MOoDELICA

Proceedings
of the 4th International Modelica Conference,
Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

A. Pop, P. Fritzson

Linképing University, Sweden

A Portable Debugger for Algorithmic Modelica Code
pp. 435-443

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,

Hamburg University of Technology, Hamburg-Harburg, Germany,

organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www. Modelica.org/events/Conference2005/

Program Committee

e Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).
e Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

e Dr. Francesco Casella, Politecnico di Milano, Italy.

e Dr. Hilding Elmqvist, Dynasim AB, Sweden.

e Prof. Peter Fritzson, University of Linkping, Sweden

e Prof. Martin Otter, DLR, Germany

e Dr. Michael Tiller, Ford Motor Company, USA

e Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prolf}, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

A Portable Debugger for Algorithmic Modelica Code

A Portable Debugger for Algorithmic Modelica Code

Adrian Pop, Peter Fritzson
PELAB — Programming Environment Lab, Dept. Computer Science
Linkdping University, S-581 83 Linkdping, Sweden
{adrpo, petfr}@ida.liu.se

Abstract

In this paper we present the first comprehensive debug-
ger for the algorithmic subset of the Modelica lan-
guage, which augments previous work in our group on
declarative static and dynamic debugging of equations
in Modelica. This replaces debugging of algorithmic
code using primitive means such as print statements or
asserts which is complex, time-consuming and error-
prone.

The debugger is portable since it is based on transpar-
ent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debuggers
for procedural or traditional object-oriented languages
is supported: setting and removing breakpoints, single-
stepping, inspecting variables, back-trace of stack con-
tents, tracing, etc.

1 Introduction and Related Work

Most language development environments provide
some kind of support for debugging and profiling.

Such techniques have also been developed for Mode-
lica at the prototype level with regards to supporting
declarative debugging of equation-based models [1, 2].
The presented work complements the existing debug-
ging work with the first (to our knowledge) portable
debugger for the algorithmic part of the Modelica lan-
guage. The debugger is part of the Open Modelica pro-
ject [3, 4].

There are several techniques for creating debuggers.
Most of them are not portable and rely heavily on
knowledge of the operating system and the underlying
machine [5].

The approach we use in this paper is based on source
code instrumentation of the intermediate representation
in the compiler, similar with the work described in [6-
8]. One can view the Modelica algorithmic code as an
event generator and the debugger as a collector of these
events that reacts to them accordingly.

The compiler has intimate knowledge of the Modelica
code in its internal representation. We augment this

representation with debugging nodes (or sites) that ac-
tually performs calls to the debugging functions. We
have introduced a new compiling phase in the compiler
where we walk on the internal representation and aug-
ment it with calls to several debugging functions im-
plemented in C.

We have experimented with several ways of augment-
ing the internal compiler representation with debug
nodes in order to search for the best memory consump-
tion vs. speed of the debugger. These augmentation
choices deal with the way the variables and code posi-
tion is passed to the debugger functions.

The paper is structured as follows: This section pre-
sented an introduction and related work. Next section
presents a debugging session on a short Modelica ex-
ample, concentrating on the debug functionality. Also
the debugger commands are introduced here. Details
about the debugger are presented in detail in Section 3.
Section 4 presents our conclusion and future work.

2 A debugging Session

This section presents the debugger functionality pre-
senting a debugging session on a short Modelica exam-
ple. The functionality of the debugger is presented us-
ing pictures from the Emacs debugging mode for Mod-
elica (modelicadebug-mode).

2.1 The Debugger Commands

The Emacs Modelica debug mode is implemented as a
specialization of the Grand Unified Debugger (GUD)
interface (gud-mode) from Emacs [9]. Because the
Modelica debug mode is based on the GUD interface,
some of the commands have the same familiar key
bindings.

The actual commands sent to the debugger are also
presented together with GUD commands preceded by
the Modelica debugger prompt: mdbe>.

If the debugger commands have several alternatives
these are presented using the notation: alterna-
tivel|alternative2|....

The Modelica Association

435

Modelica 2005, March 7-8, 2005

A. Pop, P. Fritzson

The optional command components are presented us-
ing notation: [optionall].

In the Emacs interface: M-x stands for holding down
the Meta key (mapped to Alt in general) and pressing
the key after the dash, here x, C-x stands for holding
down the Control (ctrl) key and pressing x,
<RET> is equivalent with pressing the Enter key and
<SPC> with pressing Space key.

2.1.1 Starting the Modelica Debugging
Subprocess

The command for starting the Modelica debugger under
Emacs is the following:

M-x modelicadebug <RET> executable <RET>

2.1.2 Setting/Deleting Breakpoints

A part of a session using this type of commands is
shown in Figure 1 below. The presentation of the com-
mands follows.

macs@kafka.carafe.ida.linse

=10l x|

File Edit Options Buffers Tools Complete In/Out Signals Help

Instead of writing break one can use alternatives
br |break |breakpoint
Alternatively one can delete all breakpoints using:

mdb@> cl|clear <RET>

Showing all breakpoints:

mdb@> sh|show <RET>

2.1.3 Stepping and Running

To perform one step (gud-step) in the Modelica code:

C-c C-s

C-x C-a C-s

mdb@> st|step <RET>
To continue after a step or a breakpoint (gud-cont) in
the Modelica code:

C-c C-r

C-x C-a C-r

mdb@> ru|run <RET>
Examples of using these commands are presented in
Figure 2. The example uses an extended version of
Modelica [10] and is briefly described in Section 3.1.

macs@kafka.carafeidalinse 1o =|
@ @ X Q& @ a @ ? File Edit Options Bufiers Tools Complete In/Out Signals Help
function eval
input Exp exp_1: O @ x Q‘B @ 6 @ ?
output Real rwal_1: e —
algDElihT_ input Exp exp_l:
rval_l = output Real rval_1:
natch exp_l algorithn
local Integer wl.w2: ryal_1 =
Exp el eds match exp_1
case RCOMSTCvl) then vil: local Integer wl.vwZ:
caze PLUS(el.e2} equation Exp el e2:
vl = evalield; w2 = evaliell: caze[FOOMSTEwLY then wiz
then wl+wZ: case PLUS{el.e2) equation
caze SUE{el,e2) equation vl = evalield: w2 = evalis2):
vi[F evaliells w2 = eval{e2!: then vl+va:)
--(I05}-- eval.no {Modelica--L1d--C8-=Tgp---===-=-- | e aA=sat 1) .
Current. directory is foygdrivesdc/home/adrpo/doc/projects/mod @ ”ﬁ - e;?lé?l), W2 = evaliedd:
elica/ModelicaConference2005/ tests s CasetHEE(;l ;2; e ien
[Init] vl = evaliell: w2 = evalis2};
. then wisw2:
mc@> - Modelica dsbugger caze DIViel.e2) equation
modb@> - 2002, 2002, 2004, LIUSIDA/PELAE. adrpofids,liu.se —={DI0S)—- ewval.no {Modelica)--L9--C6E--Top-———-———-————-—~- |

mok@> - debugging process 2800

mobE> - on ttyisdewsttyl

nob@>Breskpoint ani [eval.mai?] added to breskpoints list,
mob@Breakpoint on: [eval.mo:l1l] added to breskpoints list,
melb@rBreakpoint on: [eval.mo:ld] added to breskpoints list,
ndk@>show

—————————— CURREMT BREAKPOINTS ---------

#0 -» eval ,mo:9

#1 -» eval.moill

#2 -» eval.mo:ld

nch@>c lear
Breakpoints list cleared
ki@
-—1%% kgudx {Debuggersruni--L 18--C5--A11-----=-=--

Figure 1: Using breakpoints

To set a breakpoint on the line the cursor (point) is at:

C-x <SPC>
mdb@> break on file:lineno|string <RET>

To delete a breakpoint placed on the current source
code line (qud-remove):
C-c C-d

C-x C-a C-d
mdb@> break off file:lineno|string <RET>

Current. directory is /ocygdrivesc/homedadrpo/doc/projects/modelica @
/ModelicaConference2005/tests/
[Init]

noblE> - Modelica debuggzer

nolblE> - 2002, 2003, 2004, LIUAIDAAPELAB. adrpofids,liu,ss
noblE> - debugging process 3716

nolblE> - on thyiddevittyl

nob@>Breskpoint on: [eval,mo:9] added to breakpoints list,
nclb@>Breskpoint on: [eval,mo:ll] added to breskpoints list,
ncdb@>[Parse]

4-16/2%x3+10

[Ewall

Breakpoint [1]. on eval,mo:ll reached
eval,mo:ll 7Eevalicallievalield = {ul}
nclbE>run

Breakpoint [0]. on eval,mo:9 reached
eval.mo:9.0Feval@axion tRCOMST (vly => (vl}
EER |

——ixx kgudx {Debugzgzer srund--L20--C5--All------—-----—- |

Figure 2: Stepping and running

2.1.4 Examining Data

There are no GUD keybindings for these commands
but they are inspired from the GNU Project debugger
(GDB) [2].

The Modelica Association

436

Modelica 2005, March 7-8, 2005

A Portable Debugger for Algorithmic Modelica Code

To print the contents/size of a variable one can write:

mdb@> pr|print variable name <RET>
mdb@> sz|sizeof variable name <RET>

at the debugger prompt. The size is displayed in bytes.
Variable values to be printed can be of a complex type
and very large. One can restrict the depth of printing
using:
mdb@> [set] de|depth integer <RET>

Moreover, we have implemented an external viewer
written in Java called ModelicaDataViewer to
browse the contents of such a large variable. To send
the contents of a variable to the external viewer for in-
spection one can use the command:

mdb@> bw|browse|gr|graph var _name <RET>

at the debugger prompt. The debugger will try to con-
nect to the ModelicaDataViewer and send the con-
tents of the variable. The external data browser has to
be started a priori. If the debugger cannot connect to the
external viewer within a specified timeout a warning
message will be displayed. A picture with the external
ModelicaDataViewer tool is presented in Figure 3
below:

L ModelicaDataViewer

=101

| | Modelica Data Viswer
IJ:'|—_| Modelica Variables
LJ—]—_| e1:Exp
IJ:'|—_| SUB:record
| RCONST:record
L 4Real
I MU recard
| DM:record
| RCOMST:record
L% 1c:Real
| RCONST:record
L ZReal
| ROONST:record
L-# 3Real

= 1 e2Exp
B | RCOMST:recard
L # 10Real

|»

Modelica Data Viewer (Browser) Help

Quick crash-course on Modelica variable exploring

» 3tart the wiewer before starting the debugger

© (thiz could be rectified in the future so that the
viewet i3 started by the debugget)

Click on variable name inside the tree to explore a variable —
[More could be added here in the fiture] =l

Figure 3: External variable browser

If the variable which one tries to print does not exist in
the current scope (not a live variable) a notifying warn-
ing message will be displayed.

Automatic printing of variables at every step or break-
point can be specified by adding a variable to a display
list:

mdb@> di|display variable name <RET>

To print the entire display list:

mdb@> di|display <RET>

Removing a display variable from the display list:

mdb@> un|undisplay variable name <RET>

Removing all variables from the display list:

mdb@> undisplay <RET>

Printing the current live variables:

mdb@> li|live|livevars <RET»>
Instructing the debugger to print or to disable the print
of the live variable names at each step/breapoint:

mdb@> [set] li|live|livevars [on|off]<RET>

Figure 4 shows examples of some of these commands
within a debugging session:
o [=[3]

macs@kafka.carafe.ida.linse

File Edit Options Bufiers Tools Complete In/Out Signals Help

Cwex g

output Real rval_1:
alzgorithm
rval_1 1=
match exp_1
local Integer wl.vZ:
Exp el.e2:
case REDHST(ul) then vl
caze PLUS{el.e2) equation
vl = evaliel): w2 = evalie2l:
then wl+v2:
caze SUB{el.e2} equation
vl = evalieli; [W2 = evalieZ):
then wl-vZ:
caze MUL{el.e2} equation
(D0S3-- ewval.mo {Modelical--14--C31-- G¥---——=-——--—= |
Breakpoint [1]. on eval,mo:ll reached
eval,mo:ll,7Bevallocall tevaliel) => (vl
nolbE > run

Breskpoint [0]. on eval.mo:d reached
eval,mo:9,BFeval@axion sRCOMST (vly => (vl}
nelb@>pr 1nl: vl

Resultzilnot in current context]
Paranstersvl=d

nob@>st

eval,moild, 23EevalBcallieval (2 = (W21

nch@>print e2

Results:[not in current context]

Paramsters ;e2=MUL (DIV(RCONST (163 ,RCOMST (20) .RCOMST (35}
nb@xdisplay e2

Resultsilnot in current context]

Paramnsters ;e2=MUL (DI (RCONST (163 ,RCOMST (23) .RCOMST (30 »
Variable: [e2] added to display wvariabile list,
mdb@)dlspl

------ LIST DF DISPLAY VARIABLES ------
#0 -> e2

nelb@rundisplay

Lizt of dizplay varishles cleared,
S |

——i#x xgudx {Debugger jrunt--138--C5--Bot——----—-----——- |

Figure 4: Examining data

2.1.5 Additional commands

The stack contents (backtrace) can be displayed using:

mdb@> bt |backtrace <RET>

Because the contents of the stack can be quite large,
one can print a filtered view of it:

The Modelica Association

437

Modelica 2005, March 7-8, 2005

A. Pop, P. Fritzson

mdb@> fbt|fbacktrace filter_ string <RET>

Also, one can restrict the numbers of entries the debug-
ger is storing using:

3 The Debugger Implementation

This section presents the debugging strategy in detail.
We first start with two examples on how the debugger

mdb@> maxbt |maxbacktrace integer <RET> instruments the code, and then we enter into the details

For displaying the status of the Modelica runtime: of the implementation. The examples illustrate Mode-

mdb@> sts|stat|status <RET»>

lica algorithmic code and some of the new extensions
of the Modelica language like pattern matching and

The status of the extended Modelica runtime comprises union type declarations on a simple expression evalua-
information regarding the garbage collector, allocated tor example.

memory, stack usage, etc.

The current debugging settings can be displayed us- 3.1 Example Applications to Debug

ing:

In this section we present two examples of Modelica

mdb@> stg|settings <RET> algorithms.

The settings printed are: the maximum remembered

backtrace entries, the depth of variable printing, the 3.1.1 Bubble Sort function

current breakpoints, the live variables, the list of the The first example application we present for debugging
display variables and the status of the runtime system. 5 4 BubbleSort function:

One can invoke the debugging help by issuing:

mdb@> he|help <RET>
For leaving the debugger one can use the command:
mdb@> qu|quit|ex|exit|by|bye <RET>

A session using these commands is presented in Figure
5 below:

macs@kafka.carafeidalivse 10l x|

File Edit Options Buffers Tools Complete In/Out Signals Help

@ x ©d &2

output Real rwal_1;
slgorithn
rval_1 1=
match exp_1
local Integer wil u2:
e el.e2:
caze RCOMSTCwL) then wir
caze PLUS{el.e?} equation
vl = evaliell: w2 = evalle2):
then wl+u2:
caze SlE({el.e?} equation
vl = evalield: [W2 = evalle2):

then wl-uw2:
caze MUL{el,.e2} equation
vl = gvalield: w2 = svallsZi:

then vi=w2:

nclb® bt

STACK
#0 -reval,mo:11,7,11,20 relation[evall,.goallcallievaliel) => ¢vl)]
#1 -reval,mo:14,7,14,20 relation[eval].goallcallievaliell =» {vl}]
#2 -reval,no:9,8,9,17 relation(evall .gosllaxiomiRCOMST (w1} =3 (vli]
#3 -»eval,mo:14,23,14,36 relstion[evall.goallcallievalie2) =» (v2)]

nolb@ >stell

————————————————————— CURRENT SETTIMGS:
max backtrace entries:

depth of varisble print: 1
execut lon type: step
print names of livevars each step; false
Varishles printed at each steprbreskpoint:
—————— LIST OF DISPLAY VARIABLES ------
Mo display wvarishles are set

breakpoints:

—————————— CURREMT BREAKPOINTS ---------
#0 -> eval,mo:d

#1 -» eval.mo:ll

thyl Jodevittyl

——1xx xgudx {Debugger ;rund =—Ld5--CE-~d5H-—=—= == —m—mmmm e 9

Figure 5: Additional commands

function bubbleSort
input Real [:] unordElem;
output Real [size(unordElem, 1)] ordElem;
protected
Real tempVal;
Boolean isOver = false;
algorithm
ordElem := unordElem;
while not isOver loop
isOver := true;
for 1 in 1l:size(ordElem, 1)-1 loop
if ordElem([i] > ordElem[i+1]

then
tempVal = ordElem[i] ;
ordElem[i] = ordElem[i+1];
ordElem[i+1] := tempVal;
isOver := false;
end if;
end for;

end while;
end bubbleSort;

05— Déﬂéﬁﬁ’.ff) T ——— s/ The instrumented version of this function is presented
molb@xdisplay
—————— LIST OF DISPLAY VARIABLES ------ below:
W > e%' .
db@>undispla ,
Elst :‘j? t:!lis';lagjI variahles cleared, function bubbleSort

input Real [:] unordElem;
output Real [size(unordElem, 1)] ordElem;
protected
Real tempVal;
Boolean isOver = false;
algorithm
Debug.register in("unordElem",unordElem) ;
Debug.step(...);
ordElem := unordElem;
Debug.register out ("ordElem", ordElem) ;
Debug.register in("isOver", isOver);
Debug.step(...);
while not isOver loop
isOver := true;
Debug.register out ("isOver", isOver) ;
Debug.register in("ordElem",ordElem) ;
Debug.step(...);
for i in l:size(ordElem, 1)-1 loop

The Modelica Association 438

Modelica 2005, March 7-8, 2005

A Portable Debugger for Algorithmic Modelica Code

Debug.register out ("i", 1i);
Debug.register in("i", 1i);
Debug.register in("ordElem[i]",
ordElem[i]) ;
Debug.register in("ordElem[i+1]",

ordElem[i+1]) ;

Debug.step(...);
if ordElem[i] > ordElem[i+1]
then
Debug.register in("i",
Debug.register in(
"ordElem[i] ",
ordElem[i]) ;
Debug.step(...);
tempVal := ordElem[i];
Debug.register out (
"tempVal",
tempVal) ;
Debug.register in("i",
Debug.register in(
"ordElem[i+1]",
ordElem([i+1]) ;
Debug.step(...);
ordElem[i] := ordElem[i+1];
Debug.register out ("i", i);
Debug.register out (
"ordElem[i] ",
ordElem[i]) ;
Debug.register in("i",
Debug.register in(
"tempVal",
tempVal) ;
Debug.step(...);
ordElem[i+1] = tempVal;
Debug.register out ("i",
Debug.register out (
"ordElem [i+1]",
ordElem[i+1]) ;
Debug.step(...);
isOver := false;
Debug.register out ("isOver",
isOver) ;

i);

i);

i);

i);

Debug.step(...);
end if;
end for;
Debug.register out ("i",
Debug.register out (
"ordElem",
ordElem) ;
Debug.step(...);
end while;
Debug.register out ("isOver", isOver) ;
Debug.register out ("ordElem",ordElem) ;
Debug.step(...);
end bubbleSort;

i);

As presented above, the debugger instruments all
statements using the defined functions from the Debug
package. A statement is analyzed for input and output
variables which are registered with the debugging
framework using register in and register out
functions. The function step verify internally if we
have to stop at a breakpoint or continue without stop-
ping and also is responsible for parsing user commands
addressed to the debugger. The instrumentation is bet-
ter than what a programmer/user would do with print or

assert statements because it provides better control
through stop/inspect functionality. As one can see the
code grows quite much when is instrumented, but this
does not affect the final version of the code. For de-
bugging purposes the user is rather interested in cor-
rectness of the code than in the speed/size of the code.

3.1.2 An expression evaluator

The second application is an expression evaluator im-
plemented in the algorithmic Modelica subset extended
with support for recursive tree data structures and a
case-expression construct that allows pattern-matching
and tree traversal. These language extensions are de-
scribed in a companion paper [10] and are independent
of the implemented debugger described here. For the
sake of completeness we make present the extensions
briefly in the following.

The declaration of an abstract syntax tree (AST) data
type Exp for representing simple expressions:

uniontype Exp

record RCONST Real x1; end RCONST;
record PLUS Exp x1; Exp x2; end PLUS;
record SUB Exp x1; Exp x2; end SUB;
record MUL Exp x1; Exp x2; end MUL;
record DIV Exp x1; Exp x2; end DIV;
record NEG Exp x1; end NEG;
end Exp;

The union type declaration above is defining record
constructors for the nodes of the simple expression rep-
resentation. Examples of expressions represented in
this way can be found in the following table:

Expression Modelica constructor form
1+2 PLUS (RCONST (1) ,
RCONST (2))
1-2/3 SUB (RCONST (1) ,

DIV (RCONST (2),
RCONST (3)))
Table 1: Representing simple expression trees

To be able to evaluate simple expression trees we need
an evaluation function. The evaluation function will
apply pattern matching on the constructors of the ex-
pression language and then perform the actual evalua-
tion on the components of the constructor.

Below we present the evaluation function eval of our
simple expression evaluator:

function eval

input Exp exp 1;

output Real rval 1;
algorithm
rval 1 :=

match exp 1
local Real v1,v2;
Exp el,e2;
case RCONST (vl) then v1;

The Modelica Association

439

Modelica 2005, March 7-8, 2005

A. Pop, P. Fritzson

case PLUS(el,e2) equation

vl = eval(el); v2 = eval(e2);
then v1+v2;

case SUB(el,e2) equation
vl = eval(el); v2 = eval(e2);
then v1-v2;

case MUL (el,e2) equation
vl = eval(el); v2 = eval(e2);
then v1*v2;

case DIV (el,e2) equation
vl = eval(el); v2 = eval(e2);
then v1/v2;

case NEG(el) equation
vl = eval(el);
then -vi1;

else

assert ("Bad expression!")) ;
end match;
end eval;

This function has as input an expression in the form
presented in Table 1, second column. The expressions
are represented as trees using constructors defined in
the union type Exp. A model that uses this function is
presented below:

model Example
Exp exp=PLUS (
SUB (RCONST (4) ,
MUL (DIV (RCONST (16),
RCONST(2)),
RCONST (3))),
RCONST (10)) ;
Real result;
algorithm
result :=
end Example

eval (exp) ;

The first component of the Example model defines a
simple tree that corresponds to 4-16/2*3+10 expres-
sion. We used this simple expression in the examples
and figures in Section 2.

The instrumented code of the eval function is pre-
sented below. The debugging code is underlined to be
more visible:

eval // instrumented version
Modelica.Debugging;

function
import

input Exp exp 1;
output Real realval 1;
algorithm
Debug.register in(”"expl”, exp 1);
Debug.step(...);
realval 1 :=
match exp 1
local Real v1,v2;
Exp el,e2;
case RCONST (vl) equation
Debug.register out ("v1", vl);
Debug.step(...);
then vl1;
case PLUSop (el,e2) equation
Debug.register out ("el", el);
Debug.register out ("e2", e2);
Debug.register in("el", el);

Debug.step(...);
vl = eval (el) ;

Debug.register out (“vl1”, vl);
Debug.resister in(“e2”, e2);
Debug.step(...);

v2 = eval (e2);

Debug.register out (“v2”, vl);

Debug.register out (“v1+v2”,v1+v2);
Debug.step(...);
then v1+v2;

else
Debug.step(...);
assert ("Bad expression!")) ;
end match;
Debug.register out (“realval 1”,realval 1);
Debug.step () ;
end eval;

As one can see, debugging code is added for each vari-
able. This style of debug code instrumentation can be
changed into one where all the debugging calls are col-
lapsed into just one call Debug.step (. ..) with more
arguments specifying in or out variables. We have ex-
perimented with different debug instrumentation styles
in order to choose the best speed vs. memory consump-
tion for the debugger.

The following instrumentation functions are inserted
into the generated code:

e The
var) and Debug.register out ("name", var)
register in a data structure the variables which are
live at a certain moment during the execution.

e The Debug.step(...) function then performs a
query of this data structure to show which variables
are available in the current context.

e The function Debug.register in(...) regis-
ters variables that are used in the next statement or
expression.

e The function Debug.register out(...) regis-
ters variables that result from the execution of the
previous statement or expression.

functions: Debug.register in("name",

Note that the debug instrumentation functions are low-
level C functions that do not fulfill the Modelica re-
quirement of being mathematical functions.

3.2 Overview

In this section we present the compilation path fol-
lowed by the compiler when instrumenting the code
with debugging calls. The debugger is actually the ex-
ecutable generated by the compiler when instructed to
generate debugging calls before and after each relevant
Modelica statement or expression.

Figure 6 presents both the normal compilation path
performed by the compiler when compiling algorithmic
code and also the path followed by the compiler when
compiling algorithm sections that include debugging
information.

The Modelica Association

440

Modelica 2005, March 7-8, 2005

A Portable Debugger for Algorithmic Modelica Code

Modelica Code
function eval
/ input Exp;
Parser output Real realval 1;
algorithm Emacs
4 eval Modelica
end eval;
Debug
i : Mode
Modelica Modelica AST
AST also
with position
information

Linking with
the Modelica
runtime

Normal
Executable

Figure 6: Normal compilation (left) and compilation
with debug support (right)

An overview of our debugging strategy is presented on
the right side of Figure 6. The path taken by the debug-
ger comprises several more steps in order to instrument
the Modelica AST with debug nodes and live variable
information. Also, the runtime system is extended with
several data structures that support debugging and a
parser for the debugger commands.

3.3 Augmenting the Modelica AST with Debug

Call Nodes

The modified Modelica parser saves additional position
information about each statement or expression. This
information is used by the debug instrumentation phase
in order to generate calls to the debugger functions with
exact information on where the current execution is
taking place.

We use a very simple and effective algorithm when
instrumenting the ModelicaAST with debug nodes. We
sketch a pseudo code of this algorithm below:

foreach ModelicaAST expression or

statement Node

if not filter (Node)
then select next Node;

Modelica AST
Instumented
with
Debug Nodes

Debugger
command
line and
output buffer

Executable +
Debugging

else

variables_in = collect_variables (Node) ;
variables out = collect variables (Node) ;
position = collect position (Node) ;
construct new tree with these nodes:
Debug.register_ in(variables_in);
Debug.step (position) ;
Node;
Debug.register out (variables out) ;
replace Node with the new tree;
end else;
end foreach;

The compiler can be instructed to generate debugging
nodes only when reaching certain nodes that are con-
form to a filter. Using this facility one can tell the com-
piler to perform debug instrumentation only on a cer-
tain function or a certain statement of the code. In this
way the delay in the execution speed introduced by the
debugging code can be kept to a minimum.

We have experimented with several ways of creating
the added debug nodes:

e Each variable is registered using a debug function
call either as in or out variable, as in the pseudo
code presented.

e All in variables are collected in a list and passed to
a single function call. The same approach is used
also for out variables. This has an impact on mem-

The Modelica Association

441

Modelica 2005, March 7-8, 2005

A. Pop, P. Fritzson

ory consumption, but uses fewer function calls, so it
is faster.

e The in and out variables are collected in two lists
which are passed as arguments to the step function
directly.

The best speed vs. memory consumption is highly de-
pendent on the algorithmic code. However one can ex-
periment with all these choices and choose the best de-
bug instrumentation way for a specific code.

3.4 Short Presentation of the Debugger Library

The debugger library contains several functions imple-
menting the actual debugger functionality and data
structures for bookkeeping of breakpoints, live vari-
ables, call stack, types of live variables, etc. The library
is implemented in C.

The debugger library has the following available func-
tions:

® Debug.step(...) function with fixed parameters
file name, lineno, columno, func-
tion name, next statement is stopping the
execution of the algorithmic code if a breakpoint is
reached or one step was performed and waits for
commands from the user. If the commands are not
step or run it waits for more commands from the
user in a cycle. Additional parameters like the live
variables can be also passed to the De-
bug.step(...) function depending on the debug
instrumentation choice.

® Debug.register in(...) function and De-
bug.register out(...) function are used only
when no live variables are passed to the De-
bug.step () function. These functions are register-
ing variables, either each variable at a time or sev-
eral variables as a list.

® Debug.parse command () 1is called by De-
bug.step () either at a step or when a breakpoint
is reached.

® Debug.execute command () is called by the De-
bug.parse command () when the user issues a
command. Depending on the command several
other functions are executed.

® Debug.set_breakpoint () adds the breakpoint
into the breakpoint list.

® Debug.delete breakpoint () deletes the break-
point from the breakpoint list.

® Debug.clear () and Debug.show() clears or
shows all current breakpoints, respectively.

® Debug.print variable() prints the specified
variable to the debugger output.

® Debug.print livevars names() prints the
names of the variables available in the current con-

text. The distinction between in (parameters) and
out (results) variables is made when printing vari-
able names.

® Debug.browse variable () connects to the ex-
ternal viewer, and sends on demand the value of a
variable. This function stops the debugger until the
external viewer is done with the browsing.

® Debug.set _print depth() sets the depth of
variable printing.

® Debug.max remembered_ stack entries()
will set the maximum number of entries of the
logged stack trace.

® Debug.display variable() will add the dis-
play variable to a display list to be printed at each
step or breakpoint.

® Debug.undisplay variable () performs the in-
verse action of the Debug.display variable().

® Debug.display () prints the list of variable names
present in the display list.

e Debug.undisplay () clears the display list.

® Debug.stack_add node () pushes a node name
on the stack trace.

® Debug.stack remove node () pops a node name
from the stack trace.

® Debug.status () prints status information on the
extended Modelica runtime, e.g., garbage collec-
tions performed, amount of allocated memory, etc.

® Debug.settings () prints the current debugger
settings.

More functions are actually present in the debug library
(dealing with variable — type mapping, connection to
the external viewer, etc). Here we have only presented
a limited set which has direct connections with the de-
bugger commands presented in the paper.

4 Conclusions and Future Work

We have presented a portable and highly configurable
debugger for extended Modelica algorithmic code. De-
bugging of large algorithmic Modelica codes is now
possible using our debugger.

As future work we consider extension of the current
debugging scheme and also tighter integration of the
debugger with other Modelica tools.

Integration with declarative equation debugger tech-
niques [1, 2] will be provided in the future, in order to
address debugging of the entire Modelica language
from a central debugger.

We have also started work to integrate the debugger
and the OpenModelica [3] compiler within the Eclipse
Development platform [11] which will provide inte-
grated editing, navigation, simulation and debugging
for the Modelica language.

The Modelica Association

442

Modelica 2005, March 7-8, 2005

A Portable Debugger for Algorithmic Modelica Code

Acknowledgements

This research was partially funded by Foundation for
Strategic Research (SSF) in the Research in Interna-
tional Software Engineering (RISE) project and by the
Swedish National Graduate School in Computer Sci-
ence (CUGS). We would also like to thank the review-
ers for their feedback.

References

L. Bunus, P., Debugging and Structural Analysis of
Declarative Equation-Based Languages, in De-
partment of Computer and Information Science.
2002, Linkoping University: Linkdping, Licenti-
ate Thesis.

2. Bunus, P., Debugging Techniques for Equation-
Based Languages, in Department of Computer
and Information Science. 2004, May, Linkdping
University: Linkdping, PhD Thesis.

3. Fritzson, P., et al. The Open Source Modelica
Project. in Proceedings of The 2th International
Modelica Conference, 18-19 March, 2002. Mu-
nich, Germany,
http://www.ida.liu.se/~pelab/modelica/OpenMod
elica.html.

4. Fritzson, P., Principles of Object-Oriented Mod-
eling and Simulation with Modelica. 2003:
Wiley-1EEE Press.

5. GNU, T.F.S.F., The GNU Project debugger, Last
Accessed: December, 2004,
http://www.gnu.org/software/gdb/gdb.html.

6. Tolmach, A.P., Debugging Standard ML. 1992,
October, Princeton University, PhD. Thesis.

7. Pettersson, M. Portable Debugging and Profil-
ing. in 7th International Conference on Compiler
Construction, 1998.

8. Hanson, D.R. and M. Raghavachari, 4 Machine-
Independent Debugger—Revisited. Software—
Practice and Experience, 1999. 29(10): p. 849-
862.

9. GNU, T.F.S.F., Emacs, The Grand Unified De-
buger (GUD), Last Accessed: December, 2004,
http://www.gnu.org/software/emacs/manual/html
_node/Debuggers.html#Debuggers.

10. Fritzson, P., A. Pop, and P. Aronsson. Towards
Comprehensive Meta-Modeling and Meta-
Programming Capabilities in Modelica, (to ap-
pear). in 4th International Modelica Conference,
7-8 March, 2005. Hamburg, Germany.

11. Eclipse Development Platform, Last Accessed:
December, 2004, http://www.eclipse.org/.

The Modelica Association

443

Modelica 2005, March 7-8, 2005

