Engine Modeling with Modelica

Dr. John J. Batteh

Ford Motor Company Transient Engine Simulation Group Powertrain Research Department

Modelica Automotive Workshop Engine Modeling Session November 19, 2002

Contributors

- Eric Curtis (Group Leader, ecurtis@ford.com)
- Michael Tiller (mtiller@ford.com)
 - Modelica technical lead
- Charles Newman (cnewman@ford.com)
 - Engine and combustion modeling
- John Batteh (jbatteh@ford.com)
 - Heat transfer/thermal flow, liquid fuel effects
- Chris Puchalsky (former group member)
 - Liquid fuel effects
- Allan Watson (awatso12@ford.com)
 - Hydraulics/thermal flow, lash adjuster
- Kartik Ramanathan (kramana2@ford.com)
 - Manifold dynamics

Engine Physics

Engine analysis requires multi-domain physical models!!

Ford Motor Company

Model Applications

Engine-level analyses

- Throttle response
- Liquid fuel effects (wall wetting)
- Spark control response
- Valve timing response
- Manifold dynamics
- Thermal warm-up characterization

Vehicle-level analyses

- Drive cycle analyses
 - Fuel economy
 - Emissions
- Vehicle control strategy development
- Energy management studies
- Powertrain analyses
 - Efficiency
 - NVH/shift quality

Wide array of applications necessitates flexibility!!

Ford Motor Company

Model Characteristics

Transient

- Flexible
 - Predictive vs. fixed combustion
 - Fidelity of component models
 - Accuracy-speed tradeoff?
 - Working fluid calculations (medium models)
 - Fuel and air composition
- Configurable
 - Single vs. multi-cylinder
- Reusable
 - Same interfaces and similar basic components across different analyses
- User-friendly

Ford Motor Company

Outline

- Introduction
- Interfaces
- Medium Model Concept
- Signal Bus Concept
- Sample Results
- Final Remarks

Ford Motor Company

Interfaces

Key to flexibility

- Clearly define system interactions
- Promote orthogonal model development
- Provide framework for model compatibility

Examples

- Cylinder interface
- Engine interface
- Thermal architecture

Ford Motor Company

Cylinder Interface

- Framework for all cylinder models
 - Partial model
- Defines external connections for cylinder

Ford Motor Company

Engine Interface

Framework for all engine models

- Partial model
- Defines external connections for engine
- Extending models define plenum configuration
 - Single plenum
 - Dual plenum

Crankshaft (1D rotational flange)

Ford Motor Company

Complete Engine

Plug-n-Play with a variety of engine configurations

 Replaceable cylinder model fits in all engine configurations

Ford Motor Company

Thermal Architecture

- Provides framework for interaction between cycle simulation and engine temperature models
 - Cycle simulation models
 - Responsible for metal-gas interactions
 - Transient engine temperature models
 Responsible for metal-fluid interactions
- Allows orthogonal selection of models
 - Cycle simulation
 - Engine temperature

Ford Motor Company

Cylinder Thermal Environment

- Connector of connectors"
- Thermal bus
- Comprised of connectors for standard components which interact with various models
 - Thermal connectors for various engine components (piston, block, head, etc.)
 - Thermal connectors for engine fluids (oil, coolant)
 - Friction connectors
- Used with "break-out box" in low level models

Engine Thermal Environment

Engine level connector

 Array of cylinder thermal environment connectors to allow for multiple cylinders

Features

- Parametric connector representation for engines with multiple cylinders
- Consolidates signals to minimize connections
 - Single, engine-level connection

Ford Motor Company

Using the Thermal Architecture

Single-Cylinder Analysis

Engine Temperature Model

Ford Motor Company

Challenges

- Difficult to connect to connectors within connectors
 - Direct connection not possible
 - Requires termination of all flow variables before connection (terminator model)
 - Signals requiring termination grows exponentially with number of cylinders

 Resolving varying level of details in cycle simulation and engine temp. models

Cycle Simulation

Engine Temp.

- Requires:
 - Averaging temperature
 - Dividing heat transfer rate

Ford Motor Company

Medium Models

- Define specific working fluid
- Consistent set of models, functions, constants, connectors
 - Material properties (enthalpy, energy, viscosity)
 - Equation of state
 - Chemical representation (# of species)
 - Chemical kinetics of combustion
 - Helper functions (air-fuel ratio, etc.)

Implemented via replaceable packages

Features

- Orthogonal development of property models and the component models which use them
- Consistent framework for development of medium models with varying levels of detail
- Consistent application of changes throughout model hierarchy
- Organized
 - Information entirely contained within medium model package
- Change working fluid at "flip of switch" at highest level

model EngineTest

Engine engine(redeclare package MediumModel=Air)
end EngineTest;

Ford Motor Company

Challenges

More fool-proof specification of working fluid

- Currently requires redeclaration of medium model in each component
- Single redeclaration that automatically propagates via connections should be possible

Generic implementation?

- Applicable in all areas of modeling
 - Working fluids in hydraulics models
 - Fuel composition in wall wetting models
 - Material properties in heat transfer models

Ford Motor Company

Engine Interface...Revisited

- How do we propagate control signals for modular hierarchies with replaceable components?
 - Redeclaring component model may change information required
 - Generic cylinder
 - Cylinder with variable cam timing
 - Impossible to anticipate all types of signals that might be required by a specific implementation
 - Not practical to propagate signals via connectors

Ford Motor Company

Signal Bus

Signal bus idiom

- Facilitates propagation of control signals for replaceable component models
- Uses inner/outer semantics
 - Outer required to be subtype of inner
- Allows top-level definition for union of all control signals
- Allows selective definition/use of signals at low level

Wall Wetting Model

Model details

- Multiple control volumes
- Multi-component fuel
- Evaporation
- Fluid flow
- Puddle shattering (backflow)
- Transient engine cycle simulation
- Transient engine temperature model

Applications

- Throttle and speed transients
- Fuel composition studies
- Injector targeting studies

- 1. Port Film
- 2. Valve Film
- 3. Upstream Film
- 4. In-Cylinder Film

Ford Motor Company

Wall Wetting Results

Ford Motor Company,

Ford Motor Company

Final Remarks

- Interfaces provide framework for extensible, flexible engine models by independently choosing:
 - Combustion models
 - Transient engine temperature models
 - Medium models
 - Engine configurations
- Modelica language features highly suited to flexible modeling
 - Extends
 - Replaceable + Redeclare
 - Inner/outer semantics
 - Record semantics
 - Documentation and graphical annotations
- Looking ahead...
 - Challenges still exist
 - Zero mass with intensive properties
- Discussion and new ideas?

Ford Motor Company

