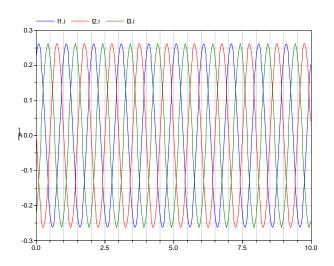
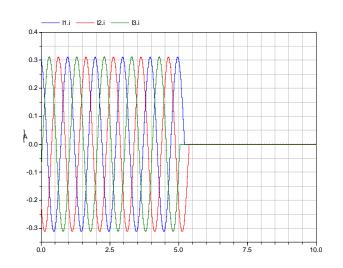


Teaching Modelica for Mathematicians and Engineers

Modelica Educational Workshop Berlin


Bernhard Bachmann University of Applied Sciences Bielefeld



Outline

Past Teaching Experience

- Mathematicians
 - precognition, course objectives
- Course Details
 - theoretical content, tools, exercises
- Discussion on Future Teaching Options
 - Mathematicians and Engineers
 - master students having less mathematical background
 - Tools and concepts
 - adaptation of previous course

2009-04-02 B. Bachmann, FH Bielefeld

- Course attendees (diploma-study in mathematics) [ca. 15]
 - good mathematical background
 - analysis and linear algebra topics
 - optimization (linear, nonlinear problems)
 - numerical methods (no ODEs)
 - theory on ordinary differential equations
 - familiar tools:Maple, Matlab (no Simulink)
 - basic programming knowledge (C/C++)
 - basic engineering background
 - simple mathematical modeling of physical components mechanics, electrical systems (static)

Course objectives

- engineering aspects
 - component and library development in Modelica
- mathematical aspects
 - understand symbolic transformations and numerical issues

Course details

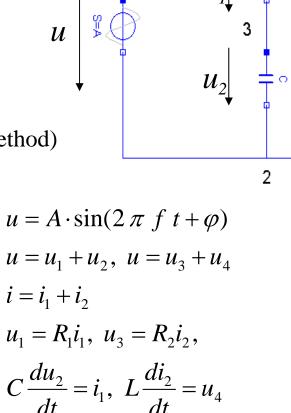
- 4 semester periods per week (13 weeks)
 - theory and practical exercises
- learning by doing (small projects)
- tools
 - Matlab-Simulink (1st project)
 - Dymola (Modelica projects)
- exam
 - practical

projects (development and explanation)

• theory

mathematical and modeling aspects

π,

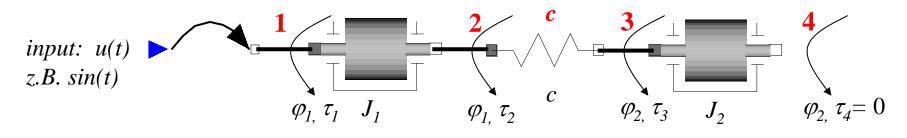

U

U

 \mathcal{U}_1

Past Teaching (1999 – 2008)

- 1st course: Basic understanding of the principles using a simple electrical system
 - modeling
 - develop the DAE representation abstract mathematical view
 - understand numerical integration (Euler method)
 - sort the equation system (find causality)
 - simulation and implementation
 - using Matlab
 - using Simulink
 - using Dymola (flat representation)



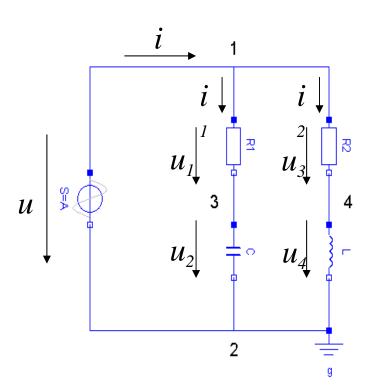
2009-04-02 B. Bachmann, FH Bielefeld

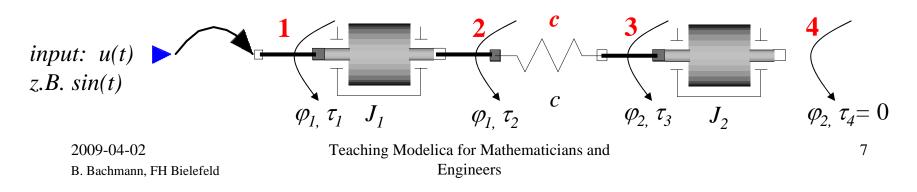
1st course project

- basic understanding of the principles using a simple mechanical system
- modeling
 - develop the DAE representation
 - understand numerical integration (Euler method)
 - sort the equation system (find causality)
- simulation and implementation
 - using Matlab
 - using Simulink
 - using Dymola

$$\tau_1 = u, \quad \omega_1 = \varphi_1$$

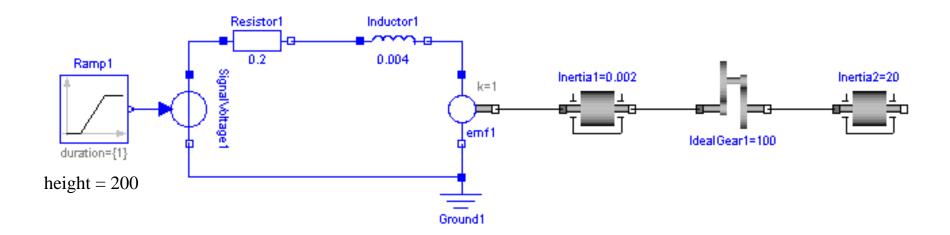
$$J_1 \cdot \dot{\omega}_1 = \tau_1 + \tau_2$$


$$\tau_2 = c \cdot (\varphi_2 - \varphi_1)$$


$$0 = \tau_2 + \tau_3, \quad \omega_2 = \dot{\varphi}_2$$

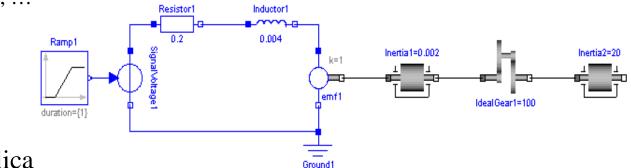
$$J_2 \cdot \dot{\omega}_2 = \tau_3$$

- 2nd course: Benefit of using Modelica Getting started with Dymola
 - examples from 1st course continued
 - modeling
 - drag and drop
 - library structure
 - find components
 - simulation
 - compile model
 - experiment setup
 - view and compare results



2nd course project

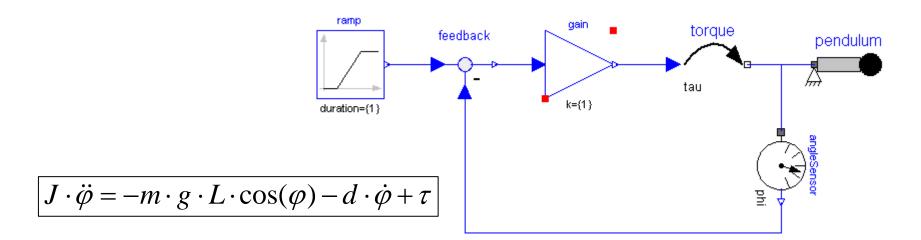
- build up and simulate different physical systems
 - examples from 1st course
 - drive train
 - triple pendulum
 - ...



- 3rd course: Getting started with Modelica
 - flat Modelica
 - basic keywords

model, parameter, equation, basic types, der, ...

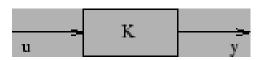
- type attributes
 - min, max, units, ...
- type classes library SIunits

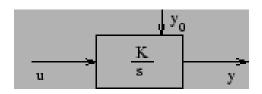

- hierarchical Modelica
 - model and connector classes
 - connect statement

basic principles of flow and potential variables

3rd course project

- implement and simulate a Pendulum model
 - flat representation using predifined types (SIunits)
 - hierarchical representation (using Multibody library) animation
 - build up a simple controller to adjust the angle

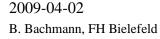

2009-04-02 B. Bachmann, FH Bielefeld

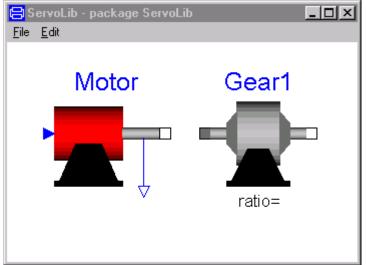


• 4th course:

Introduction to basic control techniques

- examples
 - with/without feedback
- Laplace-transformation
- different mathematical formulations
 - functional description
 - block diagram
 - Step function response
- standard controller
 - P-, D-, I-, PD-, PI-, PID-controller
- 4th course project
 - example from 3rd course continued
 - try different controller and compare results





- 5th course: Build Libraries in Modelica
 - package concept
 - example using simple electrical component
 - modifier concept
 - build libraries in Dymola
 - icon layer, diagram layer
 - coordinate system
 - connector view
 - parameter settings
- 5th course project
 - build up a library
 - motor (including control scheme)
 - gear box (including friction elements)
 - adjust control parameter for suitable test cases

- 🗆 🛛

Past Teaching (1999 – 2008)

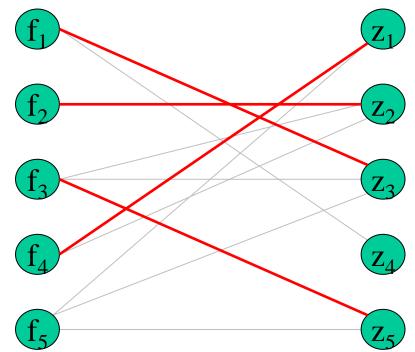
- 6th course: Build Libraries in Modelica
 - general connection concept
 - energy flow, domain specific potential and flow variables
 - discuss practical issues (rotational)
 - multidisciplinary modeling
 - parameter propagation
 - modifications
 - GUI in Dymola

Motor Gear1

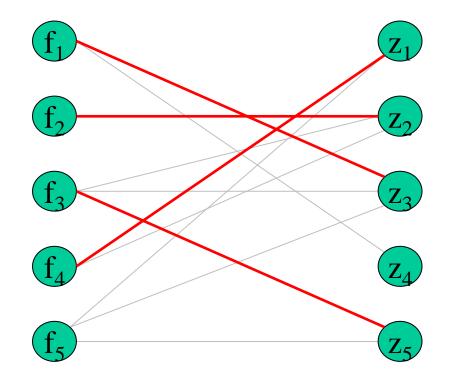
😑 ServoLib - package ServoLib

File Edit

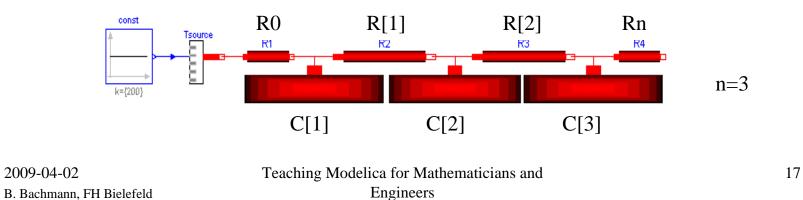
- 6th course project
 - continue 5th course project

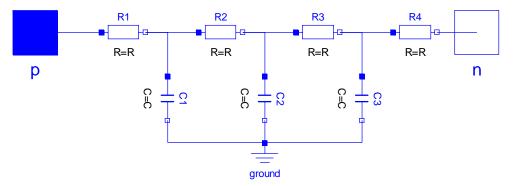

- 7th course: Advanced Modelica
 - class types
 - type, model, block, function, package, connector
 - algorithm versus equations
 - additional keywords
 - input, output, protected
 - matrices
 - definition, element access, operations, inline functions
 - example of general transfer function
- 7th course project
 - still continue 5th course project

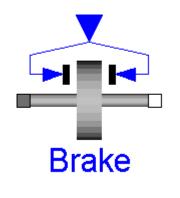
$$\dot{\mathbf{x}} = \begin{bmatrix} -\frac{a_2}{a_1} & -\frac{a_3}{a_1} & -\frac{a_4}{a_1} & -\frac{a_5}{a_1} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \mathbf{x} + \begin{bmatrix} \frac{1}{a_1} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \cdot u$$
$$y = \begin{bmatrix} b_2 - a_2 \frac{b_1}{a_1} & b_3 - a_3 \frac{b_1}{a_1} & b_4 - a_4 \frac{b_1}{a_1} & b_5 - a_5 \frac{b_1}{a_1} \end{bmatrix} \cdot \mathbf{x} + \frac{b_1}{a_1} \cdot u$$

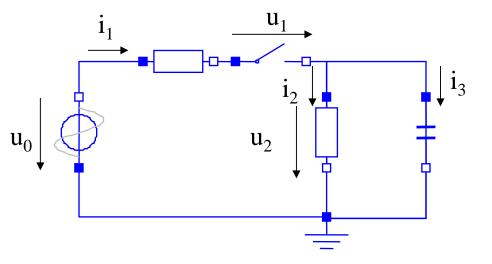

8th course: Symbolic transformation algorithm

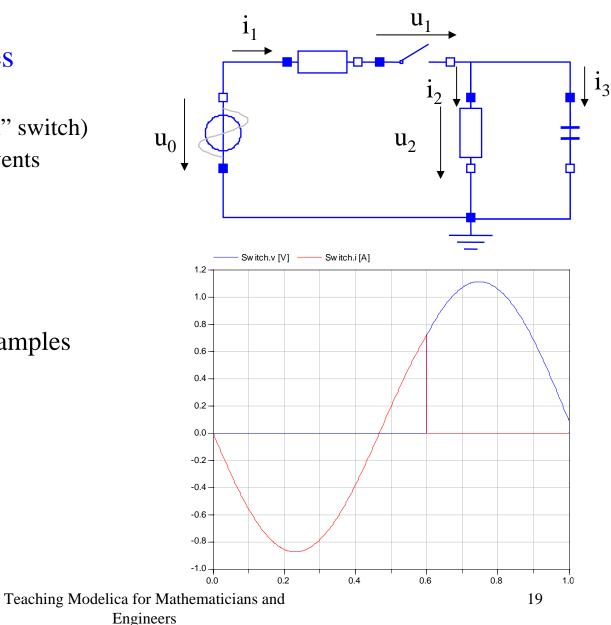
- mathematical DAE representation
- regular (index 1) problems
- matching algorithm
- sorting (Tarjan algorithm)
- BLT representation of adjacence matrix
- 8th course project
 - implement the BLT algorithm for random matrices




- 9th course: Higher Index problems
 - examples (mechanical, electrical)
 - mathematical DAE representation
 - definition of the structural and differential index
 - detect singular set of equations
 - Pantelides algorithm
 - dummy derivative method
 - state selection mechanism
 - initialization of models
- 9th course project
 - continue 8th course project


- 10th course: Advanced Modelica
 - arrays of component
 - for-loop, variable number of connect statements
 - example
 - transmission line model
 - introduce basic heat flow library
- 10th course project
 - simulate the temperature distribution of an isolated bar

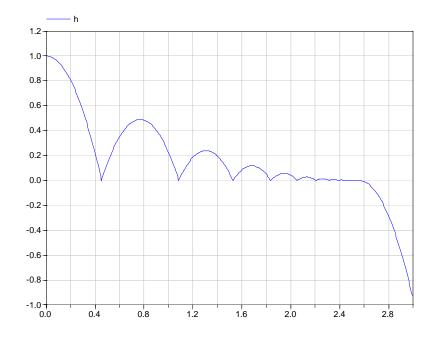



- 11th course: Model discontinuities
 - Modelica Standard library
 - digital controller
 - electrical switch or diode (not ideal)
 - clutch and brake model
 - Modelica language elements
 - if-then-else, when, noEvent, smooth, reinit, pre, ...
 - symbolic transformation
 - synchronous equation
- 11th course project
 - implement examples
 - hysteresis function
 - pulse width modulation block

- 12th course: Model Discontinuities
 - numerical issues
 - stiffness ("not ideal" switch)
 - time versus state events
 - rounding errors
 - event iterations
- 12th course project
 - implement further examples
 - bouncing ball
 - ...

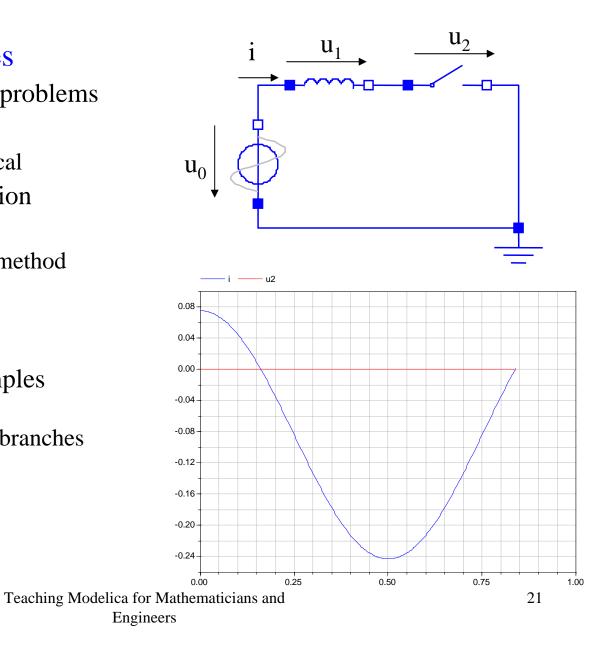
2009-04-02

B. Bachmann, FH Bielefeld

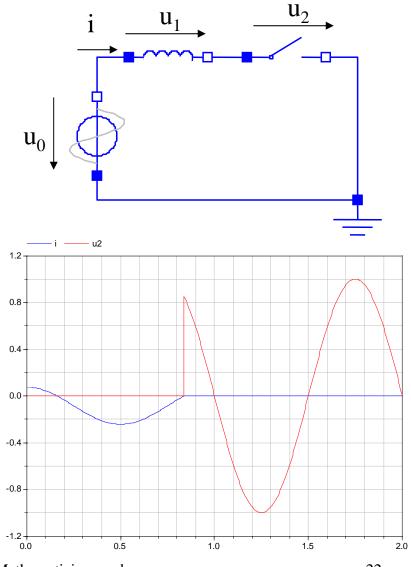


- 12th course: Model Discontinuities
 - numerical issues
 - stiffness ("not ideal" switch)
 - time versus state events
 - rounding errors
 - event iterations

g↓ ● h



- implement further examples
 - bouncing ball
 - ...


- 13th course: Model Discontinuities
 - varying higher index problems
 - examples
 - mechanical, electrical
 - symbolic transformation
 - analyse singularity
 - dummy derivative method
- 13th course project
 - run and analyse examples
 - introduce dummy derivative terms in branches

2009-04-02

- 13th course: Model Discontinuities
 - varying higher index problems
 - examples
 - mechanical, electrical
 - symbolic transformation
 - analyse singularity
 - dummy derivative method
- 13th course project
 - run and analyse examples
 - introduce dummy derivative terms in branches

Discussion on Future Teaching Options

Course attendees

- master-study in "Optimization and Simulation"
- mathematicians and engineers
 - mechanical, electrical, mechatronics,...
- heterogeneous background in mathematics and engineering
- Course objectives
 - engineering aspects
 - component and library development in Modelica
 - mathematical aspects
 - understand symbolic transformations and numerical issues
- Tools
 - licencing issues
 - **OpenModelica** (SimForge), Dymola, MapleSim, MathModelica
- Applications / Projects