages from a set 
of parent tasks, see Figure 4. The condition for 
this rule to apply is that the top level of task c 
does not increase when the transformation is 
performed. However, it is also necessary to 
make sure that other successors of the parents 
of the join node (pij) are not increasing their top 
levels. The rule therefore divides the parents 
into two disjoint sets, one that has successors 
fulfilling the condition and one that has succes-
sors increasing their top level by the merge and 
therefore not fulfilling the condition. The par-
ents not fulfilling the condition are therefore not 
merged into the join task, c. 
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Figure 4. Rule of Merging of all parents to a task, called 

mergeallparents.

3. The third and final rewrite rule deals with 
split nodes. A split node is a node with sev-
eral successors, or children. The transforma-
tion will replicate the split task and merge it 
with each individual successor task, ci. How-
ever, the successor tasks can also have other 
predecessors for which the top level cannot 
be allowed to increase. Therefore, analo-
gously as for the join task rewrite rule we also 
divide the successor tasks into two disjoint 
sets. The successor tasks that have other 
predecessors not increasing the top level are 
put in the set C. Thus, predecessors belonging 
to C are replicated and merged with the task 
c, while predecessors not belonging to C are 
left as they are. 
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Figure 5. Replicating a parent and merging into each child 

task, called replicateparentmerge.

An unanswered question so far has been if the GRS is 
confluent or not. A confluent GRS gives the same re-
sulting graph independently of the order of the applied 
rules. In earlier work, we investigated empirically 
whether the GRS was confluent, but now we have 
found a counter example that the rewrite rules are not 
confluent as they appear above. There are several alter-
natives to try to remedy this fact: 

1. One could limit the order of matching of the 
patterns on the task graph. An idea of this is 
for instance to traverse the graph once in a 
top down fashion to prevent the confluence 
problem to occur. It is however not clear if 
this would work or not, without a more thor-
ough investigation. 
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2. Another alternative is to instead use the sim-
pler rewrite rules first presented in [2]. This 
approach might be taken for specific types of 
graphs, e.g. trees or forests, but in the gen-
eral case, this is not sufficient. The simple 
rules did not succeed so well in reducing fine 
grained tasks graphs as produced by the task 
graph builder in ModPar. 

3. A third, and the best practical alternative, is 
to give priorities to the rewrite rules. This 
means that a rewrite rule with a higher prior-
ity is always applied before other rules with 
lower priority. This will effectively prevent 
the GRS from being non-confluent, since 
only applications of transformations in prior-
ity order is allowed. 

The priority order solution to the confluence problem 
was chosen in ModPar. The chosen priority is: 

1. singlechildmerge 
2. replicateparentmerge 
3. mergeallparents 

This means that the singlechildmerge rule has the high-
est priority and is always applied first. This rule is also 
the cheapest to apply since it does not have any condi-
tion, only a sub-graph pattern. Therefore, it makes 
sense to apply it with highest priority. 

 The second highest priority has the replicatepar-
entmerge rule, thus giving the mergeallparents rule the 
lowest priority. The order between the last two rules is 
chosen so that rules limiting the amount of parallelism 
of the task graph are given lower priority. Since mer-
geallparents merges independent tasks (the successor 
of the parent), it reduces the amount of parallelism, 
which replicateparentmerge does not. Therefore, this 
order is chosen. 

3 Application example 
Lets consider a simple application example that can 
easily be scaled up using the array of components fea-
ture in Modelica. It uses the Modelica standard library 
and the one-dimensional Rotational package to cre-
ate a flexible shaft. The shaft element is implemented 
as: 
model ShaftElement "Element of a flexible 
                    one dimensional shaft"  
import Modelica.Mechanics.Rotational.*;1

   extends Interfaces.TwoFlanges; 
   Inertia load; 
   SpringDamper spring(c=500,d=5); 

                                                      
1 Unqualified imports are not recommended to use. They 
are used here for space considerations. 

equation  
   connect(load.flange_b, 

spring.flange_a); 
   connect(load.flange_a,flange_a); 
   connect(spring.flange_b,flange_b); 
end ShaftElement;

The ShaftElement model describes a one-
dimensional shaft element with a spring and a damper. 
By instantiating this component as an array and con-
necting each array component to the next, we get a 
simple model of a flexible shaft. 
model FlexibleShaft "model of a flexible 

 shaft"
import Modelica.Mechanics.Rotational.*;  
  extends Interfaces.TwoFlanges; 
  parameter Integer n(min=1) = 20 "number 
of shaft elements"; 
  ShaftEle
equation  

ment shaft[n]; 

  for i in 2:n loop 
    connect(shaft[I-1].flange_b,    
            shaft[i].flange_a); 
  end for;  
  connect(shaft[1].flange_a, flange_a); 
  connect(shaft[n].flange_b, flange_b); 
end FlexibleShaft; 

Finally, we create a test model to test our shaft. 
 

model ShaftTest  
  FlexibleShaft shaft(n=20); 
  Modelica.Mechanics.Rotational.Torque 
src; 
  Modelica.Blocks.Sources.Step c; 
equation  
  connect(shaft.flange_a, src.flange_b); 
  connect(c.outPort, src.inPort); 
end ShaftTest; 

The structural parameter n controls the number of ele-
ment pieces of the model, i.e., the number of discretiza-
tion points of the model. It is therefore directly propor-
tional to the number of variables and equations of the 
model. Due to its simplicity and structure, it is suitable 
for parallelization. 

4 Results 
The confluence problem is successfully solved in this 
paper by introducing priorities on the task merging 
rules. These priorities makes the task merging GRS 
confluent, according to measurements made on a large 
set of random task graphs from the Standard Task 
Graph Set (STG)[10], as well as task graphs generated 
from the ModPar module. 

The application example in section 3 can substan-
tially be reduced in size but still reveal sufficient paral-
lelism. When running the task-merging algorithm on 
the task graph produced from the example, it results in 
a set of independent tasks, which can then be allocated 
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to a set of processors in a simple load balancing man-
ner, i.e., evenly distributing them among the proces-
sors. Thus, for this example, no scheduling is even re-
quired. This reduction is possible since the graph re-
write rules allow replication of tasks, such that depend-
encies between tasks of the task graph are completely 
removed. 

Table 1 shows the increase of granularity2 when ap-
plying the task merging for another Modelica example 
from the Thermofluid package. With realistic figures 
on bandwidth (B) and Latency (L), we see a substantial 
increase of granularity. 

 
Model Granularity 

before merge 
Granularity 
after merge 

PressureWave 
(B=1, L=100) 

0.000990 0.106 

PressureWave 
(B=1, L=1000) 

0.0000990 0.0562 

Table 1. Granularity before and after Task Merging. 
 
The status of the parallelization tool is that we can gen-
erate C code with MPI calls for execution of parallel 
machines, such as the Linux cluster monolith at NSC 
(Swedish National Supercomputer Center). We have 
successfully executed smaller examples on this cluster 
computer but without obtaining any speedups. The ap-
plication example in Section 3 can only be translated in 
reasonable time with about 9000 equations (using 1000 
discretization points), which is a bit too small for ob-
taining sufficient speedups. In order to handle larger 
system of equations, the equation optimization and 
other parts of the compiler must be implemented in a 
more efficient way. In addition, the amount of work per 
state variable in the Flexible Shaft example is not so 
large, so in order to get better speedups, other applica-
tions must be considered. 

5 Conclusions 
We have proposed improvements on earlier work of 
merging tasks in a task graph using a graph rewrite sys-
tem formalism. Earlier improvements made the task 
merging GRS non-confluent, thus giving different re-
sults depending of order of application. We proposed 
several alternative solutions to make the GRS confluent 
and have chosen and implemented the best-suited solu-
tion for our application area, parallelization of simula-
tion code from Modelica models. 

                                                      
2 The relation between communication and execution cost 
of the task graph. 

The task merging technique is implemented in the 
ModPar module, a part of the OpenModelica compiler. 
It successfully reduces the number of tasks of task 
graphs built from Modelica simulation code to a suit-
able degree such that existing scheduling algorithms 
can succeed in producing parallel programs that give 
sufficient speedup. 

6 Related Work 
There is much work on scheduling of task graphs for 
multi-processors, like the DSC[11] algorithm, the 
TDS[4] algorithm or the Internalization algorithm[9], 
all working on unlimited number of processors, so 
called clustering algorithms. They all treat each task in 
the task graph as a non-preemptive atomic task, and do 
not consider merging of tasks. Therefore, they do not 
work well on very fine-grained task graphs. 

There are other attempts to merge tasks, like the 
grain-packing algorithm[5]. The difference between 
this approach and ours is that our approach is iterative 
by nature and allows task replication. 

Related work on parallelization of simulation code 
includes distributed simulation where the numerical 
solver is split into several parts, each handling a subset 
of the equations. The interaction between the subsys-
tems is then delayed in time such that the subsystems 
becomes independent of each other in each time step. 
This division of the model equations into subsystems is 
implemented using a transmission line component in 
the system, giving the technique the name Transmis-
sion Line Modeling (TLM)[3].  

Other related work on parallel simulation includes 
using parallel solvers, where the numerical solvers 
themselves are parallelized, like for instance Runge 
Kutta based solvers[8]. 
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