
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

J. Köhler, A. Banerjee
ZF Friedrichshafen AG, Germany
Usage of Modelica for transmission simulation in ZF
pp. 587-592

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Usage of Modelica for transmission simulation in ZF
Jochen Köhler Alexander Banerjee

ZF Friedrichshafen AG
Graf-von-Soden-Platz 1, D-88046 Friedrichshafen, Germany

Abstract

At ZF transmission models are an essential compo-
nent within the development process. To guarantee
an efficient use of modeling know how as well as a
persistent use of models in different simulation envi-
ronments, Dymola has been declared as a standard at
ZF and a central model component library ZFlib has
been developed accessible to all business units. This
paper gives an overview of some features of the li-
brary, such as easy parameterization of models inde-
pendent of the environment in use and the export of
complex models into environments with simple inte-
gration algorithms. Furthermore a short description
of the automatic testing of the library which guaran-
tees a software development process at a high level
of quality will be given.

Keywords: Model Export, Parameterization, Auto-
matic Testing

Figure 1: Exporting models to various environments

1 Introduction

For ZF as an automotive vendor for transmission
components and systems, modeling and simulation
has a long tradition. A long time ago the modeling of
transmission systems was mainly done by experts of
the business units which often used different tools
and different approaches. In the meanwhile there has
been an exponentially increasing demand for models
and model components which should be accessible
to and usable even by non-experts. Due to this fact
ZF started a centralization process with the intention
to standardize the modeling approach of transmission
systems and merge the modeling know-how of com-
ponents and systems in one library accessible to all
business units. A further requirement has been to
guarantee a persistent use of models in different
simulation environment (e.g. SIMULINK or dSpace),
which actually demands for models given as C-Code
(Figure 1). Beside this, the tool under consideration

Usage of Modelica for transmission simulation in ZF

The Modelica Association 587 Modelica 2005, March 7-8, 2005

should offer the user an interactive graphic interface
for modeling. Since Dymola offers such an interface,
allows the continuous extension of libraries by using
the Modelica language and enables the user to export
models as C-Code, ZF came to the decision to define
Dymola as a standard for transmission system mod-
eling.
This was the starting point for the development of a
Modelica library called ZFlib which is an exten-
sion of the commercial library Powertrain. This
library has a lot of models of ZF specific compo-
nents as well as some add-ons for the export to other
simulation tools.
The focus of this article is a short explanation of the
ZFlib and how models can be parameterized inde-
pendently from the environment in use (chapter 2),
how the export of complex models into environ-
ments which only allow the use of discrete integra-
tion algorithms (chapter 3) has been realized and
how an automatic testing of modules can be per-
formed whenever a modification within the library
has occurred (chapter 4).

2 Usage of ZFlib

2.1 ZFlib as code generator

The main issue in using the ZFlib is to set up mod-
els that can be used within different environments –
not only with Modelica Tools like Dymola or Math-
Modelica. Dymola is used to translate the models
developed with Modelica to C code.
The generated C code in form of the dsblock func-
tion can be integrated into the demanded environ-
ment. This is done already by Dynasim for Simulink
with a special interface-module called DymolaBlock.
Nevertheless we did some modifications of this
module to meet our special demands. Other inter-
faces for further environments (e.g. ASCET and
some ZF programs) were developed to wrap the dif-
ferent calls (e.g. initialization, update …) from these
environments to the appropriate functionality of the
dsblock function.
One big drawback with the generated code of a stan-
dard Modelica model is that we can’t parameterize
the model in one, easy way in different environ-
ments. Another aspect is, that we want to use a stan-
dardized way of parameterization in ZF for these
models. The basic idea was to separate models and
parameters from each other. The parameter values
should be stored in ASCII-files according to a stan-

dardized format. At initialization the files are read by
the model for parameterization. Therefore some ex-
tensions had to be done to read the files and param-
eterize the modules in an easy way.

2.2 Performing parameterization in different
environments

The format of these ASCII-files has a very primitive
syntax to define scalar or vectors as well as charac-
teristics with variable dimensionality. One parameter
is defined simply by a triple: Identifier, Unit and
Value (see Figure 2).

Figure 2 Example of an ASCII-file

A large database of parameter data exists already in
ZF that shall be used also for the Modelica models.
We implemented a Modelica package to read these
files and made the data available to other modules.
The functionality consists of two parts:
First, we implemented some basic Modelica func-
tions that serve as an interface to a set of C-
functions, which do the data-management.
Second, the C-functions handle the reading of the
needed files, collect all parameter data specified
there and make them available within Modelica. For
tables, also the interpolation is done in C-Code.
To use this functionality, users have to do the follow-
ing things:
1. Specify the files to be read:
By including the Load block, the user specifies all
the files to be read in a list. At initialization all pa-
rameters are scanned and stored in database.
2. Use scalar or vectorial parameters

J1 [kgm^2] 0.1
; scalar parameter
InU [-] 0 1 2
OutY [-] 0 1 2
; two vectorial parameters
Test_Table2D[
[-] U1 [-] 0 1 2
2 Y [-] -2 -1 0
1 Y [-] -1 0 1
0 Y [-] 0 1 2
Test_Table2D]
; Two-Dimensional-Table

J. Köhler, A. Banerjee

The Modelica Association 588 Modelica 2005, March 7-8, 2005

With the ZFlib-functions GP(String identi-
fier) and GV(String Identifier), the
model finds the data of interest through the defined
data identifier within the database. If the asked iden-
tifier is not found in the database, the simulation
aborts.

Figure 3 ASCII file package in the ZFlib

3. Use tables
For using tables we have implemented three different
Table blocks for one-, two and N-dimensional Ta-
bles. They also get access to the tables within the
database through some interface functions. With the
function (BoundsTableND(String Id)) the
boundaries of the table input vectors can be queried.
In addition to the interpolation, the gradient (one di-
mensional) or normal vector (n-dimensional) can be
calculated on demand. This is very useful for some
forward control algorithms.
Another useful feature is the possibility to convert
the ASCII data to SI units. This is needed because
very often data are saved in units like [rpm] or [mm]
and Modelica handles only SI units.
The implementation of these features was done in
C++. The sources or binaries can be included in
various environments and therefore, this kind of pa-
rameterization can be used everywhere, where code
can be included.
Using this functionality allows the user of the model
to change the parameters easily by editing the used
ASCII files. The changed parameters will be used at
the next simulation run without a new translation of
the model.

Load Block

I_Engine

J=ZBF.Functions.GP("J1")

ZBF

TorqueTable

ZBFZBFZBF Table 2D

Y

dY/dU

Torque1

tau

Sp
ee

dS
en

so
r1 w

Figure 4 Example of a model using ASCII file package

2.3 Extending from the Powertrain library

The ZFlib was extended from the commercial li-
brary Powertrain. The maximum benefit can be
achieved by reusing the included elements as often
as possibly. Nevertheless, we want to use our own
tables within the models in the Powertrain li-
brary. Due to this, modifications have to be done for
a few models within the Powertrain: The Mode-
lica keyword replaceable in front of all declara-
tions of tables had to insert.
Another modification concerns the usage of the bus.
The concept of the Powertrain bus has a lot of
advantages: The implementation of complex models
is easily done and quite transparent. It’s very easy to
change big parts of a complex model without inten-
sive modifications. We decided to extend our own
bus called ZFBus from the Bus in the Power-
train. To be able to use the control units in the
Powertrain together with this extended bus it was
also necessary to add the replaceable keyword
to all bus declarations with control unit implementa-
tions. It would be more convenient, if it would be
possible in Modelica to link connectors that extend
from one root. Another approach to make combina-
tional usage of different libraries easier could be a
hierarchical structure of one global bus.
With this second modification we can use all models
in the Powertrain and our library seamlessly.
Certainly it would be a great help to add these modi-
fications to the original Powertrain without any
disadvantage for other users.

Usage of Modelica for transmission simulation in ZF

The Modelica Association 589 Modelica 2005, March 7-8, 2005

3 Using Modelica models with dis-
crete algorithms in Simulink

Simulink is used more and more to develop control
algorithms for transmissions in ZF. The simulation
of systems with a digital controller requires the use
of a discrete, fixed step integrator. On the other hand,
there is a very strong demand to use complex and
often numerically stiff models of transmissions to
test these controls in simulation. Hence the use of
numerical integrators with varying step size is neces-
sary.
These transmission models are modeled in Dymola
using the ZFlib. Because of the arguments men-
tioned above, the original DymolaBlock for Simulink
can’t be used unmodified in conjunction with the
fixed step integrator from Simulink.

3.1 Making the Dymolablock “discrete”

So, we decided to embed a continuous variable step
integrator within the S-function of the DymolaBlock.
We used the same DASKRT integrator as in Dymola
[1]. To make the modified DymolaBlock look like a
discrete Block, the S-function just returns that no
continuous states are needed. Then it’s easily possi-
ble to combine this model with discrete controllers in
Simulink.
The DASKRT is used exclusively for the exported
Modelica model inside the S-function. Every time
the outputs are demanded from Simulink, the S-
function calls the internal integrator to integrate up to
the new time. During this interval several events may
happen, that have to be handled. Additionally we
have to make sure, that the DASKRT stops correctly
at the given time point. Otherwise it may happens,
that the integrator takes a step size larger than the
sample interval of the Simulink model. This would
lead to outputs which refer to a later point in time
with respect to the actual integration time.

3.2 Controlling the behavior of the Dymo-
laBlock

A simple model was implemented in Modelica as a
parent to be able to control the behavior of the modi-
fied DymolaBlock. The declared parameters can be
read by the DymolaBlock. The user can enable or
disable the internal integration by setting the parame-
ter InternalIntegration to 1 or 0. So it’s possible to
use the model also in continuous environments or
with the simple fixed step integrators of Simulink.

The FixedStepSize specifies the sample time of the

block. Furthermore you can specify the tolerances of
the integration algorithm. MinProgress is an abstract
criterion to abort the simulation if the simulation
progress is too low.

Figure 5 The user can change the DymolaBlock behav-
iour easily by changing the mentioned parameters

With GenerateResult the user can enable the logging
to the dsres.mat file if needed. This is more conven-
ient than the check box in the original DymolaBlock
because you can change it without compiling.

The interface between Simulink and the Modelica
model consists of two connectors that contain all
input or output signals. It’s possible to use the same
or similar connectors for different models because
they contain the same signals as the “real software
connectors” in a vehicle. Another advantage is that
existing algorithms can be connected easily to these
models.

Figure 6 Example for a model that can be exported to
Simulink with one input connector (top) and one out-
put connector (bottom).

J. Köhler, A. Banerjee

The Modelica Association 590 Modelica 2005, March 7-8, 2005

As one can see in Figure 6, the interface between
Simulink and Modelica consists exclusively of di-
rected input or output signals. This is caused by the
analogy to a connector for a control unit but it’s also
a design decision to have no coupling on a “physical
layer”. Due to this fact, there is no problematic cou-
pling of two integrators as it can be with “normal co-
simulation”.

4 Automated Testing of ZFlib com-
ponents

One important aspect in implementing basic ele-
ments for a library which will be used heavily in
simulation, is to be sure, that everything works cor-
rectly. Based on experience, modifications on library
elements that worked well before can cause strange
errors in a complex model. To avoid this, we intro-
duced basic “single element tests”. For (almost)
every ZFlib element at least one test exists. Such a
test shall stimulate an element in a way that a spe-
cific behavior can be checked.
For more complex elements, it is necessary to set up
several tests with different parameters or with differ-
ent structures to cover all possible “areas”. After the
tests have been set up, the developer has to judge, if
the simulation result is correct. This result and the
corresponding parameters are saved as a reference
for later comparison. Of course, this work has to be
done very careful!
This approach leads to several benefits. The original
developer had to make sure that the new module
works as required. The second benefit is the possible
use of the tests as an example on how to use the
tested element. As mentioned, the third benefit is the
possibility to test this element after modifications
against the old references.
Also, if a developer finds a bug in an element later
on, he can set up new tests that check, if the bug still
exists. Testing with these new tests, the developer
can be sure, that the same error can’t pop up again
after another modification.
These tests are useful only, if they are run on regular
basis. They should be performed and automatically
compared with the reference results of all elements.
Therefore we implemented some Matlab scripts,
which scan the Modelica code for existing tests, run
them automatically and compare the results with the
reference files.

Figure 7 Test for a clutch with an opening/closing
spring.

4.1 Collecting tests

To add a test to the automatic procedure it must ful-
fill two conditions: It has to be inside a package
called Tests and it has to be extended from the basic
model ZFlib.Tools.TestModel. This model
defines some tolerance parameters and an OutPort
reference to the signals which are used for compari-
son.

// preparation

clear

openModel("../dymola/zflib/package.mo")

checkModel("ZFlib")

cd ../dymola

// newModel M_Limiter

translateModel(

"ZFlib.Blocks.NonLinear.Tests.M_Limiter")

// newResultTest

RunScript(

"../TestReferences/M_Limiter_Ref.mos")

simulate

$copy dsres.mat ..\temp\M_Limiter.mat

// endTest

// newModel M_RateLimiter

translateModel(

"ZFlib.Blocks.NonLinear.Tests.M_RateLimiter")

// newResultTest

RunScript(

"../TestReferences/M_RateLimiter_Ref.mos")

simulate

$copy dsres.mat ..\temp\M_RateLimiter.mat
// endTest

Figure 8 Modelica Script built by the test collector

Usage of Modelica for transmission simulation in ZF

The Modelica Association 591 Modelica 2005, March 7-8, 2005

For each of these models, the collecting function
searches for reference parameter files (exported from
dsin.txt). These were saved earlier with the result
reference files. For every parameter file that can be
found, the model is simulated and tested against the
corresponding reference result. The collecting of the
tests leads to a Modelica script file that can be run by
Dymola.

4.2 Performing tests

The test script is parsed by another Matlab script that
calls the Modelica instructions sequentially and tests
the results. Every line in this script is a test! First of
all the whole package is syntactically checked. After
this, each test model is translated. If this was suc-
cessful, the simulation runs can be performed.

Figure 9 Result script with failed commands and error
description
The testing environment can test against the result
file and against the log file (dslog.txt). In the result
file, only signals that end in the Outport called
Reference are tested (see Figure 7). Every command
that was performed successful is appended to a text
file. In the same way every command that causes any
error is stored in another file. Nevertheless, the
whole test script is executed. After the run has been

completed, the user can take a look at the test result
log files and decide on further actions.
The result log files can be run in the same way as the
first test script. The log file provides some explana-
tions of the errors, which supports the user in doing
the corrections.

5 Conclusions

The ZFlib library has been used successfully in
several projects working with various simulation
environments. The ASCII file parameterization is
well accepted. With the modified PowerTrain
library we can use a lot of components and save time
for implementing ZF-own models.
The enhanced “discrete” Dymola-Block works fine
and quite fast (also in combination with ZBF param-
eterization).

// preparation

// newModel M_StarterPrimitive

translateModel(

"ZFlib.Engines.Tests.M_StarterPrimitive")

// .. Caused an Error

// endTest

// newModel M_EngineTableWithBrake

translateModel(

"ZFlib.Engines.Tests.M_EngineTableWithBrake")

// newResultTest

RunScript(

"../TestReferences/M_EngineTableWithBrake_Ref
.mos")

// .. Caused an Error

// endTest

// newModel M_Clutch

translateModel(

"ZFlib.Mechanics.Rotational.Tests.M_Clutch")

// newResultTest

RunScript(

"..\TestReferences/M_Clutch_Ref.mos")

simulate

$copy dsres.mat ..\temp\M_Clutch.mat

// endTest

// COMPARE DIFF M_Clutch Correlation Coef-
ficient <0.99s.mat ..\temp\M_KK_3.mat
// endTest

The automated testing needs some extra effort. But
on the other side, errors can be found quicker and
other users get a better understanding of the tested
element.

6 References

[1] L. R. Petzold. A description of DASSL: A
differential-algebraic system solver. In R. S.
Stepleman, editor, Scientific Computing,
pages 65–68, Amsterdam, 1983, North-
Holland.

J. Köhler, A. Banerjee

The Modelica Association 592 Modelica 2005, March 7-8, 2005

