
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg
Scania CV AB, Sweden
Development of a Modelica Heavy Vehicle Modeling Library
pp. 467-476

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel,
Stefan Wischhusen, TuTech Innovation GmbH



Development of a Modelica Heavy Vehicle Modeling Library

Per Bengtsson Henrik Jansson Niklas Pettersson Tony Sandberg
Scania CV AB

151 32 S̈oderẗalje, SWEDEN

Abstract

Physical modeling for simulation of fuel consumption
and other dynamic behavior in heavy vehicles can be
useful in many areas from concept design to sales sup-
port. Similar models of vehicle subsystems are needed
in many applications, it would thus be beneficial to
have access to a library of reusable vehicle subsys-
tem and component models to avoid repeated imple-
mentation. A solution based on a model architecture
and a supporting Modelica library for structured stor-
age of models and components is proposed. The work
has been focused on promoting modeling practices en-
abling reuse, but we have also tried to maintain as
much freedom as possible for the modeler.

1 Introduction

There exist a number of different proposals for vehi-
cle modeling architectures in Modelica (for example
[5] and [2]. The aim of this project has been to cre-
ate a complete system with both a hierarchical model
structure defining the interfaces between subsystems
on several levels, and a model library. The library is
used to store sub-system interfaces along with avail-
able implementations and required supporting compo-
nents such as connector definitions. The system is in-
tended to be used for various research and develop-
ment efforts within Scania CV AB. Since development
projects may have very different aims, and be focused
on different subsystems, it is unlikely that the library
will provide a final model for the task. Hopefully, ex-
isting versions of most sub-systems can be used to-
gether with new models specific to the current prob-
lem. A key consideration in the work has been to build
a system which is suitable for use by both experienced
and novice modelers. The project is rather applied in
its nature, and the article is intended to describe our
experiences.

2 Architecture Concerns

2.1 Multi-domain Library

One much hailed property of the Modelica language
is its multi-domain modeling capability. Components
from model libraries describing different domains can
be used together in the same model. However, the
majority of available libraries are focused on one do-
main. In most cases this is a natural partitioning. In
this project the common denominator has not been the
engineering domain, but rather the system to be de-
scribed. The purpose of the library is to store com-
ponent models, defined through the partitioning of the
described system into physical sub-systems.

A design goal has been to keep all available mod-
els in one central location, easily accessible to every-
one. Existing models use an in-house media library to
represent air- and coolant flows. This domain specific
library is thus also needed by users of the new model
library. It was decided to place it within the new li-
brary. This issue is further discussed in section 4.2.3

Figure 1: Heavy truck model in DymolaTM .

Development of a Modelica Heavy Vehicle Modeling Library

The Modelica Association 467 Modelica 2005, March 7-8, 2005



2.2 Heavy Vehicles

Most existing vehicle model libraries are designed pri-
marily for cars. Heavy vehicles have a number of sub-
systems which are not present in passenger cars. Par-
ticularly the engine/transmission system includes de-
vices like an exhaust brake and possibly a retarder.
Further, the cooling system also has a more prominent
role than in cars, and coolant is often used both by the
engine and the transmission.

2.3 Model Variants

Since this library is designed to be used in many dif-
ferent projects, there is a need to handle different vari-
ants of component models. Supporting different model
variants, while attempting to preserve compatibility
and avoid hidden interdependences has been one of
the greatest challenges in this work. In some cases it
will be necessary to create an entirely new model to be
used instead of one already in the library, but substan-
tial changes in behavior can be achieved without going
that far. The library supports three ways of changing
model behavior, listed in the order they should be con-
sidered.

Some models depend on data found in external pa-
rameter files or lookup tables. Theses can easily be
changed at run-time without any need to modify or re-
compile the actual model. When models are added,
this approach should be considered for any data that
needs to be changed frequently. Recompilation be-
tween simulation runs is not only time consuming, it
also assumes the presence of a licensed installation of
the compiler.

Numerical parameters which are not set through
data files can still be influenced at run-time. The simu-
lation reads an initial state file, where values different
from the default ones can be specified for real, integer
and Boolean model parameters. This solution requires
less complex source code than the data file approach,
and is advantageous when only a few parameters need
to be accessible. This approach would mainly be use-
ful in creating an end-user application where the user
should for example be allowed to choose between dif-
ferent tire models in an external GUI.

When a new model structure is needed, and even
redeclaration of submodels is not enough, an entirely
new model should be created. To make the new model
usable in other projects, the existing base classes
should be used to define the interfaces. If it is neces-
sary, additional base classes can be created to supply
extra connectors. The new model should of course be

documented and made as flexible as possible with pa-
rameters and replaceable components used appropri-
ately.

We have designed the library with fundamental
base classes as blueprints for the physical subsystems
and their major components. Only the interfaces re-
quired for simple implementations of the models are
included. Additional base classes can be used to add
more connectors if required by more advanced mod-
els. We have opted not to define a completely fixed
architecture where all connections are always identi-
cal, but rather a supporting framework for developers
intending to create reusable models. See also section
3.2.

2.4 Signaling Bus

A key issue in an architecture which contains both
physical plant and controller models is the handling
of electrical signals. The controllers need to exchange
data among themselves and they need to exchange
signals with sensors and actuators. For our applica-
tions the actual signaling behavior is not that impor-
tant, an ideal communications model is sufficient. For
the communication between a plant and its controller,
standard library inports and outports are used. The
communication between the controllers was a tougher
case. Two implementations of the same controller may
not have the same signaling needs, thus it must be pos-
sible to change the set of signals sent between control
units.

Separate input and output ports for all links be-
tween control units in the vehicle would create an un-
decipherable graphical mess. Some type of signal-
ing bus is needed. Both the standard library bus con-
nectors and the type of bus used in the vehicle mod-
eling architecture proposal by Tiller et. al [5] were
evaluated. We did not find enough information about
the inter-controller communication in the Tiller paper
to implement that system. Our main problem was
to find a way of having compatible connectors in all
controllers, without modifying the code of every con-
troller when a signal was added to the bus. The Mod-
elica standard library bus does not solve that problem,
since it requires all signals to be declared in the con-
nector. Eventually we chose a simpler solution based
on a common connector called ”CAN” with a replace-
able variable, called ”protocol”, which contains all the
signals. The protocol variable can easily be redeclared
into a type which contains exactly the signals broad-
cast on the bus in a particular model. Different imple-
mentations of the CAN connector are used for differ-

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg

The Modelica Association 468 Modelica 2005, March 7-8, 2005



ent signal buses in the vehicle.

Most of our control units are implemented through
external function calls, thus the drawback of having no
convenient graphical way of converting a signal from
inport/outport to bus format is minor. See listing 4 for
an example of how the electronic control unit models
use the CAN bus. The connected control unit model is
shown in figure 2.

Listing 1: The CAN connector base class.

partial connector CANBase
"Basic connector for modelling CAN
comunincation"
replaceable Protocols.Interfaces

.ProtocolBase protocol
"Protocol to be used" ;

end CANBase;

Listing 2: Implementation of the general CAN bus
connector.

connector CAN_s
"General control system

communication bus connector"
extends CANBase;
annotation (...);

end CAN_s;

Listing 3: A part of the definition of a CAN protocol.

record ProtocolStd
extends Interfaces.ProtocolBase;
Real EngineSpeed

"Speed of engine in rpm" ;
Real EngineTemp

"Engine temperature in deg C" ;
...

end ProtocolStd;

Listing 4: Sample usage of the CAN bus in the engine
control unit.

...
/ * I/O mapping (sensors/actuators) * /
engineSpeed = inport[ENGINE_SPEED];
outport[FUELING] = fueling;
outport[EXHAUST_BRAKE_ON] =

CAN.protocol.ReqExhaustBrake;
...
/ * Write CAN values * /
CAN.protocol.EngineSpeed = engineSpeed;
CAN.protocol.EngineTemp = engineTemp;
CAN.protocol.ActualEngineTorque =

inport[ACTUAL_ENGINE_TORQUE];
CAN.protocol.ActualExhaustBrakeTorque =

inport[EXHAUST_BRAKE_TORQUE];
...

Figure 2: Engine management system electronic con-
trol unit.

Figure 3: Directory structure for non-model files.

Development of a Modelica Heavy Vehicle Modeling Library

The Modelica Association 469 Modelica 2005, March 7-8, 2005



3 Usability Concerns

3.1 Non-model Files

The model library itself is relatively easy to distrib-
ute to the users. It is sufficient to copy the directory
structure containing all the models to an appropriate
place in the file system and load the library into Dy-
mola. To get a nice working environment, where all
external files are found by the system and the library is
included in the Dymola GUI, takes a little more effort.
In addition to the library directory tree our completed
system consists of a directory structure on a higher
level in the file system. This tree contains the model
library itself and all external function source code and
model data files for the. A work directory for the user
is also provided. Data file paths and external source
code links (through include annotations in functions)
in the model library are given with relative paths, mak-
ing sure that the files are found if the work directory is
used.

If the user starts Dymola with the script provided
with the library, an included configuration file is used
to make sure that the heavy vehicle library automati-
cally is included in the model browser.

3.2 Top Level Model

It is anticipated that a significant part of the work done
with the library will be carried out in project form by
people with little or no previous Modelica and/or mod-
eling experience. As a result overly complicated and
abstract language constructs have been avoided. The
suggested method of putting together a vehicle for a
particular task is to select those sub-system models
which are most suited and add them to a new model.
A ”master” model with most components declared as
replaceable would enable new versions to be created
with fewer lines of code, but the added abstraction has
been deemed to be more difficult to handle than the
extra coding. Future enhanced modeling tools may re-
verse this decision, but today we think that the ability
for the novice modeler to fully understand his or her
source code is warrants some code duplication.

The master model approach is best suited when it
is anticipated that all implementations of a sub-system
will be absolutely compatible. While this is a nice as-
sumption we don’t think that it will be valid in our
case. The range of intended applications for the vehi-
cle library is so broad that some modifications also to
the structure and interfaces certain components will be
necessary in many projects. Real-time simulation of

components as parts in simulink models is one exam-
ple where non-standard shortcuts have been very effi-
cient. Strict adherence to the interfaces is certainly op-
timal from a reusability perspective, but we have not
yet found a set of interfaces which have been practical
to use in every application. Further work may bring us
ever closer to that goal.

3.3 Concurrent development

Traditionally one of the main obstacles to reuse of
Modelica models created in previous projects has been
that new functionality has been spread through many
subsystems, rather than contained in one. When de-
velopers in two projects have enhanced different sub-
systems they also have modified many others in the
process, making it difficult to incorporate enhanced
components from different projects in the same model.
Hopefully, the new library will promote solutions
where components to a higher degree are created as
self contained units.

A version control repository is used to make sure
that two different groups do not accidentally make si-
multaneous conflicting changes. If only a particular
sub-tree is checked out with write privileges the devel-
oper is encouraged to find solutions within that sub-
system. The version control repository also supports
named versions of the library to be created, which is
useful to make sure that the exact model versions used
in a project or application will always be available.
The model library code is managed and provided to
users in the same way as other source code in the orga-
nization. Users across various departments and groups
can thus use a code management system which they
are already accustomed to.

3.4 Choice Annotations

A number of Modelica entities can have choice anno-
tations, which allow the model user to select appropri-
ate parameter values easily in a modeling GUI. This
feature has been used in many places where the pa-
rameter is not a physical quantity. For examples file
name parameters used to specify data files are declared
to be of a certain filetype. Each filetype has an associ-
ated list of suggested file names. In figure 4 the drop-
down box for retarder model selection is shown.

The signal bus protocol used throughout the vehi-
cle is determined by the type of a replaceable variable.
The final setting of the type is propagated to the vehi-
cle level, making it easy to change the type of every
bus connector. Available protocols are presented in a

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg

The Modelica Association 470 Modelica 2005, March 7-8, 2005



Figure 4: The result of a choice annotation to aid in
the selection of a retarder model

list, but it is still up to the user to choose one which
contains exactly the set of signals that is being broad-
cast by the currently used set of control units.

4 Model and Library Structure

Figure 5: Top level packages in the vehicle library

4.1 Hierarchical levels

The created vehicle model structure defines multiple
levels. The vehicle is built from physical components
which also have a defined substructure. The support-
ing library mimics that same substructure. For ex-
ample control units for subsystems are included in

the subsystems modules themselves, to reduce the re-
quired number of components and connections in the
top level model. In most cases one controller model
and one or more interconnected plant models make up
a subsystem. The top level subsystems cover the same
areas as corresponding groups in the research and de-
velopment organization. Local development of models
by experts in various fields is thus simplified.

4.2 Library Structure

4.2.1 Color Coding

The vehicle library has been created with the same ba-
sic structure and package naming conventions as the
Modelica standard library. Additionally the various
package types have been color coded to make navi-
gation in the package tree easier. Packages contain-
ing interfaces, sensors, icons and examples are made
green. Data records are kept in red subpackages, and
test models in yellow. Ordinary packages are a slightly
darker shade of blue than the standard package icon.

4.2.2 Packages

Figure 6: The ”axle” package with subpackages in the
library browser.

Each physical subsystem has its own top level
package for all its components, interfaces, etc. Ad-
ditionally there are packages for examples, interfaces,
icons, examples and tests on the top level. For an
example of a top-level package see figure 6. Com-
plete vehicle models, which can be used as compo-
nents together with environment models from the am-
bient package, have a category of their own. To avoid a
very deep tree structure these various types have been
put at the same level in the hierarchy.

Development of a Modelica Heavy Vehicle Modeling Library

The Modelica Association 471 Modelica 2005, March 7-8, 2005



4.2.3 The Common Sub-tree

There are a number of models required for the model-
ing of a complete vehicle which do not clearly belong
in any particular subsystem. Base classes for elec-
tronic control units, the signal bus connectors and the
media library used for coolant and air modeling are a
few examples. These functions are kept under a sub-
tree called ”Common”. While it may seem more nat-
ural to create a separate library at least for the media
components we prioritized keeping the entire model li-
brary self contained. The only external dependencies
are the Modelica Standard Library and accompanying
ModelicaAdditions library.

4.3 Physical Subsystems

The physical subsystems with the interfaces described
are used in the current models. As it is impossible to
foresee exactly what applications the vehicle library
will be used for in the future, unused connectors are
not included on speculation. More connectors are
likely to be added in the future. To preserve current
base classes this can be done through additional base
classes as described in section 2.3.

4.3.1 Ambient

Figure 7: A vehicle model with the ambient compo-
nent.

The ambient category is used to represents the en-
vironment around the vehicle. Models of this type
supply data about surrounding temperature, air pres-
sure and other environment constants. These models
are also used to keep track of the road parameters such
as slope and speed limit. Through the Modelica in-
ner/outer construct one ambient component is acces-
sible to all the other components in a model, which
makes this the ideal place for any data that needs to
be globally shared. Each model should have exactly
one ambient component. The ambient interface has

one input connector which is used to communicate the
position of the vehicle. A vehicle and ambient combi-
nation can be seen in figure 7.

4.3.2 Auxiliaries

Figure 8: A model representing the auxiliary units.

Auxiliaries are components like the cooling fan,
AC compressor, electric generator etc. These are gen-
erally mounted somewhere on the front side of the
engine, and traditionally obtain their operating power
through a mechanical link. It is recommended that any
generator model is placed among the auxiliaries, and
not in the electrical system. Separate models for each
auxiliary unit are placed within this container. Sub-
trees in the library contain models related to the vari-
ous units. The auxiliaries are connected to the electri-
cal system and the engine, an implementation can be
seen in figure 8.

4.3.3 Axle

Figure 9: Truck model with full trailer and four axles.

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg

The Modelica Association 472 Modelica 2005, March 7-8, 2005



The axle models contain tires, brake actuators and
a final gear for driven axles. They are always con-
nected to the chassis and the brake CAN bus. The
axles generate a retardation force due to the rolling re-
sistance in the wheels, and possibly due to the wheel
brakes. Driven axles have an additional connector
which allows the power train to transfer torque to the
axle, and propel the vehicle. The number of axles in a
vehicle configuration varies; it has to match the num-
ber of axle connectors on the chassis and all trailer
models used. The vehicle shown in figure 9 thus re-
quires four axles. An air interface could be added to
simulate air-powered brake actuators.

4.3.4 Brake System

The brake system is a container for the brake man-
agement system and any related plants except for the
brake actuator, which are represented at their physi-
cal location in the axle modules. The brake system is
attached to the vehicle signaling bus and the brake sig-
naling bus. Additional connections are likely in future
more developed brake system models.

4.3.5 Chassis

The chassis models represent the frame of the truck.
Cargo, axles and trailers attach to the chassis. The base
class has the connectors for wheel axles and a draw
bar. Derived classes add either a fifth-wheel (where
the semi-trailer is attached) for tractor configurations,
or a cargo attachment point for rigid trucks.

4.3.6 Driver

The driver model is responsible for overall control of
the vehicle. Decisions to accelerate or decelerate de-
pending on the surroundings are made by the driver.
Depending on the vehicle, different control signals
may be required. A manual transmission requires the
driver to select an appropriate gear, while the GMS
handles that duty for an automatic or automated man-
ual transmission. In cruise control mode, the EMS
controls the fueling, in driver demand mode the throt-
tle is controlled directly by the driver. The driver logic
depends on the control units used in other parts of the
vehicle. The driver interface is very simple with only
one connector, which is used to attach it to the CAN
bus.

To control a vehicle from an external model (e.g. in
Simulink) input and output ports are needed. In such
a case input and output ports could be added to the

driver interface. The driver model would then take the
commands received from the external input and con-
vert them to appropriate CAN signal values. The re-
sulting action of the truck would be sent back through
the output port.

4.3.7 Electrical System

The electrical system is included to enable studies of
electrical energy flows. It could for instance be used to
study battery operating conditions or effects of using
electrically powered accessories instead of mechani-
cally powered ones. The electrical system package
is primarily intended for components without a simu-
lated direct mechanical connection to the vehicle. The
interface specifies a single special connector, see sec-
tion 4.4

4.3.8 Engine

Figure 10: Engine with cooling system.

The engine (figure 10) is one of the larger sub-
systems, particularly when cooling system behavior is
taken into account. The engine model contains sub-
models for both the power plant itself and any radi-
ators and other cooling system components found in
close proximity to it. The power plant model often
includes an exhaust brake. The engine connectors re-
quired differ depending on the aspects considered. The
base interface defines rotational mechanical connec-
tions to the auxiliaries and the transmission. The en-
gine is connected to the vehicle signaling bus and the
electrical system. An additional base class provides
coolant hoses which allow coolant to flow in a circuit
through other vehicle systems.

Development of a Modelica Heavy Vehicle Modeling Library

The Modelica Association 473 Modelica 2005, March 7-8, 2005



4.3.9 Trailer

The trailer is in many ways rather similar to the chas-
sis. They are both rigid bodies represented as point
masses with forces acting on them through transla-
tional connectors. The base model is a semi-trailer
which can be attached to the back of a tractor. Through
the use of a dolly, the semi-trailer gets a second axle
and can be used as an independent full-trailer, this
configuration is shown in figure 9. A trailer connects
to two axles, a towing vehicle and possibly another
trailer. A semi-trailer connects to one axle, a tractor or
dolly, and can be used to pull a trailer.

4.3.10 Transmission

Figure 11: Transmission model with coolant flow.

The transmission includes a gearbox, which can be
of any type. There is also a gear management system
which has to be compatible with the gearbox used. A
retarder, a type of hydraulic brake which acts on the
drive shaft, is often included as well. The retarder gen-
erates a lot of heat, and a complete cooling system rep-
resentation needs a connection to it. A transmission
model with coolant flow is shown in figure 11. The
Transmission has rotational mechanical connections to
the engine and any driven axles. It is also connected
to the vehicle signaling bus. An optional base class
provides coolant hoses.

4.4 Special Connectors

Whenever it has been possible standard library con-
nectors have been used in the models. In some places

however we have seen the need to use special connec-
tors which can carry all the information of a certain
type between two components with only one connect
statement. This has been the case for the signal bus
and the electrical connectors. The electrical connec-
tor contains two electrical pins. All components con-
nected to the electrical bus are connected in parallel,
and adapters are used between the standard electrical
pin connectors and our electrical connector. In the fu-
ture it is envisioned that the electrical system model
may contain multiple circuits and voltage levels in the
electrical connector, making the advantages of using it
higher. The single voltage electrical bus connector is
shown in listing 5.

Listing 5: Electrical bus connector with single voltage
level.
connector ElectricalSingleVoltage

"Connector class for a single voltage
electrical system"

extends Interfaces.ElectricalBase;

Modelica.Electrical.Analog.Interfaces
.PositivePin p;

Modelica.Electrical.Analog.Interfaces
.negativePin n;

end ElectricalSingleVoltage;

The signal bus connector (also described in section
2.4) allows for relatively simple transfer of many (cur-
rently around 20) control signals between the various
electronic control units in the vehicle. There is a sec-
ond signal bus, using another identical connector ex-
cept for the color and protocol, used to connect the
brake system to the actuators on the axles. The media
library used for the cooling system contains general
hose connectors which can carry the simulated media.

5 Sample Vehicle Models

To validate the new architecture two slightly differ-
ent vehicle models were used in the new framework.
Both models share the same overall structure, but one
version contains a thermodynamic cooling system rep-
resentation (this model is seen in figure 1), while the
other has no cooling system model at all (figure 12).
The two models require different controllers and plant
models for the engine and transmission. These are the
systems which are affected by the inclusion of coolant
flow. All other controllers and plant models are iden-
tical in the two versions.

The two sample models illustrate the idea of this
vehicle model architecture very well. It isn’t possi-
ble to generate the two versions from the same ready-

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg

The Modelica Association 474 Modelica 2005, March 7-8, 2005



Figure 12: Heavy truck model without any cooling
system.

made template only through redeclare statements. On
the other hand, the same base classes and connectors
are used for all common interconnects. In this way
vastly differing projects can still use some of the same
components. We hope that this middle ground be-
tween a completely rigid architecture and a collection
of independently created models with some similari-
ties but many differences will prove useful.

In this particular case it would of course be rather
easy to create a common vehicle model, which through
replaceable subsystems could be used to generate ei-
ther model. However, we do not know enough today
about what will be required tomorrow to incorporate
all possible variations. Thus we have chosen to let the
modelers of the next project and the one after that de-
cide how to best handle their particular challenges.

The vehicle model with cooling system represen-
tation give rise to a non-linear equation system which
needs to be solved iteratively at every time step. This
makes simulation very slow, a performance hit of
about 100 times compared to the simpler model was
observed. The vehicle without a cooling system can be
simulated four hundred times faster than real time on
a standard laptop (PentiumTMM, 1.6 GHz, 1 Gb ram).
The performance difference alone is ample justifica-
tion to have two vehicle model variants.

6 Limitations

During our work we have faced many compatibility
issues which cannot be directly attributed to model de-

sign. Phenomena may in themselves lead to varoius
solver requirements (such as the cooling system case).
Existing PID controllers in external code often have
strict sample time needs. Each of these special con-
siderations needs to be explicitly stated in documen-
tation. Documenting every important aspect is a real
challenge.

Novice users of Modelica and Dymola often have
trouble deciphering the error messages that are output.
A nearby expert who can guide through the minefield
of rookie mistakes is an invaluable asset for anyone
new to the field. Similarly it is anticipated that our
library will require some previous knowledge of the
tools, despite our intentions to make it simple to use.

7 Conclusion

Our proposed library imposes less rigid structural con-
trol than most other vehicle architectures. Generally it
does not include connector which are not used. An ef-
fort has been made at creating something which works
well in the local situation. The system is not primarily
intended for exchange of models with external devel-
opers. Attention has also been given to a number of
practical issues related to working (updating, installing
etc.) with the system.

There are many similarities between this work and
the vehicle model architecture (VMA) project [6].
With some modifications many of our components
could be used in VMA utilising appropriate wrappers.
One key difference is the localisation of control units.
We have chosen to place them inside the subsystems
they control, while the VMA places them at the top
level. The future development of the VMA project will
be observed with great interest.

8 Future Work

We foresee a continued study of the actual use of the
new models to find areas where the architecture can be
improved. Inclusion of a wider range of component
models is also a likely continuation. More documen-
tation and tutorials to aid users would be beneficial.

The work described was carried out with Dymola
5.1b, but the project has since been upgraded to ver-
sion 5.3b and Modelica Standard Library 2.1. Cer-
tain components have also found use in real-time
hardware-in-the loop simulations using Simulink.

The recently proposed relaxations of the connector
equivalency requirements in Modelica opens up inter-

Development of a Modelica Heavy Vehicle Modeling Library

The Modelica Association 475 Modelica 2005, March 7-8, 2005



esting options for improved handling of the CAN com-
munication.

9 Acknowledgements

The described model and library architecture has been
developed based on experiences from the usage of a
previous Modelica complete vehicle modeling effort
aimed at fuel consumption estimation. This effort is
described in a licentiate Thesis by Tony Sandberg [4].
Experiences from the work on modeling auxiliary sys-
tems by Niklas Pettersson have also been valuable [3].
Many of the subsystem models in the reference vehi-
cle model have been converted from versions used in
those projects. The work on the new library and model
has been carried out as a M.Sc. thesis project by Per
Bengtsson under the supervision of Niklas Pettersson
[1].

References

[1] Bengtsson P. Structuring of Models Intended for
Complete Vehicle Simulation. Uppsala, Sweden:
Master’s thesis, Division of Systems and Con-
trol, Dept. of Information Technology, Uppsala
University, Dec 2004.

[2] Laine L. and Andreasson J. Modelling of generic
hybrid vehicles.Proceedings of the 3rd Interna-
tional Modelica Conference, pages 87–93. The
Modelica Association, 2003.

[3] Pettersson N. Modelling and Control of Auxil-
iary Loads in Heavy Vehicles. Stockholm, Swe-
den: Licentiate thesis, Dept. of Signals, Sen-
sors and Systems Royal Institute of Technology,
2004.

[4] Sandberg T. Heavy Truck Modeling for Fuel
Consumption: Simulations and Measurements.
Linköping, Sweden: Licentiate thesis, Dept.
of Electrical Engineering, Link̈oping University,
2001.

[5] Tiller M., Bowles P., and Dempsey M. Develop-
ment of a vehicle model architecture in Model-
ica.Proceedings of the 3rd International Model-
ica Conference, pages 75–85. The Modelica As-
sociation, 2003.

[6] Vehicle Model Architecture, de-
veloped at Ford Motor Company,

http://www.modelica.org/projects/vma. 2005-
01-31.

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg

The Modelica Association 476 Modelica 2005, March 7-8, 2005




