

PowerTrain Library 1.0

Christian Schweiger Institute of Robotics and Mechatronics Deutsches Zentrum für Luft- und Raumfahrt e. V. Oberpfaffenhofen, Germany

M O D E L I C A Modelica Automotive Workshop November 19, 2002 Ford Research Laboratory Dearborn, MI, USA

Outline

Library overview Components Applied concepts • Usage • Implementation Case study Online demonstration Conclusions and outlook

The DLR PowerTrain Library

Commercial library of DLR with primarily 1D rotational mechanical components. Suitable for

- Examination of gear shift dynamics
- Hardware-in-the-loop simulation of automatic gearboxes
- Concept studies of drive lines (e.g. fuel consumption reduction)

History

- **1996:** Project with BMW for HIL simulation of automatic gearboxes (using the Dymola language)
- 2000: Version 0.95 of PowerTrain library using the Modelica language (sold to BMW and other automotive companies)
- 2001: Start to considerably enhance the PowerTrain library
- 2002: Release of PowerTrain 1.0

Direct Contributors

- Ingrid Bausch-Gall, Bausch-Gall GmbH, Germany
- Mike Dempsey, Claytex Services Ltd, UK
- Martin Otter, DLR, Germany
- Clemens Schlegel, Schlegel Simulation GmbH, Germany
- Christian Schweiger, DLR, Germany

PowerTrain Library Features

45 user-callable components
Signal bus concept
Variant selection
Robust friction modeling

Torque dependent losses (e.g. mesh efficiency)

Animation of transmission components
10 introductory and sophisticated examples
Universal control units
Online tutorial

5

DLR Institute of Robotics and Mechatronics

Library Structure

Driver

driver

Library top-level view: generic drive train

Different configurations selectable for every component (e.g. 3 gearbox variants)

User can add own variants

Template for building own models

Used as a basis for sophisticated demo examples

	bu	s	
fullEngine	gearbox	axte	car
S Genece - Compo Name Comm - Model Path Comm	nor in Drivel ine Add Modifiers gestions period Main:AutomaticGear rit Genetic automatic gestions eters		1×1
control	ledw/heelset	-	Wheelset used in automatic gearbox

ce for wheelsets of automatic gearb ce for wheelsets of automatic gearb

DLR Institute of Robotics and Mechatronics

Sublibrary Main

DLR Institute of Robotics and Mechatronics

Sublibrary Gears

Content

- Gear components
- Standard gears
- Complete wheelsets

Color coding

- Red: losses due to mesh efficiency and bearing friction
- Brown: built-in animation

Other Sublibraries

DLR Institute of Robotics and Mechatronics

.ignition

12

Efficiency Modeling

Locking due to mesh friction

Usual approach

Flange 1 driving: $\tau_1 \eta_{mf1} < \tau_2$ Flange 2 driving: $\tau_2 \eta_{mf1} < \tau_1$

DLR Institute of Robotics and Mechatronics

Efficiency Modeling

Efficiency is free variable while Suck mode is active Our approach stuck mode is active Modelica friction implementation extended for torque dependent losses Allows robust efficiency modeling 1¹ > LossyGear > LossyPlanetary > LossyRavigneaux > ... LossyPlanetary

0=-2

Efficiency Modeling

Takes stuck / rolling behaviour into account Very much better than usual approach

gear.mode

1 forward rolling

- 0 stuck
- -1 backward rolling

DLR Institute of Robotics and Mechatronics

Efficiency Modeling

Animation

Built-in animation for gears, clutches, shafts

Easy parametrization

Possibility to turn off

- parameter Boolean animation=false;
- Animation equations removed from code (necessary for e.g. real-time simulation)

DLR Institute of Robotics and Mechatronics

Æ

Universal Control Units

Fully parametrizable, independent from gear type or speed number

- > Transmission: shift schedule, lock-up clutch control
- > Engine: governor, fuel map, over-run fuel cut-off control

PowerTrain.Examples

Purposes

- Introduction to library
- Hints for development of own models
- Starting point for own models

DLR Institute of Robotics and Mechatronics

19

Driver

Example: 6-speed automatic gearbox

Modelica Object Diagram

DLR Institute of Robotics and Mechatronics

45 New Components for the Modelica Standard Library

DLR Institute of Robotics and Mechatronics

Conclusions and Outlook

Powerful library for different power train modeling tasks

- Examination of gear shift dynamics
- Hardware-in-the-loop simulation
- Drive line studies

Well-designed structuring

Planned for future:

- 3D Coupling with vehicle dynamics library
- > Additional standard wheelsets, drivers, engines, ...
- Vendor gearboxes (user does not need to identify gearbox, since complete model data set will be provided)