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Abstract

The task of steering a vehicle is an exercise which is
usually considered hierarchically in terms of the two
subtasks path planning and path following. With the
driver in the loop some essential man dependent tasks
such as sensing, information processing, and motor
function affect the steering quality. In case of sim-
ulations, the same applies correspondingly for driver
models. In this paper the aim is to investigate vehicle
steering dynamics independent of any driver-related
properties. The path is therefore assumed given by a
reference trajectory together with a speed profile. The
steering angle which is necessary for exact or at least
approximate path following is sought after. This al-
lows for plausible comparative assessment of different
vehicle’s steering dynamics in terms of the demanded
steering effort for a certain maneuver. On the other
hand, this approach requires dynamic inversion of ve-
hicle steering dynamics which represents the main fo-
cus of this paper. Two vehicle models, the common
single track model and a detailed model from the Mod-
elica vehicle dynamics library are investigated. Since
exact inversion of the detailed vehicle model turns out
not to be feasible, approximate inversion is accom-
plished by means of a novel control structure called
inverse disturbance observer. Simulations of a double
lane change maneuver are conducted for illustration.
Finally, wavelet power spectra of the steering angle
signal are used for steering effort assessment.

1 Introduction

In the usual way of simulating vehicle models, a driver
module provides inputs to the vehicle in terms of the
steering wheel angle and gas/brake pedal position. As
a result of this forward simulation, a trajectory of the

vehicle is obtained. With inverse simulation of vehicle
steering dynamics for a given desired trajectory and
velocity profile, the aim is computation of the steering
wheel angle input required from the driver.

Reference trajectories may be defined in terms of the
curvature ρ as a function of the arc length λ. The ref-
erence trajectory of a double lane change maneuver is
presented as an example. For tracking the reference
path with a lateral displacement τ, instead of Carte-
sian coordinates a trajectory based coordinate system
(λ,τ) is employed. In section 2, the representation of
reference trajectories and the trajectory based coordi-
nate system are explained in detail. For developing and
investigation of the concept of vehicle steering dynam-
ics inversion, two vehicle models are considered: the
common linear single track model and a detailed vehi-
cle model from the Modelica vehicle dynamics library.
These models are introduced in section 3.

If some requirements like regularity and uniqueness
of solutions hold, inverse models may be obtained in
Modelica by simply providing equations for the out-
puts and removing an adequate number of equations
for the original inputs. The perfect inverse of the de-
tailed vehicle model from the Modelica vehicle dy-
namics library (using rigid linkages for the suspen-
sions) is easily achieved. However, it turns out that the
detailed vehicle model is non-minimum phase. There-
fore, the inverse vehicle model is unstable and can not
be simulated. To overcome this problem, as a trade-off
we use approximate inversion of models, such that the
resulting system is stable. For this purpose, a novel
high gain control scheme, the inverse disturbance ob-
server [1] is utilized. The inverse disturbance ob-
server combines exact inversion of a simplified model
as feedforward control and high-gain feedback for ro-
bust tracking performance. Simulation results for a
double lane change maneuver illustrate the effective-
ness of the applied approach in section 4.
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Steering dynamics of different vehicles may be com-
pared in terms of the steering inputs being necessary to
perform a specific maneuver. The objective is to estab-
lish a method which can be used to assess the steering
dynamics of vehicles with specific modifications like
active steering control. Therefore, in section 5 the dou-
ble lane change steering inputs are compared for two
single track models with significantly different load-
ing. For analyzing the steering efforts of the two ve-
hicles, wavelet transform is applied. Conclusions on
easiness or difficulty for a driver when driving these
cars can be drawn from wavelet power spectra.

2 Reference trajectories and coordi-
nate system for path tracking

For inverse vehicle simulations investigated in this pa-
per, the vehicle’s speed and a reference trajectory for
the vehicle’s position are given. The reference point
on the vehicle representing its position is assumed to
be located at the center of the front axle. With per-
fect inversion, this reference point exactly follows the
reference trajectory, otherwise the task is to make the
lateral displacement from the reference trajectory as
small as possible. Therefore, this problem is closely
related to the problem of path tracking for automatic
car steering.

2.1 Reference trajectories

In this paper, the reference trajectory is defined in
Cartesian coordinates (xre f (λ),yre f (λ)) as a function
of the arc length λ. Any reasonable trajectory of a ve-
hicle cruising at finite speed may be assumed contin-
uous and at least twice differentiable. With ρ(λ) and
φ(λ) denoting the curvature and the track angle respec-
tively, the following relations hold:





φ′
x′re f

y′re f



 :=
d

dλ





φ
xre f

yre f



 =





ρ
cos(φ)
sin(φ)



 (1)

Our approach is to start from a definition of ρ(λ) and
solve (1) for φ, xre f , and yre f using appropriate initial
conditions. See Fig. 1 for an exemplary definition of
ρ(λ) and the resulting reference trajectory (xre f ,yre f )
for a double lane change maneuver.
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Figure 1: Curvature (left) and reference trajectory
(right) for a double lane change.

2.2 Coordinate system for path tracking

For the mathematics involved with the path track-
ing problem, it is not expedient to describe the vehi-
cle’s position with Cartesian coordinates. Therefore,
rather a trajectory based coordinate system (λ,τ) is
employed, see Fig. 2. It consists of the arc length λ
referring to the point (xre f (λ),yre f (λ)) on the reference
trajectory which is closest to the vehicle and the lateral
displacement τ, also referred to as tracking error. That
is, τ is the signed closest perpendicular distance to the
reference trajectory.

������λ��������λ��

������������������

τ
λ

.

Figure 2: Vehicle position in trajectory based coordi-
nates (λ,τ).

A coordinate transformation between Cartesian co-
ordinates (xveh,yveh) and trajectory based coordinates
(λ,τ) needs to be accomplished. The unit vector
[−y′re f ,x

′
re f ]

T is perpendicular to the reference trajec-
tory and is oriented to the left hand side of the trajec-
tory. Hence, the distance between the position of the
vehicle and the reference trajectory may be written as

[

∆x
∆y

]

:=

[

xveh − xre f

yveh − yre f

]

= τ
[

−y′re f

x′re f

]

. (2)

The coordinate transformation can be done in the fol-
lowing way: Elimination of τ in (2) yields the nonlin-
ear equation

∆xx′re f +∆yy′re f = 0 (3)

which can be solved for λ.
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Using the fact x′2re f + y′2re f = 1 (see (1)) together with
(2) yields

τ = ∆yx′re f −∆xy′re f . (4)

Multiple solutions may exist for equation (3). Only
the closest solution where |τ| has its minimum value is
relevant and is to be selected. This ambiguity makes
evident that the introduced trajectory based coordinate
system is only suitable in a sufficiently narrow vicin-
ity of the reference trajectory. This assumption holds,
since accurate path tracking is aimed at.

Later, the coordinate transformation will be consid-
ered a part of the vehicle models. Linearization, as
may be necessary, is done in the following way. A vir-
tual object exactly following the reference trajectory
as defined in section 2.1 senses a lateral acceleration
given by

ayre f = ρ(λ) λ̇2 (5)

with λ̇ denoting the object’s speed. Under the assump-
tion of small tracking error τ and small chassis side
slip angle the lateral acceleration of a vehicle closely
tracking the reference trajectory with speed v (entail-
ing v ≈ λ̇) can therefore be represented by

ayveh = ayre f + τ̈. (6)

Hence,

τ =
1
s2 (ayveh −ayre f ) . (7)

2.3 Implementation in Modelica

During the simulation the actual value of λ needs to
be solved from equation (3) for each integration step.
This is automatically done by Dymola, provided that
xre f (λ), yre f (λ), x′re f (λ) and y′re f (λ) are known. There-
fore, in our Modelica model we provide look-up tables
depending on λ that contain values for xre f , yre f , and φ
each with the derivative w.r.t. λ. These look-up tables
are pre-calculated from (1) in Matlab, saved to mat-
files, and used in Modelica/Dymola for interpolation
at simulation time. According to our experience, the
selection of the proper solution of (3) does not cause
any problems since the solution for λ is continuously
and monotonically increasing along the followed ref-
erence trajectory.

A special problem occurs with the simulation of per-
fectly inverted vehicle models (see section 4.1). In

general, for inverse simulations executed in Dymola
the given output where required needs to be differenti-
ated one or multiple times w.r.t. time. The look-up ta-
bles we use, however, only provide derivatives w.r.t. λ
since the reference trajectory does not depend on time.
Therefore, if needed the time derivatives are supplied
by special functions1. They are calculated from the ac-
tual value of λ̇ and the corresponding derivatives w.r.t.
λ. If necessary, higher derivatives w.r.t. λ are supplied
in extra columns in the look-up tables. As an example
the Modelica code

dxdlambda = TableFunc.y(tableIDintx, 3,lambda);

is used to retrieve x′re f from the look-up table (referred
to by its identifier tableIDintx, 3rd column stores first
derivative) for the actual value of λ. This is the used
package:

package TableFunc
function y // here y means a generic output

input Integer ID, index;
input Real u;
output Real y;

external "C" y=
dymTableIpo1_my(ID,index,u);

annotation (derivative=ydot);
end y;
function ydot

input Integer ID,index;
input Real u,dudt;
output Real dydt;

protected
Real dydu;

algorithm
dydu :=

dymTableIpo_my(ID,index+1,u);
dydt := dydu*dudt;
annotation

(derivative(order=2)=yddot);
end ydot;
function yddot
... // analogous to ydot
end yddot;
function dymTableIpo_my

input Integer ID,index;
input Real u;
output Real y;

external "C" y=
dymTableIpo1_my(ID,index,u);

end dymTableIpo_my;
end TableFunc;

The C function dymTableIpo1 my provides the table
look up. It corresponds to dymTableIpo1 which can be
found in dymtable.c in the Dymola source directory.
Note the annotations. The standard way of differen-
tiating inputs from look-up tables is thus replaced by
use of the function ydot (yddot respectively) while ap-
plying the chain rule.

1The authors thank Andreas Pfeiffer (DLR) for his helpful sup-
port.
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3 Vehicle Models

Vehicle steering dynamics in this paper are explored
using two models with essentially different levels of
detail. Firstly, for basic considerations the very sim-
ple single track model is implemented in Modelica.
Secondly, for more advanced investigations, a detailed
vehicle model from the Modelica vehicle dynamics li-
brary is used. In both cases, the trajectory which nor-
mally is the output of a driving maneuver is defined
together with a speed profile and the necessary steer-
ing input is asked for. Therefore, both the reference
trajectory and the coordinate transformation as defined
in section 2 are added to the model description.

3.1 The linear single track model

The single track model [2] is a simple linear vehicle
model commonly used in the analysis and control
design of lateral and yaw dynamics. The wheels
of the each axle are considered lumped together in
the center of the vehicle. The roll, pitch, and heave
motions are neglected. In Fig. 3 the single track
model is illustrated. Its major variables and geometric

`r ` f

δ f�

r

v

βCG
Fr

Ff

Figure 3: Single track model.

parameters are

Ff (Fr) lateral wheel force at
front (rear) wheel

ψ yaw angle
r = ψ̇ yaw rate
β chassis side slip angle at

center of gravity (CG)
v speed, i.e. magnitude of

velocity vector at CG
` f (`r) distance from front (rear)

axle to CG
iL steering gear ratio
δ f front wheel steering angle
δS = iLδ f steering wheel angle

Linearizing the tire force characteristics lateral wheel

forces at the front and rear wheels can be written as

Ff (α f ) = µc f 0α f , Fr(αr) = µcr0αr (8)

with c f 0, cr0 being the tire cornering stiffnesses at the
front and the rear wheels, µ the road adhesion factor
and α f and αr the tire side slip angles at the front and
the rear wheels given by

α f = δ f −

(

β+
` f

v
r

)

, αr = −

(

β−
`r

v
r

)

(9)

The mass of the vehicle is m and J is the moment
of inertia w.r.t. a vertical axis through the CG. Under
the assumptions of small side slip and steering angles
and slowly varying velocity the linearized equations of
motion are

[

mv(β̇+ r)
Jṙ

]

=

[

Ff +Fr

Ff ` f −Fr`r

]

(10)

The lateral acceleration of the vehicle at the front axle
is

ayveh = v(β̇+ r)+ ṙ ` f . (11)

For linear considerations, (7) may be used for the lat-
eral position w.r.t. the trajectory based coordinate sys-
tem. Otherwise, the velocity of the vehicle’s CG is

[

ẋCG

ẏCG

]

= v

[

cos(ψ+β)
sin(ψ+β)

]

(12)

The front axle (i.e. vehicle reference point) position is

[

xveh

yveh

]

=

[

xCG

yCG

]

+ ` f

[

cos(ψ)
sin(ψ)

]

(13)

The single track model will be used later as a simple
substitute for the fully detailed standard vehicle dy-
namics model from the Modelica vehicle dynamics li-
brary [3] (which is parametrized as a BMW 3-series
car by default). The corresponding parameters for the
single track model were determined in [4] and they are
also used here: iL = 16.94, l f =1.0203m, lr=1.5297m,
m = 1482.9kg, J = 2200kg m2, c f 0 = 91776N/rad and
cr0 = 77576N/rad. Only dry road conditions are con-
sidered here, therefore µ = 1.

3.2 Detailed vehicle model

The vehicle dynamics library [3] of Modelica provides
models for vehicle dynamics simulation. It consists of
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a detailed mathematical model comprising the multi-
body differential equations. Since this library is freely
available, documented and well known to the Model-
ica user community, no further details are stated here.
In this paper the Modelica vehicle model described
in [4] is used. The standard chassis level 2 vehicle
model is completed by the simple power train model
and brakes. Furthermore, a PI speed controller sets an
adequate gas/brake pedal position and makes the vehi-
cle accurately follow a desired speed profile. Finally,
a wheel slip controller approximates the function of
an antilock braking system (ABS). In the sequel, this
model will be referred to as the detailed vehicle model.

4 Perfect and approximate inversion
of vehicle steering dynamics

The vehicle models used in this paper (see section 3)
are considered as SISO (single input single output)
systems with the steering wheel angle δS being the in-
put and the lateral displacement τ from the reference
trajectory being the output. The ideal conception of
the model inversion process (referred to as perfect in-
version) is to obtain a steering wheel angle signal such
that the lateral displacement τ is always zero. Simula-
tions executed with perfectly inverted models are de-
noted inverse simulations here. Inversion of the longi-
tudinal dynamics (i.e. speed) may in general be consid-
ered as well. Here, however, we focus on steering (i.e.
lateral) dynamics. Along the way, the vehicle speed
v is set or controlled to match a given profile v(λ) or
alternatively v(t). Hence, speed is rather considered a
set varying parameter than an input or output. If per-
fect steering dynamics inversion is not possible, ap-
proximate inversion is aimed at. That is, the resulting
lateral displacement τ and steering wheel angle error
respectively should be as small as possible.

For both models, single track model and detailed
model, we first try to achieve perfect inversion. As will
be shown, this is possible for the single track model. In
contrast, perfect inversion of the detailed model turns
out not to be feasible in terms of a converging simu-
lation. Therefore, a novel high gain control scheme
is applied to approximately invert the detailed model.
This approach may incidentally also be applied to the
task of high fidelity path tracking for real world auto-
matic car steering.

In the course of this section, simulations of the in-
verted models are conducted for the purpose of illus-

tration. Exemplarily, the double lane change maneuver
introduced with Fig. 1 is considered with a constant
speed of 20m/s .

4.1 Perfect inversion of the vehicle models in
Modelica/Dymola

The option of perfect inversion of Modelica models
has already been exploited in a number of applications
such as automatic generation of control laws for the
control of aircraft [5] or industrial robots [6]. Inverse
models may be obtained in Modelica by simply pro-
viding equations for the outputs and relaxing an ade-
quate number of equations for the original inputs. As
pointed out in [6], the derivation of the inverse system
equations may require to differentiate certain parts of
the model equations. Therefore, the model equations
need to be continuous and differentiable. Moreover,
since it may be necessary to the differentiate the given
output signals too, their time derivatives must exist and
be provided up to a certain order. Therefore, as ex-
plained in section 2.3, look-up tables for the trajectory
variables and their derivatives w.r.t. λ are provided in
the models together with functions to form the respec-
tive time derivatives.

With nonlinear models, for a given output not neces-
sarily any solution in terms of input functions does ex-
ist. On the other hand, multiple solutions may exist
for the same inverse simulation problem. So far, we
have not worked on these questions. We have rather
assumed conditions (i.e. moderate lateral acceleration)
which do not cause corresponding problems.

One necessary condition for perfect inversion is that
the considered input/output dynamics of the model is
minimum phase. Otherwise the inverted model is not
stable and therefore inverse simulation is not feasible.

4.1.1 Perfect inversion of the single track model

For investigating the perfect inversion of the single
track model, the implementation of its equations and
its parameters in Modelica as described in section 3.1
is employed. The model includes the reference tra-
jectory look-up tables for the double lane change ma-
neuver and the coordinate transformation (3),(4) intro-
duced in section 2. The set of equations is completed
by τ = 0 and v = 20m/s and thus the number of equa-
tions matches the number of unknowns. The model

Inversion of Vehicle Steering Dynamics with Modelica/Dymola

The Modelica Association 323 Modelica 2005, March 7-8, 2005



can be successfully translated and simulated. The re-
sulting front steering angle δ f is shown in Fig. 4. The
parameters of the light vehicle are those given in sec-
tion 3.1. For comparison, the simulation is repeated
with a heavy vehicle. Its parameters are the same ex-
cept for double values of mass m and inertia J.
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Figure 4: Front steering angle δ f for the double lane
change maneuver (v = 20m/s) obtained by inverse sim-
ulation of the single track model. Two parameter sets
are used: light vehicle and heavy vehicle. Also results
for the approximately inverted detailed vehicle model
(see section 4.2.2) are shown.

4.1.2 Perfect inversion of the detailed vehicle
model

The detailed vehicle model is inverted in the same way
by adding the equation τ = 0 and by setting the target
value for speed control to 20m/s. The steering wheel
angle is relaxed, i.e. any direct equation for driver
steering input is removed.

We attempted to invert models with different suspen-
sions. With the SimpleSuspension the translation of
the model was successful. However, the integration
in Dymola terminated 0.13s after start of the simula-
tion due to missing convergence of the corrector. With
the MacPhersonSuspension2 Dymola was not able to
differentiate some of the model equations, therefore,
this inverse model could not be translated successfully.
The last-mentioned problem was not investigated fur-
ther since we found out, that the detailed vehicle model
is non-minimum phase which causes stability prob-
lems at any rate when simulating its inverse. This is
also the reason why the inverse simulation using Sim-
pleSuspension did not converge.

For illustration of the non-minimum phase dynamics,
the pole-zero-map of the transfer function from steer-
ing wheel angle δS to lateral displacement τ was inves-
tigated. The transfer function was obtained by lineari-

sation about straight driving (x(λ) = λ, y(λ) = 0, δS =
0, r = 0, ψ = 0, τ = 0, λ̇ = v = 20m/s). The pole-zero
map reveals a fast zero at s ≈ 90 in the right half plane.
The corresponding non-minimum phase behavior can
be explained by the suspension construction of the
steered front axle. It can briefly be depicted imagin-
ing an idle vehicle at zero speed. If the steering wheel
is turned then the front end of the car moves slightly
to the opposite direction due to the suspension’s caster
characteristic. In normal drive operation, this effect
superimposes with the remaining vehicle steering dy-
namics and results in non-minimum phase behavior.
When inverting the model, the right half plane zero be-
comes a fast unstable pole which makes simulation of
the perfectly inverted model impossible. Therefore, in
the next section a stable approximately inverted model
will be generated using accurate path tracking control.
For this purpose, a novel control structure denoted in-
verse disturbance observer is employed.

4.2 Approximate inversion of the detailed ve-
hicle model

4.2.1 Inverse disturbance observer

The inverse disturbance observer (IDOB) was recently
introduced in [1] as a modification of the common dis-
turbance observer (DOB) structure. Basically, both
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Figure 5: DOB scheme.
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DOB (see Fig. 5) and IDOB (see Fig. 6) are two degree
of freedom control structures that combine high-gain
and exact model inversion facilities in a simple config-
uration. The design parameters are an invertible nom-
inal model GN (G̃N respectively) approximating the
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plant dynamics G (which is assumed to be stable) and a
Q-filter which commonly has unity gain and low-pass
properties. Compared with DOB, in the IDOB struc-
ture the block positions of the plant G and the nominal
model GN are simply interchanged (which partly gives
a different meaning to the involved signals). There-
fore, with IDOB the inverted nominal model G−1

N is in
the feedforward part instead of the feedback as it is the
case with DOB.

DOB and IDOB structures are used for different pur-
poses. The aim of the traditional DOB is matching the
dynamics of the controlled system to a nominal model
GN . However, in case of IDOB the aim is matching the
closed loop dynamics to G−1. Therefore, the IDOB
control structure is especially applicable for dynamic
model inversion (in this case G represents the model to
be inverted) and output tracking problems (in this case
G represents a plant).

IDOB combines the facilities of feedforward control
using an inverted nominal model of the plant and high
gain feedback in a very simple structure while pre-
serving the advantages of each principle. In the IDOB
structure G−1

N acts as a feedforward control. The term
G−1

N (s) · yr(s) provides the main portion of the plant
input u(s) where yr is the setpoint for y. The subor-
dinate positive gain feedback loop containing the Q-
filter forces this approximate inversion signal to con-
verge to the perfect inversion signal and also provides
robustness to the inversion process due to its high gain
feedback feature.

The IDOB structure serves as an approximate model
inversion method for a model G if the relation between
the signal yr and the plant input u is considered:

u
yr

=
1

GN(1−Q)+GQ
(14)

Recall that Q is a low pass filter with unity gain. The
frequency interval between zero and the bandwidth
of Q is denoted the frequency operating domain of
the IDOB. In the frequency operating domain, Q → 1
holds and therefore, u → G−1 yr. At high frequencies,
the gain of Q tends to zero, therefore u→G−1

N yr which
at least provides the input signal based on the model
GN . In the case that G is non-minimum phase and
GN is a minimum phase approximation for G, then by
proper choice of the bandwidth of Q the stability of the
IDOB system can be ensured. In practice, the band-
width of Q will be chosen according to a compromise
between (robust) stability and (robust) performance.

It can be concluded from (14) that for approximating

perfect model inversion u = G−1 yr one of the follow-
ing two criteria would be sufficient:

Q → 1 or GN → G (15)

The IDOB structure combines the facilities of both
high gain (subordinate loop with Q → 1) and inversion
with feedforward control GN → G in the same struc-
ture. Also it is important to notice that with the IDOB
structure, the approximate inverse of the model G is
obtained without inverting the model explicitly.

On the other hand, considering y as the output of the
system, IDOB becomes a plant controller for output
tracking:

y
yr

=
G

GN(1−Q)+GQ
(16)

In the frequency operating domain, Q → 1 holds and
therefore, y → yr i.e. good output tracking is achieved.

Due to its similar structure, the IDOB holds the known
robustness properties of the disturbance observer in
terms of disturbance and measurement noise rejection.
Hence, the sensitivity (S) and complementary sensitiv-
ity (T ) functions are the same as with DOB:

S =
y
d

=
GN(1−Q)

GN(1−Q)+GQ
(17)

T =
y
−n

= 1−S =
GQ

GN(1−Q)+GQ
(18)

Within the IDOB frequency operating domain (Q →
1), disturbances are attenuated (S → 0). For high fre-
quencies (Q → 0), noise is attenuated (T → 0).

4.2.2 Application of IDOB for approximate inver-
sion of the detailed vehicle model

As was shown in the last section, the IDOB needs a
nominal model GN . For approximate inversion of the
detailed vehicle model by means of IDOB, the single
track model is adopted as nominal model. It is eas-
ily invertible as already demonstrated in section 4.1.1.
The actual single track model parameters (see section
3.1) were determined for good approximation of the
detailed vehicle model [4].

However, the IDOB may not directly be applied to
approximately invert the whole vehicle model since
IDOB requires a stable plant but the vehicle dynam-
ics with steering wheel angle δS as input and lateral
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Figure 7: Path tracking control with IDOB.
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Figure 8: Lateral acceleration control
with IDOB.

displacement τ as output involves two integrators, see
(7). Based on (5)-(7), for approximate inversion of the
whole detailed vehicle model we adopt a hierarchical
control structure according to Fig. 7:

ays = ayre f − (Kd s+Kp)τ (19)

ayveh = GIDOB ·ays (20)

A subordinate high bandwidth IDOB is used to make
ayveh → ays. The Q-Filter is chosen a first order low-
pass filter with a 0.03s time constant. An outer PD
control loop with lower bandwidth compensates for
the remaining tracking error τ. In the IDOB structure,
henceforth only the stable part of the vehicle dynam-
ics with output ayveh is considered. ay,s is the set point
for the inner IDOB loop and GST M represents the sin-
gle track model adopted as nominal model which cor-
responds to eqns. (8)-(11) . Note that the speed pa-
rameter of G−1

ST M is scheduled with the actual speed of
the detailed vehicle model. δS is the steering wheel
angle signal which is in the focus of interest. The
reference lateral acceleration ayre f may be considered
as a known external disturbance. Therefore distur-
bance feedforward compensation is applied according
to Fig. 7. The resulting transfer function to τ is

τ
ayre f

=
GIDOB −1

s2 +GIDOB (Kds+Kp)
. (21)

Assuming that the bandwidth of the IDOB transfer
function is sufficiently high (GIDOB → 1), the band-
width and damping of the outer PD control loop may
directly be affected by the PD parameters which are
chosen as Kd = 12, Kp = 36.

Fig. 8 shows a simulation result of the approximately
inverted detailed vehicle model performing the dou-
ble lane change maneuver. The results are presented
in terms of the actual vehicle lateral acceleration ayveh

which well tracks the reference lateral acceleration

ayre f by virtue of the proposed IDOB based control.
Remarkably, in this simulation the absolute value of
the lateral displacement τ is less than 1.5mm (not de-
picted here). The steering wheel angle obtained is
shown in Fig. 4 and can be well compared to the light
vehicle single track model.

5 Comparative assessment of the
steering dynamics using model in-
version

In order to track a given trajectory with a given veloc-
ity profile, different vehicles potentially need differ-
ent steering efforts. Therefore, using the inverse sim-
ulation results, steering dynamics of different vehicles
may be compared in terms of the required steering ef-
forts.

To illustrate our approach, the light vehicle and the
heavy vehicle from section 4.1.1 are compared. The
steering angles of these two models necessary to per-
form the double lane change maneuver with a constant
speed of 20 m/s were given in Fig. 4. As it may be
seen in this figure, the magnitude of the heavy vehicle
steering angle is larger than that of the light vehicle
during the maneuver. Moreover, especially in the time
interval ca. [3s,6s] it is recognizable that the heavy ve-
hicle needs to be steered slightly earlier than the light
vehicle to follow the reference trajectory. That is, the
look-ahead-time the driver needs to drive the heavy ve-
hicle is larger compared to the light vehicle.

In the remainder of this section a method is established
to quantify the conclusions mentioned above on the
magnitude and look-ahead-time. Wavelets are used for
appropriate time-frequency analysis of the steering an-
gle signals.
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Figure 9: Wavelet power spectrum of the light
vehicle steering angle using Morlet wavelet func-
tion.
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Figure 10: Wavelet power spectrum of the heavy
vehicle steering angle with Morlet wavelet func-
tion.

5.1 Wavelet transform

Time-frequency analyses map the time domain sig-
nals into a two dimensional representation of energy
versus time and frequency. Wavelet transform is a
time-frequency analysis method that breaks a signal
down into its constituent parts, wavelets, for analy-
sis. Wavelets are oscillatory, scalable functions which
are non-zero only within a limited spatial and Fourier
regime. In the continuous wavelet transform, which is
used in this paper, a wavelet is translated (time-shifted)
through the signal. At each instant (i.e. time grid point)
it is compared with the signal by means of evaluating
the time integral of their product. This procedure is re-
peated for a grid of wavelets with different time scales.
As a result, coefficients representing the similarity be-
tween sections of the signal and the scaled wavelet
are produced. More detailed information on wavelets
and wavelet transform may be found in [7], [8]. The
wavelet transform returns a time-scale representation
of the signal instead of the time-frequency representa-
tion. The scale is proportional to the reciprocal of the
frequency. Large scales correspond to small frequen-
cies and vice versa.

The single track model steering angle signals from
Fig. 4 are now compared in terms of wavelet power
spectra. At every instant, the time-scaled wavelet that
locally best matches with the steering signal yields the
maximum wavelet power spectrum value. Therefore,
the local frequency content of the signal can be esti-
mated from the scale value at which a local maximum
occurs.

5.1.1 Wavelet transform of the steering angle sig-
nals

One of the basic problems in wavelet transform is
choosing the appropriate wavelet function for the anal-
ysis of a given signal. In the wavelet transform of the
steering signals, Morlet wavelet function is used, since
it is recommended [9] for the analysis of time signals
with smooth variations. In Figures 9 and 10 wavelet
power spectra (WPS) of the steering angles of the light
and heavy vehicles are given, respectively.

The two WPS are quite similar in terms of the scale
and time locations of the local maxima, i.e. both sig-
nals have similar frequency contents at corresponding
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Figure 11: Wavelet power spectrum of the light vehicle
steering angle (black lines) and eavy vehicle steering
angle (gray lines) with Morlet wavelet function.
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instants. However, almost throughout the entire time-
scale domain, WPS of the heavy vehicle steering angle
has higher power values compared to the light vehicle.
This shows that the heavy vehicle needs more steer-
ing amplitude compared to the light vehicle all along
the maneuver. This result coincides with the previous
observation in the time-domain.

In Fig. 11 both WPS’s are drawn in the same 2-D
plot to make the differences between them better visi-
ble. The time of the local maxima can be more easily
detected in Fig. 11. The power contour lines of the
heavy vehicle steering angle are shifted to earlier in-
stants by about 0.14s-0.18s compared to the light ve-
hicle. This shows that the look-ahead-time needed to
steer the heavy vehicle is correspondingly larger than
for the light vehicle.

Using continuous wavelet transform with the Morlet
wavelet function we are thus able to quantify the con-
clusions we already made from the time-domain plot
of the steering angles. Another aspect in the compar-
ison of the steering efforts is the frequency content of
the signals. In Fig. 11 it may be noticed that there
are mainly two accumulations of local maximum scale
values which are at scale values 14 and 35. The scale
values 14 and 35 corresponds 0.58 Hz and 0.23 Hz
respectively which are frequencies that prevail in the
signals. From Figs. (9, 10 it may be noticed that the
steering angle of the heavy vehicle contains relatively
higher power values at scale 14.

In other words, the heavy vehicle has to be steered
with higher amplitudes, with a relatively larger portion
of high frequencies and earlier (i.e. with more look-
ahead-time) than the light vehicle. Hence, we con-
clude that the heavy vehicle is more difficult to drive.

6 Conclusions

Exact inversion of simulation models in principle is
supported by Modelica/Dymola. However, it may be
the case that models do not comply with the require-
ments to make inversion feasible. If so, approximate
inversion may be an expedient way to still achieve use-
ful results. High fidelity path tracking was demon-
strated by means of the inverse disturbance observer
based control. This provides a pretty accurate approx-
imation of the steering angle signal which would re-
sult in perfect tracking. The time-scale wavelet power
spectrum of the steering angle signal is an adequate
basis for assessment of the steering effort.
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