
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

P. Aronsson, P. Fritzson
Linköping University, Sweden
A Task Merging Technique for Parallelization of Modelica Models
pp. 123-128

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

A Task Merging Technique for Parallelization of Modelica Models
Peter Aronsson, Peter Fritzson

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, S-581 83 Linköping, Sweden

Abstract
This paper presents improvements on techniques of
merging tasks in task graphs generated in the ModPar
automatic parallelization module of the OpenModelica
compiler. Automatic parallelization is performed on
Modelica models by building data dependency graphs
called task graphs from the model equations. To handle
large task graphs with fine granularity, i.e. low ratio of
execution and communication cost, the tasks are
merged. This is done by using a graph rewrite sys-
tem(GRS), which is a set of graph transformation rules
applied on the task graph. In this paper we have solved
the confluence problem of the task merging system by
giving priorities to the merge rules. A GRS is confluent
if the application order of the graph transformations
does not matter, i.e. the same result is gained regardless
of application order.

We also present a Modelica model suited for auto-
matic parallelization and show results on this using the
ModPar module in the OpenModelica compiler.

1 Introduction
Parallel computers have been used in simulations for a
long time. In fact, many of the large simulation applica-
tions are driving the parallel computer industry, like
modeling and simulation of atomic explosions, or mod-
eling and simulation for weather forecasting. These
models are typically hand written for dedicated parallel
computers. Modeling of such systems requires both
knowledge of the modeling domain and knowledge in
parallel programming. Thus, such models are mostly
used by experts and the models tend to be used for a
long period of time, since it is to expensive to change
them.

In this paper we instead present techniques that en-
able a fully automatic approach to parallel simulation.
We have developed an automatic parallelization tool
for Modelica that can translate a Modelica model into a
platform independent parallel simulation program. By
having a fully automated process of producing the par-
allel simulation code, parallel simulation is opened up

to a new set of users, with little or no knowledge of
parallel programming or even parallel computers.

Our parallelization tool is plugged into the Open-
Modelica compiler developed at the Programming En-
vironments Laboratory (PELAB) at Linköping Univer-
sity. Figure 1 presents an overview of the components
of the OpenModelica compiler and the parallelization
tool which is called ModPar. The OpenModelica com-
piler reads Modelica models and produces a set of vari-
ables, equations, algorithms, blocks, etc. This is fed
into the ModPar module which performs a set of op-
timizations on the equations. First, simple algebraic
equations on the form a=b are removed, which can
substantially reduce the number of equations and vari-
ables of the system.

OpenModelica
frontend

ModPar

Equation opt.
BLT, Index
reduction

Task Graph
Builder

Task Merging Task
Scheduling

Code
Generation

Parallel
MPI

program

Figure 1. The ModPar Architecture.

The next optimization performed on the equations is
the equation sorting. Equations are sorted in a Block
Lower Triangular(BLT) form, resulting in a set of

A Task Merging Technique for Parallelization of Modelica Models

The Modelica Association 123 Modelica 2005, March 7-8, 2005

equation blocks, where each block consists of one or
more equations that need to be solved simultaneously.

In conjunction with sorting the equations, index re-
duction using dummy derivatives is applied[6]. Index
reduction is used on high index systems of equations,
where some equations need to be differentiated in order
to solve the system. The index of a system corresponds
to how many times some equations needs to be differ-
entiated before the set of equations can be transformed
into an ODE (also called the underlying ODE).

A task graph is built, based on the sorted BLT form.
A task graph is a Directed Acyclic Graph (DAG), with
costs associated with edges and nodes. It is described
by the tuple),,,(τcEVG = where

• V is a set of vertices (nodes), i.e. tasks in the task
graph. A task is generated for each sub expression
in the model equations. For instance, an addition be-
tween two scalar values (a+b) or a function call
(sin(x)) constitutes a task. In this paper tasks
and nodes are used with the same meaning.

• E is a set of edges, which imposes a precedence
constraint on the tasks. An edge indi-
cates that node 1v must be executed before and
send data (resulting from the execution of) to

.

),(21 vve =
2v
1v

2v
• gives the communication cost of sending the

data along an edge .
)(ec

Ee∈
•)(vτ gives the execution cost for each node

. Vv∈
The immediate predecessors (or parents) of a node n
are all nodes having an edge leading to the node n.
They are denoted by pred(n). The immediate succes-
sors (or children) of a node n are all nodes having an
edge leading to it from node n. They are denoted by
succ(n). Similarly the predecessors of a node n is the
transitive closure of pred(n), i.e. the set of all tasks
having a path leading to the node n. Analogously, the
successors of a node n are all the tasks having a path
leading to them from the node n. These sets are denoted
predm(n) and succm(n) respectively.

Blocks containing more than one equation need to
be solved before the task graph can be built. Such a
block can either be a linear system of equations or a
non-linear system of equations. For certain blocks the
solution cannot be found at compile time and thus a
numerical solver is integrated in the task graph itself.
For example, the solution of a linear system of equa-
tions can be done in parallel, making the corresponding
task possible to execute on more than one processor.
Such tasks are referred to as malleable tasks.

The next step in the ModPar tool is to perform task
merging and task clustering. Task clustering performs a
mapping of tasks to virtual processors by forming clus-

ters of tasks. This means that tasks that belong to the
same cluster have a communication cost of zero, while
tasks between clusters still have their original commu-
nication cost. Task merging differs from task clustering
in the sense that tasks of the task graph are collapsed
into a single node that represents the complete compu-
tational work of the included tasks. The data packets
sent to and from the merged task are also combined.
The goal of a task-merging algorithm is to increase the
granularity, i.e., the relation between communication
and execution cost of the task graph. This paper pre-
sents improvements on a task-merging algorithm based
on earlier work in [1].

The result from the Task Merging algorithm is a
new task graph with a smaller number of tasks (with
larger execution costs). This is fed into the task-
scheduling algorithm that maps the task graph onto a
fixed number of processors. Each task in the task graph
is assigned a processor(s) and starting time(s).

The final stage in the ModPar module is code gen-
eration. The ModPar outputs simulation code with MPI
(Message Passing Interface) calls[7] to send and re-
ceive code between processors. Processor zero runs the
numerical solver. In each integration step, work is dis-
tributed to other slave processors, which then calculate
parts of the equations and send the result back to proc-
essor zero. Model parameters are only read once from
file and distributed to all processors at the start of the
simulation.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the method of merging tasks using a
graph rewrite system formalism. Section 3 presents a
Modelica application example suitable for paralleliza-
tion, followed by results in section four. Section 5 pre-
sents the conclusions of the work and section six shows
how the work relates to other contributions.

2 Task Merging using Graph Re-
write Systems

In previous work we have proposed a task-merging
algorithm based on a graph rewrite system (GRS). A

RedexPattern
Condition

Invariants

Figure 2. The X notation for GRS.

GRS is a set of graph transformation rules with a pat-
tern, a condition, and a resulting sub-graph (called re-
dex). We use a graphical notation (called the X-
notation) depicted in Figure 2.

P. Aronsson, P. Fritzson

The Modelica Association 124 Modelica 2005, March 7-8, 2005

A GRS applies the transformation rules on the graph
until there are no more matching patterns found in the
graph. When this happens the GRS terminates. The
termination of a GRS is an important property both
theoretically and in practice. If it is not terminating, the
GRS must be interrupted somehow in a practical im-
plementation.

Our task merging rewrite rules are based on the
condition that the top level of a task should not in-
crease. The top level of a task is defined as the longest
path from the task to a task without any ingoing edges,
accumulating execution cost and communication cost
along the path. The communication costs are described
using two parameters, the bandwidth B and the latency,
L. The communication cost of sending n bytes becomes

. The transformation rules, first presented in
[2] are given below.

LBn +/

1. The first and simplest rewrite rule is given in
Figure 3. It merges a parent task that has only
one child with the child. This can always be
performed, i.e., without any condition, since
such transformation will not reduce the level of
parallelism in the task graph.

p

c
p´

)()(pnpredjjtlevel ∈
Figure 3. Merging of single children rule, called

singlechildmerge.

2. The second rule handles join nodes, i.e., a task
that has several incoming messages from a set
of parent tasks, see Figure 4. The condition for
this rule to apply is that the top level of task c
does not increase when the transformation is
performed. However, it is also necessary to
make sure that other successors of the parents
of the join node (pij) are not increasing their top
levels. The rule therefore divides the parents
into two disjoint sets, one that has successors
fulfilling the condition and one that has succes-
sors increasing their top level by the merge and
therefore not fulfilling the condition. The par-
ents not fulfilling the condition are therefore not
merged into the join task, c.

)()(
i

pnpredjjtlevel ∈

p1 p2 pn
c´

panc pa1

p´b1 p´bn

p2 p2

...
... ...

...

)()p()tlevel(pmax)(ii cctlevel ττ +∑+>

LBppcctlevelptlevelCp
jjj iiii ++>∈ /),(´)()(

)(,)(cpredpcpsuccp iii j
∈≠∈∀

},..,{:

)(

n

i

aa

a

pp

Cpsucc

1

∈

},..,{: nbbi ppCp 1∉

Figure 4. Rule of Merging of all parents to a task, called

mergeallparents.

3. The third and final rewrite rule deals with
split nodes. A split node is a node with sev-
eral successors, or children. The transforma-
tion will replicate the split task and merge it
with each individual successor task, ci. How-
ever, the successor tasks can also have other
predecessors for which the top level cannot
be allowed to increase. Therefore, analo-
gously as for the join task rewrite rule we also
divide the successor tasks into two disjoint
sets. The successor tasks that have other
predecessors not increasing the top level are
put in the set C. Thus, predecessors belonging
to C are replicated and merged with the task
c, while predecessors not belonging to C are
left as they are.

)()(pnpredjjtlevel ∈
c1 c2 cn

c1´

p
p

cl ck
...

niB
i

cpcLp .. /),()(1=∀+≤τ

)()(/),(
)()(

p
j

pB
i

c
j

pc
L

j
ptlevelctlevelCc ii

ττ +++

+≥∈

ppccpredp jij ≠≠∈∀ ,)(

},..,{:
k

c
l

cCci ∉

...
cm´

},..,{: mccC 1ni ..1=∀

Figure 5. Replicating a parent and merging into each child

task, called replicateparentmerge.

An unanswered question so far has been if the GRS is
confluent or not. A confluent GRS gives the same re-
sulting graph independently of the order of the applied
rules. In earlier work, we investigated empirically
whether the GRS was confluent, but now we have
found a counter example that the rewrite rules are not
confluent as they appear above. There are several alter-
natives to try to remedy this fact:

1. One could limit the order of matching of the
patterns on the task graph. An idea of this is
for instance to traverse the graph once in a
top down fashion to prevent the confluence
problem to occur. It is however not clear if
this would work or not, without a more thor-
ough investigation.

A Task Merging Technique for Parallelization of Modelica Models

The Modelica Association 125 Modelica 2005, March 7-8, 2005

2. Another alternative is to instead use the sim-
pler rewrite rules first presented in [2]. This
approach might be taken for specific types of
graphs, e.g. trees or forests, but in the gen-
eral case, this is not sufficient. The simple
rules did not succeed so well in reducing fine
grained tasks graphs as produced by the task
graph builder in ModPar.

3. A third, and the best practical alternative, is
to give priorities to the rewrite rules. This
means that a rewrite rule with a higher prior-
ity is always applied before other rules with
lower priority. This will effectively prevent
the GRS from being non-confluent, since
only applications of transformations in prior-
ity order is allowed.

The priority order solution to the confluence problem
was chosen in ModPar. The chosen priority is:

1. singlechildmerge
2. replicateparentmerge
3. mergeallparents

This means that the singlechildmerge rule has the high-
est priority and is always applied first. This rule is also
the cheapest to apply since it does not have any condi-
tion, only a sub-graph pattern. Therefore, it makes
sense to apply it with highest priority.

 The second highest priority has the replicatepar-
entmerge rule, thus giving the mergeallparents rule the
lowest priority. The order between the last two rules is
chosen so that rules limiting the amount of parallelism
of the task graph are given lower priority. Since mer-
geallparents merges independent tasks (the successor
of the parent), it reduces the amount of parallelism,
which replicateparentmerge does not. Therefore, this
order is chosen.

3 Application example
Lets consider a simple application example that can
easily be scaled up using the array of components fea-
ture in Modelica. It uses the Modelica standard library
and the one-dimensional Rotational package to cre-
ate a flexible shaft. The shaft element is implemented
as:
model ShaftElement "Element of a flexible
 one dimensional shaft"
import Modelica.Mechanics.Rotational.*;1

 extends Interfaces.TwoFlanges;
 Inertia load;
 SpringDamper spring(c=500,d=5);

1 Unqualified imports are not recommended to use. They
are used here for space considerations.

equation
 connect(load.flange_b,

spring.flange_a);
 connect(load.flange_a,flange_a);
 connect(spring.flange_b,flange_b);
end ShaftElement;

The ShaftElement model describes a one-
dimensional shaft element with a spring and a damper.
By instantiating this component as an array and con-
necting each array component to the next, we get a
simple model of a flexible shaft.
model FlexibleShaft "model of a flexible

 shaft"
import Modelica.Mechanics.Rotational.*;
 extends Interfaces.TwoFlanges;
 parameter Integer n(min=1) = 20 "number
of shaft elements";
 ShaftEle
equation

ment shaft[n];

 for i in 2:n loop
 connect(shaft[I-1].flange_b,
 shaft[i].flange_a);
 end for;
 connect(shaft[1].flange_a, flange_a);
 connect(shaft[n].flange_b, flange_b);
end FlexibleShaft;

Finally, we create a test model to test our shaft.

model ShaftTest
 FlexibleShaft shaft(n=20);
 Modelica.Mechanics.Rotational.Torque
src;
 Modelica.Blocks.Sources.Step c;
equation
 connect(shaft.flange_a, src.flange_b);
 connect(c.outPort, src.inPort);
end ShaftTest;

The structural parameter n controls the number of ele-
ment pieces of the model, i.e., the number of discretiza-
tion points of the model. It is therefore directly propor-
tional to the number of variables and equations of the
model. Due to its simplicity and structure, it is suitable
for parallelization.

4 Results
The confluence problem is successfully solved in this
paper by introducing priorities on the task merging
rules. These priorities makes the task merging GRS
confluent, according to measurements made on a large
set of random task graphs from the Standard Task
Graph Set (STG)[10], as well as task graphs generated
from the ModPar module.

The application example in section 3 can substan-
tially be reduced in size but still reveal sufficient paral-
lelism. When running the task-merging algorithm on
the task graph produced from the example, it results in
a set of independent tasks, which can then be allocated

P. Aronsson, P. Fritzson

The Modelica Association 126 Modelica 2005, March 7-8, 2005

to a set of processors in a simple load balancing man-
ner, i.e., evenly distributing them among the proces-
sors. Thus, for this example, no scheduling is even re-
quired. This reduction is possible since the graph re-
write rules allow replication of tasks, such that depend-
encies between tasks of the task graph are completely
removed.

Table 1 shows the increase of granularity2 when ap-
plying the task merging for another Modelica example
from the Thermofluid package. With realistic figures
on bandwidth (B) and Latency (L), we see a substantial
increase of granularity.

Model Granularity

before merge
Granularity
after merge

PressureWave
(B=1, L=100)

0.000990 0.106

PressureWave
(B=1, L=1000)

0.0000990 0.0562

Table 1. Granularity before and after Task Merging.

The status of the parallelization tool is that we can gen-
erate C code with MPI calls for execution of parallel
machines, such as the Linux cluster monolith at NSC
(Swedish National Supercomputer Center). We have
successfully executed smaller examples on this cluster
computer but without obtaining any speedups. The ap-
plication example in Section 3 can only be translated in
reasonable time with about 9000 equations (using 1000
discretization points), which is a bit too small for ob-
taining sufficient speedups. In order to handle larger
system of equations, the equation optimization and
other parts of the compiler must be implemented in a
more efficient way. In addition, the amount of work per
state variable in the Flexible Shaft example is not so
large, so in order to get better speedups, other applica-
tions must be considered.

5 Conclusions
We have proposed improvements on earlier work of
merging tasks in a task graph using a graph rewrite sys-
tem formalism. Earlier improvements made the task
merging GRS non-confluent, thus giving different re-
sults depending of order of application. We proposed
several alternative solutions to make the GRS confluent
and have chosen and implemented the best-suited solu-
tion for our application area, parallelization of simula-
tion code from Modelica models.

2 The relation between communication and execution cost
of the task graph.

The task merging technique is implemented in the
ModPar module, a part of the OpenModelica compiler.
It successfully reduces the number of tasks of task
graphs built from Modelica simulation code to a suit-
able degree such that existing scheduling algorithms
can succeed in producing parallel programs that give
sufficient speedup.

6 Related Work
There is much work on scheduling of task graphs for
multi-processors, like the DSC[11] algorithm, the
TDS[4] algorithm or the Internalization algorithm[9],
all working on unlimited number of processors, so
called clustering algorithms. They all treat each task in
the task graph as a non-preemptive atomic task, and do
not consider merging of tasks. Therefore, they do not
work well on very fine-grained task graphs.

There are other attempts to merge tasks, like the
grain-packing algorithm[5]. The difference between
this approach and ours is that our approach is iterative
by nature and allows task replication.

Related work on parallelization of simulation code
includes distributed simulation where the numerical
solver is split into several parts, each handling a subset
of the equations. The interaction between the subsys-
tems is then delayed in time such that the subsystems
becomes independent of each other in each time step.
This division of the model equations into subsystems is
implemented using a transmission line component in
the system, giving the technique the name Transmis-
sion Line Modeling (TLM)[3].

Other related work on parallel simulation includes
using parallel solvers, where the numerical solvers
themselves are parallelized, like for instance Runge
Kutta based solvers[8].

Acknowledgements
This work has been supported by the Swedish Founda-
tion for Strategic Research (SSF), in the VISIMOD
project and in the ECSEL graduate school, and by Vin-
nova in the GridModelica project.

References
[1] P. Aronsson, P. Fritzson, Automatic Paralleliza-

tion in OpenModelica, Proceedings of 5th EU-
ROSIM Congress on Modeling and Simulation,
Paris, France, 6-10 Sep 2004. ISBN 3-901608-28-
1

[2] P. Aronsson, P. Fritzson, Task Merging and Rep-
lication using Graph Rewriting, Tenth Interna-
tional Workshop on Compilers for Parallel Com-

A Task Merging Technique for Parallelization of Modelica Models

The Modelica Association 127 Modelica 2005, March 7-8, 2005

puters, Amsterdam, the Netherlands, Jan 8-10,
2003

[3] Casella F. Maffezzoni C., The Transmission Line
Modeling Method, EEE/OUP Series on Electro-
magnetic Wave Theory, 1995

[4] S. Darbha, D. P. Agrawal. Optimal Scheduling
Algorithm for Distributed-Memory Machines.
IEEE Transactions on Parallel and Distributed
Systems, vol. 9(no. 1):87{94, January 1998.

[5] B. Kruatrachue. Static Task Scheduling and Grain
Packing in Parallel Processor Systems. PhD the-
sis, Dept. of Electrical and Computer Engineering,
Oregon State University, 1987.

[6] S.E. Mattsson, G. Söderlind, Index reduction in
differential-algebraic equations using dummy de-
rivative, Scientific Computing Vol. 14 , Issue 3
1993

[7] Message Passing Interface Forum. MPI: A mes-
sage-passing interface standard. Technical Report
UT-CS-94-230, 1994.

[8] T. Rauber, G. Runger, Iterated Runge-Kutta
Methods on Distributed Memory Multiprocessors.
In Proceedings of First Aizu International Sympo-
sium on Parallel and Distributed Processing,
pages 12-19. 1995.

[9] V. Sarkar. Partitioning and Scheduling Parallel
Programs for Multiprocessors. MIT Press, Cam-
bridge, MA, 1989.

[10] Standard Task Graph Set (STG),
http://www.kasahara.elec.waseda.ac.jp/schedule/,
accessed 2004-12-02.

[11] T. Yang, A. Gerasoulis. DSC: Scheduling Par-
allel Tasks on an Unbounded Number of Proces-
sors. Transactions on Parallel and Distributed Sys-
tems, vol. 5(no. 9), 1994.

P. Aronsson, P. Fritzson

The Modelica Association 128 Modelica 2005, March 7-8, 2005

