
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

P. Harman
Ricardo UK Ltd.
Visualisation of Model Transformation Algorithms for a Modelica Transla-
tor
pp. 155-158

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel,
Stefan Wischhusen, TuTech Innovation GmbH

Visualisation of Model Transformation Algorithms for a Modelica
Translator

Peter Harman, Ricardo UK Ltd., Peter.Harman@ricardo.com

Abstract

A software component has been developed to
visualise the bipartite graph representing the model
structure of a Modelica model. The visualisation is a
window on the underlying graph, and thereforethe
graph transformations appear animated.

This work forms part of research being carried out
into improved strategies for simulation of highly
discontinuous systems. The primary use is to allow
the structure of an equation system to be studied
with the aim of categorising the equations according
to the type of discontinuity.

This tool has other applications such as debugging
or clustering tools. Different layouts and animation
methods have been used to maximise the clarity of
the visualisation, however large models produce
graphs which are too large to view.

1 Introduction

The Modelica specification [1] and existing
Modelica tools such as Dymola [2] and
OpenSourceModelica [3], make use of graph-
theoretical model transformations. The mixture of
differential equations and constraint equations lead
to a Differential-Algebraic-Equation (DAE) system
of unknown index.

Current model transformations [4] have the
following objectives:
• Exploit the sparsity of the system of equations

and sort the equations into small systems of
linear or non-linear equations, this is done in
current tools using the Tarjan algorithm [5]

• Ensure the system is of DAE-index 0 or 1, which
can be solved by a standard solver, this is done
in current tools using the Pantelides algorithm
[6,7]

• Aim to reduce the size of any systems of linear
or non-linear equations by use of tearing [8] or
relaxing [9]

Central to the model transformation algorithms is the
concept of representing the system of equations and
unknowns as a bipartite graph, with vertices

representing each equation or unknown, and edges to
show relationships between them. The tool described
here extends this concept to include the hybrid
features of a Modelica model, adding vertices to
represent conditional expressions and edges to relate
these to variables and equations. All variables,
including constants, parameters, discrete and
continuous states and derivatives, are represented as
vertices. This allows all actions to be taken, such as
the evaluation of constants, to be represented as
transformations of the underlying graph.

Edges in the graph can be undirected or directed.
Undirected edges relate a variable with an equation,
where the variable can be either on the left-hand-side
or the right-hand-side of the equation. Directed
edges are used to show a variable that is required by,
or is the result of, an algorithm, a function-call or a
conditional expression.

2 Visualisation of a Model

Figure 1 shows the model
Modelica.Mechanics.Rotational.Examp
les.CoupledClutches in Dymola.

Figure 1: CoupledClutches model schematic

The system of variables, equations and conditional
expressions is shown in Figure 2. This seemingly
small model has 100 equations and hence the graph
is large. In the left-hand column each vertex
represents a variable, with the colour representing
the variability of the variable. Constants are shown
magenta, Parameters blue and time-varying variables
are red. In the middle column each vertex represents
an equation. In the right-hand column each vertex
represents a condition expression, such as time <
sin2.startTime. The vertices are joined by
edges, those with arrows are directed edges with the
arrow showing the direction.

Visualisation of Model Transformation Algorithms for a Modelica Translator

The Modelica Association 155 Modelica 2005, March 7-8, 2005

Figure 2: CoupledClutches model equation system

Figure 3: Zoomed-in view of Figure 2

3 Categorisation of Discontinuous
Equations

The main application of this work is the
development of improved strategies for simulating
highly discontinuous systems. It has been shown [4]
that an efficient method of simulating a hybrid
system is to use a multi-step DAE solver for the
smooth continuous parts of the simulation, and to
stop and restart the simulation at each discontinuity
or event. However, for large highly discontinuous
models this is not necessarily efficient. A concept
developed is that of event-density, the frequency at
which discontinuities occur in the model. Event-
density rises exponentially with the size of the
model. As the time between discontinuities reduces
towards the time-step of the simulation, the
simulation performance is seriously compromised.
Strategies are being developed to allow the
simulation to handle events differently depending on
the source and type of event. To achieve this aim
discontinuous equations must firstly be categorised.

Visualisation of the structure of the system is being
used to study interconnection between equations,

conditional expressions and the variables on which
the conditions depend. This allows the
categorisation of discontinuities into Local and
Global. Local discontinuities affect only a small part
of the system when they occur, whereas Global
discontinuities affect the entire system. This
categorisation is performed by calculating a measure
of the size of the system that is directly connected to
the variable in which the discontinuity occurs, i.e.
the number of equations and conditional expressions
which depend on the variable.

Further categorisation is performed determining
whether the discontinuity occurs to a state variable
or one of it’s derivatives.

4 Other Applications

Although this tool has been developed to study the
relationships between discontinuous equations and
the variables on which they depend, there are other
applications during the translation process for which
visualisation of the equation structure would be
advantageous.

4.1 Model Debugging

Recent work into debugging for equation-based
modelling systems [10] has made use of
visualisations of graphs to show which part of the
model is over or under constrained. A visualisation
tool such as this could be used as part of an
interactive debugging tool. Many models are too
large to visualise in this manner, however a
subsection of the model can be shown.

4.2 Assessment of Model Transformation
Algorithm Efficiency

By visualising the graph, aspects of a particular
model can be shown, such as algebraic loops. Figure
4 shows a visualisation of a small model with a
clearly identifiable algebraic loop. In this
visualisation, the dark vertices represent equations
and the light coloured vertices represent variables.
The efficiency of tearing algorithms can be
interpreted from the resulting visualisation, as the
loop becomes a 'tree' with branches, each branch
representing a system of equations to be solved
numerically. This is analogous to the sizes of blocks
shown in a sparsity plot of the model Jacobian.

The effect of the technique of ‘inline integration’
[11] on the model structure can also be visualised.
This technique inserts equations for integration

P. Harman

The Modelica Association 156 Modelica 2005, March 7-8, 2005

algorithms into the equation set before the equations
are sorted.

Figure 4: Small model with algebraic loop

4.3 Clustering

Clustering algorithms have been used [12] to divide
the Modelica model up into subsystems which can
be executed on separate processors in a cluster. This
is done after the model equations have been sorted,
and requires analysis of the graph to select the
subsystems.

An interactive visualization tool could be used at
this stage, allowing the user to influence the output
by selecting the edges which become points of
communication between the processors in the
cluster.

4.4 Visualisation of Virtual Connection Graph
for Debugging Overdetermined Systems

The technique for translating overdetermined DAE’s
used by the Modelica MultiBody library, introduced
in [13], makes use of a Virtual Connection Graph.
Each overdetermined type in the model is a vertex in
the graph. This vertex can be a root of a spanning
tree, a potential root which the system will decide
whether it is a root or not, or an ordinary node.
There are two types of edge in the graph, breakable
or non-breakable, which are defined by connect or
Connections.branch statements.

The translator aims to break the virtual connection
graph into spanning trees each with one root. This
may not be possible, due to the number of root
vertices or non-breakable edges. Visualisation of the

virtual connection graph and the resulting spanning
trees would allow the user to identify and correct the
source of any problem, such as altering the priority
of potential root nodes to control which are selected
during translation.

5 ModeliCode

This visualisation tool forms part of an object-
oriented framework created for the development of a
Modelica to simulation code translator, called
ModeliCode. This is written in Java [14]. The graph
manipulation and visualisation package uses the Java
Universal Network and Graph (JUNG) library [15].
ModeliCode also includes a symbolic computation
library to rearrange and differentiate equations,
developed using JScheme [16], which allows the
mixing of Scheme code and Java classes.

A flexible template-based code-generator is included
which allows code to be output in a number of
languages.

Currently ModeliCode only translates from flattened
models. These can be read from .mof files output
from Dymola, or can be read via a Corba interface
with the OpenModelica Modeq program.

6 Development Issues

6.1 Layout

The layout defines the locations of each vertex.
JUNG provides a number of classes for defining the
layout. Initial studies used a class called
SpringLayout, which is analogous to having a spring
acting between each vertex. Figure 4 was generated
using this layout, showing how it is very good at
illustrating an algebraic loop for a very small model.
However, as the model size increases this layout
makes the graph very hard to read. A new layout
class was written to place the vertices in columns
according to the object they represent. This matches
graphs shown in similar work [10].

6.2 Animation

Clarity is improved by animating the graph. As
vertices are removed, such as during the evaluation
of constants and parameters, or the removal of alias
equations, the vertices in the same column are
moved up to fill their spaces. As equations and
variables are sorted, the vertices are moved into their
new order.

Visualisation of Model Transformation Algorithms for a Modelica Translator

The Modelica Association 157 Modelica 2005, March 7-8, 2005

7 Conclusions

By visualizing the model in this way, understanding
can be gained of the internal structure of the model.
This understanding can be used to develop model
transformation algorithms and assess their
efficiency, to find errors within the model, or to
apply specialized algorithms such as clustering.

A relatively small model can produce graphs that are
very large and difficult to read, therefore simple
layouts and features such as animation must be used
in the viewer to improve clarity.

8 Acknowledgements

Thanks to Professor Seamus Garvey and Dr Atanas
Popov at Nottingham University for supervising this
project, and to Michael Tiller at Ford Motor
Company; Peter Bunus, Kaj Nyström, Håkan
Lundvall and Peter Aronsson at Linköping
University for useful discussions.

In memory of Dr Pete Lockett, Coventry University.

References

1. Modelica specification,
http://www.modelica.org/documents/ModelicaS
pec21.pdf

2. Dynasim Dymola, http://www.dynasim.se
3. Fritzson P., Aronsson P., Bunus P., Engelson V.,

Saldamli L., Johansson H., Karström A., (2002),
“The Open Source Modelica Project”,
Proceedings Modelica 2002

4. Mattsson SE, Otter M, Elmqvist H, (1999),
“Modelica Hybrid Modelling and Efficient
Simulation”, 38th IEEE Conference on Decision
and Control

5. Duff I.S., Erismann A.M., and Reid J.K. (1986),
“Direct Methods for Sparse Matrices”, Oxford
Science Publications

6. Cellier F.E., and Elmqvist H. (1993),
”Automated formula manipulation supports
object-oriented continuous-system modelling”,
IEEE Control System Magazine, 13(2)

7. Mattsson S.E., and Söderlind G. (1993), “Index
Reduction in Differential-Algebraic Equations
Using Dummy Derivatives”, SIAM Journal on
Scientific Computing. Vol. 14

8. Elmqvist H., and Otter M. (1994), “Methods for
Tearing Systems of Equations in Object-
Oriented Modelling”, Proceedings ESM'94
European Simulation Multiconference

9. Otter M., Elmqvist H., and Cellier F.E. (1996),
“Relaxing - A Symbolic Sparse Matrix Method
Exploiting the Model Structure in Generating
Efficient Simulation Code”, Keynote Address,
CESA’96 IMACS Multiconference, Symposium
on Modelling, Analysis and Simulation

10. Bunus P, (2002), “Debugging and Structural
Analysis of Declarative Equation-Based
Languages” (Licenciate thesis), Department of
Computer and Information Science, Linköping
University

11. Elmqvist H., Otter M., and Cellier F.E. (1995),
“Inline Integration: A New Mixed
Symbolic/Numeric Approach for Solving
Differential-Algebraic Equation Systems”,
Keynote Address, Proceedings ESM'95,
European Simulation Multiconference

12. Aronsson P., Fritzson P., (2002),
“Multiprocessor Scheduling of Simulation Code
from Modelica Models”, Proceedings Modelica
2002

13. Otter M., Elmqvist H., Mattsson S.E., (2003),
”The New Modelica MultiBody Library”,
Proceedings Modelica 2003

14. JUNG, http://jung.sf.net
15. Java, http://java.sun.com
16. JScheme, http://jscheme.sf.net

P. Harman

The Modelica Association 158 Modelica 2005, March 7-8, 2005

