
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

C. Clauß , U. Donath, A. Schneider, E. Weber
Fraunhofer Institute for Integrated Circuits, University of Applied Sciences Mittweida,
Germany
Standard Package Modelica.Electrical. Digital
pp. 539-547

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Standard Package Modelica.Electrical.Digital

Christoph Clauß1), Ulrich Donath1), André Schneider1), Enrico Weber2)

1) Fraunhofer Institute for Integrated Circuits, Branch Lab Design Automation
Zeunerstraße 38, D-01069 Dresden, Germany

2) University of Applied Sciences, Technikumplatz 17, D-09648 Mittweida
{clauss, donath, schneider}@eas.iis.fraunhofer.de

Abstract
According to the IEEE 1164 standard the Model-
ica.Electrical.Digital library was developed which uses
nine-valued logical signals. The first stage of extension
contains basic gate devices, sources, delay devices, and
convertes. The main principles of implementation are
demonstrated as well as some examples which show
some possibilities of usage. Using converters, the elec-
trical digital components are capable of interacting
with the components of other Modelica libraries.

1 Introduction

The Modelica language [1], [2] already allows the for-
mulation of logic behaviour using both the predefined
Boolean variable type (true, false) and Boolean opera-
tors (or, and, not). For many applications these
possibilities are sufficient. However, the description of
complex digital electronic behaviour requires a very
extension of the simple Boolean logic. The reason is
that some of the properties of electronic circuits have
to be transmitted to the logic approach, e.g. the exist-
ence of an unknown signal state, of different signal
strengths etc..

Considering the VHDL language, the IEEE 1164
standard [3], [4], [5], [6], [7] is generally accepted and
widely used for the description of digital electronic de-
vices. It is based on nine-valued logical signals and
defines the behaviour of simple and more general dig-
ital devices including time-dependencies. Due to the
importance of this standard the digital electronic li-
brary should be developed in accordance with it.

In this paper an overview is given on the devices avail-
iable. Details of the implementation are presented as
well as some questions of the usage in combination
with other libraries. Many examples give an impression
of the actual state of the library.

2 Overview

The nine digital signal values are 'U' (uninitialized), 'X'
(forcing unknown), '0' (forcing 0), '1' (forcing 1), 'Z'
(high impedance), 'W' (weak unknown), 'L' (weak 0),
'H' (weak 1), '-' (don’t care).

The library is devided into:
• delay models (transport, inertial, sensitive inertial)
• basic gates without delay (Not, And, Nand,

Or, Nor, Xor, Xnor)
• basic gates including intertial delay (InvGate,

AndGate, NandGate, OrGate, NorGate, XorGate,
Xnorgate, BufGate)

• sources (Set, Step, Table, Pulse, Clock)
• converters (for connections with Boolean, and with

Real, and for the restriction of the digital logic val-
ues to ’X01’ or to ’X01Z’ or to ’UX01’)

• auxiliary subpackages of interface definitions and
tables

• examples

The model definition can be seen in the library. Some
of the models are explained in detail within the next
paragraph. The icons of some models can be seen in
Fig. 1. Most of the icons correspond to the European
standard [8].

The digital library will be developed in at least two
steps. The first step contains the devices mentioned
above. Components like flip-flops, transfer gates,
memories (RAM, ROM), and multiplexers are still
missing. The behavioural models of these components
will be added within the second step of library develop-
ment. At the present stage such devices must be
composed using the available gates. Examples of such
compositions can be found in the example subpackage.

3 Details of Implementation
The basic idea was to offer a library of digital logic de-
vices which can be placed and connected by the user to
model a digital logic scheme. Otherwise, Modelica also
allows to create models in a netlist like way by instan-

Standard Package Modelica.Electrical.Digital

The Modelica Association 539 Modelica 2005, March 7-8, 2005

tiating and connecting devices on a text level. In both
cases, a network of digital devices can be described on
its connections where digital logic signals are transmit-
ted. In this paragraph the behavioural modelling of
some devices is shown exemplarily.

Since the number of logic values is limited signals do
not change continuously but at discrete event times.
Furthermore, nothing has to be differentiated. To calcu-
late the output of digital devices an intensive usage of
the algorithm section is necessary in the models. The
simulator’s task is not to solve a DAE but a system of
algebraic equations at discrete event time, whose di-
mension is normally high and which contains lots of
conditional clauses.

3.1 Signals and Connectors

The nine logic values are coded using an integer logic
type:

 type Logic = Integer

 record LogicValue
 constant Integer min=1;

 constant Integer max=9;
 constant Logic 'U'=1 "Uninitialized";
 constant Logic 'X'=2 "Forcing Unknown";
 constant Logic '0'=3 "Forcing 0";
 constant Logic '1'=4 "Forcing 1";
 constant Logic 'Z'=5 "High Impedance";

 constant Logic 'W'=6 "Weak Unknown";
 constant Logic 'L'=7 "Weak 0";
 constant Logic 'H'=8 "Weak 1";
 constant Logic '-'=9 "Don't care";

 end LogicValue;

The sequence coded in this record corresponds to the
IEEE 1164 sequence. This way simplifies the adapta-
tion of logic value tables from the standard. Later on
this record definition could be replaced by an enumer-
ation type definition.

At the connections (ports) of the devices logic values
are transmitted. Therefore, connectors are defined
which only need a logic value signal. Since in most cas-
es the signal flow direction is well defined, input and
output connectors are specified:

 connector DigitalSignal=Logic
 "Digital port (both input/output

 possible)";
 connector DigitalInput=input DigitalSignal;
 connector DigitalOutput=

output DigitalSignal;

The signals at the connectors are scalar ones. If vectors
of signals are needed vectors of connectors have to be
defined. This idea is taken over from the Model-
ica.Blocks library. The usage of both scalar and vector
connectors can be seen at the following partial model
for multiple input - single output devices which is used
for modeling of Basics and Gates:

Figure 1: Components of the Modelica package Modelica.Electrical.Digital.

TransportDela...

Tra...Del...

InertialDelay1

Ine...Del...

InertialDelayS...

Ine...Del...se...

1

Not1

&

And1

&

Nand1

>=1

Or1

>=1

Nor1

=1

Xor1

=

Xnor1

InvGate1

1

AndGate1

&

NandGate1

&

OrGate1

>=1

NorGate1

>=1

XorGate1

=1

XnorGate1

=

SET

Set1 Step1 Table1 Pulse1

LogicToXO1_1 LogicToXO1Z1 LogicToUX01_1 BooleanToLo... LogicToBoole...RealToLogic1 LogicToReal1

C. Clauß, U. Donath, A. Schneider, T. Weber

The Modelica Association 540 Modelica 2005, March 7-8, 2005

 partial block MISO
 import D = Modelica.Electrical.Digital;

 parameter Integer n(final min=2) = 2
 "Number of inputs";
 D.Interfaces.DigitalInput x[n];

 D.Interfaces.DigitalOutput y;
 end MISO;

3.2 Basics

In the Basics subpackage the simple logic operations
Not, And, Nand, Or, Nor, Xor, and Xnor are modeled.

The Not model is a single-input-single-output model.
The logic input value, which is an integer between 1
and 9, specifies the row in the NotTable in which the
output value can be found that negates the input value.
The Modelica text of the Not device is:

 model Not
 import D = Modelica.Electrical.Digital;
 import L = D.Interfaces.LogicValue;
 extends D.Interfaces.SISO;
 protected
 D.Interfaces.Logic
 auxiliary(start=L.'0');
 equation
 auxiliary = D.Tables.NotTable[x];
 y = pre(auxiliary);
 end Not;

The NotTable is defined in the IEEE 1164 standard:

input: U X 0 1 Z W L H -
output: U X 1 0 X X 1 0 X

Regarding that the input code is used as index in the
NotTable array, this is described in Modelica:

 constant D.Interfaces.Logic
 NotTable[L.max]=

{L.'U',L.'X',L.'1',L.'0',L.'X',
 L.'X',L.'1',L.'0',L.'X'};

In the model the result is not put to the output directly
but the pre-operator is applied to an intermediate vari-
able. This is necessary to avoid algebraic loops which
can appear in some cases. Therefore, the pre-operator
is generally used.

As an example with multiple inputs the And model is
explained. The source code is without any annotations:

model And
 import D = Modelica.Electrical.Digital;
 import L = D.Interfaces.LogicValue;
 extends D.Interfaces.MISO;
protected
 D.Interfaces.Logic

auxiliary[n](each start=L.'U');
equation
 auxiliary[1] = x[1];

 for i in 1:n - 1 loop
 auxiliary[i + 1] =
 D.Tables.AndTable[auxiliary[i],x[i + 1]];
 end for;
 y = pre(auxiliary[n]);
end And;

The And model inherits the MISO partial model (c.f.
3.1). Within a loop to the first two input signals the and
operation is applied. To the result and the next input
signal the and operation is applied again, until all in-
puts are combined. Like in the Not model the pre-
operator is used . The and-operator is realised using the
AndTable. The code numbers of the input signals de-
fine the position (both row and line number) in the
matrix where the result can be found. Written in an ab-
breviated form the AndTable is:

input1 U X 0 1 Z W L H -

i U U U 0 U U U 0 U U
n X U X 0 X X X 0 X X
p 0 0 0 0 0 0 0 0 0 0
u 1 U X 0 1 X X 0 1 X
t Z U X 0 X X X 0 X X
2 W U X 0 X X X 0 X X

L 0 0 0 0 0 0 0 0 0
H U X 0 1 X X 0 1 X
- U X 0 X X X 0 X X

In the models Nand, Nor, and Xnor the NotTable is ap-
plied to the result of the And-, Or-, and Xor-tables
respectively.

3.3 Delays

In the library there are three delay models. The trans-
port delay model is an application of the Modelica
delay operator. The input signal is delayed by delay-
Time exactly as it is. The output of the model can be
specified for the time interval between zero and delay-
Time. The algorithm section of the TransportDelay
model is:

algorithm
 x_delayed := integer(delay(x, delayTime));
 y := if delayTime > 0 then
 if time >= delayTime then x_delayed
 else y0
 else x;

Another type of delay models is the inertial delay. In
the InertialDelay model the input value must keep con-
stant for the delayTime interval before it is passed on
the output. The Modelica code of the inertial delay is:

block InertialDelay
 import D = Modelica.Electrical.Digital;
 import I = D.Interfaces;
 import L = D.Interfaces.LogicValue;
 extends DI.SISO;

Standard Package Modelica.Electrical.Digital

The Modelica Association 541 Modelica 2005, March 7-8, 2005

 parameter Modelica.SIunits.Time
delayTime=0 ;

 parameter DI.Logic y0=L.'U';
protected
 DI.Logic y_auxiliary(start=y0, fixed=true);
 DI.Logic x_old(start=y0, fixed=true);
 discrete Modelica.SIunits.Time
 t_next(start=delayTime, fixed=true);
algorithm
 when delayTime > 0 and change(x) then
 x_old := x;
 t_next := time + delayTime;
 elsewhen time >= t_next then
 y_auxiliary := x;
 end when;
 y := if delayTime > 0 then y_auxiliary

 else x;
end InertialDelay;

If the input signal x changes its value, the variable
t_next is set to that time at which the output should
change, that means at time + delayTime. If the time
reaches t_next without another input change then the
input change becomes active at the output. Otherwise if
x changes before t_next, t_next is increased due to the
new input change. In Fig. 2 an example of an inertial
delay with delayTime=1s is shown. Input changes
smaller than 1s are neglected.

A generalization of the inertial delay is the sensitive in-
tertial delay InertialDelaySensitive. For rising and
falling edges different delay times can be specified.
With a delay table it is decided whether a signal chang-
ing is regarded as rising (1) or falling (-1) or indifferent
(0). Indifferent changes are not delayed. The delay ta-
ble used in this library is:

after U X 0 1 Z W L H -

b U 0 0 -1 1 0 0 -1 1 0
e X 0 0 -1 1 0 0 -1 1 0
f 0 1 1 0 1 1 1 0 1 1
o 1 -1 -1 -1 0 -1 -1 -1 0 -1

r Z 0 0 -1 1 0 0 -1 1 0
e W 0 0 -1 1 0 0 -1 1 0

L 1 1 0 1 1 1 0 1 1
H -1 -1 -1 0 -1 -1 -1 0 -1
- 0 0 -1 1 0 0 -1 1 0

3.4 Gates

In the Gates subpackage there are collected the Inv-
Gate, AndGate, NandGate, OrGate, NorGate, XorGate,
XnorGate, and the BufGate. Each of the gates is graph-
ically composed by a basic logic model whose output
is delayed by a sensitive inertial delay. The InvGate
consists of a Not model with delayed output. As a spe-
cial case the BufGate consists only of a sensitive
inertial delay. For the sake of completeness the Buf-
Gate should belong to that subpackage. In Fig. 3 the
composition of Gates is demonstrated considering the
AndGate as an example. The strange connecor at the
left hand site is an interim solution of painting vectors
of connectors.

3.5 Sources

The sources Set, Step, Table, Pulse, and Clock are not
borrowed from the standard but written as nice-to-have
sources. The Set source simply sets a logic value. Step
steps one-time from one value to a second value at a
given time. The Table source follows a user specified
value-time-table. The essential part of the Modelica
code of the Table model is (after checking the accept-
ance of parameters):

algorithm
 y := y0;
 for i in 1:n loop
 if time >= t[i] then
 y := x[i];
 end if;
 end for;
end Table;

Figure 2: Inertial delay example

Figure 3: AndGate

&

G1 G2

Inertial
Delay

sensitive

C. Clauß, U. Donath, A. Schneider, T. Weber

The Modelica Association 542 Modelica 2005, March 7-8, 2005

With the Pulse source arbitrary pulsing between two
values can be created. The Pulse parameters are shown
in Fig. 4.

The Clock source is a simplified Pulse source without
counting the number of periods which pulses between
’0’ and ’1’. The code for generating the pulsing behav-
iour of Clock is:

 Modelica.SIunits.Time t_i
 (final start=startTime)
 "Start time of current period";
 Modelica.SIunits.Time
 t_width=period*width/100;
algorithm
 when sample(startTime, period) then
 t_i := time;
 end when;
 y := if time < startTime or
 time >= t_i + t_width
 then L.'0' else L.'1';
end Clock;

3.6 Converters

The IEEE 1164 like converters LogicToUX01,
LogicToX01Z, and LogicToX01 map the nine-valued
digital logic to the limited sets of values {’U’, ’X’, ’0’,
’1’}, {’X’, ’0’, ’1’, ’Z’}, or {’X’, ’0’, ’1’} respectively.
The mapping is done with conversion tables. E.g. the
conversion table for LogicToX01 is:

input: U X 0 1 Z W L H -
output: X X 0 1 X X 0 1 X

The following converters are not from the IEEE 1164
standard.

The BooleanToLogic converter maps the Boolean input
to Logic according to the following table (t - true, f -
false):

input: t f
output: 1 0

The LogicToBoolean converter maps the Logic input
to the Boolean output according to the following table
(t - true, f - false):

input: U X 0 1 Z W L H -
output: f f f t f f f t f

Further conversions are possible between Real and
Logic values. In the LogicToReal converter the Real
output jumps to a real number wich can be defined by
the user for each of the nine logic values. The default
values are:

input: U X 0 1 Z W L H -
output: .5 .5 0 1 .5 .5 0 1 .5

The RealToLogic converter has two limits: an upper
limit, and a lower limit. If the input x is x > upper limit,
an upper_value is chosen, If x < lower limit, a lower
value is chosen, otherwise the middle_value is chosen.
The limits and the values are parameters of the convert-
er. In Figure Fig. 5 a sine curve is converted to logic
using the default parameters (lower_limit=0,
upper_limit=1, lower_value=’0’, upper_value=’1’,
middle_value =’X’).

4 Usage

The components of the electrical digital library can be
combined to form more complex models. This is possi-
ble on the text level, or in a graphical way.
Since complex devices like flipflops, multiplexers,
memories, ... are still missing, such components have
to be composed using the set of basic gates. In the ex-
ample package some of these components are
available.
Furthermore, the user can modify the models by
changing the description, adding pins, introducing pa-
rameters, fixing parameters...
The signal strengh according to the IEEE 1164 strength
table is not modeled yet, since no resolution function is
implemented. This will be added in a later version of
that library.

Figure 4: Pulse Source Parameters

Figure 5: Default Real to Logic Conversion

Standard Package Modelica.Electrical.Digital

The Modelica Association 543 Modelica 2005, March 7-8, 2005

Sometimes it is possible that algebraic loops occur
which can be not solved by the simulator. In such cases
often the inclusion of additional delay components
helps.
The whole variety of the possibilities of the library us-
age is not presented. Some aspects of the library usage
are demonstrated in the examples.

5 Examples
The examples are part of a validation suite, some of
them are furthermore part of the library example sub-
package. They show some of the possibilities of the
library. Since the library is developed recently further
tests e.g. with ’large’ logic designs are necessary. Test
examples were developed using wellknown textbooks
[9], [10], [11]. All examples presented here were simu-
lated using the simulator Dymola5.3a [12].

5.1 Logic Equivalence

This simple example tests the logic equivalence
 by modeling both sides

 and of the logic
equation with basic components.

The following Modelica text shows the circuit descrip-
tion without graphical instructions. The instantiation of
library components can be seen as well as the usage of
parameters. Once instantiated the devices are connect-
ed in the equation part.

model LogicEquivalence
 import DD=Modelica.Electrical.Digital;
 DD.Basic.And And1, And2, And3;
 DD.Basic.Or Or1, Or2(n=3);
 DD.Basic.Not Not;
 DD.Sources.Table TabB

(x={3,3,4,4,3,3,3,3,3,4,4,4,4,3,3},
t={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14});

 DD.Sources.Table TabA
(x={3,3,4,4,4,4,4,3,3},
t={0,1,2,3,4,5,6,7,8},);

 DD.Sources.Table TabC
(x={3,3,4,3,3,4,3,3,3,3,4,3,3,3,4,3,3},
t={0,1,2,3,4,5,6,7,8,9,10,11,

12,13,14,15,16});
 DD.Interfaces.Logic X, Y;
equation
 connect(TabA.y, And1.x[2]);
 connect(TabA.y, Not.x);
 connect(TabB.y, And1.x[1]);
 connect(TabB.y, And3.x[2]);
 connect(TabC.y, And2.x[1]);
 connect(TabC.y, And3.x[1]);
 connect(And1.y, Or1.x[2]);
 connect(And1.y, Or2.x[3]);
 connect(And2.y, Or2.x[2]);

 connect(And2.y, Or1.x[1]);
 connect(AndB3.y, Or2.x[1]);
 connect(Not.y, And2.x[2]);
 X = Or2.y; Y = Or1.y;
end LogicEquivalence;

More instructive is the graphical representation like
Fig. 6 which is normally used to model digital circuits:

The simulation result are the outputs X and Y of both
Or components which are equivalent. Furthermore the
input values of TabA, TabB, and TabC are shown
which correspond to A, B, and C:

AB AC BC∨ ∨ AB AC∨=
X AB AC BC∨ ∨= Y AB AC∨= Figure 6: Logic Equivalence Circuit

A

B

C

X

Y
&

And1

&

And2

&

And3

>=1

Or1
>=1

Or2

1

Not

TabB

TabA

TabC

Figure 7: Simulation results of the
 equivalence circuit

C. Clauß, U. Donath, A. Schneider, T. Weber

The Modelica Association 544 Modelica 2005, March 7-8, 2005

5.2 Half-Adder

A half-adder can be found in the Examples.Utility
package. It is composed according to Fig. 8 using gates
with a delay of 0.5s.

Starting with ’Unknown’ at the signal inputs a and b,
and testing all combinations with ’0’ and ’1’ the behav-
iour is as expected, c.f. Fig. 9.

5.3 JK-Flip-Flop

A JK-Flip-Flop (with inputs j, k, and clock) is com-
posed according to Fig. 10. It uses a static RS-Flip-
Flop which is shown in Fig. 11. Both components are
in the Examples.Utitlies package of the Digital library.

The results in Fig. 12 show the behaviour of the JK-
Flip-Flop: If J is ’0’ (coded by 3), the output q follows
K, if both inputs are ’1’ (coded by 4), the output is
clocked, if J is ’1’ and K is ’0’ the output becomes ’0’.

Figure 8: Half-Adder
AND

&

G...

XOR

=1

G...

Figure 9: Half-Adder, Results

Figure 10: JK-Flip-Flop

RS

R

S Q

RS1

RS

R

S Q

RS2

&

And1

&

And2

&

And3

&

And4

1

Not1

Figure 11: RS-Flip-Flop

>=1

Nor1

>=1

Nor2

TD1

Tra...Del...

Standard Package Modelica.Electrical.Digital

The Modelica Association 545 Modelica 2005, March 7-8, 2005

5.4 Adder with Counter

Two half-adders described in 5.2 and an or gate can be
combined to a full-adder which is able to add two digits
including a carry bit from a preceding full-adder. In
Fig. 12 the schematic of the full-adder is shown.

The JK-Flip-Flop described in Fig. 10 can be com-
bined to a counter. Depending on the number of Flip-
Flops the number of digits can be chosen. Figure
Fig. 13 shows the schematic of a three-bit-counter.

Within the schematic of Fig. 14 the three-bit-counter
output is taken as input of a full-adder. The full-adder
sums up the three outputs of the counter. The result can
be found in Fig. 15.

Figure 12: Results of the JK-Flip-Flop

Figure 12: Full-Adder Schematic

a

b

s

c

Adder2

+a

b

s

c

Adder1

+

>=1

OR

Figure 13: Three-Bit-Counter

J Q

FF1

JK

K

J Q

FF2

JK

K

J Q

FF3

JK

K

Adder1

a

b

c... c_...

s+E...

Counter

Counter3

C...

SET

Enable

CLK

Figure 14: Counter with Adder

C. Clauß, U. Donath, A. Schneider, T. Weber

The Modelica Association 546 Modelica 2005, March 7-8, 2005

6 Summary

The digital electric library presented is part of the Mo-
delica standard library. In this paper the devices and
their principles of implementation are explained. Some
examples show the usage of this library.

Although tested during development a wide usage is
desirable to get extensive experiences. Especially large
designes are needed as well as mixed applications with
other physical domains.

Once the first version of the digital library is accepted
it will be extended by behavioural models of flip-flops,
latches, transfer gates, tristate devices, multiplexers,
and memories. A discussion on principles will be ex-
pected concerning the introduction of a resolution
function at general nodes.

This work was supported by the Sonderforschungsbe-
reich 358, Teilprojekt D4 of the Deutsche
Forschungsgemeinschaft. We are grateful to Dr. Peter
Schwarz, and Dr. Martin Otter for encouraging this
work, and to our students Teresa Schlegel, Liane Jaco-
bi, and Hagen Staemmler for implementing and testing.

7 References

[1] Elmqvist, H. et al.: Modelica - A Unified
Object-Oriented Language for Physical Sys-
tems Modeling. Version 2.1, January 2004.
http://www.Modelica.org

[2] Otter, M.; Elmqvist, H.; Mattsson, S.E.: Objek-
torientierte Modellierung physikalischer Sys-
teme, Teil 8. at Automatisierungstechnik
47(1999)9

[3] IEEE Standard Multivalue Logic System for
VHDL Model Interoperability.
http://www.ieee.org

[4] IEEE 1076-1993: IEEE Standard VHDL Lan-
guage Reference Manual (ANSI). 288 p. ISBN
1-55937-376-8. IEEE Ref. SH16840-NYF.

[5] IEEE 1164-1993: IEEE Standard Multivalue
Logic System for VHDL Model Interoperabil-
ity (Std_logic_1164). 24 p. ISBN 1-55937-299-
0. IEEE Ref. SH16097-NYF.

[6] Lipsett, R.; Schaefer, C.; Ussery, C.: VHDL:
Hardware Description and Design. Boston:
Kluwer, 1989, 299 p. ISBN 079239030X.

[7] Navabi, Z: VHDL: Analysis and Modeling of
Digital Systems. New York: McGraw-Hill,
1993, 375 p. ISBN 0070464723.

[8] Normen über graphische Symbole für die
Elektrotechnik, Schaltzeichen. DIN-Taschen-
buch 514, Beuth Berlin, Wien, Zürich, 1994

[9] Ashenden, P. J.: The Designer's Guide to
VHDL. San Francisco: Morgan Kaufmann,
1995, 688 p. ISBN 1-55860-270-4.

[10] Horowitz, P.; Hill, W.: The Art of Electronics.
Cambridge University Press, 1989,
ISBN 0-521-37095-7

[11] Tietze, U.; Schenk, C.: Halbleiter-Schaltungs-
technik. Springer-Verlag Berlin, Heidelberg,
New York, 1980, ISBN 3-540-09848-8

[12] Dymola: http://www.Dynasim.se

Figure 15: Results of the Counter with Adder

Standard Package Modelica.Electrical.Digital

The Modelica Association 547 Modelica 2005, March 7-8, 2005

