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Preface

The first International Modelica Conference took place in October 2000 in Lund, Sweden. Since
then, Modelica has increasingly become the preferred language tool for physical modelling of complex
systems. This is indicated by the high number of registrations from industry and science at the 6th

International Modelica Conference held between 3rd and 4th March 2008 at the University of Applied
Sciences, Bielefeld, Germany. It is also indicated by the number of excellent papers submitted to the
program committee which made the task of selecting papers for oral and poster presentation very
difficult and, last but not least, by the exhibition during the conference at which several companies
will be represented. This volume contains the papers of the 68 oral presentations and 14 poster
presentations at the conference. The ability of Modelica as a multi domain simulation language is
demonstrated impressively by the various fields the papers are covering.

Due to the special features of the Modelica language, such as object-oriented modelling and the
ability to reuse and exchange models, Modelica strongly supports an integrated engineering design
process. Thus in various fields Modelica has become the standard tool for model exchange between
suppliers and OEM’s. A key issue for the success of Modelica is the continuous development of the
Modelica language as well as the Modelica Standard Library under strict observance of compatibility
to previous versions by the Modelica Association. The broad base of private and institutional mem-
bers of the Modelica Association as a non-profit organization ensures language stability and security
in software investments.

The 6th International Modelica conference was organized by the Modelica Association and by the
University of Applied Sciences, Bielefeld, Germany. I would like to thank the local organizing commit-
tee, the technical program committee and the reviewers for offering their time and expertise throughout
the organization of the conference. Together with the entire team of the local organizing committee I
would like to wish all participants an excellent and fruitful conference.

Bielefeld, March 1st, 2008

Bernhard Bachmann
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• Ralf Derdau

• Eveni, Konferenz-Management-Software, www.eveni.com

• Bielefeld Marketing GmbH, www.bielefeld-marketing.de

The Modelica Association III Modelica 2008, March 3rd − 4th, 2008



The Modelica Association IV Modelica 2008, March 3rd − 4th, 2008



Contents

Volume 1 1

Session 1a
Language, Tools and Algorithms 1
D. Broman, P. Aronsson, P. Fritzson: Design Considerations for Dimensional Inference

and Unit Consistency Checking in Modelica . . . . . . . . . . . . . . . . . . . . . . . . 3
S. E. Mattsson, H. Elmqvist: Unit Checking and Quantity Conservation . . . . . . . . . 13
H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist: Balanced Models in Modelica 3.0

for Increased Model Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Session 1b
Language, Tools and Algorithms 35
M. Najafi, R. Nikoukhah: Initialization of Modelica Models in Scicos . . . . . . . . . . . 37
D. Zimmer: Introducing Sol: A General Methodology for Equation-Based Modeling of

Variable-Structure Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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N. Philipson, J. Andreasson, M. Gäfvert, A. Woodruff: Heavy Vehicle Modeling

with VehicleDynamics Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

The Modelica Association VIII Modelica 2008, March 3rd − 4th, 2008



Contents

Session 6a
Language, Tools and Algorithms 635
K. Stav̊aker, A. Pop, P. Fritzson: Compiling and Using Pattern Matching in Modelica 637
M. Tiller : Patterns and Anti-Patterns in Modelica . . . . . . . . . . . . . . . . . . . . . . 647
P. Fritzson, A. Pop, K. Norling, M. Blom: Comment- and Indentation Preserving

Refactoring and Unparsing for Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Session 6b
Language, Tools and Algorithms 667
A. Elsheikh, S. Noack, W. Wiechert: Sensitivity Analysis of Modelica Applications via

Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
R. Nikoukhah, S. Furic : Synchronous and Asynchronous Events in Modelica: Proposal

for an Improved Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
F. Dshabarow, F. Cellier, D. Zimmer: Support for Dymola in the Modeling and Simu-

lation of Physical Systems with Distributed Parameters . . . . . . . . . . . . . . . . . 683

Session 6c
Thermodynamic Systems & Applications 691
H. Tummescheit, K. Tuszynski, P. Arnold: Simulation of Peak Stresses and Bowing

Phenomena during the Cool Down of a Cryogenic Transfer System . . . . . . . . . . . 693
A. Joos, G. Schmitz, W. Casas: Enhancement of a Modelica Model of a Desiccant Wheel701
M. Gäfvert, T. Skoglund, H. Tummescheit, J. Windahl, H. Wikander, P. Reuterswärd:
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Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica . . 3
Burghart, Roger: Hamburg University of Technology, Hamburg, Germany

Integrating Models and Simualtions of Continuous Dynamics into SysML . . . . . . . . . . . . . . . . . . . 135

Casas, Wilson: Hamburg University of Technology, Hamburg, Germany
Enhancement of a Modelica Model of a Desiccant Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Casas, Wilson: Hamburg-Harburg University of Technology, Hamburg, Germany
Modeling of Cold Plates for Power Electronic Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

Casella, Francesco: Politecnico di Milano, Milano, Italy
ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica. . . .157
High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters 505
HyAuLib: Modelling Hybrid Automata in Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Object Oriented Modeling of a Gasoline Direct Injection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Cellier, François: ETH Zürich, Zürich, Switzerland
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Püschel, Stephan: Freiberg University of Technology, Freiberg, Germany
Modelling of the Gasification Island with Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Paredis, Chris: Georgia Institute of Technology, Atlanta, U.S.A.
Integrating Models and Simualtions of Continuous Dynamics into SysML . . . . . . . . . . . . . . . . . . . 135

Pascoli, Gert: Arsenal Research, Vienna, Austria
Modeling and Simulation of a Large Chipper Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Pechine, Bruno: EDF R&D, Chatou, France
Two Steady State CHP Models with Modelica: Mirafiori overall Model and

Multi-configuration Biomass Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Pfennig, Malte: Hamburg University of Technology, Hamburg, Germany

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems . . . . . . . . . . . . 531
Philipson, Niklas: Modelon AB, Lund, Sweden

Heavy Vehicle Modeling with VehicleDynamics Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
Pirker, Franz: Arsenal Research, Vienna, Austria

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives
with Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593

Modeling and Simulation of a Large Chipper Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Real-Time Modelica Simulation on a Suse Linux Enterprise Real Time PC . . . . . . . . . . . . . . . . . . 375

Pop, Adrian: Linköping University, Linköping, Sweden
Comment- and Indentation Preserving Refactoring and Unparsing for Modelica . . . . . . . . . . . . . 657
Compiling and Using Pattern Matching in Modelica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .637
Exception Handling for Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Pulecchi, Tiziano: Politecnico di Milano, Milano, Italy
HyAuLib: Modelling Hybrid Automata in Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Qin, Gang: Huazhong University of Science and Technology, Wuhan, China
Modelling of Conventional Vehicle in Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Raulin, Loic: Airbus, Toulouse, France
A Multi Level Approach for Aircraft Electrical Systems Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Ravelli, Lorenzo: Politecnico di Milano, Milano, Italy
Modelica Library for Logic Control Systems written in the FBD Language . . . . . . . . . . . . . . . . . . 147
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Abstract 

In addition to time-domain simulation methods, en-
gineers from different application fields require fur-
ther types of analysis to be performed on their sys-
tems. In particular results from frequency domain 
analysis play an important role – this includes the 
calculation of natural frequencies and vibration 
modes, but also the computation of transfer functions 
or the simulation of steady-state behaviour. 
If the system equations are formulated using the 
Modelica language, there is the potential to use one 
and the same model for time-domain as well as fre-
quency-domain computations. 
In this paper we will show, how the different meth-
ods can be applied to a Modelica model, what kind 
of prerequisites and adjustments are required in order 
to perform the different types of analysis and how 
these methods can be seamlessly integrated into a 
Modelica simulation environment. 
 
Keywords: Modelica, Steady State Simulation, 
Transfer Function Analysis, Natural Frequency 
Analysis 

1 Introduction 

In many engineering disciplines frequency-domain 
methods play an important role. Powertrain engi-
neers for instance not only exploit transient simula-
tions, but to a large extend assess the behaviour of 
their systems based on the natural frequencies, the 
resulting vibration models, and also in terms of 
steady state results, which show vibrations under 
stationary conditions resulting from the uneven and 
multi-order excitation of the driveline by the engine. 
Other engineering domains and tasks also require 
frequency-domain approaches. 

However, all these tasks would typically be assigned 
to different software tools, which is not really neces-
sary. 
Modelica forms the ideal base also for frequency-
domain analyses, since it provides complete system 
descriptions in an analytic form. However, so far 
Modelica is used almost exclusively for transient 
time-domain simulation. 
In this paper we will show, how Modelica models 
are used in order to compute frequency-domain re-
sults and how these processes are integrated into the 
Modelica simulation environment SimulationX. 
The paper will treat the following topics: 

• Nonlinear periodic steady-state simulation 
and generation of spectral results based on 
harmonic balance 

• Natural frequencies, vibration modes and 
energy distributions based on models lin-
earized in an operating point 

• Computation of transfer functions based on 
models linearized in an operating point 

We focus on the periodic steady-state simulation 
since this is the most recent innovation in 
SimulationX. 

2 Periodic Steady-State Simulation 

2.1 Application to Modelica Models 

The main area of application for the nonlinear peri-
odic steady-state simulation in SimulationX is the 
vibration analysis of powertrains. 
The example Modelica model in Fig. 1 is an adaption 
from [4] p. 246 with some added damping and cylin-
ders including oscillating masses and driven by some 
typical combustion engine cylinder pressure. 
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The steady-state for a range of mean rotational 
speeds of the engine has to be computed. The oscilla-
tion time period is determined by the engine speed 
and the periodicity of the excitation over the crank 
angle. 

Engine Damper

4-Cylinder Engine

Fly Wheel

Gear Box and Shaft

Differential Gear, Side Shaft

Tyre, and Car Load Torque

tau   
Fig. 1: Example of a Modelica model of a powertrain 
analyzed with the periodic steady-state simulation 
But the method is also applicable to driven systems 
in other physical domains. For non-linear electronic 
amplifiers and filters most often the frequency or 
amplitude of the driving generator is swept and the 
period is measured at its phase. Therefore, a general 
approach is needed. In SimulationX the following 
procedure has been implemented: The user chooses 
the varying reference quantity (e.g. mean engine 
speed or generator frequency) and the period vari-
able (e.g. crank angle or generator phase) from Mod-
elica model trees containing all variables and pa-
rameters. For powertrains (or more general whenever 
the reference quantity is not a parameter but the 
mean value of a variable) the user also distinguishes 
some model parameter as compensation parameter - 
such as the load torque of the powertrain. The algo-
rithm adjusts the compensation parameter for the 
steady-state, i.e. the mean engine torque and the load 
torque are balanced out by the algorithm. No special 
preparation of the Modelica model is needed to en-
able the steady-state simulation. The same model 
may be used for a simulation in time-domain too. 
During the simulation the computed spectra of the 
Modelica variables are written to special steady-state 
protocols. Those results can be visualized in several 
different representations (amplitudes, phases, fluc-
tuations, spectral powers and so on). For the power-
train example from Fig. 1 some of the amplitudes of 

the calculated harmonic torque components in the 
mass-damper spring are shown in Fig. 2.  
In SimulationX the initial conditions corresponding 
to the results of the periodic steady-state simulation 
can be calculated and used to initialize a successive 
transient simulation. 

 
Fig. 2: Spectral results for the torque of the spring in 
the engine damper; the sum curve and the amplitudes 
of the first harmonic components are shown, the larg-
est amplitudes are labelled with the oscillation orders 
In this way the periodic solution can be recalculated 
with a transient simulation and the steady-state re-
sults can easily be checked. Fig. 3 shows a very good 
match of the steady-state simulation result with the 
transient simulation result. 
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Fig. 3: Torque in the spring of the engine damper (full 
line: steady-state simulation, dashed line: transient 
simulation); the results are almost identical 
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2.2 Computational Background 

In this subsection we give some insight in the com-
putational background specific to the periodic 
steady-state simulation. If the reader is only inter-
ested in applications he may safely skip to subsec-
tion 2.3.  
For the periodic steady-state simulation the harmonic 
balance method is employed. This method gives a 
high spectral precision of the results and prepares the 
numerical base for behavioural modelling in the fre-
quency domain. 

2.2.1 System Equations 
The symbolic analysis compiles from the Modelica 
model a system of equations for the stationary simu-
lation. If the simulation time appears explicitly in the 
model equations (for instance in a driven system) it 
is replaced by a state timex with 1/ =dtdxtime  which 
leaves us with an autonomous algebraic differential 
equation system 

( ) 0),(),( =Cxtxtxf &     (1) 

where x is the nR -valued state vector with corre-
sponding time-derivative x& , and R∈Cx  is the com-
pensation parameter (see section 2.1). It is conven-
ient to represent oscillations not over time but over 
the phase angle tωϕ =:  for which the period length 
keeps constant at π2  independent of the period du-
ration (ω  is the phase velocity of the oscillation). 
Substituting the derivative w.r.t. time through the 
derivative w.r.t. phase )(')( ϕω xtx =&  in eq. (1) 
gives  
( ) 0),('),( =Cxxxf ϕωϕ .   (2) 

Throughout the remainder of this section we repre-
sent x  in dependence of the phase angle. 
The system is assumed to be freely displaceable in 
one direction of the state space. Therefore, we chose 
a combination of a π2 -periodic function x~  and a 
component linearly dependent on the phase angle as 
a solution ansatz 

( ) ( )ϕ
π
ϕϕ xxx ~

2
+= P     (3) 

for the system equation (2) with a constant vector 
nx R∈P , called period vector in the sequel. 

This setup is rather general. It includes freely rotat-
ing powertrains and periodically driven systems. 
Solving (2) can now be divided into the two tasks 

• computation of the period vector Px  

• computation of the periodic function x~  
which will be described in the following two sec-
tions. 

2.2.2 Period Vector Computation 
The user selects one model variable as the period 
variable (cf. section 2.1). We denote the index of that 
variable as Pi . For this variable the user specifies 
the period length p . The model equations (2) are 
then solved for the static case (i.e. 0=ω ) once with 

0=ϕ  and once with πϕ 2= . Because of the π2 -
periodicity of x~  the difference of these two solu-
tions just gives the period vector 

( ) ( )02 xxx −= πP .    (4) 

At 0=ϕ  the displacement of the system (e.g. the 
rotational position of a powertrain) is determined by 
the additional condition ( ) 00 =Pix . This together 
with (2) and (3) results in the overall system  

( )( ) ( ) 00;0,0,0 == PC ixxxf    (5) 

for the case 0=ϕ  which consists of 1+n  equations 
for the 1+n  unknowns composed of the n  
states )0(x  and the compensation quantity Cx  (e.g. 
the load torque of a powertrain). 
For πϕ 2=  we use the user-defined periodicity of 
the state vector component Pi  and solve 

( )( ) ( ) pxxxf i == ππ 2;0,0,2 PC .  (6) 

The condition that Cx  is the same in (5) and (6) of-
fers a possibility to check the computed solutions. 
For driven systems the equations in (5), (6) may not 
be simultaneously solvable. In that case in each of 
these systems the static equation 
( ) ;0,0, =Cxxf  

is replaced by the condition 

( ) min;0,,
2
→= vxvxf C  

where 
2

v  denotes the Euclidian norm of v . 

In practice it has proven sufficient to solve the result-
ing restricted minimization problems by a modified 
Gauss-Newton algorithm. 

2.2.3 Harmonic Balance 
For the computation of the periodical part x~  in the 
ansatz (3) equation (2) is reformulated as the varia-
tional equation 
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( ) ( )∫ =⋅
π

ϕϕϕψ
π

2

0
0

2
1 dy     (7) 

with ψ  varying over all continuous nR -valued 
functions fulfilling the condition ( ) ( )πψψ 20 =  and 
with 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++= C

PP

2
xx

x
x

x
fy ,'~,~

2
: ϕ

π
ωϕ

π
ϕ

ϕ . (8) 

For a fixed phase velocity ω  the solution x~  is only 
determined up to a multiple of Px  and a correspond-
ing phase shift (e.g. for a powertrain the arbitrary 
initial angular position). To formally fix the initial 
disposition, additionally the mean value of the period 
variable is balanced to zero: 

( )∫ =
2

π
ϕϕ

π
2

0
0~1 dxiP .    (9) 

In some cases the user does not want to prescribe the 
phase velocity ω  directly (e.g. for powertrains it is 
usual to prescribe the mean rotational speed of the 
engine instead). For that reason the user-chosen ref-
erence quantity was introduced in section 2.1. Let 
Ri  be the index of the reference quantity and r  the 

wanted mean value for that variable. Then instead of 
a direct assignment to ω  the equation  

( )∫ =
2

π
ϕϕ

π
2

0
~1 rdxiR     (10) 

is added to the variational system. 
Following Galerkin for the numerical treatment 
of (7,8) the function space for ψ  and x~  is restricted 
to the finite-dimensional space spanned by the har-
monic orthogonal system of base functions 

( )ϕψ kk jexp:][ =  with NNk ,,K−= . (11) 

In the following we keep using lower indexes for the 
state vector components but we use Modelica index 
notation to organize the frequency components (as 
we have already done so by defining ][kψ  above). 
Using the base (11) for the periodical part x~  in (3) 
the ansatz becomes 

( ) ( )∑
−=

=
N

Nk

kxkx ][ˆjexp~ ϕϕ    (12) 

where ][ˆ kx  is the k -th frequency component of the 

state space vector (we use a hat x̂  or ( )^x  to denote 
complex amplitudes). Since x~  is real ][ˆ kx  is the 
complex conjugate of ][ˆ kx − . Thus, the values of x̂  
are determined by ( )12 +Nn  real numbers. With ψ  
replaced by ][kψ  for NNk ,,K−=  the resulting 

12 +N  left-hand sides of (7) become the 
first 12 +N  Fourier coefficients ( ) ][,,ˆˆ kxxf cω  of 
the left-hand side of (2), i.e. Fourier coefficients of 
the time-domain residuals. Equations (7,8,9,10) to-
gether then give the harmonic balance equation sys-
tem 

( )

rx
x

xxf

i

i

=
=
=

]0[ˆ
0]0[ˆ
0,,ˆˆ

R

P

Cω
    (13) 

of ( ) 212 ++Nn  scalar equations for the 
( )12 +Nn  unknowns in x̂  and the additional two 

unknowns Cx,ω . The fast Fourier transformation 
(FFT) is used to approximate the Fourier-coeffi-
cients of y . Because of the nonlinearities in f  the 
spectrum of y  is wider than that one of x  and some 
oversampling is needed for the FFT to keep the alias-
ing error low. 
For solving system (13) Newton's algorithm is ap-
plied. Deriving the Newton corrector equation in 
time-domain and then transforming it into frequency-
domain gives good insight into the structure of the 
resulting system of equations. A first order Taylor 
approximation of (2) in the current numerical ap-
proximation of ( )Cxx ,,~ ω  yields the equation 

( )
0

''
3

21

=⋅∂+
++⋅∂+⋅∂+

Cxf
xxfxff
δ
δωωδδ  (14) 

which determines with (3) the Newton correc-
tion ( )Cxx δδωδ ,,~  (note: (i) here fk∂  stands for 
the derivative of f  w.r.t. the k th argument, and 
(ii) for clarity we have omitted the arguments 
( )Cxxx ,',ω  of f , (iii) xxx ~,, δδ  are functions 
of ϕ ). The time-domain products in (14) correspond 
to frequency-domain convolutions. E.g., the FFT 
transforms xf δ⋅∂1 into 

( )( ) ( ) ][ˆ][][ˆ* ^
1

^
1 lxlkfkxf

N

Nl

δδ ∑
−=

−∂=∂ . (15) 

With ( ) ][ˆ:][ˆ: kxkkxII =  the spectrum of the de-

rivative x&  can be written as ( ) xIx ˆj' ^ = . So, after 
shifting f  to the right-hand side (14) is transformed 
by the FFT into the equation 

( )( ) ( ) ( )( )
( ) ( ) fxfxf

xIfxf
ˆ'

ˆ*jˆ*
^

3
^

2

^
2

^
1

−=∂+⋅∂+
+∂+∂

Cδδω
δωδ

 (16) 

A. Abel, T. Nähring

The Modelica Association 386 Modelica 2008, March 3rd − 4th, 2008



for the unknown Newton correction ( )Cxx δδωδ ,,ˆ  
in the frequency domain. Together with (9) and (10) 
written as 

0]0[ˆ;0]0[ˆ == RP ii xx δδ    (17) 

this system formally determines the Newton correc-
tion in the frequency domain completely. 
With the number of ( ) 212 ++Nn  real unknowns 
the system is rather large and the convolution opera-
tor in (16) causes large fill-in of the system matrix 
making direct solving infeasible in real-world appli-
cations. Therefore, the iterative GMRES algorithm is 
used instead (see e.g. [5]). This method only requires 
the evaluation of the left-hand side of (16) for 
known ( )Cxx δδωδ ,,ˆ . This also makes it possible 
to replace the frequency-domain convolutions in (16) 
by the cheaper corresponding time-domain products 
in (14) (together with the therefore needed FFT-
operations). GMRES only works well with an appro-
priate pre-conditioner. Thus, one must be able to 
roughly solve systems with the left-hand side of (16) 
fast. For this end the block-diagonal preconditioner 
is used (see e.g. [6]). This approximates the convolu-
tions by only retaining the mean value component 
of ( )^fk∂ : 

( )( ) ( )
( )( ) ( ) ][ˆ]0[][)ˆ(*

][ˆ]0[][ˆ*
^

2
^

2

^
1

^
1

kxkfkxIf
kxfkxf

δδ
δδ
⋅∂≈∂
⋅∂≈∂

 (18) 

The so approximated system (16) can be solved fre-
quency-component wise. 
If the dynamical system is linear then the Jacobi-
ans ff 21 ,∂∂  are constant in time and the corre-
sponding higher spectral components in the convolu-
tions (e.g. ( ) ][^

1 lkf −∂  with 0≠− lk  in (15)) are 
zero. In this case `≈ ´ in (18) can be replaced by `=´ 
and the approximations are exact. For increasing 
nonlinearities the higher spectral components of 

ff 21 ,∂∂  omitted in the preconditioner gain influ-
ence, the approximations become more coarse. In 
general one can say that with stronger nonlinearities 
the number of GMRES iterations per Newton step 
and the number of Newton-iterations increase. 
If the local Newton method does not converge fast 
enough then the Newton-algorithm with backward-
error minimization via backtracking (see [1] and [7]) 
is applied. For a better numerical condition the states 
are automatically scaled during the computation. 
In section 2.3 we will give an example of a nonlinear 
system with a turning point in its frequency re-
sponse. To make the computation of such points pos-
sible a curve tracing algorithm with variable step-

size is implemented in SimulationX. A short outline 
of this algorithm shall conclude this subsection. 
Only at the starting value Startr  and the end 
value Stopr  of the interval for the reference quan-

tity Rix  the full system (13) is solved. At intermedi-
ate points for Rix  the last equation determining the 
value of the reference quantity is removed resulting 
in  

 
Fig. 4: Curve tracing algorithm (see text for details) 

( ) 0=XF  with ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

]0[ˆ
,,ˆˆ

:
P

C

ix
xxfXF ω

 (19) 

and with the unknowns collected in ( )CxxX ,,ˆ: ω= . 

Since (19) has one scalar equation less than un-
knowns it formally defines a solution curve (see also 
upper branch in Fig. 4) instead of a single point. 

Given the last solution point ( )1−kX  on the solution 
curve and the tangent direction ( )1|| −kXδ  of the solu-
tion curve in that point a prediction   

( ) ( ) ( )1|| −+= kkk XsXX δP  

for the new solution point is computed. Thereby, the 
step size s  is chosen in dependence of the estimated 
curvature of the solution path, the estimated distance 
of  ( )kX P  to the solution path, and the local conver-
gence behaviour of Newton's algorithm (for details 
see [2]). In the predicted point a new estima-
tion ( )kX ⊥δ  for the tangent vector is computed as 
the solution of the system 

( )( )
( )( ) ( ) .1

,0D
1||

)(

=⋅
=

⊥−

⊥

kTk

kk

XX
XXF

δδ
δP

 

This is not the tangent direction to the solution curve 
but to the curve defined by ( ) ( )( )kXFXF P=  (see 
Fig. 4). Nevertheless, these curves and their tangents 
are supposed to be close to each other. The Newton 
correction for the computation of the next solu-
tion ( )kX  of (19) is then carried out in the affine 
plane with ( )kX P  as origin and ( )kX ⊥δ  as normal 

)1( −kX  

X  0)( =XF  

( ))()( kXFXF P=  
)(kX P  ( )kX  

( )1|| −kXδ  

( )kX ⊥δ  

Startr  Stopr  
Rix  
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direction. The point ( ) ( )kk XX P=:0,  is used as an 
initial guess and the Newton corrections ( )ikX ,δ  as 
well as the iterated solution approximations ( )ikX ,  
( )K,1,0=i  are defined by the system 

( )( ) ( ) ( )( )
( )( ) ( )

( ) ( ) ( ).
,0

,

,,1,

,

,,,

ikikik

ikTk

ikikik

XXX
XX

XFXXDF

δ
δδ
δ

+=
=⋅
−=⋅

+

⊥   (20) 

As Fig. 4 suggests ( )kX ⊥  is a better approximation 
of the tangent to the solution curve at the new solu-
tion point ( )kX  than ( )1|| −kX . Using ( )kX ⊥  lets the 
Newton iterations run on nearly the shortest path to 
the solution curve, gives (20) a better numerical con-
dition, and avoids jumping between different solu-
tion branches at sharp turning points of the solution 
path. 

2.3 Example: Nonlinear Spring-Mass-System 
with Turning-Point in Frequency Response 

Unlike linear systems nonlinear systems may exhibit 
turning points in the frequency characteristic. The 
curve tracing algorithm implemented in SimulationX 
makes the computation of such kind of frequency 
characteristics possible. 
The simple mechanical system of Fig. 5 is a torque 
excited spring-mass-oscillator. The frequency of the 
sinusoidal torque source is chosen as the reference 
quantity and swept between Hz2.0  and Hz7.0 . 
Since this reference quantity is a parameter and not a 
variable SimulationX chooses it automatically as 
compensation parameter as well. The phase of the 
sine oscillator is the period variable with period π2 . 
The quadratic term  added to the spring characteristic 
makes the system nonlinear in such a way that it 
shows a turning point in the frequency characteristic 
(see Fig. 6). 

torque1

tau

torque2

p

angleSensor1

d=0.1

SD1=8inertia1

J=1

fix
ed

1=
0

sqrsqr

sineOsc

amplitude=1  
Fig. 5: Nonlinear Spring-Mass-system 
In the interval from Hz397.0  to Hz426.0  the fre-
quency characteristic is multi-valued. That corre-
sponds to multiple periodic limit cycles at those exci-
tation frequencies. 

 
Fig. 6: Frequency response with turning-point for the 
angular speed of inertia1 in the nonlinear spring-mass-
system; the sum curve and the first three harmonic 
components are distinguishable in this diagram 
As an example in Fig. 7 the limit cycles from the two 
stable branches (lowest and highest) of the frequency 
characteristic at Hz405.0  are shown. 
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Fig. 7: Angular speed curves for the two possible stable 
limit cycles of the nonlinear spring-mass-system at 
excitation frequency Hz405.0  represented over  
phase. 
We kept this example simple to demonstrate that 
even very basic nonlinear systems may have fre-
quency responses with turning-points. More compli-
cated examples can be found in [8], and [9]. 

2.4 Example: Active Electronic Filter 

The periodic steady state simulation is not restricted 
to mechanical systems. As an example the periodic 
steady state simulation is applied to a Modelica 
model for an active electronic pass-band filter (see 
Fig. 8). The reference and compensation quantity in 
this example is the frequency of the sinusoidal 
source vin and its phase is the phase variable. 
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Fig. 8: Modelica model of the active electronical filter  
At resonance frequency the transistor amplifier of 
the pass-band filter is overdriven which causes 
nonlinear harmonic distortions. The nonlinear fre-
quency response of the collector voltage of transis-
tor q1 is shown in Fig. 9.  
 

 

 
Fig. 9: Frequency response of the collector voltage of 
q1 in the active electronic filter; top: sum signal and 
first harmonic, bottom: zoomed view of the other har-
monics in the resonance region where the amplifier is 
overdriven; the harmonics are decreasing with order, 
only the 2nd and 3rd harmonic are labelled 
In Fig. 10 the periodic steady state result and the 
time domain result of this voltage over phase angle 
for an excitation frequency of kHz15.1 are com-
pared. At about °75  the base-emitter diode of q2 
blocks and the voltage amplification of q1 grows 
which causes the spike in the collector voltage of q1. 
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Fig. 10: Collector voltage of q1 in the active electronic 
filter at excitation frequency kHz15.1 represented over 
phase; full line: periodic steady state simulation, 
dashed line: transient simulation; 
The results are in good accordance. Nevertheless, a 
slight difference of the results from the periodic 
steady state simulation and the transient simulation is 
visible at about °75 . The steep slopes of the spike 
are somewhat smoothened by the limited number of 
equidistant sample-points for the steady state simula-
tion (256 sample points per period were used). 

3 Transfer Function Analysis and 
Natural Frequencies 

3.1 Linear System Analysis 

Beside the nonlinear algorithm for the steady-state 
simulation also linear frequency-domain analysis 
methods are applicable to Modelica models and are 
implemented in SimulationX. Those are based on the 
linear system which results from the linearization of 
the nonlinear system equations for the Modelica-
model in the current operating point. The operating 
point may be determined by a previous transient 
simulation or an equilibrium computation (in elec-
tronics also called DC-analysis). Some of the algo-
rithms may be applied to any Modelica model with-
out changes by the user. This includes the computa-
tion of the eigensystems, the Campell diagram, and 
methods for the animation of the eigenmodes. 
Other frequency-domain results such as the devia-
tions in mechanical quantities (vibration modes) and 
the distribution of vibration energies and losses re-
quire special internal blocks that can be included into 
the Modelica-model. The following Modelica source 
code shows how the inertia from the standard Mode-
lica library can be supplemented with an internal 
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energy calculation block which SimulationX uses in 
order to compute the energy distribution. 
 
model RotInertiaEnergyBlock 
 import M=Modelica.Mechanics; 
 extends M.Rotational.Inertia; 
 Mechanics.Rotation.CalcEnergyBlock eb; 
 equation 
   eb.dom = w; 
   eb.T = J*a; 
end RotInertiaEnergyBlock; 

The modification of the Type SpringDamper is 
similar. For a demonstration the (rotational and 
translational) masses and spring-dampers in the 
powertrain from Fig. 1 have been substituted by the 
modified types. The distribution of energy calculated 
by SimulationX for the eigenmode at Hz66641. is 
shown in Fig. 12. In practical applications such rep-
resentations show the engineer which masses, 
springs, and dampers dominate the behaviour in cer-
tain eigenmodes of the system, so he can take sys-
tematic countermeasures to avoid unwanted oscilla-
tions. 
Up to now these blocks are not documented and only 
used for the internal element libraries of Simula-
tionX. But this may change in future. 

 
Fig. 11: Distribution of energy for the powertrain ex-
ample from Fig. 1 

3.2 Input-Output Analysis 

For the analysis of the input-output-behaviour the 
user must select the input and the output of the lin-

earized system. Any result variable of the model may 
be used as the system output. SimulationX has a spe-
cial class of signal inputs that may be open even for 
the top-level model. Those inputs may be used for 
the input-output-analysis. In Fig. 11 a cut-out of the 
powertrain from Fig. 1 is shown where a torque 
source with such an input has been added. The input-
output behaviour is described by the frequency re-
sponse function and the pole-zero diagram of the 
system. 

 
Fig. 12: Element linSysAnaOpenInput in the example 
from Fig. 1 with open input for the input-output-
analysis 
Fig. 13 and Fig. 14   show the pole-zero plot and the 
frequency characteristic, resp., for the powertrain 
from Fig. 1 with the torque at the first cylinder as 
input (Fig. 12) and the torque in the engine damper 
as output.  

 
Fig. 13: Pole-zero plot of the system in Fig. 1; crosses: 
poles, circles: zeros 
For further analysis in external tools the linearized 
system matrices may be exported in Modelica or 
MATLAB syntax. 

4 Conclusions and Outlook 

Periodic steady state simulation proves useful for the 
vibration analysis of nonlinear systems. SimulationX 
allows its application to Modelica models, in particu-
lar to powertrains, without the decomposition into 
nonlinear exciter and linear drivetrain. Furthermore, 
the method is applicable to driven systems of other 
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physical domains since it is purely equation-based. 
Only very little knowledge of the system is required 
from the user. Two mechanical examples and one 
from electronics were given in the paper. 

 
Fig. 14: Frequency response of the system in Fig. 1; 
top: amplitude, bottom: phase 
Furthermore, we discussed methods for the small-
signal analysis in the current operating point (result-
ing from a transient or equilibrium computation). 
Beside pole-zero plots and frequency response func-
tions also some remarks about the deviation- and 
energy distribution analysis for oscillation modes 
were given. They are especially useful for the me-
chanical engineer to detect the powertrain elements 
which participate in selected oscillation modes. 
• Behaviour Description In Frequency Domain: 
In future it is planned to include a behavioural de-
scription in frequency domain (e.g., for modeling of 
dynamic stiffness) for the periodic steady state simu-
lation as well as for the frequency response computa-
tion, which was one main argument for the harmonic 
balance method to be preferred over the shooting 
method (see e.g. [11] for a short introduction and 
further references). One major reason for the fre-
quency domain description not yet being imple-
mented in SimulationX is that Modelica currently 
still lacks a standardized way for computations with 
complex numbers (even if some steps in this direc-
tion have already been taken, see e.g. [10]). 
• Event Iterations: Event iterations are already em-
bedded into the harmonic balance algorithm. But 
there remains still some work for the treatment of 
time-discrete variables in special cases. 
• Improved Convergence for Strongly Nonlinear 
Systems: As long-term objective the convergence 
speed of the harmonic balance for strongly nonlinear 
systems can be improved by time domain precondi-
tioners (see [6]). 

• Autonomous Systems: The ansatz used for the 
harmonic balance also bears the potential for the 
simulation of autonomous systems. The required 
randomization of the start values for the harmonic 
balance could be implemented. 
• Detection of Stable/Unstable Limit Cycles: Up to 
now there is no automatic discrimination of the sta-
ble and unstable branches in the nonlinear frequency 
response computed via harmonic balance. This can 
be implemented by an eigenvalue analysis of the 
monodromy matrix of the computed limit cycles. 
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Abstract 

This paper introduces a new release of the System-
Dynamics library of Modelica and shows how it is 
being used by discussing a fairly large application 
code: Meadows’ World3 model.  The newest version 
of that model has been made available in the library. 

Keywords: System Dynamics, World Dynamics, 
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1 Introduction  

System Dynamics represents a fairly low-level mod-
eling paradigm.  Its implementation does not place 
heavy demands on the modeling software.  Hence 
Modelica may in fact be a bit of an overkill for deal-
ing with System Dynamics models.  However, it is 
considerably better suited than the state-of-the-art 
software for this type of modeling, i.e., Stella [11], 
the code that most System Dynamics modelers use 
today. 

A first version of a System Dynamics library for 
Modelica was released in 2002 [3].  In the present 
paper, a new release, SystemDynamics 2.0, is being 
discussed.  SystemDynamics 2.0 is not an upgrade of 
SystemDynamics 1.0, but rather a re-implementation 
of the methodology.  Inherited from SystemDynam-
ics 1.0 were only two application codes, a small in-
troductory model concerning lynxes eating hares, 
and a considerably more complex model borrowed 
from Forrester’s Industrial Dynamics book [4]. 

As already mentioned above, the basic models 
implementing the System Dynamics methodology, 
levels and rates, are so simple that their implementa-
tion in Modelica requires very little time and effort.  
The value of the library is not in its basic models, but 
rather in its application codes. 

Among other applications, SystemDynamics 2.0 
offers two full World models, namely Forrester’s 
World2 model [5], and Meadows’ World3 model 
[7,8]. 

Whereas Forrester described his model in full in 
his World Dynamics book [5], Meadows’ only talked 
in Limits to Growth about the results obtained with 
the model [8].  The model itself, originally coded in 
Dynamo [10], was described in a separate book [7]. 

Meadows’ World3 model has seen two major 
upgrades since its original inception, one in 1992, i.e. 
after 20 years, and the second in 2002, i.e., after 30 
years.  The World3 application code contained in 
SystemDynamics 2.0 implements the 2002 version 
of the World3 model.  In the code, we offer not only 
the basic model, but also all 10 scenarios that Mead-
ows and co-workers are talking about in Limits to 
Growth: The 30-Year Update [8]. 

Although the work of Forrester and Meadows 
caused quite a stir in the early 70s when their books 
first appeared, world modeling became unfashion-
able fairly quickly, because essentially all sources of 
funding dried out for political reasons. 

Only very recently, in the context of the looming 
Peak Oil event and because of the ongoing discus-
sions concerning Global Warming, has world model-
ing become respectable again. 

It turned out that Forrester and Meadows were 
essentially correct in their assessments, in spite of 
the fact that their models were very crude in com-
parison with real world dynamics. 

With this paper, I wish to open up world model-
ing to the community of Modelica users. 
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2 Short History of System Dynamics  

The System Dynamics approach to modeling dy-
namic systems was developed in the 1960s by Jay 
Forrester with the aim of creating a modeling and 
simulation tool that economists would be able to 
handle. 

Instead of talking about differential equations, he 
talked about “levels,” the values of which were 
changed by “rates.”  Level variables are variables 
that can accumulate.  For example, population might 
be used as a level variable.  It is controlled by two 
rate variables, the birth rate and the death rate. 

Forrester would draw this relationship in a dia-
gram similar to the one shown in Fig.1. 

 
Figure 1:  Population with birth and death rates 

 
The blue square box represents a level.  It requires an 
initial value.  The blue icons to the left and right of 
the level represent rates.  Both the birth and the death 
rate are proportional to the population.  The two 
clouds represent sources and sinks of material.  They 
are used for documentation purposes only.  There are 
no equations associated with these models.  The lilac 
lines represent material flows, whereas the blue lines 
represent information flows. 

Of course, Forrester didn’t have a computer 
available with a graphical user interface.  He drew 
his diagrams only by hand and then translated them 
manually (and quite mechanically) down to a set of 
equations that he then encoded in Dynamo [10], a 
simulation “language” that had been outdated al-
ready at the time of its creation. 

Forrester explained to his disciples that every 
modeling exercise should always start with ponder-
ing, which are the most important accumulator vari-
ables that ought to be captured in the model.  These 
variables should be declared as level variables.  Sub-
sequently, it needs to be decided, what other vari-
ables can be viewed as inflows and outflows to and 
from these levels.  The inflows and outflows would 
then become the rate variables.  Fig.2 shows a typi-
cal set of levels and their rates. 

 
Figure 2:  Typical level and rate variables 

 
The modeler would then need to decide, which 

other variables the rates depend on, and write these 
down in a so-called “laundry list.”  A possible laun-
dry list for the birth rate is offered in Fig.3. 

 
Figure 3:  Birth rate laundry list 

 
So far so good, but now comes the most daring 

assumption, the “quantum leap” of System Dynam-
ics. 

The functional relationship represented by such a 
laundry list can be assumed to be a static non-linear 
function in multiple variables, e.g.: 

 
Yet, since such a function may be too difficult to 
identify, Forrester chose to ignore the mutual rela-
tionship among the different input variables, and 
postulate the following model instead: 

 
The birth rate is essentially computed as the average 
birth rate, BRN, multiplied by the population.  All 
other dependencies are expressed as small signal de-
viations from the norm.  The single-valued functions 
can most of the time be easily approximated using 
information from the open literature, e.g. from statis-
tical yearbooks. 

Forrester was wildly successful with his ap-
proach to modeling.  Whereas engineers and physi-
cists mostly ignored him, if they didn’t even sneer at 
his “methodology,” researchers from the soft sci-
ences loved it.  Already by the early 1980s, several 
thousands of papers making use of System Dynamics 
for a variety of modeling projects had been published 
[6]. 
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By 1984, the Macintosh became available, and 
with it, programmers were for the first time offered 
an easily programmable graphical user interface.  
Within a short time, a graphical modeling environ-
ment for System Dynamics modeling, Stella [11], 
became available that quickly replaced Dynamo [10] 
as the tool of choice for System Dynamics modeling. 

Today, more than 20 years later, Stella is still the 
most widely used tool for System Dynamics model-
ing.  The language has seen a few improvements 
over the years, but by and large, it is still the same 
software that had been created in the mid 1980s. 

A Stella model of population and its two rate 
variables is shown in Fig.4. 

 
Figure 4:  Stella model of population growth 

3 The WORLD3 Model 

World Dynamics became quickly one of the most 
prominent endeavors of System Dynamics modelers.  
Among the earliest world models created for the 
Club of Rome were Forrester’s WORLD2 and 
Meadows’ WORLD3 models.  Both of these models 
are made available as part of the new SystemDynam-
ics library. 

Which are the most important drivers (accumul-
tors) behind any world model?  The list of levels 
ought to include at least: 

 population 
 pollution 
 resource utilization 
 invested capital 
 work force 
 food 

Different world models vary in the degree of so-
phistication, with which they consider these sectors.  
In this paper, we shall primarily focus on the 
WORLD3 model, as this model has been upgraded 
several times, and therefore is still up-to-date. 

3.1 Population Dynamics 

The population dynamics model of WORLD3 is 
shown in Fig.5. 

 
Figure 5:  Population dynamics in WORLD3 

 
The model is quite easy to read.  The population is 
subdivided into four separate levels, representing: 

1. children (until age 14) 
2. young adults (until age 44) 
3. older adults (until age 64) 
4. seniors 

This division makes sense, as the work force is com-
prised of groups #2 and #3 only, and people of re-
productive age are those in group #2.  The rates be-
tween the levels compute the maturation from one 
group into the next.  Beside from the births and the 
final deaths, there are also people dying prematurely 
out of each of the four groups. 

The birth rate depends on the fertility, which is 
computed by another module.  The death rates in the 
four groups are modeled as tabular functions of the 
life expectancy, which is also computed elsewhere. 

The model exports the total population and the 
labor force, as these variables are used by other 
modules. 

Notice that WORLD3 is a global model.  All 
variables are averaged over the entire globe.  The 
model does not distinguish between Europe and Af-
rica, for example.  This limits the types of questions 
that may be answered by it. 

3.2 Pollution Dynamics 

The pollution dynamics model of WORLD3 is de-
picted in Fig.6. 

The pollution model contained originally a sin-
gle state variable: the accumulated pollution.  New 
pollution is being generated in proportion to the total 
resource utilization and in proportion to the arable 
land used for agriculture.  Pollution is being assimi-
lated again in proportion to the accumulated pollu-
tion by the self-regulating mechanisms of this planet. 
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Figure 6:  Pollution dynamics in WORLD3 

 
Of a more recent vintage is the second state vari-

able that denotes the capital invested in pollution 
avoidance technology. Meadows and coworkers rec-
ognized at some point in time that the amount of pol-
lution generated may be partly mitigated by invest-
ing in pollution avoidance technology.  The inflow 
rate associated with this second state variable is an 
unrestricted rate that can also assume negative val-
ues, thereby turning the inflow rate into an outflow 
rate. 

Notice that this is not a greenhouse gas emission 
model.  The model attempts to estimate total pollu-
tion of various kinds.  The measurement units asso-
ciated with pollution in the model are somewhat ob-
scure. 

This would, however, be the place where a 
global greenhouse gas emission model could (and 
probably should) be added at some point in time. 

3.3 Resource Utilization Dynamics 

The resource utilization dynamics model of 
WORLD3 is depicted in Fig.7. 

 
Figure 7:  Resource utilization dynamics in WORLD3 

 

The model is similar in structure to the pollution 
dynamics model.  Originally, there was only a single 
state variable describing the non-recoverable natural 
resources that are being depleted.  Resource deple-
tion occurs approximately proportional to the total 
industrial output.  The resources get consumed in the 
process of producing goods.  As the resources get 
depleted, production inevitably slows down. 

A second state variable was introduced in a later 
version of the model describing the effects of recy-
cling.  As resources get recycled rather than dis-
carded, resource utilization for the same amount of 
produced goods slows down.  The same technologi-
cal advances that enable recycling also reduce the 
generation of pollution. 

In WORLD3, the production sector is subdivided 
into three sub-areas concerning the production of 
consumer goods, the production of food, and the pro-
duction of services. 

Resource depletion is an important factor in the 
model as it negatively influences all three production 
sectors. 

Notice that the resources, as computed by the 
model represent primarily minerals, not fossil fuels.  
WORLD3 does not model fossil fuel utilization di-
rectly. 

Fossil fuels could (and probably should) be in-
cluded as a separate state variable within the re-
sources sector of the model. 

3.4 The Overall Model 

The overall WORLD3 model is depicted in Fig.8. 

 
Figure 8:  Overall WORLD3 model 

 
I subdivided the WORLD3 model into 13 differ-

ent sectors, capturing the dynamics of population, 
pollution, arable land development, food production, 
the service sector, human fertility, industrial invest-
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ments, the work force, land fertility, the human eco-
logical footprint, the human welfare index, life ex-
pectancy, and last but not least the utilization of non-
recoverable natural resources.  Three of those were 
presented in the previous sections of this paper.  The 
overall model invokes one of each of the 13 sector 
models and connects the terminal variables of those 
sector models among each other. 

We are now ready to simulate the model.  The 
compiled model contains 41 state variables and 265 
algebraic variables.  A few simulation results are 
shown in Figs.9 and 10. 

 
Figure 9:  Population as a function of time 

 

 
Figure 10:  Natural resources as a function of time 

 
The simulation results are identical to those 

shown in the book Limits to Growth [8].  The popu-
lation grows until roughly 2030.  At that time, the 
non-recoverable resources have been depleted to an 
extent where production can no longer proceed as 
before.  In particular, less food gets produced, which 
leads to a decline in the population. 

Can we trust these results?  To answer this ques-
tion, it may be useful to look at scenario #2.  In this 
scenario, Meadows and his co-workers postulated 
that the amount of the remaining non-recoverable 
natural resources had been massively underesti-
mated.  The amount sill available in 1900 is thus 
doubled.  Furthermore, it is proposed that, in 2002, 
money is being invested in producing the remaining 
resources more efficiently. 

Some simulation results of this scenario are 
shown in Figs. 11 and 12.  The results from scenario 
#1 are superposed for comparison.  We would expect 
that, since resource depletion won’t occur as quickly, 

the population can continue to grow for some time 
after 2030. 

 
Figure 11:  Population as a function of time (scenario #2) 

 

 
Figure 12:  Resources as a function of time (scenario #2) 

 
In this scenario, the population is indeed able to 
grow for a little while longer, but now it starts 
shrinking at 2045, although the resources aren’t get-
ting depleted until 2080.  This time around, the cause 
of the die-off is the pollution.  Pollution is allowed to 
continue to increase unabated, which eventually 
hampers our ability to grow food. 

Whereas scenario #1 suffers (in a general sense) 
the effects of Peak Oil, scenario #2 is plagued by 
Global Warming.  Similar results were shown in ear-
lier editions of Limits to Growth [8].  The main dif-
ference between the models is the year, in which cor-
rective action is being taken in the different scenar-
ios.  In the first edition of the book, corrective ac-
tions were taken in 1972.  However, we already 
know that this didn’t happen.  Hence, the 3rd edition 
proposes corrective actions to take place in 2002 
only.  By postponing the intervention, the window of 
opportunity for still influencing the simulation re-
sults in a significant way shrinks. 

Why do I believe these results?  It is, because 
they aren’t very sensitive to the scenario chosen.  
Whatever we do, if it is not one factor that brings us 
to the limits of growth, it is another … and irrespec-
tive of what we do, it always happens in the 21st cen-
tury.  It may happen a few years earlier or a few 
years later, but the general picture doesn’t change at 
all. 

Also the (much simpler) WORLD2 model that 
features a different set of state variables and different 
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interactions between them essentially paints the same 
picture. 

Since the 1980s, we are consuming more re-
sources per time unit than the planet is able to re-
grow [1,12].  We are living beyond our means.  This 
is not sustainable.  It cannot continue indefinitely. 

So, will the decline take place?  Maybe it won’t.  
Maybe the moon is made out of Swiss cheese. 

3.5 Analysis of Simulation Results 

Meadows and co-workers found two scenarios that 
look a bit more hopeful.  These are scenarios #6 and 
#9.  Let me analyze these two scenarios in more de-
tail.  To this end, we shall continue the simulation all 
the way until 2500. 

In scenario #6, a whole palette of interventions 
was enacted in 2002.  These include the interven-
tions of scenario #2.  In addition, money was in-
vested in improved pollution control technology 
(scenario #3), in enhanced land yield (scenario #4), 
in increased land erosion control (scenario #5), and 
in augmented resource utilization efficiency (sce-
nario #6). 

Some simulation results are depicted in Fig.13. 

 
Figure 13:  Simulation results of scenario #6 

 
This scenario is indeed sustainable.  The world 

population hovers at approximately 10 billion peo-
ple.  The remaining natural resources get no longer 
consumed. 

Yet, humanity is paying a heavy price for insist-
ing on maintaining such a large population.  It 
spends all of its resources in producing food, and 
does so with the most primitive of means.  The in-
dustrial output, and also the service sector output get 
reduced to almost zero.  This is also why the remain-
ing natural resources are no longer being consumed.  
Worst of all, the life expectancy is back at a value as 
it was experienced prior to the industrial age.  The 

average human dies before age 30 due to huge infant 
mortality. 

Let us now look at scenario #9.  In that scenario, 
additional interventions are chosen.  The scenario 
starts out with scenario #6, but in addition enforces 
strict population control (scenario #7), and products 
are being built that last 25% longer on average (sce-
narios #8 and #9). 

Some simulation results are depicted in Fig.14. 

 
Figure 14:  Simulation results of scenario #9 

 
By enforcing strict population control, the world 

population is kept at a maximum value of 8 billion 
people.  The scenario promises a golden age that will 
last for 400 years.  Unfortunately, the scenario is not 
fully sustainable, as the natural resources continue to 
be used up, and by the year 2400, the industrial out-
put, and with it also the population and life expec-
tancy start declining again. 

4 Dymola vs. Stella 

What have we gained by offering a System Dynam-
ics modeling capability in Dymola and by porting the 
WORLD3 model to that new environment? 

Stella, contrary to Modelica, is not truly object-
oriented.  Large models are handled in Stella by sup-
porting the concept of a virtual canvas.  The physical 
screen can be scrolled over the virtual canvas, ena-
bling the user to look at parts of the model sepa-
rately.  However, there is no feature available that 
would help a user find a particular spot, such as the 
population dynamics model, on the canvas. 

Stella furthermore does not offer an icon editor.  
Stella only supports three types of icons that are all 
displayed in Fig.4.  The square boxes represent lev-
els (or “stocks,” as they are being called in Stella); 
the circles with the tap on top denote the rates (or 
“flows,” as they are being named in Stella), and the 
circles without a tap are everything else (linear and 

F. Cellier

The Modelica Association 398 Modelica 2008, March 3rd − 4th, 2008



non-linear functions, tabular functions).  For this rea-
son, Stella diagrams don’t offer mnemonic hints.  
They look all the same, irrespective of what they 
represent (just like a bond graph [2]). 

The numerical ODE solvers offered by Stella are 
rather poor.  Also, Stella computes internally with an 
accuracy of 2 digits after the comma only (triggered 
by the fact that Stella is frequently used by econo-
mists who think in terms of dollars and cents). 

On the other hand, Stella offers better support in 
dealing with tabular functions.  Each 1D table is im-
mediately plotted in the parameter window, and the 
user can tweak the curve by moving supporting val-
ues around using the mouse. 

Furthermore, Dymola forces the user to create a 
separate block for each non-linear function and pro-
gram the non-linear relationship either graphically in 
its diagram window or alphanumerically in its equa-
tion window.  In contrast, Stella offers a generic non-
linear function block that enables the user to create 
the non-linear relationship interactively in the pa-
rameter window of that generic block.  The user 
doesn’t even need to retype the names of the input 
variables.  The parameter window of that generic 
function offers a scroll-down list of the names of all 
input variables, and the user can simply click on any 
of those in order to get them included in the expres-
sion. 

Finally, Modelica has been designed by engi-
neers for engineers.  It is based heavily on SI units.  
Whereas the user can declare types based on these 
units, he cannot declare new units.  Whereas this 
works well for most engineering endeavors, it causes 
problems when dealing with soft science models. 

Sometimes, new derived units are needed.  For 
example, time in System Dynamics models is often 
measured in years rather than seconds.  Whereas 
Dymola offers the possibility to declare new display 
units, the user cannot change the units used in com-
putations.  This is inconvenient.  Of course, the types 
encoded in the SIunits library are based on SI units.  
Thus, if a user wishes to declare his own units, he 
will have to declare his own types based on these 
units also. 

Even worse, however, are those units that cannot 
be expressed at all in terms of SI units.  For example, 
many System Dynamics models operate on units of 
money.  Dollars cannot be expressed in terms of SI 
units at all. 

The most important advantage of Dymola is the 
fact that the entire System Dynamics knowledge is 
encoded at the level of Modelica.  The interface can 
therefore be easily modified and enhanced by the 

user.  In contrast, Stella’s user interface is com-
pletely hard-wired.  The user cannot modify the syn-
tax or semantics of Stella in any way, and therefore, 
new ideas cannot be incorporated into the code ex-
cept by talking the designers of the tool into includ-
ing them with their next software release.  

5 Conclusions 

In this paper, a new release, or rather re-
implementation, of the System Dynamics library of 
Modelica was presented. 

The System Dynamics methodology is very easy 
to use, and consequently, does not really require 
much of an introduction.  The most important value 
of a System Dynamics library is the knowledge en-
coded in its application examples.  Currently, the by 
far most valuable part of the new library are its world 
models. 

What future additions are in the works?  In to-
day’s world of dwindling fossil fuel reserves, it be-
comes important to track how much energy we are 
actually using.  Whereas classical System Dynamics 
is designed to track material flows, it does not track 
energy flows.  This is a major drawback of the meth-
odology. 

For this reason, a second version of the System 
Dynamics library has also been released as a sub-
library of BondLib [2], our bond graph library.  In 
that version, all material flows are represented inter-
nally by bond graphs.  A bond graph naturally tracks 
energy flows.  Each energy flow, in that version of 
the library, is represented as the product of a specific 
enthalpy and a mass flow.  Hence we can track mate-
rial flows and energy flows simultaneously. 

When I drive my car from home to work, I am 
not only spending energy in the form of the gas that 
my car consumes.  Some energy was also spent in 
producing the car, and more energy will be spent in 
discarding it at the end of its lifecycle and in recover-
ing those materials from it that can be recycled. 

The accumulated energy that accounts for all of 
those indirect uses of energy is called emergy [9].  
The specific enthalpy can be used to encode in the 
model the specific emergy, i.e., the emergy per unit 
of mass. 

I plan on porting examples of emergy modeling, 
as described in the publications by Howard Odum, 
over to the bond graph implementation of the System 
Dynamics library, but this work has not yet been 
completed. 
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Abstract
The manuscript describes a project, currently under development at the Politecnico di Milano, 
the aim of which is to create an integrated environment for the modelling and simulation of 
process control systems, where the plant(s) are described according to the Modelica object­
oriented paradigm, while   the control   systems  are  specified  in   an  IEC 61131.3­compliant 
language, and automatically translated into algorithmic Modelica. Preliminary results will be 
reported,   given  the  vast   scope of   the   project,   but   even   at   the  present   stage,   interesting 
discussions are possible on the potentialities and pitfalls of Modelica (and even of object­
oriented   modelling   at   large)   when  it   comes  to   describe   control   algorithms   of   realistic 
complexity and size.

1. Introduction
A significant experience is nowadays available on 
the use of Modelica to model, simulate and assess 
control systems in the process domain [15, 16, 12, 
13]. As witnessed by many references (samples 
will be given in the final manuscript, including 
some directly related to the authors' experience) 
there   is   a   correspondingly  vast  corpus  of 
libraries, models, and system studies [7, 6, 15, 16, 
14, 4].
Based on that experience, a critical point when 
dealing   with   applications   of   realistic   size   is 
invariantly   the   “correct”   representation   of   the 
control system. The object­oriented paradigm can 
be   suitably   exploited   to   allow   for   various, 
interchangeable   control   representations   of 
different,   scalable   complexity,   and   such   a 
possibility   is   definitely  a   plus  of   Modelica. 
However, when it comes the time to describe the 

control system in full  detail,   the most effective 
way   to   do   so   is   not   only   algorithmic,   but 
compliant with the industrial standard accepted in 
that   domain,   the   IEC  61131­3   being   the   most 
important one [8, 18, 17, 9, 5, 2, 11]. Adhering to 
an   industry   standard   is   beneficial   not   only   in 
terms of acceptability of the developed simulators 
on the part of people who know much more about 
their processes than about simulation (a problem 
worth addressing in any case, however) but also 
in terms of reduced ambiguity in the realisation 
of controller models [3, 4].
After several years of experience on the matter, 
the authors are strongly convinced that Modelica 
is   very  well   suited  as   a   host   language   for   the 
representation of realistic­scale process controls, 
but that to do so it is highly desirable to allow for 
the   specification   of   such   controls   in   IEC­
compliant languages.
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Based on the above idea, the AutoEdit (the name 
may   change   in   the   future)  project  was   started. 
The   aim   of   the   project   is   to   set   up   a   tool 
composed of

● a   graphical   Modelica   editor,   aimed   at 
writing the “plant model”,

● an editor   for   IEC 61131.3  languages  (at 
present   the  Ladder Diagram, Sequential 
Functional   Chart   and   the   Functional 
Block   Diagram   are   being   considered), 
aimed at writing the “control model”,

● a “compiler” capable of translating both 
the   “plant”   and   “control”   model   in   a 
single   Modelica   file,   to   be   fed   to   any 
Modelica   translator   for   simulation   (the 
term   “compiler”   being   used   here   for 
analogy and compatibility with  the IEC 
terminology,   albeit   the  Modelica   jargon 
would most likely advise something like 
“pre­translator”),

● and a simulation output browser.
To the best of the authors' knowledge, such a tool 
is   the   only   one   allowing   to   couple   Modelica 
process   modelling   with   IEC   (i.e.,   industry 
standard)   control   system  representation,   greatly 
facilitating the creation of simulators of process 
control systems.
AutoEdit   is   fully  written  in   java   (hence cross­
platform),   uses   the   XML   language   as   internal 
data   format   for   maximum   openness   and 
transparency,   and   is   entirely   free   software, 
released under the terms of the GPL license. It is 
the authors' intention to allow AutoEdit to operate 
with any Modelica translator, so as to maximise 
its   use   and   to   have   the   maximum  amount   of 
feedback   for   improvement.   At   present,   the 
AutoEdit   site   is   hosted   at   the   URL 
http://home.dei.polimi.it/donida/projects.php?proj
ect=AutoEdit

The paper organised as follows. First a minimal 
review of the background. Then, a discussion is 
carried   out   on   the   opportunity   of   generating 
event­driven Modelica code with an ad hoc  tool, 
instead of describing control system components, 
as already attempted, with Modelica (continuous 
time   based)   models.   The   outcome   of   such 
discussion, as can be guessed, is that the “best” 
approach depends on the size of the considered 
application, direct generation of algorithmic code 
being   preferable  in   the   case   of   large   (control) 
systems. The AutoEdit project is then described, 
illustrating     its   goals,   structure,   organisation, 
present state, and future developments.

2. Background
Recent   advances   in   object­oriented   modelling 
allow to tackle the simulation and the computer­
aided control system design of industrial plants in 
a unified framework. Traditionally, however, the 
plant   study   and   design,   the   following   design 
assessment   simulations,   the   control   system 
design,   the   overall   system   validation,   and   the 
operator   training,   are   not   developed   in   a 
coordinate way within a single environment. By 
vastly acknowledged opinion, doing so is a waste 
of time and resources, not to say a possible source 
of errors, because the involved environments are 
frequently  not   compatible  each  other,   requiring 
manual intervention to transfer information from 
one tool to another..
The Modelica multi­physics approach allows per  
se  to  perform a   first   integration of   two of   the 
involved   frameworks:   the   plant   model   and   its 
control are defined with an  equation  section for 
the plant and an algorithm section for the control 
code, and then the two sections are unified in a 
single model and simulated simultaneously.
In   the   present   software   engineering   arena, 
translators and cross­compilers are well diffused, 
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but   basically   such   tools   are   available   for   the 
software   development  only.   To   the  best   of   the 
authors' knowledge there are no similar examples 
in  simulation for control  area, except   for some 
ad   hoc  solutions   pertaining   to   the   micro­
controller real­time applications.
The   AutoEdit   is   an   attempt   to   fill   the   gap 
sketched   above.   It   is   in   the   first   place   an 
integrated IEC61131.3 compliant environment for 
the   graphical   development   of   the   control 
programs, having (algorithmic) Modelica as the 
target   language.   Moreover,   it   proposes   new 
standard   for   the   Ladder   Diagram   (LD)   and 
Sequential   Function   Chart   (SFC)   file 
representations,   using   the   XML   language   and 
DTD   validation.   AutoEdit   also   encompasses   a 
converter   from   the   SFC   XML   to   LD   XML 
format,   managing   different   level   of   variables' 
scope, as required to be compatible with the way 
IEC­compliant   projects   are   organised.     In   one 
word, AutoEdit is an attempt to allow developing 
the   model   of   a   complete   control   application 
(process   and   control   system)   in   a   single 
environment,   and   having   as   final   output   a 
complete simulator of the overall application.

3. Modelling control code in Modelica
Consider   the   way   a   control   application   is 
typically   developed   in   an   IEC­compliant 
environment.   The   application   is   composed   of 
programs,   written   in   one   or   more   of   the 
supported languages, and linked together by the 
development tool. The programs of an application 
are organised into sub­applications,  that  in  turn 
are deployed to one or more CPUs and arranged 
into threads, each one composed of programs that 
share the cycle time.  i.e.,   the  temporal cadence 
for the update of inputs and outputs.
The   goal   of   AutoEdit   is   to   take   as   inputs

● a model of the plant written in standard 
Modelica

● and   some   description   of   the   control 
application (the term “application” being 
intended  in   the   IEC  sense   summarised 
above,

producing as output a single Modelica model, to 
be fed to any Modelica translator for subsequent 
simulation.
The question, then, is how to describe the control 
application.
Basically, one can follow two strategies. One is to 
describe   the   IEC   languages'   elements   as 
Modelica   models:   this   is   somehow   tempting 
especially   if   one   considers   the   graphical   IEC 
languages (FBD, LD, and SFC). Doing so allows 
to take profit from the manipulation capabilities 
of   the   adopted   translator,   to   the   apparent 
advantage of simulation efficiency.
The   other   strategy   is   to   translate   the   IEC 
programs   into   Modelica   algorithms,   to   be 
assembled conveniently in blocks, and connected 
to the plant model in the usual way.
AutoEdit  takes  the second way,  for  the reasons 
summarised   in   the   following.   First,   especially 
large   can   easily   lead   symbolic   manipulator   to 
deal with thousands and thousands of variables: 
many   of   them   are   managed   trivially,   but   the 
overhead remains. Then, many problems in IEC­
specified control systems reside in the incorrect 
synchronisation   of   control   threads   and 
applications,   and   therefore   –   for   a   credible 
validation  of   the control   system –   representing 
that   timing   (e.g.,   and   typically,   with   when 
clauses) is very important; if this is done, given 
the limitations of when­equations, describing the 
code as  algorithms starts   looking advisable.   In 
addition, the organisation of the code in threads 
and sub­applications is typically functional, thus 
better reflected in algorithms than in equations. 
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Finally, and in some sense as a by­product, if a 
tool   like   AutoEdit   generates   algorithmic 
Modelica code starting from an IEC source, then 
the same tool can easily be extended to generate – 
from  the   same   source  –   code  in   virtually   any 
procedural   programming   languages.   Exploiting 
that   possibility   is   in   the   future   plans   of   the 
AutoEdit project, and will lead to a single tool for 
the simulation of a complete system (avoiding the 
“how­to­close­the­loop”   problem   of   IEC 
development   environments)   and   also   for   the 
generation   of   the   control   code   to   be   actually 
deployed to the system's CPU(s).

4. An example
A very simple example is now reported to better 
illustrate the ideas of section 3. In this example, a 
home irrigation plant is introduced. The plant has 
an accumulating tank, a pump, two level sensors, 
and   three   valves,   each   one   connected   to   an 
irrigation line. A schematic figure of the plant is 
reported as figure 1.

Figure 1: the example plant.

The pump starts pumping water in the tank when 
the level of the water is lesser than a OK_LEVEL 
(boolean  sensor  that  returns   true  if  covered  by 
water)   level   since   the   water   reaches   the   level 
FULL_LEVEL   (similar   boolean   sensor). 
Everyday,   say   at   20:00   (event   launched   by   a 

START_CYCLE  variable,   assumed  here   to   be 
managed by some clock external to the program), 
each of the valves (V1 to V3) has to be opened. 
Each valve, one for each zone, remains opened 
for 10 minutes and then is closed. There is also a 
ON/OFF command: if ON is true then the plant 
works   as   described   below,   otherwise   all   the 
valves are opened, and the pump is stopped.
Figure   2   shows   the   overall   control   program, 
written in the SFC language, as is appears in the 
AutoEdit window. It is possible to recognise the 
various   elements   of   the   (very   simple)   control 
logic, and to appreciate the similarity of the user 
interface   to   that   of   the   typical   IEC­compliant 
environments (to  the advantage of acceptability 
on the part of control system developers). We do 
not   report  simulations  here since  the plant and 
control operation in this example are very simple, 
and would not contribute to the purpose of this 
paper.

Figure 2: the example plant control in SFC.

In the example the  translation was very simple 
but, when considering industrial  applications of 
realistic size, the number and length of the lines 
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of control code would increase dramatically, and 
automatic   generation   of   the   algorithmic   code 
would prove necessary. In addition to this if we 
consider   the   possibility   to   have   heterogeneous 
IEC­compliant programs a mixture of ST, LD and 
SFC   implementation,   the   complexity   further 
increases.
Thanks  to  the AutoEdit conversion utility,   it   is 
possible to translate the SFC programs into LD 
and then, automatically, to Modelica algorithm­
based   models.   The   translation   of   an 

heterogeneous IEC control program is  perfectly 
transparent to the AutoEdit user.

4. The AutoEdit project
The project started in the 2004 with the intent to 
realise   a   Java   graphical  application  to   support 
graphical   programming   for   the   LD,   SFC   and 
Structured Text (ST) languages.
From 2004 to 2006 a graphical application was 
therefore   developed   to   graphically   support   the 
SFC and LD programming.

Figure 3: The AutoEdit main window.

Starting   from 2006,  the  target  was widened as 
illustrated  in   section  3,   so   as   to   integrate   the 
AutoEdit   environment   with   a   Modelica  editor, 
and then (starting in 2007) to create a converter 
from SFC, LD XML and Modelica algorithmic­
based  .mo  files.  This   is   –  more or   less   –   the 
present   state of  the project. Notice  that a  high 
development effort is being spent on AutoEdit, so 
that   the   mentioned   state   is   continuously 
changing. The reader is referred to the project site 

for up­to­date information.

Here,   just   some   samples   of   the   AutoEdit 
operation   are   given.   Space   limitations   prevent 
from reporting here any technical detail, that can 
anyway be figured out from the site, and will also 
be available in the system documentation.

Figure 3   shows   the  main window of   AutoEdit 
with  a  Modelica model   open  for   editing.   It   is 
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possible to see the multiple subwindows scheme, 
allowing   simultaneous   editing   of   multiple 
(process  and/or  control)   models.   The  AutoEdit 
text editor, thanks to the integration of the JEdit 
software,   offers   many   functionalities,   among 
which syntax highlighting, bracket highlighting, 
text   folding   (also   for   annotations),   word   auto­
completion,   auto­indentation   and   many   others 
utilities. of  multiple models.

Figure 4, on the other hand, shows the conversion 
from SFC  to LD, namely of   the pump control 
program in the example introduced above. It  is 
possible  to   appreciate  the usefulness  of  having 
simultaneous   views   of   the   same   code   with 
different   representations,   a   facility   offered   by 
several IEC­compliant environments, and of high 
usefulness   according   to   the   opinions   of   the 
industrial community.

Figure 4: the pump control program converted from SFC to LD by AutoEdit.

5. Future developments
Many   interesting   “future   works”   arise   for   the 
AutoEdit project from the scenario synthetically 
described   above.   Among   those   possible 
developments,   those that seem more promising, 
and are therefore scheduled as work to be done in 
the near future, are

● the development of a  3d viewer for  the 
simulation data,

● the   addition   of   other   advanced   editing 

functionalities,
● the exploitation of interaction/integration 

possibilities   with   other   IEC­compliant 
tools,

● the   output   of  ad  hoc  real­time   code  in 
several languages, the C languages being 
for   obvious   reasons   the   first   to   be 
considered,

● the addition of multitasking support.
6. Conclusions
A   Java­based   integrated   environment   for   the 
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development   of   complete   object­oriented 
simulation models  of  controlled plants, namely 
the AutoEdit project, was presented.
The goal of AutoEdit is to allow the user to create 
both   the   plant   model,   using   the   power   of   the 
Modelica language, and an algorithmic model of 
the control program, adhering to the IEC61131.3 
industry standard,
As such, AutoEdit   not only proposes a software 
solution, but also tries to suggest new standards 
and ideas for unifying two of the most important 
activities   of   the   computer­aided   engineering 
tasks: model and control co­simulation.
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Abstract 
Any mature modeling and simulation language should 
provide support for error recovery. Errors might always 
appear in the runtime of such languages and the devel-
oper should be able to specify alternatives when fail-
ures happen. In this paper we present the design and 
implementation of exception handling in Modelica. To 
our knowledge this is the first approach of integrating 
equation-based object-oriented languages (EOO) with 
exception handling.  
 
Keywords: Exception handling, Modelica. 

1 Introduction 
According to the terminology defined in IEEE Standard 
100 [9], we define an error to be something that is 
made by humans. Caused by an error, a fault (also bug 
or defect) exists in an artifact, e.g. a model. If a fault is 
executed, this results in a failure, making it possible to 
detect that something has gone wrong.  

Approaches to statically prevent and localize faults 
in equation-based object-oriented modeling languages 
are presented in [16] and [17]. However, in this paper 
we focus on language mechanisms for dynamically 
handling certain classes of faults and exceptional condi-
tions within the application itself. This is known as ex-
ception handling. An exception is a condition that 
changes the normal flow of control in a program. 

Language features for exception handling are avail-
able for most modern programming languages, e.g. 
object oriented languages such as Java [15], C++ [14], 
and functional languages such as Haskell [3], OCaml 
[12], and Standard ML [13]. 

However, exception handling is currently missing 
from Object-Oriented Equation-Based (EOO) Lan-
guages like Modelica [2][6], VHDL-AMS [10], 
gPROMS [11]. 

A short sketch of the syntax of exception handling 
for Modelica was presented in a paper on Modelica 
Metaprogramming extensions [5], but the design was 

incomplete, not implemented, and no further work was 
done at that time. 

The design of exception handling capabilities in 
Modelica is currently work in progress. The following 
constructs are being proposed: 

• A try...catch statement or expression. 
• A throw (...) call for raising exceptions. 

We have tried to keep the design of syntax and seman-
tics of exception handling in Modelica as close as pos-
sible to existing language constructs from C++ and 
Java, while being consistent with Modelica syntax 
style. 

2 Applications of Exceptions 
In this section we provide examples of exception han-
dling usefulness. There are three contexts in which ex-
ceptions can be thrown and caught: expression level, 
algorithm level and equation level. 
import Modelica.Exceptions=Exn; 

function log 
 input Real x; 
 output Real y; 
algorithm 
 y :=  
 if x <= 0  
 then  
  throw (Exn.InvalidArgumentException( 
         message="Logarithm is undefined  
                  for ...")) 
 else  
   Modelica.Math.log(x); 
end log; 

Function log defined above will throw an exception if 
it is provided with an invalid argument. This is not only 
useful for mathematical functions, but also for func-
tions (i.e. like the ones in Modelica.Utilities 
package) that deal with errors due to the operating sys-
tem. A common for all tools standard hierarchy of ex-
ceptions could be defined in the Modelica Standard 
Library for all the exceptions categories needed. De-
pending on the simulation runtime implementation (i.e. 
language of choice) of the Modelica tool exceptions 
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could be translated from Modelica to the runtime and 
back.  

A model that uses the try-catch construct in the ex-
pression and equation contexts is presented below: 
 
model Test 
 // try to read a value from file 
 // and if it fails just give it 
 // a default value. 
 parameter Real p= 
       try  
        readRealParameter("file.txt","p")  
       catch(Exn.IOException e) 
        0 
       end try; 
 Real x; 
 Real y; 
equation 
  try 
    y = log(x); 
  catch(Exn.InvalidArgumentException e) 
    // terminate the simulation with  
    // a message on what went wrong 
    terminate(e.message); 
  end try;     
end Test; 

In this model exception handling in expressions and 
equations are shown. In the case of exception handling 
in equations the example just terminates the simulation 
with an exception.  

As one may have noticed the exceptions can be 
thrown during: 

• Compilation time for expressions or functions that 
are evaluated at compile time 

• Simulation time, due to exceptions raised into the 
solver, functions, expressions or equations.  

All the exceptions raised during compile time are re-
ported to the user. The exceptions which are caught are 
reported as warnings and the un-caught ones are re-
ported as errors. 

3 Exception Handling 
In this section we present the design of the exception 
handling constructs. The grammar of the try-catch con-
structs is given below. The grammar follows the style 
from the Modelica Specification [6] and uses constructs 
defined there. Different try clauses for each of the ex-
pression, statements and equations contexts are defined. 

exception_declaration: 
  type_specifier IDENT  
  ["(" exception_arguments ")"] 
 
exception_arguments: 
   expression  
   [ "," exception_arguments ] 
 | named_arguments 
 

named_arguments:  
  named_argument [ "," named_arguments ] 
 
named_argument:  
  IDENT "=" expression 
 
name: 
  IDENT [ "." name ] 
 
throw_clause: 
  throw ["(" name  
  [ "(" exception_arguments ")"] ")" ] 

try_clause_expression: 
  try  
    expression 
  ( else_catch_clause_expression 
    | catch_clause_expression  
      { catch_clause_expresion }  
      [ else_catch_clause_expression ] ) 
  end try 
 
catch_clause_expression: 
  catch "(" exception declaration ")" 
    expression   
 
else_catch_clause_expression: 
  elsecatch  
    expression 

try_clause_algorithm: 
  try  
    { statement ";" } 
    ( else_catch_clause_algorithm 
      | catch_clause_algorithm  
        { catch_clause_algorithm }  
        [ else_catch_clause_algorithm ] ) 
  end try 
 
catch_clause_algorithm: 
  catch "(" exception declaration ")" 
    { statement ";" } 
 
else_catch_clause_algorithm 
  elsecatch  
    { statement ";" } 

try_clause_equation 
  try  
    { equation ";" } 
  ( else_catch_clause_equation  
    | catch_clause_equation  
      { catch_clause_equation }  
      [ else_catch_clause_equation ] ) 
  end try 
 
catch_clause_equation: 
  catch "(" exception_declaration ")" 
    { equation ";" } 
 
else_catch_clause_expression: 
  elsecatch  
    { equation ";" } 

Throwing via throw; without any parameter can only 
appear inside the catch clause and will throw the cur-
rently caught exception. This constraint is not specified 
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in the above grammar to keep it simple. Of course, it 
could be also checked by the semantics phase.  

The try-catch clauses shown here are part of the 
various contexts rules in Modelica grammar: expres-
sions, algorithm and equation.  

3.1 Exception Handling for Statements 

The statement variant has approximately the following 
syntax: 
try  
  <statements1> 
catch(<exception_declaration>)  
  <statements2> 
end try; 

The semantics of a try-catch for statements is as fol-
lows: An exception generated from a failure during the 
execution of statements1 will lead to the execution 
of statements2 if the exception matches the catch 
clause. 

3.2 Exception Handling for Expressions 

The syntax of the expression variant is as follows: 
try  
  <expression1> 
catch(<exception_declaration>) 
  <expression2> 
end try; 

The semantics of a try-catch for expressions is as fol-
lows: An exception generated from a failure while exe-
cuting expression1 will lead to the execution of ex-
pression2 if the exception matches the catch clause. 

3.3 Exception Handling for EOO 

What does it mean to have exception handling for equa-
tion-based models? For example, if an uncaught excep-
tion, e.g. division by zero, occurs in any of the expres-
sions or statements executed during the solution of the 
equation-system generated from the model, the catch 
could handle this, e.g. by simulating an alternative 
model (providing alternate equations), or stopping the 
simulation in a graceful way, e.g. by an error-message 
to the user. The number of equations within the try con-
struct must be the same as the number of equations in 
the catch part. This restriction is needed because mod-
els must be balanced. Of course, the restriction does 
not apply for the catch parts that only terminates the 
simulation and reports an error. 

The syntax of the equation variant is as follows: 
try  
  <equations1> 
catch(<exception_declaration>)  
  <equations2> | <terminate(...)> 
end try; 

The semantics of a try-catch for equations is as follows: 
If a failure generating an exception occurs during the 
solution of the equations in the set of equations denoted 
equations1, then if the catch matches the raised ex-
ception, then instead the equations2 set is solved. 

The source of the exception can be in the expres-
sions and functions called in equations1, which are 
evaluated during the solving process. Certain excep-
tions might originate from the solver. In that case, a 
few selected solver exceptions need to be standardized 
and predefined. 

The semantics of try-catch for equations is similar 
to the one for if-equations, with the difference that the 
event triggering the catch block is when an exception is 
thrown. 

There could be several semantics for try-catch in 
equation section and they are discussed in Section 8. 

3.4 Exception Handling and external functions 

The compiler should be able to check the exceptions in 
order to: 

• Report an error if the catch part tries to catch an ex-
ception that will never be thrown. 

• Report exceptions that are not caught anywhere 
• Generate efficient code for exceptions 

The compiler can find automatically at compilation 
time what exceptions are thrown from models and 
functions defined in Modelica. However, the compiler 
must be provided with additional help when it comes to 
external functions. Therefore, when declaring external 
functions, the exceptions that might be thrown by them 
have to be declared too. 

We could model this additional information in two 
ways: directly in the grammar or as annotations. 

Directly in the grammar as part of the ele-
ment_list (check the Modelica grammar for the ele-
ment list specification) of the function or model: 

throws_declaration: 
   throws name { "," name } ";" 

Is not really needed to specify in the grammar the pos-
sible exceptions to be thrown, we could use annotations 
instead: 
annotation(throws={name1, name2, ... }; 

Names used above are constructed according to name 
grammar rule specified in the beginning of this section. 

In the literature this feature of the compiler (or the 
language) is called Checked exceptions [18]. 
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4 Transforming matchcontinue Fail 
Semantics 

The current MetaModelica language extension has a 
simple fail semantics: fail exceptions can be thrown 
explicitly (via a fail() call) or implicitly (e.g., via a 
failure due to no patterns matching in a called func-
tion), and be caught/handled within the subsequent 
case(s) in the matchcontinue construct matching the 
same pattern. 

The matchcontinue construct can be transformed 
into a match-expression that does not have the continue 
semantics after a failure, however requiring that the fail 
exception is caught in the same case branch. 

Example: 

matchcontinue x local ... 
case Plus(a,b) equation   // raise 
    ...generateFailureException... 
case Plus(a,b) equation   // Catch 
    handleFailure(a,b) 
case _ handle_All_Inclusive_case(); 
end matchcontinue 

can be transformed into the following: 

match x local ... 
case Plus(a,b) equation 
  try  
    ...generateFailureException... 
  catch(Fail fail)  
    handleFailure(a,b)       
  end try; 
case _ handle_All_Inclusive_case(); 
end match; 

This transformation will be supported by a refactoring 
tool to transform existing code based on matchcon-
tinue constructs into faster and clenrer code based on 
the match construct combined with exception han-
dling. Such transformation will speed up the Open-
Modelica compiler, by removing many uses of match-
continue with repeated matching due to overlapping 
patterns. 

5 Exception Values 
In this section we discuss different ways of represent-
ing exception values in Modelica. In general exceptions 
are values of a user defined type. Certain exceptions, 
such as  DivisionByZero or ArrayIndexOutOf-
Bounds are predefined. The user should be able to de-
fine exceptions hierarchically (i.e. packages of excep-
tions) and use inheritance to add extra information 
(components) to existing exceptions, thus creating spe-
cialized exceptions.  

5.1 Exceptions as Types  
We can model exceptions as a built-in Modelica type 
Exception.  A pseudo-class declaration of such a type 
and its usage would look like: 
type Exception  
  // the value of the exception is  
  // a string, accessed directly  
  StringType ’value’    
end Exception; 

// Defining a new exception 
type E1  
  extends Exception; 
end E1; 

// Instantiate new exception 
E1 e1 = "exception E1";  
// Raise new exception 
throw e1;  

// Adding more information to an exception 
type E2 
  extends E1; 
  parameter String moreInfo; 

 end E2; 

// Instantiate the exception 
 E2 e2(moreInfo="E2 add") = "exception E2"; 

 // Throw exception 
throw(e2); 

 
try  
  ... 
catch(E2 e2)  
  // here you can access the  
  // e2 value directly 
  // but you cannot access e2.moreInfo 

catch(E1 e1) 
  // here you can access the  
  // value of e1 directly 
end try; 

Because we extend a basic type, it is possible to add 
more information to the exception, but this information 
cannot be accessed via dot notation.  

5.2 Exceptions as Records 

Another way to model exceptions is as Modelica re-
cords.   
record Exception  
  parameter String message; 
end Exception; 

// defining a new exception 
record E1  
  extends Exception(message="E1"); 
  parameter String moreInfo; 
end E1; 

// instantiate new exception 
E1 e1(moreInfo="More Info");  

// raise new exception 
throw(e1);  
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// Try and catch 
try  
  ... 
catch (E1 e1) 
  // here you can access e.message 
  // and e.moreInfo 
catch (Exception e) 
  // here you can access e.message 
end try; 

Modeling exceptions as records has many of the de-
sired properties that a user might want. The problems 
we see here are that: 

• Is not very intuitive to throw and catch arbitrary re-
cords.  

• The hierarchical structure is partly lost during flat-
tening, which means that for the records used in the 
throw/try-catch constructs this information should 
be preserved.  

• The inheritance hierarchy is flattened for records 
and one would like to keep it intact to be able to 
catch exceptions starting from very specific (at the 
bottom of the inheritance hierarchy) to more general 
(at the top of the inheritance hierarchy)  

We think that a better approach is with a new restricted 
Modelica class called exception.  

5.3 New Restricted Class: exception 

We believe that the best way to model exceptions in 
Modelica is by extending the language with a new re-
stricted class called exception. Moreover, similar de-
sign choices have been made in Java or Standard ML, 
with their predefined exception types. In Java one can 
only throw objects of the java.lang.Throwable and 
its superclass java.lang.Exception.  The C++ lan-
guage allows throwing of values of any type. In Stan-
dard ML and OCaml exceptions values and their type 
need to be defined using a special syntax. 

Exceptions can be represented in Modelica as a new 
restricted class in the following way: 
exception E1 
  parameter String message; 
end E1; 

E1 e1(message="More Info");  
 throw(e1); // raise new exception 

// defining a new exception 
exception E2  
  extends E1(message="E2"); 
  parameter String moreInfo; 
end E2; 

// instantiate new exception 
E2 e2(moreInfo="More Info");  
throw(e2); // raise new exception 
 
try  
  ... 

catch(E2 e2) 
  // here you can access e.message 
  // and e.moreInfo 
catch(E1 e1) 
  // here you can access e.message 
end try; 

Having a specific restricted class for exceptions would 
have the following advantages: 

• Throwing and catching only values of restricted 
class exception is more intuitive than using records.  

• Both the structural hierarchy and the inheritance hi-
erarchy of the exceptions can be kept during flatten-
ing and translated to C++, Java, Standard ML or 
OCaml code more easily.  

• The type checking of throw and try-catch constructs 
would be more specific and straightforward.  

6 Typing Exceptions 
Modelica features a structural type system, which 
means that two structures can be in the subtype rela-
tionship even if they have no explicit inheritance speci-
fied between them.  

The type checking procedure for exceptions has to 
be different than for all the other constructs, namely: 

• Only restricted classes of type exception can be 
thrown. 

• When elaborating declarations of restricted class 
exception the subtype relationship applies only if 
there is specific inheritance relation between excep-
tions. This is needed because the exceptions have to 
be matched by name and have to be ordered so that 
the most specific case (supertype) is first and the 
least specific (subtype) is last in a catch clause. 

• When translation declarations of restricted class ex-
ception there will be no flattening of the inheritance 
hierarchy. 

• When elaborating catch clauses the compiler has to: 
i) match the exception by name, ii) reorder the catch 
clauses in the inverse order of the inheritance rela-
tion between exceptions or give an error if the less 
specific exceptions are matched before the more 
specific ones. 

• The compiler has to check if an exception specified 
in the catch clause will actually be thrown from the 
try body or not. If such exception is not thrown the 
compiler can either discard the catch clause or issue 
a warning/error at that specific point. 

With these new rules the typing of exception declara-
tions, exception values and catch clauses can be 
achieved. After the translation, the runtime system and 
the language in which was implemented (C++, Java, 
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Standard ML) will provide the rest of the checking for 
exceptions. 

7 Implementation 
In this section we briefly present the OpenModelica 
implementation of exception handling. When referring 
to Exception Hierarchy we mean both the structural 
hierarchy and the inheritance hierarchy. 

 
Figure 1. Exception handling translation strategy. 

7.1 Overview 

The general translation of Modelica with exception 
handling follows the path described in Error! Refer-
ence source not found.. The exception handler and the 
exception hierarchy are passed through the compiler via 
the intermediate representations of each phase until the 
C++ code is generated (or any other language code 
used in the backends of different Modelica compilers).  

The specific OpenModelica translation path for 
Modelica code with exception handling is presented in 
Figure 2. 

Exception handling in OpenModelica required the fol-
lowing extensions: 

• The parser was extended with the proposed excep-
tion handling grammar. 

• Each intermediate representation of the OpenMode-
lica compiler was augmented with support for ex-
ceptions. 

Both the structural and the inheritance hierarchy of the 
exceptions are passed through the OpenModelica com-
piler until C++ code is generated.  
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C++ Exception Hierarchy
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CodeGen
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Figure 2. OpenModelica implementation. 

7.2 Translation of Exception values 

The translation from the internal representation to C++ 
code is straightforward: a Modelica exception maps to 
a C++ class. For example, the following Modelica code 
with exceptions: 
exception E 
  parameter String message; 
end E; 
 
exception E1 
  extends E(message="E1"); 
  parameter Integer id = 1; 
end E1; 

is translated into the following C++ code: 
class E  
{ 
  public: 
  modelica_string message; 
  E(modelica_string message_modification) 
  { 
    message = message_modification; 
  } 
  E()  
  { message = ""; } 
} 

Modelica Code 
with Exception handling and 

Exception Hierarchy 

FlatModelica Code 
with Exception handling and 

the Exception Hierarchy 

DAE with Exception handling 
and the Exception Hierarchy 

C++ Code and 
C++ Exception handling and 

C++ Exception Hierarchy 
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class E1 : public E  
{ 
  public: 
  modelica_integer id; 
  E1(modelica_string message_modification, 
     modelica_integer id_modification)  
  { 
    message = message_modification; 
    id = id_modification; 
  } 
  E1()  
  { 
    message = "E1"; 
    id = 1; 
  } 
} 

The following Modelica code for exception instantia-
tion and exception throwing: 
 
E  e;  throw(e);  
E1 e1; throw(e1); 
 
E1 e2(message="E2", id=2);  
throw(e2); 
 
E1 e3(message="E3");  
throw(e3); 

is translated to the following C++ code: 
E  *e  = new E();  throw e;  
E1 *e1 = new E1(); throw e1; 
 
E1 *e2 = new E1("E2", 2);  
throw e2; 
 
E1 *e3 = new E1();  
e3->message = "E3”; 
throw e3; 

Is also possible to represent exception values in C++ as 
objects allocated on the stack, i.e.: E1 e2("E2", 2);. 

7.3 Translation of Exception handling 

The C++ exception handling code follows the Modelica 
code. The table below defines the translation procedure 
for Modelica including the MetaModelica extensions. 

Modelica 
Expressions 
 

C++ 

x :=  
try  
  exp1  
catch(E e) 
  exp2 
end try; 

modelica_type temp; 
 

try  
{  
  temp = exp1;  
} 
catch(E *e) 
{ 
  temp = exp2; 
} 
x = temp; 
 

Modelica 
Statements 

C++ 

try  
 <statements> 

catch(E e) 
 <statements> 

end try; 

try  
{  
// Modelica  
// corresponding  
// C++ statements 

} 
catch(E *e) 
{ 
// Modelica  
// corresponding  

 // C++ statements 
} 

Modelica 
Equations 

C++ 

 

try  
 <eqnsA> 

catch (Ex1 e1) 
 <eqnsB> 

end try; 
 
 
 
 

try  
 <eqnsC> 

catch (Ex2 e2) 
 <eqnsD> 

end try; 
 

event1=false; 
event2=false; 

while time < stopTime 
{ 
try{  
 call SOLVER for problem:  
 if event1 
 then 
   eqnsB; 
 else 
   eqnsA 
 end if;   

 if event2 
   eqnsD; 
 else 
   eqnsC; 
 end if; 
} 
catch(Ex1 *e1) 
{ 
 discard posible 
 calculated current  
 step values; 
 reinit the solver  
 with previous step 
 values; 
 event1 = true; 
} 
catch(Ex2 *e2) 
{ 
 discard posible  
 calculated current  
 step values; 
 reinit the solver  
 with previous step  
 values; 
 event2 = true; 
} 
} 

8 Further Discussion 
During the design and implementation of exception 
handling we have encountered various issues which we 
will present in this section. The exception handling in 
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expressions and algorithm sections are straightforward. 
However when extending exception handling for equa-
tion sections there are several questions which influ-
ence the design choices that come to mind: 
 
Questions: Is the exception handling necessary for 
equation sections? If yes, what are the semantics that 
would bring the most usefulness to the language? 

Answers: We believe that exception handling is neces-
sary in the equation sections at least to give more useful 
errors to the user (i.e. with terminate(message) in 
the catch clause) or to provide an alternative for grace-
fully continuing the simulation. Right now in Modelica 
there is no way to tell where a simulation failed. There 
are assert statements that provide some kind of lower 
level checking but they do not function very well in the 
context of external functions. As example where alter-
native equations for simulation might be needed we can 
think of the same system in different level of detail. 
Where the detailed system can fail due to complexity 
and numerical problem the simulation can be continued 
with the less complex system.  

Semantics of try-catch in equation sections 

Several semantics can be employed to deal with try- 
catch clauses in equation sections: 
1. Terminate the simulation with a message (as we 

show in application section) 
2. Continue the simulation with the alternative equa-

tions from the catch clause activated and the ones 
from the try-body disabled. When the exception 
occurs the calculated values in that solver step are 
discarded and the solver is called again with previ-
ous values and the alternative from the catch 
clause. 

3. Signal the user that an exception occurred and re-
start the simulation from the beginning with the 
catch-clause equations activated. 

4. When an exception occurs, discard the values cal-
culated in the current step and activate the alterna-
tive equations from catch-clause. However, at the 
next step try again the equations from the try-body. 
This will make the catch-clause equation active 
only for the steps where an error might occur. 

We think that the most useful design for exception 
handling in equation section is the one that has both 
features 1 and 2 active. 

9 Conclusions 
We have presented the design and the implementation 
of exception handling for Modelica. We strongly be-

lieve in the need for a well designed exception handling 
in Modelica. By adding exception handling constructs 
to the language we get a more complete language and 
provide the developer with means to better control ex-
ceptions. There are several issues that have to be con-
sidered when designing and implementing these con-
structs which we have discussed in this paper. 
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Abstract 

For the modeling and simulation of the Gasification 
Island a new Modelica library GasificationIsland 
was developed. Therefore new components had to be 
generated, like the gasifier or the components of the 
pneumatic feeding system. The developed models 
are based on the Modelica_Fluid and the Mode-
lica.Media libraries. In this paper the structure of the 
most important component models and the main 
modeling assumptions are illustrated. 
  
Keywords: Gasification Island modeling; SFG 

1 Introduction 

 
Figure 1: usage of the syngas from the gasification [1] 
 
The gasification process is of great importance for 
the electrical and basic chemical industry as it con-
verts any carbon-containing material into a synthesis 
gas (syngas) composed primarily of carbon monox-
ide and hydrogen. This syngas can be used as a fuel 
in a combined cycle to generate electricity (Inte-
grated Gasification Combined Cycle). But it can also 
be used as a basic chemical for a large number of 

syntheses in the petrochemical and refining industry, 
like Methanol or Fischer Tropsch Synthesis (Figure 
1). The modeling of the gasification process is till 
this day a great challenge. 
 

1.1 The gasification process 

Gasification means the thermo-chemical conversion 
of fuels with a reactant to a combustible gas, which 
is rich of the components CO, H2 and CH4. The most 
proceeded reactions are partial oxidation procedures, 
which take place with oxygen in free (elemental) or 
bounded form (H2O, CO2). These partial oxidations 
are interfered in dependence of the process and the 
process parameters with pyrolysis or devolatilization 
and hydrogenation processes [2]. 
The gasification process can be divided into different 
types according to the gasification agent/heat supply 
(autothermic, allothermic or hydrogenating gasifica-
tion), the gas-solid-contacting (fixed/moving bed, 
fluidized bed or entrained flow gasification) or con-
cerning the process temperature (above or below ash 
melting point).  
This paper deals with the SFG gasification process, 
which is an autothermic, entrained flow gasifier with 
temperatures in the gasifier above the ash melting 
point. 
 
In the gasification process a large number of reac-
tions take place. Principle chemical reactions are 
those involving carbon, carbon monoxide, carbon 
dioxide, hydrogen, water (or steam) and methane [3]: 
 
combustion reactions 

COOC →+ 25.0   -111 MJ/kmol  

225.0 COOCO →+   -283 MJ/kmol  

OHOH 222 5.0 →+   -242 MJ/kmol 
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Boudouard reaction 
COCOC 22 ↔+   +172 MJ/kmol 

 
water gas reaction 

22 HCOOHC +↔+   +131 MJ/kmol 

 
methanation reaction 

422 CHHC ↔+   -75 MJ/kmol 

 
CO shift reaction 

222 HCOOHCO +↔+  -41 MJ/kmol 

 
steam methane reforming reaction 

224 3 HCOOHCH +↔+  +206 MJ/kmol 

 
Most fuels contain additional components beside 
carbon, hydrogen and oxygen, e.g. sulfur, nitrogen or 
minerals. Sulfur in the fuel is converted into H2S and 
COS and the nitrogen into elemental nitrogen, NH3 
or HCN. 
 

1.2 The SFG Gasification Island 

The SFG Gasification Island consists of the SFG 
gasifier itself, the pneumatic feeding system and the 
gas treatment system (Figure 2). 

 
Figure 2: SFG Gasification Island [4] 
 
The solid fuel (e.g. coal) is fed into the SFG-Reactor 
through a pneumatic feeding system. In the reactor 
the carbon rich fuel will be partially oxidized under 
high pressure and under the addition of oxygen as 

gasifying agent and steam as temperature moderator 
into a raw gas. Minerals in the fuel are separated and 
leave the bottom of the gasifier as an inert glass-like 
slag. The raw gas is cooled down and saturated in the 
quench. Afterwards it flows in the venturi wash and 
in the partial condenser, where the raw gas is cooled 
down and the solid particles are separated from the 
raw gas.  

2 GasificationIsland Library Over-
view 

The GasificationIsland library is an in-house Mode-
lica library for the transient simulation of the Gasifi-
cation Island process. The library is designed in a 
joint project with Siemens Fuel Gasification Tech-
nology GmbH Freiberg. The intention of the project 
is to apply these models to analyze the behavior of 
the different sub-processes as well as the whole 
Gasification Island at load changes or disturbances 
and to test new control strategies (see chapter 4). 
Furthermore the library shall be utilized in the plant 
shop tests prior real commissioning on site. 
The developed models are based on the Mode-
lica_Fluid and the Modelica.Media libraries.  
The library is divided into functional sub-packages. 
In Figure 3 a screen shot of the first hierarchical 
level of the library is shown. 
 

  
Figure 3: screen shot of the GasificationIsland library 
in the package browser 
 
The Media package contains all the used media 
models like raw gas, slag or coal. The solids are 
simulated as media with constant properties, like the 
ConstantPropertyLiquidWater in the Mode-
lica.Media library. 
The package LockHopperSystem includes all com-
ponent models of the pneumatic feeding system, e.g. 
lock hopper, storage bin or feeding vessel. 
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The packages Reactor/Quench comprise the models 
of the gasification reactor and the quench. 
The SlagDischarge package includes the models of 
the slag hopper and the flushing tank. 
The GasTreatment package contains models of the 
venturi scrubber, partial condenser and drums. 
The Controller package includes the sequence con-
trol of the batch processes for the pneumatic feeding 
system and the slag discharge system. The control-
lers were modeled by the Modelica.StateGraph li-
brary. 
The package Model comprises the different simu-
lated sub processes of the gasification island and a 
model of the complete process.  
 
In the following section the structure and the main 
modeling assumptions for some selected components 
will be illustrated. 

3 Developed Models 

3.1 Lock Hopper System 

3.1.1 Storage bin 

 
Figure 4: screen shot of the storage bin icon 
 
The storage bin should ensure the uninterrupted ser-
vice of the gasification reactor with coal. The storage 
bin works at ambient pressure.  
 
In practice the pneumatic feeding system consists of 
more then one lock hopper, so the storage bin needs 
as many outlets as lock hoppers exist. For solid flow 
the outlet form is conical (Figure 4). To simulate the 
filling level of this geometrical form the storage bin 
was divided into segments. The single segments are 
connected through valves. These valves have a huge 
Kv flow coefficient and ensure the mass flow be-
tween the segments. So it can be guaranteed that the 
filling level in each storage bin segment is the same. 
There is only one exception: if the filling level is 
lower than the high of the cone no more mass trans-
fer between the segments occurs. This is realized by 
setting the outlet pressure of the segment connec-
tions to a defined minimum value. Furthermore the 
inlet flow is split to the segments. Figure 5 shows the 

implementation of a storage bin with six outlets in 
the Dymola Diagram Layer. 
 

 
Figure 5: screen shot of the Implementation of a stor-
age bin with 6 outlets in the Dymola Diagram Layer 
 
For the outlet ports the coal mass flow is defined. 
The following function is used [5]: 
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There is the diameter of the lock hopper outflow, 

 is the mean diameter of the coal particle, 
Ad

Pd Pρ  is 
the particle density, γ  is the repose angle, β  is the 
cone angle and h is the fill level of the coal. 
 

3.1.2 Lock Hopper 

 
Figure 6: screen shot of the lock hopper icon 
 
For dosing of the pulverized coal into the reactor it is 
necessary to bring it into a pressure system that op-
erates at a pressure level higher than the reactor pres-
sure. This is fulfilled by the lock hoppers. Therefore 
4 sequences appear: 
 

Modelling of the Gasification Island with Modelica

The Modelica Association 423 Modelica 2008, March 3rd − 4th, 2008



- filling of the lock hopper with coal until the 
maximum level is reached 

- pressurizing of the coal. Therefore a pressur-
ized inert gas is fed into the lock hopper 

- discharging of the lock hopper into the feed-
ing vessel 

- depressurizing of the gas 
 
In the lock hopper are two different media: the gas 
and the coal medium. For each a mass balance is 
considered but only one energy balance is imple-
mented. Furthermore the wall material is regarded as 
a heat storage system and convective heat transfer 
between the gas and the wall is implemented. 
The level of the coal is determined by the fixed bulk 
density. 
 
model LockHopper 

 … 
// Total quantities 
m_coal = V_coal*coal.d; 
m_gas = (V-V_coal)*gas.d; 
U = coal.u*m_coal + gas.u*m_gas; 
U_wall = m_wall*cp_wall*T_wall; 
V_bulk = m_coal/rho_bulk; 
Q = alpha*A*(T_wall – gas.T); 
 
//Mass balances 
der(m_coal) =  in_c.m_flow + out_c.m_flow; 
der(m_gas) = sum(in_g.m_flow) + sum(out_g.m_flow); 
 
//Energy balances 
der(U) =  in_c.H_flow + out_c.H_flow + sum(in_g.H_flow) 
+ sum(out_g.H_flow) + Q; 
der(U_wall) = -Q; 
… 

end LockHopper; 

 

3.1.3 Feeding Vessel 

 
Figure 7: screen shot of the feeding vessel icon 
 
The pulverized coal is fed from the feeding vessel 
into the gasification reactor. Therefore the feeding 
vessel remains a constant level of operating pressure 
above the reactor pressure. This is done through 

pressurizing and depressurizing of the feeding vessel 
with inert gas. 
In the feeding vessel exist three layers: the fluidized 
bed, the bulk and the gas layer (Figure 8).  

 
Figure 8: layers in the feeding vessel 
 
From the fluidized bed the coal suspension is fed to 
the reactor. It is assumed that the height of the fluid-
ized bed is fixed. Furthermore a functional correla-
tion among the pressure drop between the feeding 
vessel and the reactor and the coal mass flow to the 
reactor exists. This functional correlation can be 
lodged. 
In the feeding vessel only one energy balance is con-
sidered. The wall material as heat storage system is 
neglected because the appeared temperature fluctua-
tions are only small.    
 

3.2 Reactor 

3.2.1 Gasification Reactor 
In the gasification reactor the conversion of the coal 
into a combustible raw gas occurs. 
 

 
Figure 9: calculation of the gasifier DLL 
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The gasifier is implemented in a Dynamic Link Li-
brary (DLL), which was developed by the Siemens 
Fuel Gasification Technology GmbH Freiberg. In the 
DLL the thermodynamic equilibrium is calculated. 
Therefore the equilibriums for the reversible reac-
tions mentioned in chapter 1.1 are calculated.   
Figure 9 shows the in- and outputs of the gasifier 
DLL. 
 

3.2.2 Quench 

 
Figure 10: screen shot of the quench icon 
 
In the quench the raw gas from the reactor is cooled 
down and saturated.  
 
The quench consists of two zones the gas space and 
the sump. For each zone own mass and energy bal-
ances are considered. However convective heat 
transfer between the raw gas in the gas space and the 
water in the sump is assumed. In the gas space the 
raw gas from the reactor is saturated and therefore 
cooled down. This is done by the injection of fresh 
water at the top of the quench (Figure 11).  

 
Figure 11: mass flows at the quench 
 
In the gas space one energy balance for the media 
water, slag and gas is regarded. 

For the calculation of the saturated steam fraction the 
following equation is used:  
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Steamϕ  is the mass fraction of steam,  is the 

saturation vapor pressure at the temperature ,  
is the gas pressure and  are the molar 
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The vaporization flow has to be regarded in the mass 
balances of the water and the gas in the gas space. 
Furthermore the heat of vaporization has to be taken 
into account in the energy balance of the gas space.  
 
model quench 

… 
//mass balances gas space 
der(m_gas) = in_g.m_flow + out_g.m_flow + m_ue; 
der(mXi[s]) = in_g.mXi_flow[s] + out_g.mXi_flow[s] + 
m_ue; 
 0 = in_w.m_flow + out_w.m_flow – m_ue; 
… 
//energy balance gas space 
der(U) = … - delta_hv*m_ue; 
… 
//calculation of the saturated steam fraction 
gas.Xi[s] = p_steam*M_s/gas.p*gas.MM; 
p_steam = saturationPressure(gas.T); 
… 

end quench; 
 

3.3 Gas Treatment 

3.3.1 Venturi Scrubber System 

 
Figure 12: screen shot of the venture scrubber icon 
 
The venturi scrubber system is located between the 
quench and the partial condenser. It consists of a 
venturi jet and a drum. The venturi jet is a pressure 
drop component. There are two different types of 
venturi’s: controlled and uncontrolled.  
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The raw gas, which leaves the venturi scrubber sys-
tem, is saturated. For the calculation of the saturated 
gas properties the same equations as in the quench 
are used.  
 

3.3.2 Partial Condenser 

 
Figure 13: screen shot of the partial condenser icon 
 
The partial condenser is located between the venturi 
scrubber system and the synthesis gas system. There 
the raw gas is cooled down and the condensate is 
separated. The raw gas leaving the partial condenser 
is saturated. 
 
For the calculation of the gas properties the same 
equation as in the quench were used. Furthermore 
the energy balance equation is enlarged by the heat 
loss flux . This heat flux is a real input value. It 
should be so adjusted that the temperature difference 
between the inlet and the outlet of the partial con-
denser reaches a given value. 

Q&

 

3.4 Slag Discharge System 

3.4.1 Slag Hopper 

 
Figure 14: screen shot of the slag hopper 
 
The function of the slag hopper is to discharge the 
slag from the pressurized system of the quench into 
the atmospheric pressure environment. Therefore 5 
steps appear: 

- filling of the slag hopper with water 
- pressurizing until the pressure of the quench 

is reached 
- filling of the slag hopper with slag (thus lead 

to a displacement of water from the slag 
hopper into the quench) 

- depressurizing of the slag hopper 
- drawdown of the slag hopper 

As in the below explained components only one en-
ergy balance is considered. 
 

3.5 Initialization 

For every component the temperature and the filling 
levels can be defined. For the components which 
cover to the saturation of gas the dry gas composi-
tion and for all other components the gas composi-
tion have to be deposited. 
Furthermore the user can decide for each component 
if the pressure should be initialized or not.  

4 Simulation Results 

As mentioned in the introduction the developed 
models shall be used to enhance process control. 
Therefore existing control methods can be verified 
and in addition tests of advanced process control 
conceptions like kinds of MPC (Model Predictive 
Control) and virtual sensors are allowed.  
The Gasification Island contains a multitude of con-
trol systems: 

- level control systems 
- temperature control systems 
- pressure control systems 
- mass flow rate control systems  

 
In cooperation with the Siemens Fuel Gasification 
Technology GmbH Freiberg, analyses were carried 
out on how far advantages appear by applying the 
advanced process control strategies in comparison to 
the accepted PID controllers. As an example of use 
the coal mass flow control system from the feeding 
vessel to the reactor was chosen due to the occurred 
dead times. Furthermore this mass flow control sys-
tem is of great importance to the gasification proc-
ess, because of its impact to the quality (temperature, 
composition) of the formed raw gas. 
The following two figures show the results of some 
simulations. Figure 15 shows the step response of the 
controlled coal mass flow for an accepted PI control-
ler and a model based controller. To avoid over-
shooting both, controllers were designed for aperi-
odic transient behavior (this is an arbitrary chosen 
design case and doesn’t reflect the behavior of the 
implemented control system in the gasification 
plant). The response of the system for a ramp like 
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change of the coal mass set point is given in Figure 
16.  
Both figures show that the coal mass flow can be 
significantly enhanced for this control system design 
case by using advanced process control concepts. 
The control tests were done in Matlab. Therefore, the 
developed Modelica/Dymola models were converted 
into a Simulink model. 
 

 
Figure 15: step response of the coal mass flow at sud-
den change of the coal mass flow set point value (arbi-
trary chosen design case: aperiodic transient behavior 
of the controllers) 

 
Figure 16: ramp like change of the coal mass flow set 
point (arbitrary chosen design case: aperiodic tran-
sient behavior of the controllers) 

5 Conclusion and future work 

The Gasification Island was developed in the Mode-
lica language. Therefore new components were de-
signed which are based on the Modelica_Fluid and 
Modelica.Media libraries. First analyses were done 
to enhance the process control of the coal mass flow 
from the feeding vessel to the reactor. 
The further step is to enhance the gasifier model. 
Therefore the reaction kinetics of the reactions listed 
in 1.1 and the complex heat balance (heat radiation, 
convective heat transfer …) will be implemented.  

Abbreviations 

SFG Siemens Fuel Gasifier 
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Abstract

Low pressure accumulators are usually employed in
mobile R744 HVAC units to assure reliable operating
conditions and consequently to extend equipment life.
Furthermore, the design parameters of accumulator,
e.g. the oil bleed hole, influence the coefficient of per-
formance (COP) of the refrigeration cycle. A poorly
designed accumulator may lead to inefficient refriger-
ation cycles. Thus, accumulators with a variable oil
bleed hole, also called controllable accumulators, may
be employed to bring the system to optimal operat-
ing condition assuring good performance. The aim
of this work is to implement a semi-empirical physi-
cally based transient Modelica controllable accumula-
tor model, which is part of TIL (the TLK-IfT-Library).
Transient simulations are carried out to evaluate the
impact of a controllable accumulator in an automotive
refrigeration system.
Keywords: controllable accumulator; refrigeration
cycle control; COP optimisation; fluid systems

1 Introduction

On January 2006 the EU agreed to vanish HFC-134a
from air conditioning systems of new vehicle models
from 1 January 2011. The natural refrigerant R744
is one of the promising candidates to replace R134a.
Therefore, the actual vehicle refrigeration technology
has to be optimized to reach the efficiencies using
R134a. In fixed orifice tube R744 air-conditioning sys-
tems a low pressure accumulator is usually placed at

the compressor inlet in order to store excess refriger-
ant, allowing an optimum system performance under
various ambient conditions and compensating refrig-
erant loss through leakage along the life cycle. The
refrigerant quality at the accumulator inlet is also in-
fluenced by the oil bleed hole located in the “J” tube
of the accumulator, see e.g. Fig. 3. The size of the
oil bleed whole is an optimization parameter in accu-
mulator design and should be variable to attend op-
timum performance for different operating conditions
and avoid high compressor outlet temperatures. This
variability of the oil bleed hole can be put into practice
by building a controllable accumulator.

2 TIL

TIL is a new component model library for thermody-
namic systems that was developed by the Institute for
Thermodynamics (IfT) and the TLK-Thermo-GmbH
and that allows for the steady-state and transient sim-
ulation of thermodynamic systems. The underlying
design principles as well as a detailed description of
selected component models is given by [4].
TIL provides component models for the simulation
of refrigeration, air-conditioning, and heat-pump sys-
tems. Many component models use a formulation of
the balance equations that is similar to the balance
equations for the accumulator as presented in the fol-
lowing section. TIL uses the object-based fluid prop-
erty library TILFluids for the computation of fluid
properties. This fluid property library uses a general-
ized approach to include external fluid property com-
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putation codes (e.g., REFPROP) in Modelica and a
number of software tools.

3 Mathematical Modelling

Fig. 1 shows the control volume of the semi-empirical
accumulator model Vkv. The following assumptions
are made:

• The accumulator has adiabatic walls.

• The control volumes V 1
kv are constant in time.

• Changes of kinetic and potential energy are not
taken into account.

• The accumulator characteristics regarding the ac-
cumulated mass is modeled according to steady-
state characteristic curves. The characteristic di-
agram determines the outlet enthalpy depending
on the filling level.

• The accumulator outlet enthalpy may be changed
by opening the oil bleed hole.

• Oil fraction in the liquid phase is ignored.

min
. mout

.

(p,h)

Vkv

H
.
in

H
.
out

m=V . ρ
kv

Filling
level

Vkv

mout
.

H
.

out

min
.

H
.

in

mout
B.

H
.

out
B

H
.

in
Bmin

B.

T

T

T

T

1
2

IN
LE

T

O
U

TL
E

T

Oil bleed hole

Figure 1: Controlled accumulator model.

3.1 Conservative Laws

3.1.1 Mass Balance

The transient mass balance equation for the control
volume V 1

kv is stated as follows:

dm
dt

= ṁin + ṁT
out + ṁB

out (1)

Eq. 1 can be stated as:

d
dt

(ρ ·Vkv) = ṁin + ṁT
out + ṁB

out

Vkv ·
dρ
dt

= ṁin + ṁT
out + ṁB

out

Using the Bridgmann’s table the derivative dρ
dt above

can be split into:

dρ
dt

=
∣∣∣∣
dρ
dh

∣∣∣∣
p
· dh

dt
+
∣∣∣∣
dρ
d p

∣∣∣∣
h
· d p

dt

The partial derivatives
∣∣∣dρ

dh

∣∣∣
p

and
∣∣∣dρ

d p

∣∣∣
h

are modeled in

TILFluids for the one phase and two phase regions.

3.1.2 Energy Balance

The 1st. Law of Thermodynamics for an opened sys-
tem in its transient form is applied to the control vol-
ume V 1

kv resulting in the following differential equa-
tion:

dU
dt

= ṁin ·hin + ṁT
out ·hT

out + ṁB
out ·hB

out

d
dt

(
H− p ·V 1

kv
)

= Ḣin + ḢT
out + ḢB

out

d
dt

(m ·h) = Ḣin + ḢT
out + ḢB

out +V 1
kv ·

d p
dt

m
dh
dt

+h
dm
dt

= Ḣin + ḢT
out + ḢB

out +V 1
kv ·

d p
dt

(2)

Using the mass balance Eq. 1, the Eq. 2 is rewritten
into:

dh
dt

=
1
m
· [ṁin · (hin−h)+ ṁT

out · (hout
T −h)+

+ ṁB
out · (hB

out −h)+V 1
kv ·

d p
dt

] (3)

where h is the enthalpy of the in the accumulator accu-
mulated refrigerant. The system of differential equa-
tions (see Eqs. 1 and 2) is reduced from

(
dh
dt ,

d p
dt ,

dm
dt

)

to
(

dh
dt ,

d p
dt

)
using the Bridgmann’s table. This formu-

lation has been shown to be very efficient for transient
simulations (see [2, 7] for further details).

3.2 Accumulator

The semi-empirical accumulator model V 1
kv in Fig. 1 is

treated here in detail. Different from the existing TIL
accumulator model, the model extended here is able
to influence the outlet enthalpy and hereby to increase
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or decrease the level of accumulated liquid refrigerant
by opening the oil bleed hole. Basically, the accumu-
lator’s physical behavior is characterized by its filling
level, a phase separation efficiency and an empirical
characteristic diagram.

3.2.1 Filling level

The filling level is defined as the liquid fraction of the
accumulated refrigerant:

δ = 1−
(

h−hliq

hvap−hliq

)
. (4)

where h is the enthalpy of the accumulated refriger-
ant. The outlet enthalpy at the accumulator top hout

depends on this variable as shown in Sec. 3.2.3.

δ =





δmin = 0 if the accumulator is empty.
δdrop if fluid droplets occur

at the accumulator outlet.
δmax = 1 if the accumulator is flooded

with saturated liquid.

A detailed investigation is described in [5] for differ-
ent accumulator geometries and operation conditions
using a transparent accumulator.

3.2.2 Separation efficiency ηS

The accumulator separation efficiency ηS describes the
ability of an accumulator in separating the refrigerant
phases. It is defined as as follows:

ηS = xout (5)

where xout is the accumulator outlet quality when the
accumulator filling level is between the droplet filling
level and the minimum filling level, δmin ≤ δ ≤ δdrop.
An ideal accumulator without an oil bleed hole would
have a separation efficiency of 100%, i.e. only refrig-
erant vapor hvap leaves the accumulator. The separa-
tion efficiency is strongly dependent on the oil bleed
hole diameter and is estimated from steady-state mea-
surement data, see [3, 5]. These data show that the
separation efficiency may range from 75% up to 98%.

3.2.3 Characteristic diagram

The accumulator characteristic diagram is divided in
four different operating conditions according to its fill-
ing level. These operating conditions are drawn as fol-
lows:

I) Accumulator is nearly empty (δ ≤ δmin): in
this operation point no liquid droplet occurs from
eventually accumulated refrigerant in the receiver
and the refrigerant phases are separated. This
means that if the refrigerant enters the accumu-
lator with quality xin = 0.7 it will leave it with
quality xout = ηS = 1. The liquid part begins to
accumulate.

II) Accumulator has a filling level with few liquid
droplets at the outlet (δmin < δ ≤ δdrop): if the
droplet filling level δdrop is not reached, a very
small amount of liquid droplets from the accu-
mulated refrigerant occurs at the outlet of the ac-
cumulator. The refrigerant phases are still sep-
arated and the accumulator outlet quality is the
separation efficiency xout = ηS. This is the most
common operating condition and will be treated
in the steady state simulation presented in a fur-
ther section.

III) Accumulator has a filling level with excess of
liquid droplets at the outlet (δdrop < δ ≤ δmax):
for this operation point, the accumulated refrig-
erant in the accumulator has reached a level in
that large amount of accumulated liquid starts to
leave the accumulator. The refrigerant phases
cannot be clearly separated. The outlet enthalpy
starts to decrease and enters the two phase area
(xliq < xout < ηs < xvap).

IV) Accumulator is full (δ > δmax): if the receiver
reached this filling level, it is then flooded and
there is no separation of the refrigerant phases.
The liquid phase dominates in the receiver and
the outlet enthalpy equals or is small than the sat-
urated liquid enthalpy, i.e. ηS = 0. This is a vary
rare operation condition and is out of the scope of
this work.

3.3 Controllable accumulator

The controllable accumulator, is shown as an exten-
sion of the ideal accumulator of TIL. A prototype of a
controllable accumulator is presented in Fig. 3. The
“J”-tube with the oil bleed hole may be modeled by
correlating the oil bleed hole in the “J”-tube with the
separation efficiency stated in Eq. 5.

3.3.1 Oil bleed hole ø

To verify the effect of changing the oil bleed hole
diameter in a standard accumulator a measurement
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Figure 2: Accumulator characteristic diagram.
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Figure 3: Accumulator prototype, from [1].

configuration developed by the Institut für Thermo-
dynamik in Braunschweig, for the purpose of deter-
mining the liquid level in low-pressure accumulators
with carbon dioxide as refrigerant is used. The mea-
surements are performed varying the gas cooler out-
let temperature yielding a variation of the accumulator
outlet quality, see [5] for further details. In Fig. 4 it is
observed that the accumulator outlet quality decreases
by increasing the oil bleed hole diameter, i.e. reduc-
ing the separation efficiency. Thus, the separation effi-
ciency will be used as a variation parameter to control
the accumulator. A physical correlation between the
efficiency and oil bleed hole should be further investi-
gated in future works.
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Figure 4: Accumulated mass dependence on the oil
bleed hole, from [5].

4 Steady-state simulation results

To investigate the impact of changing the accumula-
tor efficiency in cycle behavior, a high ambient tem-
perature and idle compressor speed condition for an
automotive air-conditioning is applied. The refrigera-
tion cycle characteristics and boundary conditions are
summarized in the Tabs. 1 and 2. As a first approxi-

Total Cycle internal Compressor
CO2 mass volume displacement

[kg] [l] [cm3]
0.5 1.5 28

Table 1: Cycle characteristics

Compressor ṁair ṁair Ambient
speed evaporator gas cooler Temperature
[rpm] [g/s] [g/s] [◦C]
780 140 600 40

Table 2: Boundary conditions for an automotive appli-
cation

mation, the compressor volumetric and isentropic effi-
ciencies as well as the heat transfer coefficients in the
heat exchangers are kept constant for the cycle. The
first step in this analysis is to find out the optimum
operation pressure for the chosen boundary conditions
and different accumulator efficiencies. Fig. 5 shows
how the optimal high pressure varies with the accumu-
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lator separation efficiency. The optimal high pressure
is reached by setting the valve flow area 0.35 mm2.
The result of the COP-optimized cycles for three dif-
ferent accumulator separation efficiency are summa-
rized in Tab. 3. In Fig. 6 the COP-optimized cycle is
shown in the pressure-enthalpy diagram for the accu-
mulators with small, medium and large-sized oil bleed
hole. The increase in the compressor suction density
is observed in Fig. 6 at point 1, which is shifted to
the two phase region when decreasing the accumula-
tor separation efficiency. In order to keep the same
suction density at the compressor inlet, an enhanced
internal heat exchanger (IHX) with maximal thermo-
dynamic efficiency is used. The result is shown in the
pressure-enthalpy diagram in Fig. 7. Now, a change
on the accumulator efficiency has neither effect on the
system Coefficient of Performance (COP) nor changes
its cooling capacity. The points 4 and 5 are shifted to
the left at the same amount as the point 6. This fact
evidences a dependence between the accumulator sep-
aration efficiency and the IHX heat transfer two-phase
heat transfer effects.
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2.1
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ηS=0.90
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Expansion device flow area 
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Large oil bleed hole

Small oil bleed hole

Figure 5: Coefficient of Performance (COP) sensitiv-
ity analysis for different accumulator separation effi-
ciencies.

Separation

efficiency ηS

State variable Unit 0.78 0.85 0.96

mCO2 cycle [kg] 0.5 0.5 0.5

mCO2 accu [kg] 0.163 0.185 0.214

xaccu out [-] 0.78 0.85 0.96

Tcomp out [°C] 91.4 94.5 100.9

ṁCO2 cycle [g/s] 37.7 35.1 31.6

pcomp out [bar] 125.8 118.2 110.0

∆Ḣair [kW] 3.38 3.34 3.26

IHX ∆Ḣre f [kW] 1.4 1.3 1.1

COP [-] 1.79 1.89 2.04

Table 3: Impact of the separation efficiency in steady-
state cycle simulation.

 

Small oil bleed hole

Large oil bleed hole 

1

2 34 

5 6

Figure 6: Pressure-enthalpy (p-h) diagram for COP-
optimized cycles with large, medium and small oil
bleed hole.

5 Transient simulation of a CO2 re-
frigeration cycle with a control-
lable accumulator

In this application, a controllable accumulator is used
to avoid that the temperature at the compressor outlet
Tcomp out exceeds the oil decomposition temperature,
e.g 160 ◦C. The cycle used previously for the steady
state simulation, see Fig. 8, is now used in a tran-
sient simulation, where the compressor speed is set
to n = 2100 rpm and the gas cooler and evaporator
air inlet temperature Tevap in are assumed to be 40◦C.
Fig. 9 shows the results of the transient simulation
for some of the state variables. At time t = 50 s the
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Figure 7: Pressure-enthalpy (p-h) diagram for COP-
optimized cycles with large, medium and small oil
bleed hole and enhanced IHX, with heat exchange area
(AIHX ≈ ∞).

separation efficiency of the accumulator is decreased
from ηS=96% to ηS=78%, compare ηS = xout in Fig.
9. Some refrigerant mass in the accumulator maccu

is moved to the cycle high-side pressure. The suc-
tion density at the compressor inlet increases yielding
a higher compressor shaft power Pcomp. An increase
in Pcomp means a decrease in the system coefficient of
performance COP=∆Ḣair/Pcomp as observed in Fig. 9.
The compressor outlet temperature is decreased to a
value smaller than the maximum oil working temper-
ature. The increase in the cycle refrigerant mass flow
rate due to higher compressor suction densities causes
an insignificant increase in the cooling capacity for this
modeling assumptions. The evaporator air outlet tem-
perature Tair evap out increases slightly.

6 Conclusion

The transient model of a controllable accumulator
is presented to investigate the effects of varying the
separation efficiency in an automotive CO2 refrig-
eration. The model consists of simple models from
the new component model library for thermodynamic
systems that was developed by the Institute for Ther-
modynamics (IfT) and the TLK-Thermo-GmbH. The
mathematical formulation used in the modeling allows
an accelerated analysis of the parametric variation.

The results from the steady state simulation show a
strong dependency between the accumulator separa-
tion efficiency and the internal heat exchanger (IHX)
efficiency if the system Coefficient of Performance
(COP) is considered. In a first simulation run with
constant heat transfer coefficients in the heat ex-
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Figure 8: CO2 refrigeration cycle with controllable ac-
cumulator using component models from TIL.

changers it was observed an increase in the system
COP when closing the oil bleed hole. Otherwise, if
the oil bleed hole is opened the compressor outlet
temperature decreases avoiding the oil temperature to
reach critical limits. A second simulation run showed
that using a nearly optimal IHX the oil bleed hole
variation has no effect in the cycle COP and cooling
capacity.

A transient simulation is carried out for a an automo-
tive air-conditioning boundary condition. As a first
application, it is shown that the compressor outlet
temperature may be kept under the oil critical limit
without loss of cooling capacity.

Future work will concentrate on finding an optimal
relationship between IHX efficiency and accumulator
separation efficiency as well an optimal control strat-
egy for a CO2 refrigeration cycle using this innova-
tive component. Two-phase heat transfer effects in the
IHX and in the other cycle heat exchangers should be
taken into account in order to predict the cycle behav-
ior more accurately when varying the accumulator oil
bleed hole. The isentropic and volumetric compressor
efficiencies should also be mapped more accurately so
that the cycle mass flow rate and compressor outlet
temperature can be precisely estimated.
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Figure 9: Simulation results of the transient control-
lable accumulator model in a CO2 refrigeration cycle
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Abstract 

Thermoelectric technology allows for the direct con-
version of a temperature difference into an electric 
potential and vice versa. Thermoelectric devices can 
act as coolers, heaters, or power generators and ap-
plications of small capacity thermoelectric modules 
are widespread. Applications of large capacity ther-
moelectric devices have been limited for decades by 
their low efficiency. New environmental regulations 
regarding the manufacture and release of CFCs have 
revived the interest in this area. Recent investigations 
on thermoelectric materials promise that their ther-
moelectric efficiency can be improved dramatically. 
This would mean a breakthrough for new fields of 
applications for thermoelectric modules. A new 
Modelica model of a Peltier water-water heat ex-
changer was developed for transient simulations. The 
new model uses component models from the object-
oriented Modelica library TIL. The new model was 
used to simulate the transient behavior of a Peltier 
heat exchanger during a sudden reversion of the ap-
plied voltage. The numerical results were compared 
to measurement results from a prototype. 
Keywords: heat exchanger; simulation; thermoelec-
trics; Peltier element 

1 Introduction 

Thermoelectric technology allows for the direct con-
version of a temperature difference into an electric 
potential and vice versa. The French physicist Jean 
Peltier discovered in 1834 that an electric current 
sent through a circuit made of dissimilar conducting 
materials yields heat absorption at one junction and 
heat rejection at the other. Standard thermoelectric 
modules utilize doped bismuth telluride as semi-

conductor and achieve moderate performance. They 
can act as coolers, heaters, or power generators and 
applications of small capacity thermoelectric mod-
ules are widespread. However applications of large 
capacity thermoelectric devices have been limited in 
the past by the low efficiency of thermoelectric 
modules. Recent scientific advances regarding new 
materials and assembly methods for thermoelectric 
modules as well as the increasing concerns about 
fuel economy, harmful emissions of particulate mat-
ter, and chemical refrigerants revived the interest in 
thermoelectric technology. The inherent advantages 
of thermoelectric systems such as the absence of 
moving parts, quiet operation, and environmental 
friendliness of the module itself have further in-
creased the interest. Several investigations for appli-
cations of large capacity thermoelectric modules in 
the fields of refrigeration and air-conditioning [1], 
waste heat recovering [2], or superconduction [3] 
have been carried out with promising results. 

This paper describes the development of a Mod-
elica model that allows the transient simulation of 
thermoelectric devices to determine their perfor-
mance potential. The model for the thermoelectric 
devices was developed as an add-on for the object-
oriented Modelica library TIL (TLK-IfT-Library) 
described in [4] that allows for the simulation of 
thermodynamic systems such as air-conditioning and 
heat-pump systems. 

2 Thermoelectric Refrigeration 

Thermoelectric refrigeration is achieved when a di-
rect current I is passed through one or more pairs of 
n-type and p-type semiconductors connected with a 
metal with high conductivity such as copper as 
sketched in Figure 1. 
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If the electric current passes from the n-type to the p-
type semiconductor, electrons pass from a low ener-
gy level in the p-type material through the intercon-
necting conductor to a higher energy level in the n-
type material. Thus the temperature TC of the inter-
connecting conductor decreases and heat is absorbed 
from the environment. The absorbed heat is trans-
ferred by electron transport through the semiconduc-
tors to the other end of the function. It is liberated as 
the electrons return to a lower energy level in the p-
type material yielding an increased temperature TH. 

This phenomenon is known as the Peltier effect 
and is described by the Peltier coefficient π, defined 
as the product of the Seebeck coefficient α of the 
semiconductor material and the absolute tempera-
ture. The Peltier coefficient relates to a cooling effect 
as the electric current passes from the n-type to the 
p-type semiconductor and a heating effect as the po-
larity of the power supply is changed. Reversing the 
direction of the electric current also reverses the 
temperatures of the hot and cold ends. 

The amount of heat absorbed at the cold end not 
only depends on the product of the Peltier coefficient 
and the electric current flowing through the thermoe-
lectric module but also on two other effects: Due to 
the temperature difference between the cold and the 
hot ends of the semiconductors, heat is conducted 
through the semiconducting material from the hot to 
the cold end. The amount of conducted heat depends 
on the thermal conductance κ of the material as well 
as on the temperature difference. The second effect 
occurs when the electric current is passing through 
the semiconductors. The electrical resistance R caus-
es the generation of the so-called Joule heat in equal 
shares at the cold and the hot side of the thermoelec-
tric device. The Joule heat is dependent on the elec-

trical resistance and proportional to the square of the 
electric current and therefore becomes eventually the 
dominant factor. 

The heat absorption rate at the cold side of the 
thermoelectric module can be described taking into 
account the three different effects mentioned above 

ሶܳ ൌ ߙ ஼ܶܫ െ
1
2
ଶܴܫ െ ሺߢ ுܶ െ ஼ܶሻ 

where α is the differential Seebeck coefficient some-
times referred to as α pn, R the electrical resistance of 
the thermoelements in series, and κ the thermal con-
ductance of the thermoelements in parallel. The 
energy efficiency of the thermoelectric device is de-
scribed by its coefficient of performance (COP) de-
fined as the net heat absorbed at the cold junction 
divided by the electric power input 
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The refrigeration capability of a semiconductor 
material depends on a combined effect of the See-
beck coefficient α, the electrical resistivity ρ, and the 
thermal conductivity κ of the material over the op-
erational temperature range between the cold and the 
hot junctions. The electrical resistivity is defined as 

ߩ ൌ ܴ
ܣ
݈
 

where A is the cross-sectional area of the resistive 
material and l its length. The three material proper-
ties are combined in the thermoelectric figure of me-
rit Z defined as 

ܼ ൌ
ଶߙ

ߩߢ
 

The figure of merit is used by material scientists to 
describe the efficiency of semiconductor materials 
for thermoelectric applications. 

3 Prototype Peltier Heat Exchanger 

The Peltier effect can be used for heating and cool-
ing in practical applications by combining thermoe-
lectric modules with conventional heat exchangers. 
The fluid flowing through the heat exchanger acts as 
a heat sink at the hot side of the thermoelectric mod-
ule and as a heat source at the cold side. Figure 2 
shows the assembly of the prototype Peltier heat ex-
changer used for all measurements. 

 
Figure 1: The Peltier effect (thermoelectric cooling) 
from [5]. 
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Because of the consolidated design and small size 
of the prototype heat exchanger, water was chosen as 
coolant at both sides. The heat exchanger consists of 
rectangular aluminum channels whose endings are 
covered by plates. Aluminum cores act as connecting 
tubes. The prototype heat exchanger is assembled so 
that both sides of the thermoelectric module are in 
contact with a channel. The arrangement of the 
thermoelectric modules has to be taken into account 
for an efficient utilization of the Peltier effect. It is 
necessary to either heat or cool the channels. A com-
bination of heating and cooling does not yield a rea-
sonable application. 

To increase the flow velocity and the heat ex-
change between the fluid and the wall, three barriers 
were installed in each channel. A CFD simulation 
was carried out to determine the flow situation in the 
channel. The simulations results proved that the fluid 
meanders through the channel and showed that fluid 
circulation caused by the barriers leads to a decrease 
in dead storage capacity and thus to an improvement 
in the heat exchange between fluid and wall. Figure 
3 shows a single channel and the corresponding flow 
path. 

4 Heat Exchanger Model 

In order to model the prototype Peltier heat exchang-
er, a model for a Peltier element had to be developed. 
The new model was developed based on the compo-
nent model library TIL (TLK-IfT-Library) that con-
tains models for a steady-state and transient simula-
tion of thermodynamic systems (see [4] for more 
information). 

Figure 4 shows a class diagram of the new model 
PeltierElement. The material properties of the semi-
conductor material are stored in a record extending 
from BaseMaterial. Two heat ports derived from the 
HeatPort connector defined in TIL and two electric 
pins defined in the Modelica Standard Library are 
the interface of the PeltierElement. Based on the eq-
uations presented in Section 2, the following set of 
equations is used to describe the Peltier element 

௡௘௚௔௧௜௩௘ܫ ൅ ௣௢௦௜௧௜௩௘ܫ ൌ 0 
ܷ௣௢௦௜௧௜௩௘ െ ܷ௡௘௚௔௧௜௩௘ ൌ  ௡௘௚௔௧௜௩௘ܫܴ
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Figure 2: CAD drawing of the prototype Peltier wa-
ter-water heat exchanger. The Peltier elements are 
the flat cuboids between two aluminum channels. 
The orientation of the Peltier elements changes suc-
cessively between the rows of channels. 

 
Figure 3: Single channel element of prototype Pel-
tier heat exchanger. 

 
Figure 4: UML class diagram of PeltierElement. 

 
Figure 5: PeltierCell model as defined in TIL_Add-
On_ThermoElectrics. 
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The PeltierElement is instantiated in the PeltierCell 
model along with two models for electrical insulators 
as shown in Figure 5. The electrical insulators pre-
vent a short circuit between the Peltier elements and 
the aluminum channels. Note that the naming of the 
heat ports in Figure 5 is chosen for the default case 
that is a positive electric current in the conventional 
current notation. The hot side eventually becomes 
the cold side and vice versa if the direction of the 
current is reversed. The swapping of the correspond-
ing temperatures TC and TH is implemented using a 

smooth transition function with a very short transi-
tion period. 

In order to model the prototype Peltier heat ex-
changer shown in Figure 2 in a flexible way, an addi-
tional model called BaseElement is introduced that 
models a single layer of the heat exchanger. 

A layer consists of two aluminum channels as 
sketched in Figure 3 and the Peltier element in be-
tween those two channels. The model is illustrated in 
the left picture in Figure 6. A refrigerant cell and two 
wall cells from TIL are combined to model a single 
channel. The reason for using a RefrigerantCell in-
stead of a LiquidCell is that the new heat exchanger 
model was developed to cover cases of evaporating 

 
Figure 6: BaseElement and its usage in a Peltier water-water heat exchanger model from 
TIL_AddOn_ThermoElectrics. The PeltierCell is shown in Figure 5. 

 
Figure 7: UML class diagram of TubeAndTubePeltier heat exchanger in TIL_Add-
On_ThermoElectrics. The wall material model and all heat transfer and pressure drop models 
are skipped for simplicity. 
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and condensing fluids in both fluid paths. The two 
channels are connected using a PeltierCell as shown 
in Figure 5. Note that the BaseElement model in 
Figure 6 can directly be used as a single cell heat 
exchanger model. 

The model for the Peltier heat exchanger assem-
bles instances of BaseElement and PeltierCell as 
shown in the right picture in Figure 6. The prototype 
heat exchanger shown in Figure 2 for example is 
composed of four base elements and three Peltier 
cells in between. Figure 7 shows the class diagram of 
the new TubeAndTubePeltier heat exchanger model. 
Note that the wall material model and all heat trans-
fer and pressure drop models are skipped for simplic-
ity. A more detailed description of the structure of 
heat exchanger models in TIL is given in [4]. 

5 Measurements 

A series of measurements was carried out with the 
prototype Peltier water-water heat exchanger pre-
sented in Section 3. Figure 8 shows a schematic dia-
gram of the test stand used for all measurements. 

To ensure a constant temperature at the water in-
let of the prototype, a reservoir was used in both 
cycles. Water was pumped from the reservoirs into 
the prototype and flowed back after running through 
the heat exchanger. The reservoirs were chosen large 
enough to prevent significant temperature changes 
during operation. The volume flow rates were regu-
lated with appropriate throttling devices and meas-
ured by using conventional water meters. 

Besides the volume flow rates characteristic pa-
rameters such as the water temperatures at the inlet 
and outlet of each aluminum tube or the electric cur-
rent and voltage dropping out over every Peltier ele-
ment were taken up. The boundary conditions for the 
measurements were selected in consideration of 
showing the applicability of the simulation for dif-
ferent premises. Therefore a low, a medium and a 
high water inlet temperature were chosen and each 
condition measured by using a low and a high vo-
lume flow rate respectively. Each measurement was 
carried out at a working-voltage of 10 V. A summary 
of the boundary conditions for all measurements is 
given in Table 1. 

 
 Water Stream 1 Water Stream 2 

# V1 [l/min] T0 [°C] V2 [l/min] T8 [°C] 
1 2.05 4.00 2.00 4.00 
2 0.90 4.00 0.85 4.00 
3 2.20 18.00 2.10 18.00 
4 0.85 18.00 0.80 18.00 
5 2.35 30.00 2.40 30.00 
6 1.00 30.00 1.10 30.00 

Table 1: Measurements with prototype Peltier water-
water heat exchanger. 

 
All measurements were carried out in the same 

way: After reaching a stationary point for the boun-
dary conditions listed in Table 1, the direction of the 
electric current was changed from positive to nega-
tive in the conventional current notation. The result-
ing change in temperature was detected until the val-
ues became stationary again. 

 
Figure 8: Schematic diagram of Peltier heat exchanger test stand. 
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An evaluation of the quality of the measurements 
was carried out by comparing the sum of the input 
power and the gained cooling capacity to the 
achieved heating capacity according to 

௘ܲ௟ ൅ ሶܳ௖௢௢௟௜௡௚ ൌ ሶܳ௛௘௔௧௜௡௚ 
The cooling capacity as well as the heating capacity 
was calculated from 

ሶܳ ൌ ሶ݉ ܿ௣Δܶ 
and the electric power from 

௘ܲ௟ ൌ ܷ ·  ܫ
The deviation within the balance has to be zero for 
the ideal case. The deviation of the two balances for 
each measurement is shown in Figure 9. It can be 
seen that the deviation lies between 1% and 8%, and 
that the average value lies around 4%. A connection 

between the direction of the electric current and the 
resulting deviation can not be identified. 

To exclude the existence of a statistical error and 
to confirm that the deviations of the balances are ly-
ing within the measuring accuracy an error analysis 
was carried out. Therefore, Gauss' error propagation 
law was used according to 

Δܨത ൌ ඨ൬
ܨ߲
ݔ߲

Δݔҧ൰
ଶ

൅ ൬
ܨ߲
ݕ߲

Δݕത൰
ଶ

൅  ڮ

Measurement 4 from Table 1 was selected for an 
error analysis exemplarily. A variation of relevant 
measurands was carried out to find out the impact of 
these measurands on the total error and to identify 
possible potentials for further optimization. 

Figure 10 shows the impact of the error occurring 
during the measurement of the temperature differ-
ence ΔΔT between the inlet and outlet of the Peltier 
prototype heat exchanger and during the estimation 
of the volume flow rate ΔV on the resultant heating 
or cooling capacity. 

Due to the fact that the measuring accuracy of a 
thermocouple lies at about 0.3 K, the maximum error 
for the mathematical calculation of the temperature 
difference can be expected to be 0.6 K when using 
temperatures measured with two independent ther-
mocouples. This error can be reduced to 0.1 K if the 
temperature difference is measured using two ther-
mocouples connected in series which was done for 
all measurements presented in Table 1. 

In consideration of the volume flow rate, mea-
surements the deviation of the values estimated with 
conventional flow meters and the actual values lies 
between 4% and 9% which results in a maximum 
deviation of 0.09 l/min. The concluding summation 
yields - under consideration of these conditions - to 

 
Figure 10: Error for Measurement 4 from Table 1. The corresponding units are given in the 
key. 

 
Figure 9: Deviation of electrical and thermal bal-
ances for all measurement points. 
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the result that even the measurements with a devia-
tion of balances of 8% are lying within measuring 
accuracy. 

6 Simulation 

Simulations were carried out for all measurements 
listed in Table 1. Measurement values were used for 
the electric current, for the two volume flow rates, 
and for the water temperatures  T0 and T8 at the two 
heat exchanger inlets. The Peltier modules used in 
the prototype Peltier heat exchanger are standard 
bismuth telluride modules without any further speci-
fication from the manufacturer. Constant properties 
for the Seebeck coefficient α and the thermal con-
ductance κ taken from Rowe [5, Table 9.1] were 
used in the Peltier element model. The electrical re-
sistance R of the thermoelectric module was not spe-
cified by the manufacturer and had to be determined 
from the measurements. The reversion of the applied 
voltage was implemented using a smooth transition 
function with a period of Δt = 1s. This section de-
scribes the results obtained for the simulation of 
Measurement 4 from Table 1. A constant coefficient 
of heat transfer α = 4,100 W/m2K was used. This 
coefficient of heat transfer was determined based on 
a CFD simulation of the flow through a single alu-
minum channel. 

Figure 11 shows the temperature distribution in 
the prototype Peltier heat exchanger before and after 
the reversion of the applied voltage. The numbering 

of the water streams and of the walls refers to the 
numbering of the two independent water circuits as 
presented in Figure 8. The water temperatures are 
shown for the inlet of each channel and for the outlet 
of the last channel for both water streams. The wall 
temperatures are averages of the temperatures in the 
center of both wall cells connected to the same refri-
gerant cell as shown in Figure 6. 

Figure 11 shows that the temperature change in 
the entrance channel of each water stream is smaller 
than in all other subsequent channels. This is caused 
by the fact that the entrance channels are insulated at 
one side and connected to a Peltier element at the 
other side whereas all other channels are connected 
to a Peltier element at both sides. The two diagrams 
shown in Figure 11 are mirror-symmetrical which 
demonstrates the reversibility of the process. 

Figure 12 shows a comparison of the measured 
outlet temperature for each water stream with the 
values obtained from the transient simulation. The 
top picture shows the change in the electric current I 
caused by the reversion of the applied voltage. 

Figure 12 illustrates that the simulated start and 
end temperatures differ from the measured tempera-
tures. The simulated system also reacts slower to the 
sudden reversal of the applied voltage than the real 
system. Further Measurements are required to im-
prove the model of the Peltier element that is cur-
rently based on material constants taken from the 
literature and the measured electrical resistance as 
explained in the beginning of this section. 

 

      
Figure 11: Temperature distribution in prototype Peltier heat exchanger before and after reversion of the 
applied voltage for Measurement 4 from Table 1. 
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7 Conclusions and Outlook 

A new model for a Peltier water-water heat exchang-
er was presented that can be used in transient system 
simulations. Results from measurements with a pro-
totype heat exchanger were used to validate the new 
model. Models from the new component mode li-
brary TIL [4] were used for many components of the 
new Peltier heat exchanger model and the new ob-
ject-based fluid property library TILFluids was used 
to compute all fluid properties. A new model for Pel-
tier cells was presented that was used to assemble the 
heat exchanger. The new heat exchanger model de-
monstrates that TIL can easily be extended to cover a 
wide range of thermodynamic systems. The pre-
sented model can be extended to cover other Peltier 
heat exchangers. A very interesting alternative con-

cept to be analyzed in the future using simulations 
and experiments is a refrigerant-air heat exchanger 
with Peltier modules in between. 
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Abstract 

For the heating, ventilating, and air conditioning 
(HVAC) systems for commercial buildings, there has 
been a greater demand for reducing energy consump-
tion. The economizers have been developed as a 
class of energy saving devices that may increase the 
energy efficiency by taking advantage of outdoor air 
during cool or cold weather. However, in practice, 
many economizers do not operate in the expected 
manner and waste even more energy than before in-
stallation. Better control strategy is needed for opti-
mal and robust operation. This paper presents two 
related aspects of research on dynamic modeling and 
control for economizers. First, a Modelica based dy-
namic model is developed for a single-duct air-side 
economizer. The model development was based on 
Dymola and AirConditioning Library with some re-
vision on water medium and heat exchanger model-
ing. Such transient model will lay a more quality 
foundation for control design. Second, for a three-
state operation for air-side economizers, a self-
optimizing control strategy is developed based on the 
extremum seeking control (ESC). The mechanical 
cooling can be minimized by optimizing the outdoor 
air damper opening via extremum seeking. Such has 
much less dependency on the knowledge of econo-
mizer model, and thus has more promise for practical 
operation. In addition, an anti-windup ESC scheme 
is proposed as an enhancement for the existing ESC 
techniques. The simulation results validated the ef-
fectiveness of the dynamic model of the economizer, 
demonstrated the potential of using ESC to achieve 
the minimal mechanical cooling load in a self-
optimizing manner, and illustrated the possibility of 
ESC malfunctioning under actuator (damper) satura-
tion and the capability of anti-windup ESC in pre-
venting such undesirable behavior. 
 
Keywords: Modelica; transient modeling; econo-
mizer; extremum-seeking control 

1 Introduction 

Buildings are responsible for a large portion of elec-
tricity and natural gas demand. Significant amount of 
energy consumption for buildings is due to the heat-
ing, ventilation and air conditioning (HVAC) sys-
tems. Improving the efficiency of building HVAC 
system is thus critical for energy and environmental 
sustainability. The economizers have been developed 
as a class of energy saving devices that may increase 
the energy efficiency by taking advantage of outdoor 
air during cool or cold weather [1]. Figure 1 is a 
schematic diagram of a typical single-duct air-
handling unit (AHU) and controller. The AHU has a 
supply fan, three (outdoor air, relief air and mixed 
air) dampers for controlling air flow between the 
AHU and the outdoors, heating and cooling coils for 
conditioning the air, a filter for removing airborne 
particles, various sensors and actuators, and a con-
troller that receives sensor measurements (inputs) 
and computes and transmits new control signals 
(outputs). The air economizer moves the dampers to 
let in 100% outdoor air when it is cool but not ex-
tremely cold outside. When it is hot outside, the 
dampers are controlled to provide the minimum 
amount of outdoor air required for ventilation.  
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Figure 1: Single duct air handling unit 
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The American Society of Heating, Refrigerating and 
Air Conditioning Engineers (ASHRAE) recommends 
using economizers based on the cooling capacity size 
and weather characteristics for the building location 
[2], as described in the Appendix. ASHRAE [3] de-
scribes several control strategies for transitioning 
between 100% outdoor air and the minimum outdoor 
air required for ventilation. The control strategies are 
called “high limit shutoff control for air econo-
mizer.” Following is a list of strategies that can be 
programmed in a computer control system.  

• Fixed dry bulb temperature. This strategy com-
pares the outdoor temperature to a transition tem-
perature. If the outdoor air temperature is greater 
than the transition temperature, then the dampers 
are controlled for the minimum outdoor air re-
quired for ventilation.  

• Differential dry bulb temperature. This control 
strategy compares the outdoor and return air tem-
peratures. If the outdoor temperature is greater 
than the return air temperature, then the dampers 
are controlled for minimum outdoor air required 
for ventilation.  

• Fixed enthalpy. This control strategy measures the 
outdoor air temperature and relative humidity 
(RH). Then the outdoor air enthalpy is calculated 
and compared with a transition enthalpy. If the 
outdoor air enthalpy is greater than the transition 
enthalpy, then the dampers are controlled for 
minimum outdoor air required for ventilation.  

• Differential enthalpy. This control strategy de-
termines the outdoor and return air enthalpy from 
measurements of the outdoor and return air tem-
perature and relative humidity. If the outdoor air 
enthalpy is greater than the return air enthalpy, 
then the dampers are controlled for minimum 
outdoor air required for ventilation.  

However, in practice, many economizers do not op-
erate as expected and waste even more energy than 
before installation [4]. Temperature and RH sensor 
errors can have a large impact on the energy savings 
or possible penalty of economizer strategies. The 
National Building Controls Information Program 
(NBCIP) [5] said, “In the case of economizers, rela-
tive humidity and temperature measurements of out-
door and return air conditions are used to calculate 
the enthalpies of the two air streams. The air stream 
with the least energy content is then selected to pro-
vide building cooling. If one or both of the computed 
enthalpies is wrong, as can happen when humidity 
transmitters are not accurate, significant energy pen-
alties can result from cooling of the incorrect air 
stream.”  The NBCIP [6] performed long term per-

formance tests on 20 RH sensors from six manufac-
turers. Nine of the 20 RH sensors failed during the 
testing. All of the remaining sensors had many 
measurements outside of specifications. The largest 
mean error was 10% RH, and the largest standard 
deviation of the error was 10.2%. The best perform-
ing sensor had a mean error of −2.9% RH and a 
standard deviation of 1.2%. The specifications for 
the best performing sensor were ±3%. Control 
strategies not relying on RH measurement would 
greatly enhance the reliability of economizer opera-
tion. 

Modeling and optimal control of air-handling units 
and economizers have been previously studied [7, 8]. 
However, due to the complex nature of HVAC sys-
tem operation, the obtained model may not be accu-
rate enough for the optimal operation of an econo-
mizer. Therefore, a model based optimal control ap-
proach is hardly effective in practice to seek the op-
timal outdoor air flow for minimizing the mechanical 
cooling. In contrast, an on-line self-optimizing con-
trol approach appears a more suitable option.  

This research investigates the application of the ex-
tremum seeking control (ESC) [9-13] to optimize the 
use of outdoor air so as to minimize the energy con-
sumption. The input and output of the proposed ESC 
framework are the damper opening and power con-
sumption (or equivalently, the chilled water flow 
rate), respectively. This approach does not rely on 
the use of relative humidity sensor and accurate 
model of the economizer for optimal operation. 
Therefore, it provides a more reliable control strat-
egy for economizer operation.  The proposed ESC 
scheme works as part of a three-state economizer 
control strategy, as shown in the state diagram in 
Figure 2. State 1 uses heating to maintain the supply 
air temperature. In state 2, outside air is mixed with 
the return air to maintain the supply air at a given 
setpoint. In state 3, the extremum seeking control is 
used to control the dampers to minimize the me-
chanical cooling load. Also, the dampers must be 
controlled to guarantee enough outdoor air inflow to 
satisfy the ventilation requirement for the rooms.  
Figure 3 shows the control regions for different out-
side air conditions on a psychometric chart. The re-
turn air condition was 75 °F and 50% relative humid-
ity, the cooling coil was ideal, and the minimum 
fraction of outdoor air to supply air was 0.3. The 
heating region is for state 1, the free cooling region 
is for state 2, and the three regions that need me-
chanical cooling are combined into state 3.  
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Figure 2: State transition diagram for the proposed 
control strategy. 
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Figure 3: Control states for different outside air con-
ditions for an ideal coil with return conditions 75 °F 

and 50% RH. 

The proposed control scheme has the following ad-
vantages over existing economizer strategies: 

• Energy Savings. Using ESC will lead to energy 
savings because the dampers will be controlled to 
minimize the mechanical cooling load. Also, the 
proposed strategy will save energy because it is 
not dependent on unreliable RH sensors.  

• Lower installed costs because the proposed strat-
egy does not require the outside air or return air 
temperature or RH sensors.  

• Lower maintenance costs because the tempera-
ture and RH sensors do not need to be calibrated.  

In addition to the ESC application for economizer 
control, an enhancement on the ESC is proposed: an 
anti-windup ESC scheme against damper (actuator) 
saturation. Due to the inherent integral action incor-
porated in the ESC loop, the integral windup due to 
the damper saturation would disable the ESC, as will 
be shown in Section 3. The back-calculation scheme 
is applied to the ESC loop to achieve the anti-windup 
capability. 

In order to design and simulation the proposed con-
trol strategy, a quality dynamic model of economizer 
is needed. In this study, an economizer simulation 
model was developed in Modelica. Dynamic model-
ing of HVAC equipment has attracted increasing 
attention in recent years. A summary of previous 
work in dynamic modeling of vapor compression 
equipment was presented in [14, 15]. According to 
[15], the modeling regimes could be mainly classi-
fied as two categories: reference models and lumped 
models. The reference models are designed to best fit 
the underlying physics of the system, but will often 
involve partial differential equations (PDE) and high 
system order. In contrast, the lumped models will 
lead to lower order ordinary differential equations 
(ODE) based on some simplifications and/or space 
discretization. In particular, the first category of 
models requires extensive dynamic information from 
the heat exchanger. The finite-volume method was 
studied by MacArthur [16] but with simplifications 
in decoupling thermal responses from pressure re-
sponses, which may result in less accurate mass dis-
tribution predictions. This issue was latter resolved 
by MacArthur and Grald [17] from combining the 
mass and balance equations, where the pressure re-
sponses are involved. Nyers and Stoyan [18] mod-
eled an evaporator using the approach of finite-
difference. Williatzen et al [19] employed a profile 
assumption for the variation of refrigerant state 
within each phase region. Recently, Rasmussen [20] 
presents an novel modeling approach with more 
freedom of selecting the system states and is claimed 
to be equivalent to the common method of simplify-
ing the governing PDEs to the desired ODEs. Zhou 
[21] developed a so-called forward model which was 
capable of solving the governing differential equa-
tions concerning energy storage and transfer in a 
cooling and dehumidifying coil. The lumped models 
have also been studied by several authors for simula-
tion and control purposes [22-24]. Besides the mod-
eling approaches involved, the fact that different 
time scales of the system dynamics are either inter-
woven or distinctive to a large extent yet poses an-
other serious challenge to the dynamic modeling of 
HVAC. However, limited study has been done so far 
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on developing effective and efficient dynamic mod-
els that are capable of handling system dynamics 
with different time scales and simultaneously satisfy-
ing research purposes ranging from dynamic analysis 
and control design of subsystems (e.g. AHU) to 
building energy savings and comfort. As for AHU 
modeling in particular, ASHRAE [15] said some of 
the quickest phenomena occur in the AHUs (coils, 
humidifiers, and economizers), when simulating 
such subsystems, realistic dynamics have to be con-
sidered for all components involved: heat and mass 
exchangers, fans, ducts and pipes, sensors and actua-
tors. Compared to the control oriented transient 
analysis which features small time-scale, the energy 
saving and human comfort evaluation are coped with 
in a much larger time scale, but require accurate en-
ergy balances. For instance, the cooling coil usually 
has the slowest transient among the four major com-
ponents in the vapor compression system, and thus 
has the largest impact on transient performance. It is 
necessary to consider mass distribution within the 
cooling coil as a function of time and space and this 
requires transient mass balances to allow for local 
storage [14]. On the other hand, for an AHU, the 
cooling coil is among the quickest responding com-
ponents. Their transient response may significantly 
interact with closed loop controllers [15]. Thus, the 
multiple-time-scale compatibility is important for the 
dynamic/transient modeling of HVAC systems. 

Control development for many HVAC systems, e.g. 
the economizer in this study, would not be possible 
without accurate and computationally efficient dy-
namic/transient models. Most simulation tools for 
HVAC systems have been based on steady-state 
modeling. Dynamic modeling and simulation is still 
in the research phase and not mature yet. Modelica, 
as an object-oriented language for physical model-
ing, has demonstrated its great capability for simulat-
ing multi-physical systems. Several Modelica based 
simulation packages have been developed, e.g. the 
Thermal-Fluid Library [25], the AirConditioning 
Library [26], the Modelica_Fluid Library [25] and 
the HITLib [27]. The AirConditioning Library is 
capable of handling both steady-state and transient 
simulation, however, it was mainly designed for 
automotive air conditioning systems. Some compo-
nents need to be modified for modeling building 
HVAC systems such as economizers. In this study, a 
dynamic model of a single-duct air-side economizer 
is developed using Dymola (Version 6.1) developed 
by Dynasim [28], the Modelica Fluid Library (MFL) 
and the AirConditioning Library (ACL) (Versions 
1.4 and 1.5) developed by Modelon [26].  

The remainder of this paper is organized as follows. 
Section 2 describes the dynamic economizer model 
design. The details of ESC design are described in 
Section 3, along with the anti-windup ESC. Finally, 
simulation results that demonstrate the effectiveness 
of ESC and the two proposed enhancements are pre-
sented in Section 4. 

2 Dynamic Economizer Model Design 

The dynamic model of economizer was developed 
based on the Dymola 6.1, the MFL and the ACL 1.4 
and 1.5. In addition to adopting the standard compo-
nents in the commercial packages, we have made the 
following development: modification of water prop-
erty calculation for the heat exchanger model, ini-
tialization with pressure-temperature pair, mixing 
box, and fan. Figure 4 shows the economizer model 
that we have developed in Dymola, which includes 
air ducts, air mixing box, fans, cooling coil, and a 
room space. The air duct model was adopted from 
the MFL. It allows detailed pressure drop calculation 
due to wall friction. The air mixing box model 
contains two sub-components: the air-mixing plenum 
and the damper module. The air-mixing plenum was 
developed using the splitter model from the MFL, 
while the damper module was developed by 
ourselves. We have also developed a fan model 
based on the similarity factors [29].  In addition, the 
cooling coil was developed based on the evaporator 
model from the ACL. A water medium model 
CoolWater was developed based on the IAWSP-IF97 
formulation [30], and compared with the water 
medium model developed in the ACL. The pressure-
temperature pair was used for both initialization and 
state derivation with the consideration of practical 
HVAC operation. Finally, a mixing volume model 
from the MFL was used to represent a room space. 
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Figure 4: Dymola layout of the economizer model. 
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2.1 Air Mixing Box 

The air mixing box is a component of the AHU that 
mixes the outdoor air and the return air from the 
conditioned indoor space. It consists of a damper 
module (outdoor, return and exhaust dampers) and 
an air-mixing plenum. The fraction of the outside air 
is regulated by the outdoor damper whose command 
signal is interlocked with the exhaust and return air 
damper. The supply air flow rate is kept as consistent 
as possible to ensure proper pressure balance at the 
building side. In addition, to provide adequate venti-
lation, the minimal OAD opening is limited by an 
actuator. The damper model was developed based on 
the work by Tan and Dexter [31]. The pressure drop 
across the dampers is given by Ploss = Rdampmair

2, 
where mair is the mass flow rate of the air through the 
dampers and Rdamp is the resistance of the damper 
given by  

2

exp[ (1 )]                    0.3333

    0.3333
3.0[(1/3 ) 0.0429 ]

open d

damp open

d

R k if
R R if

L

α α

α
α α

− ≥⎧
⎪=⎨ <⎪ − +⎩ ⎭

⎫
⎪
⎬
⎪
      

(1)       
where α is the fractional opening of the damper (0 
for fully closed and 1 for fully open), kd is a constant 
depending on the type of blades used, Ropen is the 
resistance of fully open dampers, and Ld is the leak-
age when the damper is fully closed. In Eq. (1), there 
exists a slight discontinuity of the damper resistance 
around 0.3333. It was smoothed by a third order 
polynomial covering the interval of [0.2833, 0.3833]. 
The four coefficients of the polynomial were deter-
mined with the two functional values and two deriva-
tive values at 0.2833 and 0.3833. The air-mixing 
plenum was formulated on the basis of the splitter 
model from the MFL. 

2.2 Fan 
Two fan models are employed in this study. The first 
fan model was based on the pump model from the 
MFL. The only change was on the medium flowing 
through, from water to the moist air.  The second fan 
model was developed based on the similarity factor 
model in [29]. The relationship between the flow 
factor and pressure factor is given by 

2
1 2 3C C Cϕ ψ ψ= + +    (2a) 
Q

AU
ϕ =     (2b) 

,

total

dynam periph

P
P

ψ Δ
=
Δ

   (2c) 

where A = (πD2)/4, U = (πDN)/60, (ρvvelPΔ = 2)/2, 
/ exv Q A= , total stat velP P PΔ = Δ + Δ , φ is the flow 

factor, ψ is the pressure factor, Q is the flow rate, A 
is the reference area, Aex is the exhaust area, D is di-
ameter of the impeller, v is the velocity of the out-
flow air, N is the rotation speed in rpm, ΔPstat is the 
static pressure, ΔPvel is the velocity pressure, and 
ΔPdynam, periph is the peripheral dynamic pressure. C1, 
C2 and C3 are coefficients of the polynomials relating 
the flow and pressure factors, which are fitted to the 
manufacture’s fan performance data by the least-
square estimation. A limited proportional-integral 
(PI) controller is used to regulate the rotation speed 
of the supply fan to maintain the static pressure of 
the supply air duct at the setpoint. In addition, the 
rotation speed of the return fan is synchronized by 
another limited PI controller, with the reference set-
ting satisfying the steady-state equilibrium of overall 
flow rate. This is a simplified treatment, and it is be-
ing improved by a more accurate treatment described 
in the work by Tan and Dexter in [31] which consid-
ered the building over-pressurization and leakage 
flow.  

2.3 Cooling Coil 
Cooling coil is the most important component be-
tween the primary plant (e.g. chiller) and the air dis-
tribution system. As mentioned earlier, the cooling 
coil is among the quickest responding components in 
AHU and it also responds to the quickest perturba-
tions. Therefore, the transient behavior of cooling 
coil may have significant effect on closed loop con-
trol performance [15]. 
Since Version 1.4, the ACL has developed a group 
of heat exchanger models that are capable of simulat-
ing both transient and steady-state operations. The 
dynamic energy and mass balances are formulated 
based on the finite-volume method. The number of 
discretization at the refrigerant side is proportional to 
that for the solid wall and the air side. The heat con-
duction in the solid wall is modeled as a one-
dimensional problem perpendicular to the fluid flow 
direction. In particular, the simulation results of a 
cross-counter flow evaporator model used in an 
automotive R134a-system had been validated in an 
experiment conducted by Chrysler [32]. The meas-
ured data were compared with the simulation results 
of the medium properties and the steady-state heat 
transfer rates, for three sets of boundary conditions 
given by the mass flow rate, the inlet temperature, 
the inlet enthalpy, and the relative humidity of the 
ambient air. The heat transfer rates had good consis-
tency while the refrigerant-side pressure drop and the 
air-side water condensing needed improvement.  
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There were some challenges to directly use the heat 
exchanger model from ACL for the cooling coil 
component in the economizer model. In the ACL 
Version 1.5, the choices of state variable pairs in-
clude pressure-enthalpy, density-temperature, and 
mass-internal energy. Such choices are suitable for 
the air flow and two-phase refrigerants in the auto-
motive refrigeration systems. However, for the build-
ing HVAC systems, especially for cooling coils in 
the AHU, the working medium is typically single-
phase, i.e. water. Also, the temperature range is lim-
ited to the ambient temperature variation. Therefore, 
it is necessary to reformulate the existing heat ex-
changer model in the ACL to accommodate the spe-
cific needs in building HVAC systems. 

2.3.1 Medium Model Design and Implementation 

An accurate water medium model is critical for the 
transient simulation of cooling and heating coils in 
the AHU. For the water property calculation, there 
are mainly two international standard formulations, 
namely, IAPWS95 [33] and IAPWS-IF97 [30, 33]. 
The former was developed for scientific computa-
tion, while the latter was developed for industrial 
applications.  Prior to the release of Version 1.4, the 
ACL had included a large set of medium models for 
many refrigerants, but not the water medium. Since 
Version 1.5, the ACL has adopted a lookup-table 
(LUT) based incompressible fluid (water) medium 
model for heat exchanger modeling. However, it 
may have the following drawbacks. First, in the con-
trol volumes, pressure responses are decoupled with 
thermal responses, which may lead to inaccurate 
mass distribution predictions. Second, incompressi-
ble water model will also result in inaccurate pres-
sure drop calculations, which will in turn affect the 
heat transfer property calculations.  
To validate the accuracy of different formulations of 
water property model, the IF-97 formulae based 
model (abbreviated as “IF-97 model” later) and the 
LUT based incompressible water model (abbreviated 
as LUT model later) were compared with the 
IAPWS-95 standard. The FLUIDCAL program de-
veloped by Wagner’s group was used to obtain the 
IAPWS-95 based water properties [34]. For Dymola 
6.1, the water medium in Modelica_Media follows 
the IF-97 model, while the water medium of Ther-
moFluidPro in the ACL Version1.5 follows the LUT 
model. The comparison was conducted in the tem-
perature range from 274.15 K to 373.15 K with an 
increment of 5 K, and the pressure input was set 5 
bars for all cases. Table 1 summarizes the maximum 
errors of several properties based on the IF-97 and 
LUT models relative to those derived from the 

IAPWS-95 standard. Figures 5 through 8 compare 
the relative errors of the IF-97 and LUT models in 
density, specific entropy, Cp and Cv, respectively. 
Note that Cp and Cv are assumed identical in the LUT 
model. More discrepancies were observed for en-
tropy and Cv.  
 

Table 1: Water Properties Based on IF-97 and LUT 
Models Relative to IAPWS-95 Standard

Maximum Relative Error (%) 
Water Property 

IF-97 ACL1.5 
Density 0.0015 0.09 

Specific Entropy 0.018 28.223 

Cp 0.052 0.189 

Cv 0.075 11.833 
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Figure 5: Density errors of the IF-97 and LUT mod-

els relative to the IAPWS95 standard 
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Figure 6: Specific entropy errors of the IF-97 and 
LUT models relative to the IAPWS95 standard 
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Figure 7: Cp errors of the IF-97 and LUT models 

relative to the IAPWS95 standard 
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Figure 8: Cv errors of the IF-97 and LUT models 

relative to the IAPWS95 standard 

Within the Modelica_Media Library, a group of wa-
terIF97 models have been well defined to compute 
the physical properties for water in the liquid, gas 
and two-phase regions based on the IF-97 formulae. 
However, there are several technical issues to use 
these waterIF97 medium models directly in the func-
tions of ACL. First, waterIF97 medium model con-
tains both single- and multiple-phase calculations, in 
which the multiple-phase portion is not needed for 
this application. In addition, earlier development in 
the ACL is well compatible with the automotive air 
conditioning systems whose working medium are 
various kinds of refrigerants. The composition is a 
critical argument contained in most functions devel-
oped in the ACL. For cooling and heating coils in the 
AHU, the single-phase water is the only working 
medium to deal with. The composition argument in 
the existing ACL functions results in significant in-

convenience. For the single-phase water medium 
used in the heating/cooling coils, it would be more 
convenient to remove the composition argument.  
Second, the medium property computation in the 
ACL covers both single- and multiple-phase proc-
esses, which are involved not only in the balance 
equations of the dynamic control volumes, but also 
in the calculations of various thermodynamic states, 
such as density, enthalpy and specific heats, which 
are irrelevant to the dynamic states of the control 
volumes. In addition, there are a lot of computations 
related to multiple-phase processes. A process/device 
involving only the single-phase water medium, such 
as the heating/cooling coil in the AHU, is a much 
simpler case. If we can remove all irrelevant compu-
tations, the resultant computational efficiency will be 
greatly improved.   
Thirdly, the refrigerants used by typical automotive 
air conditioning systems are modeled on the basis of 
the Helmholtz functions with density-temperature as 
the pair of state variables. In many HVAC applica-
tions, it would be more convenient if the water prop-
erties are based on the pairs of pressure-temperature 
or pressure-enthalpy. In addition, for physical prop-
erty calculations in the control volumes, the users 
can access the medium functions only at hierarchi-
cally higher levels, which limits the customization or 
reformulation of these functions for particular appli-
cations, especially when the user-preferred pair of 
state variables is not supported in the existing pack-
age.  
To address the above issues, we decided to develop a 
simpler and more efficient water model, named as 
CoolWater, based on Modelica_Media.Interfaces. 
PartialMedium. The basic formulation of the Cool-
Water model was obtained from [35]. In particular, 
all redundant and conflicting variables and options in 
the original waterIF97 model were either removed or 
modified, e.g. the BaseProperties code. To be consis-
tent with the coding style and physical property cal-
culations preserved in the ACL, several IF-97 based 
low-level medium functions and utilities were 
adopted from the Modelica_Media Library. 
A heat exchanger model was developed based on the 
CoolWater medium described above. Heat exchanger 
modeling is generally considered the most computa-
tionally intensive entity in a refrigeration system 
[36]. To properly adapt the CoolWater model to the 
refrigerant side, equations in the dynamic control 
volumes should be rewritten, but the change should 
not degrade the overall inheritance structure and ex-
actness of the heat exchanger model. Since the up-
permost hierarchical structure of the heat exchanger 
is composed of only a few lines of code, the work of 
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implementing single-phase water model should be-
gin from the most rudimentary control volumes. In 
the development phase, different choices of state-
variable pairs were first compared and evaluated in 
order to achieve both engineering convenience and 
numerical efficiency. It was stated in [37] that the 
mass-internal-energy pair could decrease the nu-
merical efficiency. The density-temperature pair was 
considered by [38] a bad choice in the liquid region 
for compressible fluids due to the amplification of 
numerical error. 
Currently, the state-variable pairs of pressure-
temperature and pressure-specific-enthalpy have 
been formulated into the heat exchanger model for 
comparison purpose. The techniques of state variable 
transformations were performed in the dynamic bal-
ance equations for pressure-temperature and pres-
sure-specific-enthalpy, respectively [38, 39]. The 
corresponding partial derivatives appeared in the 
balance equations could be computed using rudimen-
tary IF-97 functions. To ensure consistent and con-
venient initialization, the pressure-temperature pair 
(compared to the pressure-enthalpy pair) has been 
added into the initialization options, since tempera-
ture is easier to set for HVAC operation rather than 
some other variables such as enthalpy. 

2.3.2 Validation of Cooling Coil Model 

A cooling coil model was derived from the heat ex-
changer model described in the previous section. To 
validate this model, two comparisons were con-
ducted: comparison of pressure-temperature and 
pressure-enthalpy and comparison of our cooling coil 
model and the cooling coil in ACL Version 1.5. 
As described in [38], the advantage of using the 
pressure-temperature pair is that there are many me-
dium property models which are explicit in this state 
pair. The sensitivity of using this state pair needs to 
be checked. It is known that using different dynamic 
state variable pairs may change the numerical sensi-
tivity of the corresponding thermodynamic equations 
of state (EOS). For a bad choice of state pair, even a 
small error in one of variables of the state pairs may 
lead to a large error to other variables calculated 
from EOS. To address such concern, the pressure-
temperature and pressure-enthalpy pairs were com-
pared with an example cooling coil model.  
The cooling coil adopted a flat tube louvered fin heat 
exchanger model given in the ACL. It consists of 
louvered fins and extruded microchannel flat tubes, 
both made of aluminum. The schematic diagrams in 
Figure 9 show the geometry and flow pattern for the 
cooling coil model.  

 
(a) Flow pattern of water and air 

 
(b) Six-pass cooling coil with vertical flow of cool-

ing water and cross flow of air 

 
(c) Geometry of the triangular louvered fin 

Figure 9: Schematic diagrams for the example cool-
ing coil [40] 

On both sides of the wall, several parallel flow chan-
nels are lumped into one uniform flow path. The 
cooling water path through the component is treated 
as one pipe flow with circular cross section and one 
air element associated with each flow segment. Each 
air element is further discretized along its flow direc-
tion. The total depth and height were set to be 0.06 m 
and 0.21 m, respectively. The width of the cooling 
coil could be then calculated from the known number 
of flat tubes and dimension of the flat tubes and fins. 
For the water side, as shown in Figure 9(b), there are 
15 flat tubes in the 2nd and 5th flow passes, and 10 
flat tubes in the each of the remaining flow passes. 
The dimension of the flat tubes could be determined 
through three parameters: height of one flat tube, 
center to center distance of two adjoining flat tubes, 
and the number of pipes in one flat tube. They were 
set to be 1 mm, 10 mm and 20, respectively. The 
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wall thickness and radius of each pipe were set to be 
0.1 mm and 0.4 mm. At the air side, the shape of the 
louvered fins was set to be triangular. The fin dimen-
sions are summarized in Table 2. 

Table 2: Dimensions of the louvered fins

Fin Dimension Parameter Setting 

Number of fins per 0.1 m 80 

Louver length (mm) 7 

Louver pitch (mm) 1.4 

Louver angle (°) 28 

Fin thickness (mm) 0.1 

Fin radius (mm) 0.4 
 

The difference curve

-632.336W (initial)

-1100.75W

 
Figure 10: Internal energy in the 3rd control volume 

For the two state pairs, the inlet air conditions were 
set identical. The flow rate, temperature and relative 
humidity of the inlet air were set to be 0.2 kg/s, 
313K and 60%, respectively. For the water side, the 
chilled water flow rate was kept as 0.3 kg/s. For the 
pressure-temperature state pair, the initial tempera-
ture was set to 292.146 K. To be consistent with this 
setup, the inlet specific enthalpy was set to 8×104 
kJ/kg for the pressure-enthalpy state pair. The total 
discretization number at the air side and water side 
was set to be 12 and 6, respectively. Figures 10 
through 12 show the simulation results from our 
cooling performance test. The difference curves 
shown in the plots are the calculated numerical dif-
ferences between these twos state variable pairs. The 
results indicate that the differences are noticeable 
only in the region of numerical transient responses, 
i.e. 0 to 0.5 seconds, which is not harmful to the 
overall transient and steady-state solutions. 

405.254W (initial)

1928.06W

(0.12s 580.3W)

The difference curve

 

Red line: P-T 
Blue line: P-h

Time (sec) 

Figure 11: Internal energy in the 6th control volume 
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Red line: P-T 
Blue line: P-h

Time (sec)  
Figure 12: Total heat transferred from the heat ex-

changer 
Time (sec) 

A further study was then performed to benchmark 
our development with the ACL Version 1.5. The heat 
exchanger model from ACL Version 1.5 was 
equipped with the LUT water model. In our case, the 
CoolWater model was used and pressure-
temperature was selected as the state variable pair. 
The geometric configuration of the cooling coils was 
reinforced to be the same in the two cases. A similar 
cooling performance test was conducted, the initial 
air flow rate was 0.0675 kg/s and the air temperature 
and RH were given by 303.15 K and 60%, respec-
tively. For the water side, the chilled water flow rate 
and initial temperature was kept as 0.1 kg/s and 
293.15 K respectively. As shown in figure 13, the 
inlet temperatures at the water and the air sides re-
spectively experienced ramp changes in sequence: at 
30 second, the inlet water temperature first ramped 
to 298.15 K within 20 second, and then the inlet air 
temperature ramped to 308.15 K at 75 second within 
20 second as well. Again, the total numbers of dis-
cretization at the air and water sides were set as 12 
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and 6, respectively. Figures 14 through 16 compare 
the simulation results of the two cases in terms of the 
specific enthalpy, the internal energy and the total 
heat transfer rate, respectively. The maximum rela-
tive error was found to be around 0.5%. For this sin-
gle heat exchanger model test in our study, the com-
putation time using the IF-97 model was about 50% 
more than that using the LUT model in the ACL 
Version 1.5. 

20s

20s

Inlet Water Temperature

Inlet Air Temperature

30s 75s

 
Figure 13: Sequential ramp changes of inlet water 

and air temperatures  

0 20 40 60 80 100 120
0.9

1

1.1

1.2
x 10

5

Time (sec)

S
pe

ci
fic

 E
nt

ha
lp

y 
(J

/K
g)

 

 

0 20 40 60 80 100 120
8

9

10

11
x 10

4

S
pe

ci
fic

 E
nt

ha
lp

y 
(J

/K
g)

 

 

CoolWater
LUT

LUT
CoolWater

[2]

[6]

Max relative error: 0.50%

Max relative error: 0.46%

 
Figure 14: Specific enthalpy in the 2nd and 6th control 

volumes 
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Figure 15: Internal Energy in the 2nd and 6th control 
volumes 
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Figure 16: Total heat transfer rate at heat exchanger 

3 Extremum Seeking Control (ESC) 
of Economizer Operation 

3.1 Overview of ESC  

The extremum seeking control deals with the on-line 
optimization problem of finding an optimizing input 
uopt(t) for the generally unknown and/or time-varying 
cost function l(t, u), where u(t) ∈Rm is the input pa-

rameter vector, i.e. 
                          ( ) arg min ( , )

mopt
u

u t l t u
∈

= .                (3) 

Figure 17 shows the block diagram for a typical ESC 
system [41]. The measurement of the cost function 
l(t, u), denoted by y(t), is corrupted by noise n(t). The 
transfer function FI(s) denotes the linear dynamics of 
the mechanism that command the control or optimi-
zation parameter vector u(t). FO(s) denotes the trans-
fer function of the sensor dynamics that measure the 

P. Li, Y. Li, J. Seem

The Modelica Association 456 Modelica 2008, March 3rd − 4th, 2008



cost function, which is often a low-pass filter for re-
moving noise from the measurement.   
 
 

 
          
 
 

Fig. 17: Block diagram of extremum seeking control 
The basic components of the ESC are defined as fol-
lows. The dithering and demodulating signals are 
denoted by  and [ ]1 1( ) sin( ) sin( )T

md t t tω ω=

[ ]2 1 1 1( ) sin( ) sin( )T
m md t a t a t mω α ω= + +α , 

respectively, where ωi are the dithering frequencies 
for each input parameter channel, and αi are the 
phase angles introduced intentionally between the 
dithering and demodulating signals. The signal vec-
tor d2(t) contains the perturbation or dither signals 
used to extract the gradient of the cost function l(t, 
u).  These signals work in conjunction with the high-
pass filter FHP(s), the demodulating signal 

[ ]1 1( ) sin( ) sin( )T
md t t tω= ω  and the low-pass 

filter FLP(s), to produce a vector-valued signal pro-
portional to the gradient ˆ( )l uu

∂  of the cost function 

at the input of the multivariable integrator, where u  
is the control input based on the gradient estimation. 
By integrating the gradient signal, asymptotic stabil-
ity of the closed loop system will make the gradient 
vanish, i.e., achieving the optimality. Adding com-
pensator K(s) may enhance the transient performance 
by compensating the input/output dynamics. For a 
detailed explanation of ESC, consult references [12, 
13, 41].  

∂
ˆ

The earliest version of ESC can be dated back to 
Leblanc’s work in 1922 [42]. There was great inter-
est in this subject in 1950s and 1960’s [10, 11, 43]. 
The research conducted by Krstić and his coworkers 
in the past decade ignited a resurgence of extremum-
seeking control [12, 13]. Krstić and Wang first pro-
vided the stability proof for general SISO nonlinear 
plants based on averaging and singular perturbation 
methods [12]. More design issues were addressed in 
another paper by Krstić [13]. Later, the stability 
proof was extended to discrete-time situation [44]. 
The proposed ESC framework has been applied to 
various applications, such as maximizing biomass 
production rate [45], maximizing pressure rise in 
axial flow compressor [46], minimizing acoustic 
pressure oscillation to enhance combustion stability 
[47], minimizing the power demand in formation 
flight [48], and minimizing limit cycling [49], among 

others. The extremum seeking control was also stud-
ied along different paths. Özgüner and his coworkers 
combined ESC with sliding mode control [50-52] to 
study the vehicle ABS control. Based on the assump-
tion of quadratic functional form with a finite num-
ber of parameters, Banavar developed an ESC 
scheme with an adaptation procedure of on-line iden-
tifying the parameters in the assumed function [53-
55]. 

FHP(s) −∫ 

3.2 ESC for Energy Efficient Operation of 
Economizers  

The ESC based economizer control is illustrated in 
Figure 18. The economizer control can be considered 
as a dual-loop structure. The inner loop is the supply 
air temperature control for the cooling coil, which 
has faster dynamics. The outer loop is the damper 
opening tuning for minimizing the cooling coil de-
mand, which is realized with an ESC framework. 
The nonlinear performance mapping is from the out-
door air damper opening to the cooling coil demand, 
and the input dynamics are effectively the closed 
loop dynamics for supply air temperature control.  In 
the three-state economizer operation scheme, as de-
scribed in Section 1, the ESC is used for state 3 
where mechanical cooling is required. 

 

 

 

 

 

 

(a) Detailed block diagram 

 
 

 

 

 (b) Simplified block diagram 

Figure 18: ESC based economizer control 

3.3 Extremum Seeking Controller Design 

Typical ESC design needs to determine the follow-
ing parameters: the dither amplitude α, the dither 
frequency ω and phase angle φ, the high pass filter 
FHP(s), the low pass filter FLP(s), and the dynamic 
compensator K(s). Based on averaging analysis, the 
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dither frequency should be relatively large with re-
spective to the adaptation gain, but should not be too 
large to trigger unmodeled dynamics and make the 
system more sensitive to measurement noise. Also, if 
the dither frequency is well out of the bandwidth of 
the input dynamics, the roll-off in the magnitude re-
sponse will slow down the convergence [13]. There-
fore, dither frequency ωd is typically chosen to be 
just a moderate value smaller than the cut-off fre-
quency of the input dynamic as long as it is enough 
to separate the time scales of the dither signal and the 
inner loop dynamics. Generally, the dynamic com-
pensator should be designed based on the dither sig-
nal, adaptation gain and the frequency responses of 
the input dynamics. Particularly, a proper propor-
tional-derivative (PD) action can increase the phase 
margin of the input dynamics and thus make the in-
ner loop more stable. However, extreme values of 
the adaptation gain, especially the derivative gain, 
will make the system unnecessarily affected by noise 
and thus destabilize the system. Further design 
guidelines are summarized as follows. 
1) The dither frequency must be in the passband of 

the high pass filter and the stopband of the low 
pass filter, and it should be below the first cut-
off frequency of the tuning schemes FI(s). 

2) The dither amplitude should choose to be suffi-
ciently small. 

3) The dither phase angle should choose to satisfy 

( )
2 2

IF j
π π

θ ω= − < ∠ + <α  and it is desirable to 

design the phase angle ( )
2 2

IF j
π π

θ ω= − < ∠ + <α

 
+

 

such that θ is close to zero. 

3.4 Anti-windup ESC  

Actuator saturation is often encountered in control 
systems. To our best knowledge, the issue of actuator 
saturation has not been discussed for extremum seek-
ing control. For the economizer control, the actuator 
saturation will happen when it is cool or hot outside.  
For instance, when the outdoor air is around 53°F, 
the outdoor air damper will be positioned fully open 
to allow 100% outdoor air to enter the AHU. When it 
is warmer than 100 °F, the damper will be closed to 
a minimum opening which only maintain the lowest 
ventilation for indoor air quality [56]. In other words, 
the optimal reference input is not inside the satura-
tion limit, but rather at either limit point. Transition 
between the ESC operation and the non-ESC opera-
tion is affected by the saturation issue. The averaging 
analysis of ESC [43] showed that, at a large time 
scale, the ESC can be deemed as a linear system 
regulating the gradient signal with a PI controller. 

When saturation presents in the ESC loop, integrator 
wind-up is unavoidable and, in consequence, leads to 
the undesirable windup phenomena. Later in Section 
4.3, a simulation study will show that, due to the 
windup issue, the ESC action may be totally disabled 
even when the air condition changes to a point de-
manding its re-activation. It is thus necessary to 
modify the standard ESC structure in order to avoid 
integrator windup.  

There has been much work reported in the field of 
anti-windup control (AWC) [57, 58]. In order to 
keep the simple nature of ESC, a back-calculation 
method is proposed as in Figure 19, following the 
spirit of the references [58-60].  The difference be-
tween the input and output of the actuator is fed back 
to the input end of the integrator through some gain 
factor. Our simulation results have demonstrated that 
this method works well to prevent the integrator 
windup in ESC system. Future research needs to in-
vestigate the design guidelines for the proposed anti-
windup ESC. The analysis will be based on combin-
ing the existing method for back-calculation AWC 
and the averaging analysis [61, 62].  
 
 
            
 
 
 
 

Figure 19: Block diagram for the anti-windup ESC 

4 Simulation Study 
The proposed extremum seeking control schemes 
were simulated with the Modelica based economizer 
model described in Section 2. The economizer model 
was used to identify the system dynamics and then 
illustrate the ESC schemes presented in the Section 3. 
At the point of writing this paper, the condensation 
computation from ACL 1.5 has not been incorpo-
rated into the cooling coil model due to the software 
licensing delay. Only the dry air can be simulated. 
The simulation results in the following are presented 
for illustration purpose. More rigorous treatment will 
be done after the condensation computation is made 
up to deal with moist air.  

4.1 ESC with Standard Design 

As previously stated, the control objective in this 
study is to minimize the chilled water flow rate of 
the cooling coil by tuning the OAD opening. The 
input dynamics from the OAD opening to the chilled 
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water flow rate was approximated based on several 
open-loop simulations. Fast (20 second) ramp input  
was used to approximate step input in order to re-
move the output jitter due to the inner loop PI control. 
Two fast-ramp responses are shown in Figure 20, 
which shows the second-order system behavior 
across the whole range of operating conditions.                                          

 

 

 
 
 
 
 
 
 
 

(a) Damper opening from 100% to 70% 
 
 
 
 
 
 
 
 
 
 
 

(b) Damper opening from 50% to 20% 
Figure 20: Chilled water flow rate output under fast 

ramp change of outdoor air damper position 

The following second order model was assumed to 
fit the fast-ramp test data:  

2

2( )
2

n
I

n n
F s

s s
ω

2ζω ω+
=

+
                    (4) 

where nω  is the undamped natural frequency and ζ 
is the damping ratio. The damping ratio ζ  was first 
approximated by the percent overshoot suggested in 
[63], then the 10% to 90% rise time Tr was estimated. 
The nω  can then be approximated via the following 
relationship with Tr and ζ [63]: 

2.16 0.60
r

n
T ζ

ω
+

=                          (5)  

which is accurate for 0.3 0.8ζ≤ ≤ . 

A group of tests indicate that nω  ranged from 
0.0108 to 0.021 rad/sec. As a conservative approxi-
mation, nω  was chosen to be 0.011 rad/sec. The 
damping ratio was estimated from the percent over-
shoot and was determined as 0.6. To properly sepa-
rate the dither signal and plant dynamics, the dither 
frequency ωd is selected as one tenth of the natural 
frequency. Next, the following high pass filter FHP(s) 
was selected:  
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which has a unit gain at the ωd. The low pass filter 
was designed as  

    
2

2 2

0.0006( )
2 0.6 0.0006 0.0006

LPF s
s s

=
+ ⋅ ⋅ +

      (7)  

which has approximately 10dB and 20dB attenuation 
at ωd and 2ωd, respectively. To be consistent 
with the phase lag introduced by the input dy-
namics FI(s), the dither phase α was selected as 0.5π 
(radian), which makes ( ) 0.1IF jθ ω α= ∠ + ≈ ° . The 
dither amplitude was chosen to be 10%. 
The designed ESC was tested with a fixed operating 
condition. To be consistent with standard econo-
mizer design conditions, the supply air temperature 
is controlled at 55°F and the return air temperature is 
maintained around 75°F by providing a constant heat 
input to the indoor space. The system was started at 
minimal OAD opening (20%) to ensure adequate 
indoor air quality, and the ESC controller was turned 
on at about 3000 seconds to bring the system the op-
timum. The optimal OAD opening in this study is 
100% since the outdoor air was set to 286K (55°F), 
which is always lower than the return air temperature 
297K (75°F). Therefore, the more outdoor air intake, 
the less cooling water needed to be consumed. Fig-
ure 21 shows the time histories of the optimized 
chilled water flow rate and OAD opening. The ob-
tained steady-state results are very close to the opti-
mum since the assumed condition is mechanical 
cooling with optimal OAD opening at 100%.  
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Figure 21: Tuning results of ESC with standard ESC. 

4.2 Anti-Windup ESC 

Another simulation study was conducted to verify 
the effectiveness of the proposed anti-windup ESC. 
Assume that a 20% damper opening is the minimum 
requirement for indoor air quality, and thus this was 
set as the lower saturation limit. The upper saturation 
limit was 100%. In the simulation study as shown in 
Figure 21, the initial outdoor air damper opening was 
set at 20%, the same as the lower saturation limit. 
The initial air temperature was again set to be 286 K. 
Figure 22 shows the integrator windup phenomenon 
when only the general ESC scheme was applied. 
Driven by the ESC, the damper opening was in-
creased from 20% to 100% which was the corre-
sponding achievable optimal setting. Then the out-
door air temperature was suddenly increased to 310 
K (36.85 °C) at 6000 seconds, the new optimal open-
ing was supposed to be below the lower saturation 
limit. However, the results show that the ESC was 
unable to respond to such change with reducing the 
damper opening. Rather the damper appeared 
“stuck” at the previous position. In comparison, as 
shown in Figure 23, applying the back-calculation 
based anti-windup ESC starting from 3000s effec-
tively solved this problem. Therefore, the proposed 
anti-windup ESC scheme is shown to be able to han-
dle the saturation windup problem.  
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Figure 22: Standard ESC under actuator saturation 
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Fig. 23: Anti-windup ESC under damper saturation 

5 Conclusions 

In this paper, a Modelica based dynamic simulation 
model was developed for a single-duct air-side 
economizer based on Dymola and AirConditioning 
Library. In order to make the cooling coil modeling 
more effective and computationally efficient, revi-
sion was made on the water medium model and the 
associated heat exchanger modeling. An ESC algo-
rithm was proposed as part of a three-state econo-
mizer operation, which aims to minimize mechanical 
cooling load for the economizer operation in com-
mercial buildings. The standard ESC algorithm was 
enhanced by an anti-windup ESC scheme against 
damper (actuator) saturation. Simulations were con-
ducted to search for the optimal outdoor air damper 
opening for standard ESC and the anti-windup ESC. 
The simulations results demonstrated the effective-
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ness of using ESC for tuning the outdoor air damper 
position to minimize mechanical cooling load. The 
proposed enhancement was also validated through 
the simulation results. 
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Appendix: Economizer Operation 

The American Society of Heating, Refrigerating 
and Air Conditioning Engineers (ASHRAE) recom-
mends using economizers based on the cooling ca-
pacity size and weather characteristics for the build-
ing location. ASHRAE [2] classifies climate data 
based on temperature with a number from 1 to 7, and 
the letters A, B, and C, which correspond to moist, 
dry, and marine climates, respectively. Table 1 con-
tains climate zones for 16 cities in the United States. 
The fourth column (Economizer Requirement) 
shows the cooling capacity for which an economizer 
is required by ASHRAE [2]. No economizer is re-
quired in weather locations 1A, 1B, 2A, 3A, and 4A. 
In weather locations 3B, 3C, 4B, 4C, 5B, 5C, and 
6B, an economizer is required when the cooling re-
quirement is greater than or equal to 19 kW. In all 
other weather locations, an economizer is required 
when the cooling requirement is greater than or equal 
to 40 kW. ASHRAE [3] describes several control 
strategies for transitioning between 100% outdoor air 
and the minimum outdoor air required for ventila-
tion. The control strategies are called “high limit 
shutoff control for air economizer.” Following is a 
list of strategies that can be programmed in a com-
puter control system.  

• Fixed dry bulb temperature. This strategy com-
pares the outdoor temperature to a transition tem-

perature. If the outdoor air temperature is greater 
than the transition temperature, then the dampers 
are controlled for the minimum outdoor air re-
quired for ventilation. ASHRAE [3] said this is the 
most reliable and simple control strategy since a 
simple thermostat placed in an outdoor air intake 
can be used. Table 2 shows the transition tempera-
ture for different climatic zones. The U.S. De-
partment of Defense [64] recommends this strat-
egy.  

• Differential dry bulb temperature. This control 
strategy compares the outdoor and return air tem-
peratures. If the outdoor temperature is greater 
than the return air temperature, then the dampers 
are controlled for minimum outdoor air required 
for ventilation. This strategy should not be used in 
the following climatic zones: 1A, 2A, 3A, and 
4A. Hydeman et al. [65] said, "Of all of the op-
tions, dry bulb temperature controls prove the 
most robust as dry-bulb temperature sensors are 
easy to calibrate and do not drift excessively over 
time. Differential control is recommended 
throughout California and the sensors should be 
selected for a through system resolution of 0.5 °F. 
Dry-bulb sensors work well in all but humid cli-
mates, which are not typical in California."  

• Fixed enthalpy. This control strategy measures the 
outdoor air temperature and relative humidity. 
Then the outdoor air enthalpy is calculated and 
compared with a transition enthalpy. If the out-
door air enthalpy is greater than the transition en-
thalpy, then the dampers are controlled for mini-
mum outdoor air required for ventilation. ASH-
RAE [2] recommends a transition enthalpy of 
47kJ/kg and at locations with altitudes signifi-
cantly different than sea level, the transition en-
thalpy should be determined for 24 °C and 50% 
relative humidity. This strategy should not be 
used in the following climatic zones: 1B, 2B, 3B, 
3C, 4B, 4C, 5B, 5C, 6B, 7, and 8, due to the prob-
lem with humidity sensors. 

• Differential enthalpy. This control strategy deter-
mines the outdoor and return air enthalpy from 
measurements of the outdoor and return air tem-
perature and relative humidity. If the outdoor air 
enthalpy is greater than the return air enthalpy, 
then the dampers are controlled for minimum out-
door air required for ventilation. In 2003, the U.S. 
General Services Administration required a differ-
ential enthalpy economizer for air-handling units 
with a capacity greater than 3,000 CFM (1,416 
LPS) unless the air handling system design pre-
cluded the use of an air-side economizer. Regard-
ing the use of differential enthalpy controls, Hy-
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deman et al. [65] said, “Differential enthalpy con-
trols are theoretically the most energy efficient. 
The problem with them is that the sensors are very 
hard to keep calibrated and should be re-calibrated 
on an annual or semi-annual basis. Contrary to 
common perception, enthalpy controls do not 
work in all climates. In hot dry climates they can 
hunt and excessively cycle the economizer damp-

ers when the hot dry outdoor air has lower en-
thalpy than the space(s) at cooling balance point. 
What happens is that the economizer opens up and 
the coil is dry, which in turn dries out the space(s) 
until the return enthalpy goes below the outdoor 
enthalpy. As a result, the economizer damper 
closes, the space humidity increases, and the cycle 
repeats.”

 
Table A.1. Climate zones and economizer requirement for 16 US cities. (qcool: cooling capacity) 

Climate  Description  Cities  Economizer Requirement 
1A  Very Hot - Humid  Miami, FL  None 
1B Very Hot - Dry --- None 
2A  Hot - Humid  Houston, TX  None 
2B  Hot - Dry  Phoenix, AZ qcool ≥ 40 kW 
3A  Warm - Humid Charlotte, NC  None 
3B  Warm - Dry  Los Angeles, CA  qcool ≥ 19 kW 
3C  Warm - Marine  San Francisco, CA  qcool ≥  19 kW 
4A  Mixed - Humid  New York, NY  None 
4B  Mixed - Dry  Albuquerque, NM  qcool ≥  19 kW 
4C  Mixed - Marine  Seattle, WA  qcool ≥  19 kW 
5A  Cool - Humid  Chicago, IL  qcool ≥  40 kW 
5B  Cool - Dry  Denver, CO  qcool ≥  19 kW 
5C Cool - Marine --- qcool ≥  19 kW 
6A  Cold - Humid  Minneapolis, MN  qcool ≥  40 kW 
6B  Cold - Dry  Cheyenne, WY qcool ≥  19 kW 
7A  Very Cold - Humid  Ashland, WI  qcool ≥  40 kW 
7B  Very Cold - Dry  Jackson, WY  qcool ≥  40 kW 
8  Arctic  Fairbanks, AL  qcool ≥  40 kW 

 

Table A.2. Transition temperatures for fixed dry bulb economizer. 

Climatic Zones  Transition Equation 

1B, 2B, 3B, 4B, 4C, 5B, 5C, 6B, 7B, 8 24OAT > C  

5A, 6A, 7A  21OAT > C  

1A, 2A, 3A, 4A  18OAT > C 
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Using Modelica for modeling and simulation of spark ignited
engine and drilling station in IFP

Masoud Najafi∗ and Zakia Benjelloun-Dabaghi†

Abstract

Modeling and simulation are becoming more crucial
since engineers need to analyze very complex systems
composed of several components from different do-
mains. Current tools used in IFP (French Institute
of Petroleum) are generally weak in treating multi-
domain models because the general tools are block-
oriented and thus demand a huge amount of manual
rewriting to get the equations in explicit form. The
most popular tool used at IFP in simulation of 0D/1D
systems and control design area is Simulink. In this
paper, we present the use of the Modelica language
in modeling and simulation of two industrial applica-
tions.
Keywords: Modeling; Modelica; Scicos; SI Engine;
Drilling station

1 Introduction

Scilab1 is a free and open-source software for scien-
tific calculation and Scicos2 is a toolbox of Scilab that
provides an environment for modeling and simulation
of hybrid dynamical systems [1, 2]. They can be com-
pared with Matlab and Simulink, respectively. The un-
derlying hybrid formalism in Scicos allows modeling
and simulation of very general hybrid dynamical sys-
tems, i.e., systems including continuous, discrete-time
and event based behaviors.
Scicos supports acausal modeling or modeling physi-
cal systems with components. This has been done, in
particular, by lifting the causality constraint on Scicos
blocks and by introducing the possibility of describing
block behaviors in the Modelica language. This ex-
tension allows the user to model physical systems de-

∗Masoud Najafi, INRIA-Rocquencourt, Domaine
de Voluceau, BP 105, 78153, Le Chesnay, France

†Zakia Benjelloun-Dabaghi, French institute of Petroleum
(IFP), 1 & 4, avenue de Bois-Préau, 92852, Rueil-Malmaison,
France

1www.scilab.org
2www.scicos.org

scribed by mathematical formula. Most physical com-
ponents are more naturally modeled with components
simply because physical laws are expressed in terms
of mathematical equations [3].
Modelica is a modern object-oriented programing lan-
guage based on equations instead of assignment state-
ments. Modelica has a multi-domain modeling capa-
bility, e.g., electrical, mechanical, thermodynamic, hy-
draulic, and control systems can be described by Mod-
elica. Modelica programs are built from classes that
contain elements, the variable declarations, and equa-
tions. In order to write a complicated model easily
and efficiently, the model is decomposed into several
components. Then, by interconnecting components
the model is constructed [4].
In the following sections, we will present two indus-
trial applications: drilling station and spark ignited en-
gine. These applications have been already modeled
in Simulink which is a popular tool at IFP mostly used
for simulation of 0D/1D systems and control system
design. In this paper, we will present the way these ap-
plications have been modeled with Modelica and sim-
ulated in Scicos.

2 Modeling a drilling station

Modeling in the oil and gas industry is used in sev-
eral stages of operations, from exploration activity to
refining of the crude oil. The purpose of modeling is
to improve an understanding of the problems that are
usually difficult or expensive to deal with in the real
physical system. Drilling a well into a reservoir is an
expensive, risky, and time-consuming process. So the
problems and malfunctions should be detected as soon
as they appear. Most of problems in drilling industry
are due to lack of a complete knowledge about the en-
vironment and the process. Modeling and simulation
are inevitable to detect and control of such problems.
In previous works done at IFP a model of drilling sta-
tion has been developed [5, 6, 7]. The particularity
of this work, inspired directly from cited works, lies
in using Modelica language and formal computing to
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Figure 1: A schematic diagram of a drilling well sta-
tion.

model and simulate the drilling well station model.
A drilling well station is composed of several parts.
The first visible part of a drilling well is the rig which
is a structure housing equipments used to drill into un-
derground reservoirs for water, oil, or etc. The basic
components of a rotary drilling rig are the derrick and
hoist, rotary table, kelly, drill pipe, bit, and pump as
shown in Fig. 1.
The derrick is the support structure that holds the
drilling apparatus and the drill string. The drill string
consists of rotary table, kelly, drill pipe, drill collars,
and bit. The rotary table is a circular table in the der-
rick floor which is rotated by the electrical or diesel en-
gines. The kelly is a four or six-sided pipe that passes
up through the rotary table and transfers rotary motion
of the rotary table to the drill string. When rotated by
the rotary table, the kelly is free to be raised or lowered
by a cable connected to the top of the derrick down the
kelly.
Drill Pipe is always the longest component in a drill
string. Typically thousands of meters of drill pipe are
used to drill an oil well. Drill pipe is manufactured in
segments of 10 meters lengths. The top joint of the
drill pipe is connected to the kelly. Bottom joint of
the drill pipe is directly connected to larger diameter
pipes called drill collars. One of the earliest problems

drillers encountered in rotary drilling was that of keep-
ing their boreholes straight. The deeper drillers went,
the more the boreholes deviated from vertical. Drill
collars weigh more than drill pipe and are designed
to lower the center of gravity of the drill pipe. This
helps control drilling (e.g., making a straight hole) and
prevents the pipe from kinking and breaking. Two to
twenty drill collars are often used.
The drilling bit is the end of the drill string that actu-
ally cuts up the rock. The bit screws into the bottom of
the drill collars. The most common bit is the tricone bit
which has three rotating cones. The cones have teeth
that are designed to chip and flake away the rock as the
bit is rotated.

2.1 Model of the drilling well

The drilling model is a set of differential equations de-
scribing behavior of components of the drilling station,
including the bit and the rock interactions. The model
should be as simple as possible to explain the desired
malfunctions. The diagram in Fig. 2 shows the model
composed of four main components: a rig, a drill pipe,
a drill collar, and a drilling bit. These component in-
teract with each other via four main variables:
T : the torque that a component applies on another,
F : the force that a component applies on another,
Ω: the angular velocity of a component,
V : the longitudinal velocity of a component.
A more detailed description of components’ model
will be given in the following sections.

Drill

Ωbot ,VbotΩtab,Vtab

Ftop,Ttop

Drill
bit
Drill

Ωc,Vc

pipe collars
Drill
rig

Fbit ,TbitFc,Tc

Tin

Xin

Vin

Figure 2: Connecting variables

The model is nonlinear and one-dimensional and pro-
vides several bottom/surface transfer functions which
can be used for real-time estimation of borehole vari-
ables. Furthermore, the model can be used for stability
analysis that is extremely important in controlling the
drilling process. Another important use of the model is
the simulation of transient and steady state behaviors.

2.1.1 Drilling rig

Drilling rigs may have very complex structure varying
in form and size. From the modeling point of view
the rig imposes the boundary conditions on the drill
string structure. A first approach to model the rig is to
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consider its geometric structure and the elements that
constitute the rig. This may give an exact model, but
it would not be practical. Because in fact this model
would be very complex and numerically would be so
slow that it could not be used in real-time applications.
Another problem with this approach is the fact that it
cannot be used for another rig.
In [5], the model of two mass-spring-damper has been
proposed for the model of longitudinal motions of the
drilling rig, as shown in Fig. 3. Although the model
is simple, it can provide a very good low frequency
response (up to 20 Hz) which is quit enough for our
purpose. Further more, when the rig changes, unlike
the first method which needs a complete new model,
here we need just a new identification for parameters
of the model.

m1

m2

Xin

x1

x2

Vtab

u1

Ftop

Figure 3: A mechanical model for the drilling rig

The mass m1 and m2 can be interpreted as the mass of
the hook and the kelly, respectively [5]. Ftop is the nec-
essary force on the well surface to bore the drill string
down into borehole. Vtab is the kelly’s longitudinal ve-
locity.
Rotary table is modeled as a rotating mass with iner-
tial momentum. In Fig. 2, Ωtab, Tin, Ttop are the angu-
lar velocity of the rotary table, the torque applied on
the rotary table, and the torque needed to turn the drill
string, respectively.

2.1.2 Drill pipe

The drilling pipe is composed of multiple segments
which are screwed together to construct a pipe with
thousands of meters. Due its length, the drilling pipe
exhibits torsional, longitudinal, and lateral motions.
In this paper, only longitudinal and torsional motions
are considered. Precise modeling of the drilling pipe
needs complicated methods such as finite elements. In
order to simplify the model, the drilling pipe is dis-

cretized to N = 15 sections, see Fig. 4. This model-
ing approach fulfills the precision requirements with a
minimum number of variables [6].

Ωi−1
Ti−1 Ti

Ωi+1Ωi
Ti+1

Tf riction

i−1 i i+11 N
Bit

Rig
Drill Drilling
Collar

Figure 4: Discretizing the drilling pipe

Applying Newton’s laws for rotation, we can obtain
the model of each segment.

2.1.3 Drill collars

The drill collars are modeled in the same way as the
drill pipe. Since, the length of the drill collars are
smaller than that of the drill pipe, we do not discretize
the drill collars and we consider a single rigid rod. In
order to obtain the model of the drill collars, Newton’s
laws for rotation are used.

2.1.4 Drill bit

The model of the Rig, drill pipe, and drill collars are
composed of two uncoupled dynamics: a longitudi-
nal and a rotational dynamics. These two dynamics
should be coupled in the drill bit model. Thus, beside
the longitudinal and rotational dynamics in the drill
bit, a coupling dynamics is necessary. The diagram in
Fig. 5 shows these dynamics.

Vbit

(rotational) (longitudinal)
Rock/Bit contact Rock/Bit contact

longitudinal/rotational coupling

DTOB (Tbit )DVIR (Ωc) DVIZ (Vc)DWOB (Fbit )

Figure 5: Drilling bit model

In Fig. 5, DVIZ, DVIR, DWOB, DTOB represent the
downhole longitudinal velocity, the downhole angular
velocity, the downhole weight-on-bit, and the down-
hole torque-on-bit, respectively. The DTOB (Tbit)
which is the torque resistance against the rotation due
to the rock/bit contact is computed by iso-weight ta-
bles. These tables are used to compute the necessary
torque as a function of DWOB and DVIR (Ωc). The
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Figure 6: Model of the drilling rig in Scicos

bottom end of the drilling bit is a tricone transforming
the rotational motions into longitudinal motions. Ωc is
computed as a function of Vbit and the geometric struc-
ture of the bit. The WOB is computed as a function of
the axial speed of the tricone bit and the longitudinal
speed of the bit.

2.2 Simulation example

For each component of the drilling well, i.e., rig,
drilling pipe, drill collars, and drilling bit, we have de-
veloped a Modelica model. The model of the drilling
rig has three control inputs: the rotary table applied
torque (Tin), the longitudinal speed of the kelly (Vin),
and initial position of the kelly (Xin), see Fig. 2. Thus,
the block has three explicit inputs. Each Model-
ica model is considered as an implicit block in Scicos.
These blocks should be connected to build the model
of the drill well.
The Scicos diagram constructed by connecting devel-
oped Modelica blocks is shown in Fig. 6. This Scicos

model is composed of four implicit blocks and five
explicit blocks. , , ,
and blocks are implicit blocks (written
with the Modelica language). There are three explicit
blocks providing input variables of the block.
There is a block to visualize output variables
in the model, and a block to activate the scope
block to sample its inputs. Note that the connection
type between the implicit blocks is different from that
between explicit blocks. These connections represent
physical connection, i.e., there is no flow direction.

With the the developed model, the user is able to simu-
late the model in different situations. Unwanted vibra-
tion/oscillation is a well known recurrent phenomenon
in rotary drilling that may cause catastrophic bit fail-
ures [5, 6, 7, 8, 9]. This phenomenon is the result of
torque fluctuations due to Coulomb frictions. These
frictions are are included in our model, so it should
be possible to simulate this phenomenon which is
known as stick-slip. In order to demonstrate this phe-
nomenon, the simulation is started at steady state an-
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Figure 7: simulation of a drilling station exhibiting os-
cillations in the rotation speed

gular speed of 66 rpm. The input torque is Tin=3000
N.m., Xin=-0.03, and Vin=0. With these inputs, the sys-
tem is stable. At t=100 sec, the torque is increased to
3200 N.m. which sets off the oscillation. The simu-
lation result is given in Fig. 7. In the top subplot, the
input torque applied on the rotary table is shown. The
middle subplot shows the angular velocity of the ro-
tary table, and the bottom subplot shows the angular
velocity of the drilling bit.

3 Mean value SI engine

The model of the SI engine described in this section
is a nonlinear, low frequency model of a fuel-injected
four cylinders SI engine which is generally referred to
as a mean value model. Mean value engine models at-
tempts to capture dynamics in a time-scale spanning
over several combustion cycles. Fast events are not of
interest other than their effects on a larger scale. Most
cyclic dynamics are modeled by their average value
over a cycle. The speed and torque output of the en-
gine and the pressure in the inlet manifold are the as-
pects of most interest in mean value engine model that
we have developed. Mean value engine model gener-
ally represents a basis for the development of different
engine control strategies.
The model of the overall engine is composed of several
components. In order to develop the model of the SI
engine easier, the engine subsystems including the air
throttle, the intake manifold, exhaust gas recirculation
(EGR), the canister purge mechanism, sensor dynam-
ics, combustion chamber, and the load are modeled.
Inherent system delays in the four-stroke engine cycle
including the induction-to-power stroke delay, effects

of the air/fuel ratio or fuel richness are not modeled in
this work. The system including fundamental compo-
nents, sensors, and actuators is illustrated in Fig. 8.
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Figure 8: Principle sketch of SI-engine

3.1 Model of the SI engine components

In this subsection, a brief description of the engine
components and their corresponding Scicos block is
given, more details are given in [10]. These compo-
nents are shown in Fig. 9.

E

ThrottleThrottle
Intake manifoldIntake manifold

EGREGR

AirAir CanisterCanister

CrankshaftCrankshaft

CombustionCombustion
chamberchamber

Figure 9: Scicos toolbox for engine components

3.1.1 Air intake throttle

The air throttle that controls the air flow rate into the
air manifold and the combustion chamber can be mod-
eled as a flow restriction. The model of a flow restric-
tion highly depends on the pressure difference across
the restriction, if small enough, the gas density is con-
sidered equal on both sides, i.e., the gas is consid-
ered as an incompressible fluid. If, on the other hand,
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large pressure differences can be expected the restric-
tion should be modeled assuming compressible fluids.
We have assumed that there is no back flow and the
temperature is unchanged across the throttle [11, 12].
When the engine is in idle mode, the necessary air for
the maintaining the minimum power of the engine is
supplied through an air passage, called air bypass pas-
sage. The bypass area is controlled by the engine con-
trol unit (ECU).
The schematic of the throttle block in Scicos is given
in Fig. 8. The air throttle component modeled with
Modelica has two implicit ports and two explicit in-
puts. In Fig. 9, the square ports are implicit and trian-
gle ones are explicit. Implicit ports represent inlet and
outlet air flows and explicit input ports represent con-
trol signals. The implicit ports are modeled with the

keyword in Modelica.

3.1.2 Exhaust gas recirculation (EGR)

In order to reduce harmful emissions resulting form
the combustion, some of the exhaust gas is diverted
back into the combustion process. In this method the
inlet and exhaust manifolds are connected with a pipe
and the recirculated gas flow rate is controlled by a
valve [12]. The EGR control valve is modeled as a
restriction [11, 12]. The schematic of the EGR block
in Scicos is given in Fig. 9. The EGR block has two
implicit ports and one explicit input port representing
the control signal of the EGR valve.

3.1.3 Canister

Most of the hydrocarbon emissions in modern cars are
from the exhaust, but a considerable part also comes
from evaporative losses in the fuel tank. Most modern
cars use an evaporative emissions management sys-
tem to reduce these emissions. The basic function of
this system is to trap and store the fuel vapors from
the fuel tank in a canister until the engine is started.
Then after the trapped fuel vapors is drawn into the
engine by intake air manifold and combusted. In order
to control the flow of vapors into the engine, a purge
control valve with no back flow is used. The canis-
ter purge valve is modeled as a restriction [11, 12].
The schematic model of the Canister block in Scicos
is given in Fig. 9.

3.1.4 Intake Manifold

The air flowing through the air throttle, the EGR, and
the canister are mixed in the intake manifold and are

send into the combustion chamber through the intake
runner. We have assumed an isothermal manifold heat
transfer, i.e., constant manifold air temperature. The
air in the intake manifold is composed of fresh air,
fuel, and burnt gas. The concentrations can be de-
scribed as functions of the partial pressures of fuel and
air in the intake manifold. Using the ideal gas law, we
can obtain the model of the intake manifold pressure.
In SI engines, the inlet manifold pressure is reduced
by the throttle in order to control the output torque.
The flow rate in the intake runner is imposed by the
pumping mechanism of the combustion chamber and
the crankshaft rotation [11, 12].
The manifold air pressure sensor (MAP sensor) re-
sponse is not as fast as the variation of pressure in the
manifold, so its dynamics cannot be ignored and a first
order filter is used to estimate the manifold pressure.
The schematic of the manifold block in Scicos is given
in Fig. 9. The block has four implicit ports and one ex-
plicit output port representing the MAP sensor output.

3.1.5 Combustion chamber

The combustion chamber is the heart of the engine.
The air/fuel mixture flows into the cylinders and re-
acts and usable energy is extracted from the heated gas
which is then expelled. In this work, the effects of the
air/fuel ratio are not modeled. The cylinder is con-
tinuously swept by a piston which is connected to the
crankshaft via a rod. The top of the cylinder houses in-
take and exhaust ports and a spark-plug in SI engines.
The cylinder and the crankshaft have two important
roles: torque generation and air pumping. When gas
burns and expands, the piston is forced down. The
downward movement is then transformed into rota-
tional movement. The applied torque on the crankshaft
depends on several parameters, such as the air/fuel
mixture ratio, spark ignition time, manifold pressure,
angular velocity of the crankshaft, etc. Since there is
no accurate and simple physical model describing the
generated torque, it is customary that a map is used.
This map gives the optimum generated torque as a
function of the manifold pressure (Pman), and the an-
gular velocity of the crankshaft (ω). Thus, the optimal
obtainable torque is defined as

τopt
gen = F(ω ,Pman).

This map gives the value of the produced torque re-
gardless of other important effects such as the effects
of spark advance. Adjusting the spark advance tim-
ing, we can optimize engine efficiency to deliver peak
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combustion pressure when the piston reaches about
10◦ after top dead center angle. Incorrect spark timing
can have a significant effect on emission output and
vehicle drivability. The amount of the spark advance
needed by the engine varies as function of the number
of different operating conditions. The coolant temper-
ature, fuel quality, and engine load are just a few of
the many factors that can significantly impact ideal ig-
nition time [13, 14, 15]. The effects of the spark timing
on the produced torque is obtained by a using a exper-
imentally obtained map. The map that we have used
in our simulation gives the spark advance efficiency
or the ratio of the produced torque with respect to the
optimal torque, i.e.,

η =
τgen

τopt
gen

= H(|SA|)

where |SA| is the absolute value of the spark advance
timing. Note that H(0) = 1 and |SA| < 40◦.
The up/down movement of the cylinder creates a
pumping effect; when the piston moves downward, the
air is inhaled from the intake manifold and when the
piston moves upward, the burnt air is exhaled to the
exhaust manifold. In an internal combustion engine,
the pressure on the intake side will normally be lower
than on the exhaust side. Pumping gas from low to
high pressure costs energy and this energy is taken
from the crankshaft. The amount of the pumped air
depends on several variables such as the cylinder vol-
ume, the angular velocity of the crankshaft, pressure in
the intake manifold, pressure in the exhaust manifold,
and the air temperature. Again, since there is no accu-
rate and simple physical model describing the amount
of the pumped air, a map is used to describe the total
gas flow rate as a function of manifold pressure (Pman)
and engine speed (ω). The maps used in our model
have been obtained at IFP for a four cylinders SI en-
gine. The schematic of the combustion chamber block
in Scicos is given in Fig. 9. This block has three im-
plicit ports for the air intake runner, the exhaust outlet,
and the connection with the crankshaft. The block has
one explicit input port representing the spark advance
signal coming from the controller.

3.1.6 Crankshaft dynamics and perturbations

The crankshaft dynamics are modeled using the New-
ton’s second law for rotating masses. All perturbations
due to instabilities in combustion, differences in gen-
erated torque in cylinders, and variations in fuel injec-
tion in different cylinders are modeled with noise gen-
erator blocks (explicit Scicos blocks). This perturba-

tions represent the load applied on the engine includ-
ing controllable loads such as effects of A/C or anti-
frost systems on the engine and uncontrollable pertur-
bations modeled with a zero mean random noise. The
schematic of the crankshaft block in Scicos is given
in Fig. 9. This block is connected to the combustion
chamber block via an implicit port representing the
mechanical connection of the crankshaft to the com-
bustion chamber. The block has an explicit output port
providing the angular velocity.

3.2 Simulation example: idle speed control

In this section, the engine components are assembled
to construct the model of an SI engine, see Fig. 10. The
engine model is then used to validate start-up and idle
speed control strategies. The controller can be devel-
oped with standard (explicit) Scicos blocks. Its mod-
eling with explicit blocks in Scicos has the advantage
of using the rich control toolbox of Scilab.
In our model, the selected controller is relatively sim-
ple, i.e., a PI controller. This controller will be ac-
tive as soon as the engine speed exceeds 700 RPM.
During the start-up phase, the spark advance is set to
20◦ and the throttle bypass area is 15%. When en-
gine speed superseded the 700 RPM threshold, the
control is handed over to the PI controller that adjusts
the spark advance and the bypass area as a function
of the reference speed, i.e., 750 RPM, instantaneous
MAP sensor and the engine speed. The simulation re-
sults of an engine start-up and the idle speed control
is given in Fig .11. In this simulation, in order to test
the the idle speed controller, different loads (τl) are ap-
plied at instants t=20 sec and t=40 sec, see the bottom
plot of Fig. 11. In the top plot of Fig. 11, the engine
speed is shown. The engine speed is relatively regu-
lated around 750 RPM in spite of the loads and ran-
dom perturbations. The middle plot of Fig. 11 gives
the intake manifold pressure that decreases from atmo-
sphere pressure as engine starts up and varies as load
changes.

4 Future Works

The Modelica compiler used in Scicos has been de-
veloped in the SIMPA3 project with the participation
of INRIA, IMAGINE, EDF, IFP, and Cril Technology.
Recently, the ANR4/RNTL SIMPA2 project has been

3Simulation pour le Procédé et l’Automatique
4French National Research Agency

Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station in IFP

The Modelica Association 473 Modelica 2008, March 3rd − 4th, 2008



AlphaAlpha

Bypass air Bypass air 

0
0

0

MScope

LoadLoad

3

 PID 
Modelica

800

ThrottleThrottle

CanisterCanister

EGREGR
Air

Air

Air

Speed

Reference speedReference speed
Advance time

A
dv

an
ce

 ti
m

e

Figure 10: The Scicos model for a mean SI engine

launched to develop a more complete Modelica com-
piler. The main objectives of this project are to extend
the SIMPA compiler to fully support inheritance and
hybrid systems, give the possibility to solve inverse
problems by model inversion for static and dynamic
systems, and enhance initialization of Modelica mod-
els.

5 Conclusion

In this paper, we modeled a drilling station and a mean
value SI engine with Modelica in Scicos. It should
be noted that these models have been already mod-
eled and simulated in Simulink at IFP. The modeling
in Modelica was performed in order to compare two
modeling environments. Modeling in Modelica has
several advantages: Modelica is a declarative language
with which very general hybrid systems can be mod-
eled. The Modelica models are independent of the
simulation tool and can be simulated in any Model-
ica simulator. Another important advantage of using
Modelica lies in the symbolic manipulation of mod-

els. Because it gives the possibility of several simplifi-
cations such as efficient discontinuity handling, index
reduction, and generation of the analytical Jacobian.
Another advantage of Modelica models comparing to
Simulink models is the facility in model construction
and navigation in the model. For example, the model
of the drilling station in Simulink is composed of more
that 500 blocks distributed in 116 subsystems whereas
the Scicos model is just composed of 9 blocks. The
model of the SI engine in Simulink is composed of
203 blocks distributed in 30 subsystems whereas the
Scicos model is composed of 20 blocks. The reduced
number of blocks helps the user to construct and debug
the model easier and faster.
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Abstract

Due to recent regulatory changes in Europe, CO2 or
R744 is considered a serious alternative to be the suc-
cessor of R134a for the AC-system of cars for the
European market. Research into R744 as a working
fluid for automotive AC started in the early nineties
and continues even today. There are still open is-
sues in both design and control of R744 systems, e.g.
the choice of an expansion device that satisfies both
cost and performance constraints, control in the sub-
critical region and controling transcritical transients.
In a Masters thesis project organized in cooperation
with Daimler AG in Sindelfingen, these issues were
investigated using a well validated model of an R744
prototype system modeled using the AirConditioning
Library by Modelon AB and Dymola from Dynasim
AB. The preferred choice for the expansion device
from a cost point of view is a two-stage orifice with
a pressure-activated bypass for high load conditions.
The solution with the two-stage valve is compared to a
reference system that uses an electronically controlled
valve that is controlled to the COP-optimal high side
pressure. Unfortunately, the two-stage valve can ex-
hibit both limit cycling behaviour and multiple steady
states depending on the plant operation history, both
undesirable properties. For the investigated system the
drawbacks could be eliminated by proper control de-
sign. Another problem that was investigated was the
load distribution between a front- and a back seat evap-
orator for a two-evaporator version of the same sys-
tem. Again for cost reasons, the refrigerant side of
the second evaporator is not controlled, instead flow is
split between the two evaporators using a fixed expan-
sion device for the rear evaporator.

Keywords: air conditioning; compression cycle; simu-
lation; CO2; R744; control design, COP optimization

1 Introduction

Under the Kyoto protocol agreement, by the year
2012, industrialized countries have to reduce their col-
lective emissions of greenhouse gas 5% below their
1990 levels. Since the current refrigerant used in ve-
hicles, R134a, has a GWP (Global Warming Potential)
of 1410, R744 (CO2) technology has been proposed as
a natural alternative to current R134a-based systems.
The main benefits of R744 as a refrigerant are:

• Energy-efficient

• Non-toxic

• Non-flammable

• No ozone depletion potential (ODP=0)

• Low global warming potential (GWP=1)

Apart from the environmental benefits listed above, us-
ing R744 as a refrigerant for air-conditioning (A/C)
systems can decrease the fuel consumption under
some climate conditions.
Daimler AG and some of its suppliers have developed
and validated specific component and system models
for R744-cycles based on the AirConditioning Library
by Modelon. These models were used to investigate
control strategies for both the single evaporator and the
dual evaporator system prototype for an S-class Mer-
cedes.

2 A/C Systems Optimization and
Control

The role of the HVAC-unit in the A/C system is to pro-
vide maximum cooling power in order to cool down
the air and dehumidify it before re-heating and ven-
tilation. To increase cooling power at very high am-
bient temperature, traditionally a lower COP (more
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fuel consumption) is accepted. The current practice
is to control the air temperature after the evaporator to
a constant, low temperature (slightly above 0 Celsius
to avoid frost) and control the actual cabin tempera-
ture by mixing in warm outside air in the HVAC box
to obtain the desired temperature in the cabin. How-
ever, most of the operating times the optimization of
the COP is the more reasonable control target from the
point of view that fuel consumption should be mini-
mized. These two control targets can be fulfilled by
inserting two decoupled SISO control loops, one of
them controling the high pressure and the other one
controling the evaporator outlet temperature by con-
sidering the strong crosscoupling between these two
variables.

2.1 Optimum High-Pressure Control

To achieve maximum COP in R744 systems, a simple
SISO control strategy with two control loops has been
proposed by [1]. They consider the high- pressure as
the main variable that affects the COP and cooling
power. Since the heat rejection process of the R744
refrigeration cycle takes place in the supercritical re-
gion, where the pressure is independent of the temper-
ature, the system efficiency is a nonlinear function of
the working pressure and the ambient temperature.
For each ambient (gas cooler air inlet) temperature,
there is an optimum high-pressure, which results in the
maximum COP. With the increase of the ambient tem-
perature, the optimum pressure increases.
The other boundary conditions (evaporator tempera-
ture, air humidity and flow rate) have negligible effect
on the optimum high-pressure.

Figure 1: Comparison of COP and cooling power with
the change of high-pressure

A variable swash plate controller is used as low-
pressure (evaporator air outlet temperature) controller
and since any change in a angle of the swash plate
will affect the pressure ratio as well as the compressor
power; it is expected that it changes the optimum high-
pressure as well. Therefore a high-pressure regulator

which controls the refrigerant flow, based on the am-
bient temperature and compressor speed is suggested
by [1]. For the purpose of simplification the effect of
speed is neglected and the controller is reduced to a
controller which works just based on the ambient or
gas cooler temperature and is designed at a low speed,
since at higher speeds of the compressor the role of the
optimum high-pressure is less significant.
An electronic expansion valve like a PWM-valve can
be used as an actuator to change the flow rate to
achieve desired the high-pressure, but to get rid of the
costs of the high-pressure controller and gas cooler
temperature measurement device, a two-stage orifice
expansion valve has been developed whose internal
control mechanism is described in section 3.1.

2.2 Evaporator Temperature Control

Under low load conditions, it is necessary to control
the compressor power to reduce the cooling power to
the desired range for the A/C system and not let it
reach its maximum possible capacity. These condi-
tions are low cooling load and/or high engine speed.
Since the compressor of the automotive A/C unit
draws its driving force from the engine, its power is
a function of the engine speed, which is a highly fluc-
tuating variable. Control of the compressor capacity
is necessary to compensate engine speed disturbances,
to satisfy the comfort requirements and to avoid tem-
perature variations. Control is particularly important
at higher speeds, which cause an undesirable power of
the compressor and too low temperature at the evapo-
rator.
Among the various methods proposed to control the
compressor capacity, using a variable displacement
compressor is the most attractive one. The most pop-
ular variable displacement compressor for automotive
use today is the swash-plate compessor1. Changing
the inclination of the swash plate changes the displace-
ment of each of the many pistons of the compressor.
This causes a change of the pressure ratio, both high-
pressure as well as low-pressure are affected, but the
effect of the expansion valve on the high pressure is
dominant. The control of the swash plate angle and
thus the relative volume is used as a low pressure con-
troller in spite of its influence on the high pressure.
In the sub-critical region, where the heat rejection
takes place isothermally, evaporator refrigerant and air
outlet temperature are functions of the low-pressure,

1For hybrid cars with sufficient electrical power, other options
would be advantageous, because they open up the new possibility
of using a speed control of the compressor.

S. Karim, H. Tummescheit

The Modelica Association 478 Modelica 2008, March 3rd − 4th, 2008



thus the swash plate control makes it possible to con-
trol the evaporator temperature and via the temperature
also the power.
Concerning the previous section, at a constant speed,
it is acceptable to neglect the cross coupling between
the first SISO loop which tries to maximize COP by
high-pressure control and the second one which aims
to control the low-pressure (evaporator air outlet tem-
perature), but it is not satisfactory to decouple these
loops in the case of speed changes.
Assuming constant speed, control of the evaporator air
outlet temperature in the case of low cooling load can
improve the COP significantly due to a smaller pres-
sure ratio and consequently smaller power uptake of
the compressor.

3 AirConditioning Library

The AirConditioning Library and the simulation tool
Dymola, both based on the standardized, freely avail-
able modelling language Modelica, have been selected
by the German automotive OEM as the preferred tool
for model development and exchange for the A/C sys-
tem in passenger cars. The library contains a complete
range of component models and templates of typically
used and proposed A/C system architectures and all
currently used as well as new and proposed refriger-
ants for automotive applications. The modeling de-
tail is appropriate for component selection, system ar-
chitecture design, system integration for overall vehi-
cle thermal management and climate control design.
Prototype systems for future technologies often con-
tain components that differ from those needed for con-
ventional designs, but due to the open code and the
given modeling infrastructure, it is straightforward to
add unusual components to the Library. In this case a
two-stage orifice model with a pressure operated by-
pass had to be added.

3.1 Two-Stage Orifice Model

This valve has an internal mechanism to drastically
change its Kv value based on the pressure difference
between the low- and high-pressure side [6]. It con-
sists of a standard orifice and a bypass which is closed
for small pressure differences. As shown in Figure 2,
the refrigerant flows only through the orifice at pres-
sure differences below a pressure difference ∆p, in this
case set to 73 bar. The bypass starts to open at a ris-
ing pressure difference of ∆p with a very steep gra-
dient, and for higher pressures, the Kv-value rises al-

most linearly with the pressure difference. This results
in a very non-linear pressure – mass flow character-
istic which is prone to limit-cycling behaviour. The
cycle is caused by interaction between the dynamics
if the mass storage at the high- and low pressure lev-
els in combination with the differences between the
mass flow characteristics of the compressor (almost no
change for pressure difference above and below ∆p)
and the valve (almost a step function at ∆p). When
the rising pressure opens the valve for a pressure dif-
ference higher than ∆p, the opening bypass will in-
crease the mass flow from the high pressure side so
rapidly that the pressure difference falls below the by-
pass opening limit, because the compressor mass flow
does not increase in the same degree and the cycle
starts again.

Figure 2: Two stage orifice valve

The highly nonlinear behaviour of the valve’s Kv-
value can under some situations give rise to limit cy-
cling around the steep part of the characteristic where
the valve opens, and it may even lead to two steady
states with different COP’s, one at a pressure dif-
ference above the opening pressure, the other one at
a pressure difference below the opening pressure, at
identical boundary conditions.

4 Single Evaporator, Two-stage Ori-
fice Valve System Control Design

While no direct control of the high-pressure is possible
anymore when using the two-stage orifice valve, it is
still desired to keep the COP as close as possible to its
optimal value in order to reduce fuel consumption. As
previously mentioned, the first control target remains
to regulate the evaporator temperature by means of the
compressor relative volume control, the COP control
is of secondary importance. To achieve these goals, a
simplified control structure proposed by [4] was used
as a starting point for the control design. That structure
was developed for the same type of two-stage orifice
valve and used a complex feed-forward map with three
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Figure 3: Control structure for R744 AC-cycle with electronically controllable expansion device, assuming
COP-optimal control via the valve to control the high pressure side and temperature/power control via the
compressor to control the low pressure side.

inputs (engine speed, air mass flow and inlet air tem-
perature) to mimic the optimal high pressure control
with a fully controllable valve. There are a number of
reasons why the control structure suggested in [4] uses
a high-pressure controller in place of the low-pressure
one for controlling the evaporator temperature. The
refrigerant high-pressure sensor required for control-
ling the high-pressure is already present for monitor-
ing and protection functions in todays R134a circuits,
so no additional sensors are needed and this suggestion
gets rid of the cost for a low-pressure sensor. There
are a number of reasons why the control structure pro-
posed by [4] was dropped in favour of a simpler one.
On the low pressure side the existing evaporator out-
let temperature sensor can be used due to the sim-
ple temperature-pressure relationship of the saturation
curve:

• The feed forward is not robust to changes in
the environment conditions, in particular not to
changes in humidity, which today is not measured
due to too costly sensors. The feed forward only
works well in a limited range of operating condi-
tions and actually decreases control performance
in other situations. A feed forward based design
that includes humidity measurements would most
likely avoid the robsutness drawback.

• Using the components chosen in the given pro-
totype R744 system with the two-stage orifice

valve, undesirable limit cycling behaviour occurs
at some operating points. It is not possible to re-
move the limit-cycling behaviour with the given
control structure.

• For engine speed disturbances, the feed forward
scheme for controling evaporator outlet tempera-
ture from with a feedback on the high side pres-
sure did not work reliably.

• The occurence of multiple steady states, see sec-
tion 4.3.

The current investigation was not done with a fully re-
alistic sensor model for the evaporator temperature.
If a cost-effective temperature sensor would be too
slow to control engine speed variations, a low pressure
controller would still be preferrable to the high pres-
sure one with feedforward due to the list of drawbacks
above.

4.1 Performance of the Valves

To compare the operation of the controllable valve in
an optimized cycle and a two-stage valve without con-
trol of the high pressure, all boundary conditions and
the compressor speed are kept constant and simulation
were performed for three different load cases and both
valves.
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Figure 4: Proposed Control Structure by [4], simplified compared to the control structure in 3. In this case it is
also assumed that the temperature set-point for the evaporator is adapted at low load to improve the COP.

Figure 5: Alternative control structure for control of the low pressure side. The evaporator temperature set point
is used to improve COP, which means that a higher complexity is needed in the supervisory part of the HVAC
control that needs to determine the proper temperature set point.

1. Low cooling load and no control on evaporator
outlet air temperature (Fixed relative volume of
the compressor)

2. High cooling load and no control on evaporator
outlet air temperature (Fixed relative volume of
the compressor)

3. Evaporator temperature controlled (low cooling
load)

4.1.1 Case 1

The system with two-stage valve has lower COP and
higher cooling power than the optimized cycle, even

for the lower ambient temperature. At higher temper-
ature losses decrease, see Figure 6.

Figure 6: Comparison of the two valves, case 1

The high-pressure with two-stage orifice valve is kept
fixed around 110 bars, while the variable Kv valve al-
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lows the pressure to change in a wider range. The rea-
sons is behind the internal mechanism of the two-stage
orifice valve which does not result in a Kv-value close
to the controlled Kv for most of this range (Figure 7).

Figure 7: Comparison of the two valves, case 1

4.1.2 Case 2

In comparison with the previous case, at higher loads,
the cycle with two-stage orifice valve has a COP near
to the optimum value but at higher ambient tempera-
tures it does not achieve equally high cooling power as
the optimized cycle.

Figure 8: Comparison of the two valves, case 2

For this cooling load, the Kv shows a smaller deviation
from the optimized one.

Figure 9: Comparison of the two valves, case 2

4.1.3 Case 3

When the low-pressure is controlled via the relative
displacement of the compressor, the COP is improved
for both cycles.

Figure 10: Comparison of the two valves, case 3

Since the pressure difference is low, at the lower am-
bient temperatures, the refrigerant passes through the
fixed orifice of the two-stage orifice valve and pro-
vides the high-pressure that is needed for better COP.
Both the valve-Kv values and correspondingly the re-
sulting high pressures are closer to one another for this
load case and control scheme than for the previous two
ones.

Figure 11: Comparison of the two valves, case 3

As has been demonstrated in this section, for lower
ambient temperatures, the COP of the cycle with two-
stage orifice is up to 40% less than ideal cycle, there-
fore it is suggested that in this range of ambient tem-
peratures, the evaporator temperature is controlled to
the highest possible value to improve the COP. Assum-
ing the evaporator temperature is controlled with the
two-stage valve cycle, the differences between the so-
lution are not as dramatic as a first look suggests. The
worst case scenario is, however, handled better with
the optimized cycle that provides the highest cooling
power at the highest load case.

4.2 Limit-Cycling Behaviour

In some operating points, which result in a higher
pressure-difference than 73 bars, as a consequence
of the rising pressure, the bypass starts to open and
decreases the high-pressure, the decrease in high-
pressure causes the closing of the bypass and this limit
cycle continues until one of the inputs alters the pres-
sure difference and mass flow rate. To observe the role
of flow rate and pressure change in the limit cycle phe-
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nomenon directly, all the boundary conditions are kept
constant and the relative volume of the compressor is
changed manually to provide the appropriate pressure
difference and flow rate. Figure 12 illustrates above
explanations.

Figure 12: Limit cycle

Other output parameters, which are correlated with the
high-pressure, will also show this limit cycle. The ef-
fect on the evaporator outlet air temperature is negli-
gible (less than 1oC in this case) and it is seen in Fig-
ure 13 that the low-pressure controller can remove the
fluctuations. Therefore passengers do not sense the os-
cillations of the temperature.

Figure 13: Temperature and limit cycle

But the effect on the cooling capacity and COP is
quite considerable. In the temperature interval where
this phenomenon happens, the highest deviation of the
COP is about 50% less than the expected average value
(Figure 14).

Figure 14: COP and Limit cycle

However, this limit cycle does only occur at few oper-
ating points and its characteristic differs in different
circumstances. The following observations demon-

strate this statement: Assuming a low-pressure con-
trolled cycle, the ambient temperature varies in the
range from 30oC to 45oC, and other operating con-
ditions are kept constant. Figure 15 shows the phase
portrait plot of two different cases when the limit cy-
cle takes place. One of them happens when the desired
low-pressure is 40 bar and the other one at 45 bar.

Figure 15: Portrait plot of the valve Kv against the
pressure-difference

Under normal driving conditions, boundary conditions
will rarely ever be constant for a sufficiently long time
such that these limit cycling conditions will be notice-
able, but they are nonetheless an undesired side effect
of the valve construction.

4.3 Multiple Steady-States

In the case of high-pressure control and in the vicin-
ity of 73 bar pressure-difference, when the two-stage
orifice valve changes its flow configuration, a bistabil-
ity phenomenon takes place. In this case, any distur-
bances which leads to small variance in the pressure-
difference, causes the valve to jump to the alternate
path while the high-pressure is kept constant by the
controller. Therefore the system is able to exist in ei-
ther of two steady states, while the high-pressure is
fixed. Figure 16 shows that a small disturbances of the
pressure, pushes the system to another steady state and
causes a significant change in the cooling power. Al-
though this will be compensated by the outer loop later
on, it is another situation where the high-pressure loop
in combination with the two-stage valve acts against
the main purpose of control.

5 Dual Evaporators

Today luxury cars allow passengers to control a dif-
ferent climate in up to four climate zones. This re-
quires the presence of two or even three evaporators
to generate the cooling capacity for front and rear pas-
sengers. The Electronic Control Unit (ECU) controls
the position of the different temperature blend doors
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Figure 16: Bi-stable behaviour for high pressure con-
trol

to provide the passengers with their desired tempera-
ture in different zones. In the cooler unit, the high-
pressure refrigerant splits and flows from two differ-
ent expansion devices to the front and rear evaporator.
The cooling capacity is divided accordingly between
both evaporators. But the amount of the division de-
pends on the operating conditions and structure of the
valves. If a variable displacement compressor is used
to control the front evaporator outlet air temperature,
and a two-stage orifice valve to improve the COP, then
a fixed orifice can be used to pass the refrigerant to the
rear evaporator. In this case, there is no direct control
on the outlet air temperature of the rear evaporator. To
have full control authority on both evaporator tempera-
tures, a controllable second expansion device would be
needed. Alternatively, a model-based controller could
be designed to control the compressor relative volume
based on the measured value of the outlet air temper-
ature of both evaporators. The easier way to control
the cooling capacity of the rear evaporator is to use a
variable speed fan and change the air flow around the
evaporator, while the temperature of the front evap-
orator is controlled with the compressor relative vol-
ume variation using the same SISO approach as for
the one-evaporator system. This will change the bal-
ance point of the rear evaporator low-pressure and this
in turn changes the front evaporator low-pressure. The
behaviour of the latter control system is investigated
in [2], where in the modeling of the dual evaporator
system, it is supposed that the front evaporator uses
fresh air for ventilation and the rear compartment has
just one zone. The outlet air of the front evaporator
enters the car cabin, it is mixed with recirculation air
of the rear compartment and then enters the rear evap-
orator for the second phase of cooling.

5.1 Cooling Power Distribution

To compare the cooling power of the one-evaporator
system with the two-evaporator one, both systems are
simulated under the same cooling load and at the same

operating conditions. Note that all other components
are the same, which means in particular that the heat
rejection capacity via the gascooler is identical for
both systems. Figure 17 illustrates that the summation
of the capacity of the front and rear evaporator is equal
to the capacity of one-evaporator system in this condi-
tion. It also shows that the outlet air temperature of the
front evaporator is same for both cases. With a per-
fect model which includes the corresponding effects
of the rear compartment on the front one, this distribu-
tion scheme may change a little and more compressor
work will be needed to keep the front evaporator tem-
perature constant.

Figure 17: Cooling power distribution between two
evaporators in comparison with one-evaporator system

Figure 18 shows the cooling power distribution against
the ambient temperature. At higher temperatures, the
pattern of distribution will change but acceptable cool-
ing power is still provided for both evaporators.

Figure 18: Cooling power distribution between two
evaporators in comparison with one-evaporator system

5.2 Rear AirFlow Effect

In order to order to manipulate the cooling power of
the rear evaporator, it is possible to change the air mass
flow through it. The simulation was run in a limited
range of airflow variations under two different cooling
loads. Figure 19 shows the change of the rear evapora-
tor cooling power when the air mass flow is changed at
5000 second. Figure 20 shows the cooling power vari-
ation against the air mass flow variation under a high
and a low cooling load.
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Figure 19: Rear evaporator air flow change.

It is seen that the rear cooling power is changed while
the front one is almost kept constant. At lower cooling
loads, the rear evaporator capacity is more sensitive to
the air mass flow change.

Figure 20: Cooling power over air mass flow.

Therefore, at these conditions, using a two-stage valve
besides the front evaporator temperature control is
possible, while the capacity of the rear evaporator is
controlled by means of adjusting the air mass flow.

6 Conclusions

Various aspects of system and control design for a
prototype of a R744 automotive A/C system for the
Mercedes S-class were investigated by simulation us-
ing the AirConditioning Library and Dymola. Differ-
ent system designs with a controllable expansion valve
and a two-stage bypass orifice were compared and
show that the controllable valve gives up to 15 % better
COP than the two-stage valve. Several control designs
were compared and the result was that the simplest
control structure proved to be most robust and had
better performance than the more complex versions.
Furthermore it is demonstrated that the system with
the highly non-linear two-stage valve exhibits limit-
cycling behaviour and bistability around the part of the
valve characteristic that looks almost like a step func-
tion in the valve coefficient Kv. For the two-evaporator
system which uses a two-stage orifice valve to regu-
late the pressure of the front evaporator, simulation re-

sults suggest that the same approach of control for the
one-evaporator system is also applicable for the dual
evaporator system. With the given limited control au-
thority, pressure and temperature of the rear evaporator
will always be defined by the controlled conditions for
the front evaporator and the boundary conditions. In-
stead of temperature control for the rear compartment,
the capacity of the rear evaporator can be controlled
using a variable speed fan, but only within certain lim-
its.
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Abstract

The paper presents a method of implementing an
optimization based control algorithm within the
Modelica framework. To find the optimal point
within a given objective function the golden section
search is employed. Its implementation in Modelica
is presented. The optimizer based control strategy is
applied to control a simplified electrical circuit and to
a hybrid electric vehicle.

Keywords: Modelica; Optimization; Hybrid Vehicle;
Simulation; Fuel Consumption

1 Introduction

Online optimization is increasingly being imple-
mented for better results in controlling complex sys-
tems. It is especially helpful if the control objective
depends on several input parameters which influence
the outcome in a non intuitive way. One example is
the operational strategy of a powersplit hybrid electric
vehicle.
Compared to conventional transmissions, hybrid trans-
missions allow for several additional degrees of free-
dom: The combustion engine speed can be controlled
independently from vehicle speed and battery power
can be used for propulsion or the storage of braking
energy. Although the main control objective is the fuel
economy of the vehicle, other goals like dynamic re-
sponse, driveability, acoustic impression and tailpipe
emissions have to be achieved. In many cases the defi-
nition of the control objective is given by a calibration
table or multidimensional mappings. Since a mapping
normally cannot be expressed analytically, the solution
to the optimization problem has to be computed online
for each control step.

In the development process of hybrid vehicles, simu-
lation is a key issue. It is used to study aspects like
fuel consumption and performance and to understand
complex system interactions. Since the hybrid vehi-
cle powertrain is composed of mechanical, electrical,
chemical and thermodynamical components, Model-
ica is a very useful tool for this. The control software
of the hybrid vehicle is normally implemented using
tools like Simulink or ASCET. The actual powertrain
control is only a small part of the entire controls soft-
ware. A great deal of code which is interconnected to
the actual powertrain control concerns system diagno-
sis or remedial actions, and does not need to be simu-
lated. To study the powertrain behavior only the rele-
vant parts of the control code are transferred to Mod-
elica.
In this paper, we shall present a simple optimization
algorithm and give an example on how it can be im-
plemented in Modelica. We will also take a look on a
possible employment of such an algorithm; the power-
train control of a hybrid electric vehicle. In addition,
the following points have been investigated: How will
an algorithm that requires fixed time-steps work to-
gether with an complex vehicle model? How does the
optimization influence the simulation time? How can
standard Modelica elements like tables be integrated
in the optimization algorithm, since it doesn’t allow
graphical programming?

2 Problem statement

A Plant P is controlled by its input u and disturbed by
d. y is the observed measurement. In an early control
development stage the plant can be represented by a
simulation model. The control task is to follow a given
reference yre f so that an objective function J(y,yre f ) is
minimized. For linear systems and quadratic objective
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Figure 1: Control optimization problem

functions the choice of controller is well understood.
A linear state feedback control can be directly derived
from the linear plant given by the system matrices A,
B, C, D and by the coefficients of the quadratic objec-
tive function.
For nonlinear objective functions the optimization can
be carried out by an optimization algorithm. In each
optimization step the algorithm calls the objective
function, iterating the control signal u to generate the
optimal solution u∗.
In our case the plant is a Modelica model. The control
using the optimization algorithm is also integrated in
Modelica. A tutorial example of such an optimization
is shown in section 3.2.

3 Online optimization

An optimization algorithm used for the given problem
has to be robust, i.e. it needs to come up with a solution
after a finite number of iterations. Such an algorithm
is golden section search. In this paper its integration
into the Modelica framework is shown.

3.1 Optimization algorithm - Golden section
search

The golden section search derives its name from the
fact that it narrows its search interval with the golden
ratio 1

2(1+
√

(5)) in each step. The technique is effec-
tive only for unimodal functions, where a maximum
or minimum is known to exist within a given inter-
val. As starting points the lower and upper limit of the
search interval are chosen. Using the golden section,
two new points within the interval are evaluated and
compared. The point with the highest functional value
is chosen as a new boundary point, and points outside
of this are no longer considered. The algorithm contin-
ues to search until the maximum number of iterations
is reached or the termination condition suggested in
[4]: | x4− x1 |> τ(| x2 | + | x3 |) is satisfied. τ is a
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Figure 2: Principle of Golden Section Search Algo-
rithm

tolerance parameter. Modelica code 1 describes the
golden section search algorithm:

function goldenSectionSearch
extends Modelica.Icons.Function;
parameter Real tau=0.001;
...
constant Real C=0.5*(3 - sqrt(5));
constant Real R=1-C;
...

algorithm
x1:= xLowerLimit;
x4:= xUpperLimit;
x2:= R*x1 + C*x4;
x3:= C*x1 + R*x4;
fx2:=optFunction(x2,alpha,IbatDes,
Ri,Iload,gammaI);
fx3 :=optFunction(x3,alpha,IbatDes,
Ri,Iload,gammaI);

while abs(x4-x1)>
tau*(abs(x2)+abs(x3)) loop

if (fx3<fx2) then
x1:=x2;
x2:=x3;
x3:=R*x3 + C*x4;
fx2:=fx3;
fx3:=optFunction(x3,alpha,

IbatDes,Ri,Iload,gammaI);
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else
x4:=x3;
x3:=x2;
x2:=R*x2 + C*x1;
fx3:=fx2;
fx2:=optFunction(x2,alpha,

IbatDes,Ri,Iload,gammaI);
end if;

end while; if
(fx2<fx3) then
xmin:=x2;
fxmin:=fx2;

else
xmin:=x3;
fxmin:=fx3;

end if;

end goldenSectionSearch;

Modelica Code 1: Golden Section Search Algorithm

3.2 Optimization example

The following example (see fig. 3) illustrates the con-
trol problem: A time varying electric load Iload(t) is
to be supplied with power from an energy storage de-
vice (e.g. a battery) in such a way that the power
losses are minimal and the State-of-Charge (SOC) is
kept at a fairly constant level (to optimize the lifetime
of the energy storage device). The system can be in-
fluenced from an external current source Iopt , which
can deliver power at all times but with losses that are
time-dependent. This means at times it can be effi-
cient to charge the battery and to use the stored energy
at a later time when the losses of the current source are
high. α is a control variable which we choose in order
to weigh the importance of the SOC-control.

Iopt

IloadIbat

Iopt

IloadIbat

Figure 3: Example Electric Circuit

From these control objectives we define the objective
function to be minimized as:

Cost = α | Ibat,des(SOC)− Iopt |︸ ︷︷ ︸
SOCControl

+

Ri(Iopt − Iload)2

︸ ︷︷ ︸
BatteryLoss

+

γI(t)Iopt︸ ︷︷ ︸
CurrentCost

(1)

Iopt is our control variable; the current of the external
current source. The battery losses are assumed to be
a quadratic function of the current through the battery
internal resistance. The SOC-optimal battery current
Ibat,des is a function of the battery SOC and is chosen
to the following curve:
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Figure 4: Ibat,des as a function of battery state of charge

γI(t) is a time-varying function that decides the loss
power of the external current source. In this example,
we have chosen it to be sinodial (see figure 6).

3.2.1 Results

We let the optimization algorithm defined in chapter
3.1 find the optimal solution to the objective function
(1). The variable Iopt is computed through a function
call of goldenSectionSearch.
Figure 5 shows the calculated optimal current, as well
as the load current and the resulting battery current.
We can see that high (battery discharging) peaks in the
load current have been compensated for with the cur-
rent source in order to minimize the battery losses.
In figure 6, the optimized current has been compared
to a control strategy that only considers the battery
SOC (as described in figure 4). We can conclude that
the optimization chooses to charge the battery at times
when the current is inexpensive, but at the same time
manages to keep the SOC at levels similar to the SOC-
controlled strategy, not very far from the target value
of 60%.
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Figure 5: Optimization result: Controlled current Iopt ,
load current Iload and resulting battery current Ibat
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Figure 6: Optimization result: Cost of current, SOC-
Controlled current, Optimized current and SOC

As a measurement on how good the optimization has
worked, we compute the total system losses (battery
losses and losses of the external current source). By
integration of the loss power, as shown in figure 7, we
see that the energy lost in the optimized system is only
about half of the SOC-controlled strategy. The heat de-
veloped in the battery is proportional to the loss power,
and the operating temperature of the battery rises over
time. However, with the optimal control the battery
losses are kept down, and the temperature remains at a
lower level than the SOC-controlled strategy.

3.2.2 Implementation of tables in Modelica text

A difficulty in the implementation of the online op-
timization is the use of table look-ups for the objec-
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Figure 7: Comparison optimized system with SOC-
controlled system: System losses, battery SOC and
temperature

tive function within Modelica text algorithm sections.
In order to do this, one must initialize the table using
dymTableInit. The table/mapping can then be called
from a function using the function dymTableIpo1 or
dymTableIpo2.

...
equation

when initial() then
Data.EngineFuelFlow=dymTableInit
(2.0, smoothness, "FuelFlowAllCyl",
engineFuelFlowTable, table, 0.0);

end when;
...

Modelica Code 2: Table Interpolation in Modelica
Text

3.2.3 Comments on simulation time

In a simple example like the one given above, the sim-
ulation time of a model containing an optimization al-
gorithm is good, only somewhat slower than an equal
model using a traditional control approach. However
when combined with a complex vehicle model, gen-
erating a lot of events due to system state changes, a
fixed-step optimization algorithm can slow the simu-
lation time down considerably. In these cases, it has
been shown that time-discrete sampling of the opti-
mization algorithm increases the computation speed.
A well considered sampled optimization algorithm de-
livers virtually the same result as the non-sampled,
but without recomputing the optimal solution for each
event triggered by the plant. Using this method, we
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have achieved simulation performance comparable to
our traditional control concepts.

4 Hybrid vehicle application

This section will present a simulation model of a hy-
brid electric vehicle using a control strategy based on
online optimization. In this case, the optimization only
governs the choice of engine torque, but it could also
be employed for the choice of gear, or in EVT-mode
(Electrically Variable Transmission) the speed of the
internal combustion engine. The advantage of such an
implementation would be that the vehicle would adapt
its gear strategy depending on the current conditions.
However such a strategy also has the disadvantage that
the gear choice is not always comprehensible to the
driver.
The following control objectives are considered in our
objective function [5]:

• Combustion engine losses

• Battery losses

• Electric machine losses

• Battery SOC control

Below simulation results from an FTP721 simulation
of a hybrid electric vehicle are shown. In figure 8 the
vehicle speed is plotted with our control signal, the
optimal combustion engine torque. TICE is available
for us to choose at all times except the phases where
the vehicle is powered electrically. It has been chosen
to minimize the listed control objectives.
Figure 9 shows the resulting power and SOC of the
battery. At a given engine speed the battery power
is proportional to the combustion engine torque, and
therefore also directly connected to our control sig-
nal. We can conclude that even albeit a high portion of
pure electrical driving in this cycle, the SOC remains
around the target SOC of 60%.

5 Discussion and conclusion

This paper shows that it is possible to implement op-
timization algorithms for the control of a plant, e.g.
a hybrid electric vehicle, in Modelica. Using online
optimization, a fixed-step optimization algorithm can
find a solution to a number of complex and intercon-
nected control objectives. Although the optimization

1The Federal Test Procedure legislation fuel cycle
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Figure 8: Vehicle speed (above) and combustion en-
gine torque (below) as a function of time
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Figure 9: Battery power (above) and state of charge
(below) as a function of time

algorithm has to be called at each step of the simu-
lation, the simulation time was comparable to models
using traditional control strategies.
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Abstract

 One of the challenges in modeling complex 
systems is the creation of quality controllers. In some 
projects, the effort to develop even a reasonable pro-
totype controller dwarfs the effort required to de-
velop a physical model. For a limited class of prob-
lems, it is possible and tractable to directly synthe-
size a controller from a mathematical statement of 
control objectives and a model of the plant. To do 
this, a system model is decomposed into a controls 
model and a plant model. The controls model is fur-
ther decomposed into an optimization problem and a 
‘zero-time’ plant model. The zero-time plant model 
in the controller is a copy or a reasonable representa-
tion of the real plant model. It is used to evaluate the 
future impact of possible control actions. This type 
of controller is referred to as a Model Embedded 
Controller (MEC) and can be used to realize control-
lers designed using Dynamic Programming (DP).  

 To illustrate this approach, an approximation 
to the problem of starting an engine is considered. In 
this problem, an electric machine with a flywheel is 
connected to crank and slider with a spring attached 
to the slider. The machine torque is constrained to a 
value which is insufficient to statically overcome the 
force of the spring. This constraint prevents the mo-
tor from achieving the desired speed from some ini-
tial conditions if it only supplies maximal torque in 
the desired direction of rotation. By using DP, a con-
trol strategy that achieves the desired speed from any 
initial condition is generated. This controller is real-
ized in the model using MEC. 

 The controller for this example is created by 
forming an optimization problem and calling an em-
bedded copy of the plant model. Furthermore, this 
controller is calibrated by conducting a large scale 
Design of Experiments (DOE). The experiments are 
processed to generate the calibrations for the control-
ler such that it achieves its design objectives when 
used for closed loop control of the plant model. 

 It is well understood that Modelica includes 
many language features that allow plant models to be 
developed quickly.  As discussed previously, the de-
velopment of quality control strategies generally re-
mains a bottleneck.  In this paper we show how ex-
isting features along with appropriate tool support 
and potential language changes can make a signifi-
cant impact on the model development process by 
supporting an automated control synthesis process. 

Keywords: Control, Dynamic Programming, Model 
Embedded Control, Model Based Control, Optimal 
Control

1 Introduction

 The use of modeling is well established in 
the development of complex products. Modern tools 
have significantly reduced the effort required to 
model and tune physical systems. Acausal or topo-
logical modeling reduces the effort required to model 
a system’s physics. The use of optimization allows 
systematic tuning of parameters to improve a design. 
The combination of parameter optimization and 
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rapid modeling allows a large set of potential designs 
to be quickly evaluated. However for systems which 
include controls, the development is, in general, a 
man-power intensive process subject to large uncer-
tainty in development time and optimality. The op-
timization of both controls and design must be 
solved in many problems [1-3]. One way to address 
this problem is to use numerical techniques to con-
struct controllers. For certain classes of problems, 
tractable numerical techniques can be used to de-
velop an approximately minimizing controller [4]. A 
minimizing controller is a controller which achieves 
the best possible performance from a system as 
measured against an objective. There may exist more 
than one controller able to achieve this minimum, 
but no controller can perform better than a minimiz-
ing controller.  For this work, the terms minimizing 
controller and optimal controller are used inter-
changeably. 

 To construct a minimizing controller, an ob-
ject cost, J , is defined. This is a function which 
maps the state and input trajectory of the system to a 
scalar:

uxCJ , . (1) 
Consider the special case of a plant described by or-
dinary differential equations with inputs that are 
piecewise constant. These piecewise constant inputs 
are updated periodically at the ‘decision instances’ 
by a controller at intervals of t . The total operating 
cost is calculated as a sum over an infinite time hori-
zon. Furthermore, the sum of costs is discounted by 
the term  which is greater than zero and less than 
or equal to one. The total cost is calculated by an 
additive function that operates on the instantaneous 
state and the control inputs. This cost may take a 
form similar to  

1

0

0 ,
k

k

t
k

cont k
k t t

J x c x u d . (2) 

The total cost in (2) is a function of the initial state 
of the system. To simplify notation, let the state at 
the decision instances be represented by  

k kx x t . (3) 

Let the discrete time samples occur at  

kt k t . (4) 
Furthermore, let the continuous-time instantaneous 
cost, contc , in (2) be represented in discrete time no-

tation as an additive cost over an interval, 
1

, ,
k

k

t

k k cont k

t t

c x u c x u d . (5) 

Using the notation developed in (2) through (5), the 
continuous-time system’s total cost is expressed in  
discrete time notation as  

0
0

,k
k k

k

J x c x u . (6) 

To simplify the continuous-time dynamics, let 

0

, , , 0
t

df x u f u d x . (7) 

Hence,

1 ,k d k kx f x u . (8) 

An optimal control choice for each time step can be 
found using the dynamic programming equations,  

* arg min , ,d
u U x

u x c x u V f x u . (9) 

The function V x  is known as the value function. 

By using the dynamic programming (DP) equations 
to find the value function, a minimizing controller is 
obtained. The DP equations are 

min , ,du U x
V x c x u V f x u , (10) 

where

, 0U x u g x u  (11) 

defines the set of feasible actions, xU . For the 
case where the total cost is considered over an infi-

nite horizon and *
k ku u x  (see eq (9)), the value 

function is the same as the total cost function, 
xVxJ . Equation (10) can be solved through 

value iteration, policy iteration, or linear program-
ming. See [5-23]  for discussion of solution methods. 
For discussion of using DP to find value functions 
for automotive control application, see [24-29]. The 
formulation of equation (11) is chosen to simplify 
management of constraints throughout the model and 
to conform to a standard form used in the optimiza-
tion community, the negative null form [30].  

One problem with solving (10) is that when 

the state space consists of continuous states, V x

is a function from one infinite set to another. Except 
in special cases, this requires approximation to solve. 
One common approach is to use linear bases to ap-
proximate the value function. Possible linear bases 
include the bases for multi-linear interpolation, the 
bases for barycentric interpolation, b-splines, and 
polynomials. See the appendices in [25] for a discus-
sion of linear bases for dynamic programming. In the 

case where V x  is approximated by a linear basis,  
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TV x x w , (12) 

where

1 2 Nx f x f x f x . (13) 

An approximate solution to (10) is found by finding 
the weights, w , which solve 

min , ,T T
d

u U x
x w c x u f x u w . (14) 

See [5-7] for a discussion of using linear bases to 
form the value function.  

 It is important to understand that this con-
troller is an optimal controller for the discrete time 
case only, when the controller updates every t
seconds. In other uses, the controller will generally 
be suboptimal. Additionally, any development algo-
rithm based on this methodology will suffer from the 
curse of dimensionality [31]. In other words, the 
time to find an optimal controller will increase geo-
metrically with the size of the plant state space. As a 
point of reference, using a single commercially 
available PC from 2005, a five state controller was 
found in less than twenty four hours.  

2 Controller Development 

 To use equations (2) through (14) to develop 
a controller, it is necessary to have a plant model 
which includes the dynamics ( f ), cost function ( c ),

and constraints ( g ) all coupled to an integrator 
which can be invoked as a function call by a Control 
Design Algorithm (CDA). In addition, the set of 
states for the plant model and the set of controller 
actions must be specified to the CDA. For this work, 
a custom wrapper was developed that allowed 
batches of states and actions to be efficiently evalu-
ated.  Each evaluation returned the state at the next 
interval, the cost of operation for the interval, and the 
constraint activity over the interval. 

To understand the structure of the equations 
involved in this work, consider a system consisting 
of a plant and a controller. Without loss of general-
ity, assume the plant dynamics are described by or-
dinary differential equations 

,x f x u , (15) 

where f  is a function that describes the plant dy-
namics. For notational simplicity consider a continu-
ous time controller. Let the controller be a full state 
feedback controller implemented as a static mapping, 
M , from the state, x , to the action set, u :

u M x . (16) 

Assuming only a single global minimum exists, the 
dynamic programming equations in (9) can be di-
rectly used for the static mapping (16). The autono-
mous dynamics of this system are then described by 
the following equation 

,arg min , ,d
u U x

x f x c x u V f x u  (17) 

This equation is then integrated to solve for x t ,

0

,
, arg min

,

t

u U x
d

x t

c x s u
f x s ds

V f x s u

 (18) 

where

00x x  (19) 

defines the initial conditions. To evaluate df  from 

(7), a nested integrator, which is independent of the 
primary simulation integrator, is required. This 
nested integrator executes in ‘zero-time’ from the 
perspective of the primary integrator. We refer to 
this as an embedded or nested simulation. Because 
the nested integrator is used inside a numeric optimi-
zation, it will potentially be called multiple times at 
each primary integrator evaluation. If df  in (18) is 

expanded using (7), the plant dynamics function, f ,
from (15) occurs in two locations in 

0

0

,

, arg min
, , 0

t

t

u U x

x t

c x s u

f x s ds
V f u d x s

(20)

where

00x x  (21) 

The nested copy of the plant dynamics equations, f ,
is referred to as the embedded or nested model. In 
the case where the controller is modeled as updating 
periodically, rather than continuously, the solution to 
the optimization problem is held constant between 
controller updates. 

The equation structure in (20) and the reuse 
of the plant dynamics function, f , offer the ability 
to quickly synthesize controllers using numerical 
techniques. However, existing tools make the im-
plementation of this type of model problematic. 
There are two primary issues in implementation. The 
first is execution efficiency. Few commercial tools 
have been developed with the goal of efficiently 
solving this class of equations. Secondly, several 
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commercial modeling environments make the defini-
tion and reuse of the plant model cumbersome, re-
quiring significant efforts during development and 
maintenance. Fortunately, the features of Modelica 
make the definition and reuse of a plant model man-
ageable. The examples that follow have been devel-
oped in Dymola ®, however this general approach 
has also been used with Simulink® and AMESim®.  

To systematically generate a system with an 
optimal controller, a model of the plant is generated. 
This plant model is ‘wrapped’ with an application 
programming interface (API) so a control design al-
gorithm can determine the state space, the action 
space, the state at the next time step, the constraint 
activity, and the cost for a given state and action. 
This interaction between the plant model, the API 
and the control design algorithm is illustrated in 
Figure 1. The CDA queries the API to determine the 
structure of the state and action space. Given this 
structure and the configuration of the CDA, a se-
quence of DOEs is executed. The DOE data are used 
to find a solution to (10). For this work, the value 
function was modeled using multi-linear interpola-
tion and a solution to (14) was found. To simplify 

coding, value iteration was used [5, 6] to find V x .

Control Design Algorithm
Plant
Model

ux,

uxfd ,

uxg ,

xV

API to expose functions

uxc ,
(CDA)

State Space

Action Space

Figure 1 - Plant Model API 

Once the value function is generated, the 
system model is formed by one of two methods. The 
first method is by generating a lookup table that 
maps the state variables to an action as in (16).  The 
process of generating a value function, finding a 
mapping equivalent to (9), and realizing a controller 
as a mapping (or lookup table) is referred to as Indi-
rect Model Embedded Control (IMEC). This method 
is appropriate for some systems. Another approach, 
which is more computationally expensive, is referred 
to as Direct Model Embedded Control (DMEC). For 
DMEC, the controller is realized by forming an op-
timization statement around an embedded copy of 

the plant model. This structure is illustrated in Figure 
2.

Embedded
Plant
Model

ux ˆ, uxfd ˆ, uxg ˆ,

API to expose functions

Controller

Plant
Model

Optimizer

*ux
uxc ˆ,

Figure 2 - Direct Model Embedded Controller Struc-
ture

To realize a Direct Model Embedded Con-
troller (DMEC), two pieces are added to the system 
model. The first piece is an optimizer which solves 
(9). This optimizer can be as simple as a Design of 
Experiments (DOEs) which considers a fixed set of 
actions, and selects one which minimizes (9). For 
more sophistication, if the nature of the problem 
permits it, a gradient-based optimizer can be em-
ployed [30, 32, 33]. If the nature of the problem does 
not allow solution using these types of approaches, 
global solvers can be used [34-36]. Ideally, an opti-
mization library should support both gradient and 
non-gradient methods for constrained optimization 
problems. As part of this project, libraries for per-
forming both DOEs and gradient-based optimiza-
tions were implemented entirely in Modelica. How-
ever, there are currently no comparable commercial 
or public domain libraries available. The second 
piece required to implement a DMEC is the ability to 
invoke a function which efficiently initializes and 
simulates, over a ‘short’ time horizon, a set of mod-
els which are copies of the plant model with modi-
fied parameters. Because of the structure of the prob-
lem, each time the controller executes, multiple em-
bedded simulations will execute. Depending on the 
nature of the action set, the number of embedded 
simulations may vary from as few as two embedded 
simulations to several thousand embedded simula-
tions.

3 Example – Simple Engine Start 

 To illustrate how these concepts are used to 
build a controller, consider the problem of starting an 
internal combustion engine using an electric machine 
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with insufficient torque to guarantee the engine 
completes a revolution from all possible stationary 
starting points. If the initial position of the engine is 
in a range of angles, the electric machine will stall. 
To simplify the modeling, let us assume the engine 
can be approximated using a crank slider connected 
to a spring. The system model, shown in Figure 3, 
consists of an electrical motor connected to the crank 
which connects through the crank slider mechanism 
to a piston which is subject to damping from friction.  
Inertia is present in the motor rotor, crankshaft and 
piston.  The electric machine is subject to constraints 
on minimum and maximum torque. 

Figure 3 - Engine Starting Model 

The objective of the control system is to en-
sure the engine will overcome the initial compres-
sion torque from any initial state and minimize en-
gine start time. The total cost of operation (what is 
being minimized) is expressed mathematically as the 
total time taken to achieve a speed greater than or 
equal to five hundred RPM. Once this speed is 
achieved, the controller is deactivated and another 
scheme is used to manage the engine.  The total cost 
of operation for this system is considered over an 
infinite time horizon and is computed as 

0

0 , 500 rpm
0

1 ,otherwise

t
J x dt . (22) 

The instantaneous cost for this system is  

0 , 500 rpm

1 ,otherwise
c x . (23) 

This type of cost generates a ‘shortest-path’ control-
ler. The controller will minimize the total time to 
achieve 500 rpm. The total cost in (22) is undis-
counted. Therefore the discounting factor, , which 

is visible in (2) is assigned  a value of one and omit-
ted from the expression. 

While it is clear that the system has exactly 
two states, they can be selected somewhat arbitrarily.  
For this example, the engine angle and engine speed 
were selected. With these variables as the states, the 
controller is represented as a static map from the en-
gine angle and engine speed to the electric machine 
torque.

,u M  (24) 

The feasible action set is a single real number, the 
motor torque, bounded by the constraints on motor 
torque and power.  The set of feasible actions is de-
fined by  

100 100,

10000 10000

u
U x u

u
. (25) 

The value function was represented using multi-
linear interpolation, see equation (12).

The plant model was implemented in Mode-
lica. The Controller Design Algorithm (CDA) was 
implemented in MATLAB®. The CDA invoked 
function calls to a custom API, similar to Figure 1, 
applied to the plant model in Dymola®. The CDA 
solved for the weights, w , in the value function 
(equation (12)). This value function was used to gen-
erate an Indirect Model Embedded Controller 
(IMEC) and a Direct Model Embedded Controller 
(DMEC). The value function generated by the CDA 
is shown in Figure 4. 
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1000

0

50

100

150

200

250

300

350

0

0.2

0.4

Engine Angle [deg]

Value function

Engine Speed [rpm]

Figure 4 - Value function 

 The IMEC was realized as a two input 
lookup table with multi-linear interpolation on a 
regular grid. The grid points in the table were found 
by solving (9) using the value function generated by 
the CDA. This controller was implemented using 
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standard Modelica components. The actuator com-
mands for the IMEC controller are shown in Figure 5 
as a function of engine speed and angle. 

-1000
-500

0
500

1000

0

50

100

150

200

250

300

350

-100

0

100

Engine Angle [deg]

Best Control Choice - u*

Engine Speed [rpm]

Figure 5 - IMEC control table 

 The DMEC was realized by wrapping a copy 
of the plant model with an API similar to the one 
used for the CDA. A DOE was used to search feasi-
ble actions. The resulting code structure is identical 
to Figure 2. The optimal action was chosen to mini-
mize (9).

 For both of these controllers, the problem of 
starting the engine from any initial condition was 
solved. The solution involved the counter-intuitive 
approach of spinning the engine backwards, then 
reversing direction to allow enough energy to be 
stored in the inertia to overcome the spring force. 
From a model and a control objective, an optimal 
controller with very complex behaviors was numeri-
cally generated in less than 10 minutes on a single 
PC (3GHz, 2Gb RAM).  Furthermore, a similar 
problem with four states was solved in less than 
three hours. Of course the power of this approach 
can only be realized once a sufficient level of tool 
support is available so that the time required to set 
up the analysis is on the same order as the solution 
time.

3.1 Direct vs Indirect MEC 

 Ideally, both an IMEC and DMEC will re-
sult in identical behaviors. However, differences in 
approximation schemes and interpolation can results 
in appreciable differences. In many cases, while In-
direct MEC is simpler to realize in a model, there are 
good reasons to implement a controller with the 
complexity and computational cost of a Direct MEC.  

As an example, consider the previous prob-
lem. The value function, V(x), was found using the 

Control Design Algorithm (CDA). The IMEC con-
troller was designed by solving for the best electric 
machine torque for a set of engine angles and speeds 
on a regular grid. For engine states which occur off 
this grid, multi-linear interpolation was used to cal-
culate the control action. When the IMEC was used 
in an engine start simulation, if the optimal torque 
transitioned between positive and negative, the inter-
polation caused a smooth change in the torque be-
cause of the continuity imposed by interpolation.  

 Alternatively, consider a Direct MEC. Be-
cause of the characteristics of the dynamic pro-
gramming equations and the value function, the op-
timal choices are either full positive or full negative 
torque. This results in an instantaneous, non-
continuous change in torque. When plotted as in 
Figure 6, the difference between the control inputs 
and the state evolution of the system can be seen. 
The interpolation due to the approximation in the 
IMEC results in artifacts in the control actions and a 
slight loss of performance in the system.  Mathe-
matically this means that more detail is required to 

resolve xu* , the function that we are ultimately 

trying to formulate, than to resolve xV .

 There are cases where an IMEC is superior 
to a DMEC approach (e.g.  [26] illustrates just such a 
case). In general, an IMEC implementation is supe-
rior when both the action set is continuous and the 
optimal actions are continuous. The DMEC approach 
is superior when either the action set is discrete or 
the optimal actions are not continuous with respect 
to the state. One example where DMEC is clearly 
superior is where the motor is controlled by selecting 
the state of a switch inverter. In this case, the action 
set consists of a finite set of choices for switch con-
figuration and the optimal actions are not continuous 
with respect to the state.  

Figure 6 - Comparison of IMEC and DMEC results 
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4 Implementation of optimization al-
gorithms

 One of the challenges in Direct Model Em-
bedded Control is the implementation of an opti-
mizer. While this work was performed using a De-
sign of Experiments (DOE) to select optimal actions, 
this approach becomes intractable when equality 
constraints and larger dimensional actions sets are 
considered. Towards the goal of supporting these 
classes of problems, a gradient-based optimizer was 
developed. One of the goals in developing this opti-
mizer was to fully implement the optimizer in Mode-
lica. By fully implementing in Modelica, all of the 
information used by the optimizer would be accessi-
ble for speed improvements by the compiler. Should 
native support for model embedding become avail-
able, all equations associated with a Direct MEC 
would be accessible to the compiler for speed im-
provement. Additionally, since the embedded simu-
lations in a DMEC can be completely decoupled 
from each other, simulation tools could easily exploit 
the coarse grained parallelism on multi-core CPUs 
by running several embedded simulations concur-
rently when conducting searches in the optimizer 
(e.g. line searches and numerical gradients). 

 The optimizer was developed in Modelica to 
solve a constrained optimization problem which is 
generally stated in negative null form [30] as  

min

. .

0

0

objective

inequalities

equalities

f

s t

g

h

. (26) 

To implement a gradient optimizer, the optimizer 
functionality was separated from the objective func-
tion ( objectivef ), the inequality constraint functions 

( inequalitiesg ), and the equality constraint functions 

( equalitiesh ). The optimizer was designed under the 

assumption that the inequality constraint functions 
are all in negative null form: feasible inequality con-
straints are less than or equal to zero. The objective 
function was assumed to be a minimization objec-
tive. Since Modelica does not (yet) support the con-
cept of methods or passing of functions as argu-
ments, the optimizer was designed to use static in-
heritance. For this reason, the objective and con-
straint functions are replaceable functions within an 
optimizer package.  

  One feature of this library, that is not com-
monly available, is the ability to handle functions 

which are undefined over some region. The domain 
of the objective and constraints may not be known a 
priori. This occurs with MEC applications because 
the objective (e.g. equation (9))  and constraint func-
tions (e.g. equation (11)) are typically evaluated us-
ing a solver. The solver may not find a solution.  
Hence, classical algorithms must be modified to re-
cover from undefined evaluations. 

 Implementation of this capability was prob-
lematic because of the lack of numeric support for a 
real value which represents the concept of an unde-
fined quantity. Either a native capability similar to 
Matlab’s ® ‘NaN’, or operator overloading with the 
ability to extend a class from real numbers would 
have simplified implementation.  

In this library, Modelica.Constants.inf was 
used to indicate that a function call was undefined. 
However, the language specification does not define 
behavior for operations (e.g. addition, subtraction, 
multiplication, division) on Modelica.Constants.inf. 
Therefore, all functions and statements which oper-
ated on variables that might be assigned a value of 
Modelica.Constants.inf required conditional expres-
sions to ensure expected behavior. 

 While this optimization library will not be 
publicly released, it is available for further develop-
ment. Contact the lead author for a copy. 

5 Recommendations

 While it is possible to realize both IMEC 
and DMEC controllers using Modelica 2.2, the addi-
tion of a standard optimization library and native 
support for embedded model simulation would 
vastly simplify implementation and maintenance.  

Towards the goal of simplifying implemen-
tation of MEC, a recommended language improve-
ment is the addition of a ‘model simulate’ function. 
The function would accept arguments that specify 
the model to simulate, the parameter values to use in 
each simulation, the outputs to return, and any solver 
specific settings. The solver should be able to be 
configured to solve both initialization problems and 
simulation problems. For efficiency in evaluation, 
the function should support both a scalar and vector 
lists of parameters.  In addition to results which are 
associated with the model, there should be results 
associated with the solver. These results should be 
sufficient to diagnose solver failures. At  a mini-
mum, these should include the final time in the 
evaluation and an indication of whether the simula-
tion successfully completed. A sample function defi-
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nition along with an example invocation are shown 
in Figure 7. 

function simulateModel 

input String modelName; 

input String paramNames[:]; 

input String resultNames[:]; 

input Real

        paramValues[:,size(paramNames,1)]; 

input SettingsRecord solverSettings; 

output Real

     results[size(paramValues,1),

             size(resultNames,1)];

…

end simulateModel; 

// example call 

[angle, speed, exitCondition, exitTime] =

    simulateModel(

        modelName=“Library.PlantModel”, 

       paramNames{“w0”, “theta0”,”u”},

       resultNames= 

          {“w”, “theta”,

           “exitCondition”, “exitTime” }, 

       paramValues= 

             [0, 0, -100;

              1, 0, -100;

              …;

              2, 2*pi, 100], 

       solverSettings =

           SettingsRecord( 

               stopTime=1.0,

               fixedStep=0.1) 

       ); 

Figure 7 - Model evaluation 

 It is important to point out that the goal is to 
be able to invoke such a function from within a run-
ning model and not simply as a command line analy-
sis option. As previously mentioned, the ability to 
directly express such nested simulation relationships 
makes posing MEC problems much easier. If the 
MEC problem could also directly express the “opti-
mization problem” associated with MEC then tools 
could also bring the underlying symbolic informa-
tion to bear on efficient gradient evaluation as well. 

 One remaining issue for DMEC problems is 
the initialization of state variables in the embedded 
model. For DMEC problems we typically want the 
embedded model to start at the current state of the 
parent simulation. Said another way, the current val-
ues of the states in the parent simulation should be 

used as initial conditions in the nested simulation.  
Of course, it is possible using the function in Figure 
7 to establish such a mapping but hopefully the lan-
guage design group will consider alternatives that 
would be less tedious and error prone.  

6 Conclusions

 It is tractable to numerically synthesize near 
optimal (or approximately minimal) controllers for 
many systems. While in most cases the state feed-
back required for the controllers may make them 
impractical to deploy, they can certainly be used as 
prototype controllers that establish performance lim-
its for a given design as well as provide insights into 
control laws for production controllers.  Further-
more, this approach can easily integrate into a com-
bined plant-controller optimization process. This can 
be done by  making the optimal controller a function 
of the plant parameters. These optimal controllers 
can be realized as lookup tables (IMEC) or through 
the use of optimization and embedded models 
(DMEC). An algorithmic approach to controls syn-
thesis was presented.  For this paper, the IMEC and 
DMEC approaches were applied to an engine start-
ing problem to generate an optimal controller in an 
automated fashion.

As this work has shown, Modelica is a 
promising technology for rapid prototyping of sub-
system designs and prototype controllers.  However, 
lack of support for ‘model embedding’ makes devel-
opment and long term maintenance problematic be-
cause considerable work must be done to implement 
this embedding. Lacking any language standard, this 
work will always be tool specific.  Furthermore, im-
plementation of controllers which rely on optimiza-
tion suffer from the lack of a standard optimization 
library. While an optimization library was developed 
for this work, it isn’t practical for most users to make 
such an investment.  By adding both language sup-
port to express the essential aspects of model em-
bedding and optimization discussed in this paper, 
Modelica can evolve into a powerful technology for 
system development and optimization. 
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Abstract

In the last few years a Modelica library for spacecraft
modelling and simulation has been developed, on the
basis of the Modelica Multibody Library. The aim of
this paper is to demonstrate improvements in terms of
simulation accuracy and efficiency which can be ob-
tained by using Keplerian or Equinoctial parameters
instead of Cartesian coordinates as state variables in
the spacecraft model. The rigid body model of the
standard MultiBody library is extended by adding the
equations defining a transformation of the body center-
of-mass coodinates from Keplerian and Equinoctial
parameters to Cartesian coordinates, and by setting the
former as preferred states, instead of the latter. The re-
maining parts of the model, including the model of the
gravitational field, are left untouched, thus ensuring
maximum re-usability of third-party code. The results
shown in the paper demonstrate the superior accuracy
and speed of computation in the reference case of a
point-mass gravity field.
Keywords: Spacecraft dynamics; Orbit dynamics; Nu-
merical integration; State selection.

1 Introduction

The Modelica Spacecraft Dynamics Library ([6, 7,
10]) is a set of models (based on the already existing
and well known Multibody Library, see [9]) which is
currently being developed with the aim of providing
an advanced modelling and simulation tool capable of
supporting control system analysis and design activ-
ities for both spacecraft attitude and orbit dynamics.
The main motivation for the development of the library
is given by the significant benefits that the adoption
of a systematic approach to modelling and simulation,
based on modern a-causal object-oriented languages
such as Modelica, can give to the design process of
such advanced control systems.

At the present stage, the library encompasses all the
necessary utilities in order to ready a reliable and
quick-to-use scenario for a generic space mission, pro-
viding a wide choice of most commonly used mod-
els for AOCS sensors, actuators and controls. The
library’s model reusability is such that, as new mis-
sions are conceived, the library can be used as a base
upon which readily and easily build a simulator. This
goal can be achieved simply by interconnecting the
standard library objects, possibly with new compo-
nents purposely designed to cope with specific mis-
sion requirements, regardless of space mission sce-
nario in terms of either mission environment (e.g.,
planet Earth, Mars, solar system), spacecraft config-
uration or embarked on-board systems (e.g., sensors,
actuators, control algorithms).

More precisely, the generic spacecraft simulator con-
sists of an Extended World model and one or more
Spacecraft models. The Extended World model is an
extension of Modelica.MultiBody.World which pro-
vides all the functions needed for a complete repre-
sentation of the space environment as seen by a space-
craft: gravitational and geomagnetic field models, at-
mospheric models, solar radiation models. Such an
extension to the basic World model as originally pro-
vided in the MultiBody library plays a major role in
the realistic simulation of the dynamics of a space-
craft as the linear and angular motion of a satellite
are significantly influenced by its interaction with the
space environment. The Spacecraft model, on the
other hand, is a completely reconfigurable spacecraft
including components to describe the actual space-
craft dynamics, the attitude/orbit control sensors and
actuators and the relevant control laws. In this pa-
per we are specifically concerned with the Space-
craft model; this component has been defined by ex-
tending the already available standard model Model-
ica.Mechanics.MultiBody.Parts.Body. The main mod-
ifications reside in the selectable evaluation of the in-
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teractions between the spacecraft and the space envi-
ronment and on the additional initialization option for
the simulation via selection of a specific orbit for the
spacecraft. The main drawback associated with the
adoption of the standard Body model as the core of
the Spacecraft model is related to the intrinsic use this
component makes of the Cartesian coordinates in the
World reference frame for the state variables associ-
ated with the motion of the Body’s center of mass. In-
deed, for spacecraft work it is well known that signifi-
cant benefits, both in terms of simulation accuracy and
computational performance, can be obtained by using
different choices of state variables, such as Keplerian
and Equinoctial parameters (see, e.g., [11, 8]).
Therefore, the aims of this paper, which extends pre-
liminary results presented in [2] are the following:

• to demonstrate improvements in terms of simu-
lation accuracy and efficiency which can be ob-
tained by using Keplerian and Equinoctial pa-
rameters instead of Cartesian coordinates as state
variables in the spacecraft model;

• to illustrate how Keplerian and Equinoctial pa-
rameters can be included in the existing multi-
body spacecraft model by exploiting the object-
oriented features of the Modelica language and
the symbolic manipulation capability of Model-
ica tools.

The paper is organised as follows: first an overview
of the available choices for the state representation of
satellite orbits is given in Section 2; subsequently, the
use of Keplerian and Equinoctial orbital elements for
the simulation of orbit dynamics will be described in
Section 3, while the corresponding Modelica imple-
mentation will be outlined in Section 4 and the re-
sults obtained in the implementation and application
of the proposed approach to the simulation of a Low
Earth and Geostationary orbits will be presented and
discussed in Section 5.

2 Satellite State Representations

The state of the center of mass of a satellite in space
needs six quantities to be defined. These quantities
may take on many equivalent forms. Whatever the
form, we call the collection of these quantities either a
state vector (usually associated with position and ve-
locity vectors) or a set of elements called orbital ele-
ments (typically used with scalar magnitude and angu-
lar representations of the orbit). Either set of quanti-
ties is referenced to a particular reference frame and

completely specifies the two-body orbit from a com-
plete set of initial conditions for solving an initial value
problem class of differential equations.
In the following subsections, we will deal with space-
craft subject only to the gravitational attraction of the
Earth considered as a point mass (unperturbed Keple-
rian conditions) and we will refer mainly to the Earth
Centered Inertial reference axes (ECI), defined as fol-
lows. The origin of these axes is in the Earth’s centre.
The X-axis is parallel to the line of nodes. The Z-axis
is parallel to the Earth’s geographic north-south axis
and pointing north. The Y-axis completes the right-
handed orthogonal triad.

2.1 Position and Velocity Coordinates

In the ECI reference frame, the position and velocity
vectors of a spacecraft influenced only by the gravita-
tional attraction of the Earth considered with puncti-
form mass will be denotated as follows

r =
[
x y z

]T
, (1)

v =
[
vx vy vz

]T =
dr
dt

. (2)

The acceleration of such a spacecraft satisfies the
equation of two-body motion

d2r
dt2 =−GM⊕

r
‖r‖3 (3)

where µ = GM⊕ is the gravitational coefficient of the
Earth. A particular solution of this second order vector
differential equation is called an orbit that can be ellip-
tic or parabolic or hyperbolic, depending on the initial
values of the spacecraft position and velocity vectors
r(t0) and v(t0). Only circular and elliptic trajectories
are considered in this study.
The state representation by position and velocity of a
spacecraft in unperturbed Keplerian conditions is

xECI =
[
rT vT

]T (4)

at a given time t. Time t is always associated with a
state vector and it is often considered as a seventh com-
ponent. A time used as reference for the state vector
or orbital elements is called the epoch.

2.2 Classical Orbital Elements

The most common element set used to describe ellip-
tical orbits (including circular orbits) are the classical
orbital elements (COEs), also called the Keplerian pa-
rameters, which are described in the sequel of this Sec-
tion. The COEs are defined as follows:
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• a : semi-major axis, [m];

• n : mean motion, [rad/s]

• e : eccentricity, [dimensionless];

• i : inclination, [rad];

• Ω : right ascension of the ascending node,
[rad];

• ω : argument of perigee, [rad];

• ν : true anomaly, [rad];

• E : eccentric anomaly, [rad];

• M : mean anomaly, [rad];

(see Figures 1 and 2). The definitions of the COEs are
referenced to the ECI frame. The semi-major axis a
specifies the size of the orbit. Alternatively, the mean
motion

n =

√
GM⊕

a3 (5)

can be used to specify the size.
The eccentricity e specifies the shape of the ellipse.
It is the magnitude of the eccentricity vector, which
points toward the perigee along the line of apsis.
The inclination i specifies the tilt of the orbit plane. It
is defined as the angle between the angular momentum
vector h = r× v and the unit vector Z.
The right ascension of the ascending node Ω is the an-
gle from the positive X axis to the node vector n point-
ing toward the ascending node, that is the point on the
equatorial plane where the orbit crosses from south to
north. The argument of perigee ω is measured from
the ascending node to the perigee, i.e., to the eccen-
tricity vector e pointing towards the perigee.
The eccentric anomaly E is defined on the auxiliary
circle of radius a, that can be drawn around the ellip-
tical orbit, as shown in Figure 2. Finally, the mean
anomaly M is defined as M = n(t− tp), where tp de-
notes the time of perigee passage, i.e., the instant at
which the eccentric anomaly vanishes. As is apparent
from its definition, the mean anomaly for an ideal Ke-
plerian orbit increases uniformly over time. E and M
are related by the well known Kepler equation

E− esin(E) = M. (6)

In this work, satellite state representation in terms of
classical orbital elements (Keplerian parameters) will
be denoted as

xCOE =
[
a e i Ω ω M

]T (7)

with the implicit choice of adopting M as a parame-
ter to represent the spacecraft anomaly; the advantages
and disadvantages of this choice will be discussed in
the following.

2.3 Equinoctial Orbital Elements

COEs suffer from two main singularities. The first is
when the orbit is circular, i.e., when the eccentricity is
zero (e = 0). In this case the line of apsis is undefined
and also the argument of perigee ω . The second occurs
when the orbit is equatorial, i.e., when the inclination
is zero (i = 0). In this case the ascending node is un-
defined and also the right ascension of the ascending
node Ω. See Figure 1.

It is nevertheless possible to define the true, eccentric
and mean longitude (L, K and l, respectively) as

L = ω +Ω+ν , (8)

K = ω +Ω+E, (9)

l = ω +Ω+M; (10)

these quantities remain well-defined also in the singu-
lar cases of circular and/or equatorial orbits.

The equinoctial orbital elements (EOEs) avoid the sin-
gularities encountered when using the classical orbital
elements. EOEs were originally developed by La-
grange in 1774. Their definitions in terms of Kep-
lerian elements are given by the following equations

ORBITAL
PLANE

LINE
OF NODES

intersection between
equatorial plane
and orbital plane

ASCENDING
NODE

LINE
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EQUATORIAL
PLANE

X

Y
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Ω

i
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n

e

ω

ν

h

Figure 1: Classical Orbital Elements (COEs).
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Figure 2: True and eccentric anomalies for elliptic mo-
tion.

(see, e.g., [1, 5, 8] for details)

a, (11)

P1 = esin(ω + IΩ), (12)

P2 = ecos(ω + IΩ), (13)

Q1 = tan(i/2)sinΩ, (14)

Q2 = tan(i/2)cosΩ, (15)

l = Ω+ω +M. (16)

True retrograde equatorial orbits (i = 180◦) cause
problems because Q1 and Q2 are undefined. This
problem is solved by introducing a retrograde factor
I which is +1 for direct orbits and −1 for retrograde
orbits. In this work, dealing with geostationary satel-
lites, I is equal to +1 and the mean longitude net of
the Greenwich Hour Angle Θ(t)

lΘ = l−Θ(t) (17)

will be used instead of the mean longitude l given by
equation (16). GEO satellite state representation in
terms of equinoctial orbital elements will be denoted
as follows

xEOE =
[
a P1 P2 Q1 Q2 lΘ

]T
. (18)

The definitions of the EOEs are referenced to the
equinoctial reference frame, which can be obtained
from the ECI reference frame by a rotation through
the angle Ω about the Z axis, followed by a rotation
through the angle i about the new X axis (which points
in the same direction as the node vector n pointing
the ascending node), followed by a rotation through
the angle −IΩ about the new Z axis (which points in

the same direction as the h vector). In the equinoc-
tial frame the elements P1 and P2 represent the pro-
jection of the eccentricity vector onto the Q and E di-
rections, respectively (see Figure 3). The elements Q1
and Q2 represent the projection of the vector oriented
in the direction of the ascending node with magnitude
tan(i/2), onto the Q and E directions, respectively.
Note that in the singular cases of circular (or equa-
torial) orbits, the vector P (or Q) becomes zero; the
indetermination in the two components of each vector
is thus not a problem.

LINE
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LINE
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LINE
OF NODES

ORBITAL
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ω

Ω

ν

Q
E

L

r

SPACECRAFT

Ω

Figure 3: Eccentricity and inclination equinoctial
components and true longitude.

2.4 Conversion formulae: COEs to Cartesian

The position coordinates in the orbital plane, centered
in the Earth (Figure 2) are related to the COEs by the
following equations

[
xorb
yorb

]
=
[

acos(E)−ae
asin(E)

√
1− e2

]
. (19)

while the corresponding velocities can be computed as
[

vx,orb
vy,orb

]
=

[
−a2n
|r| sin(E)

a2n
|r|
√

1− e2 cos(E)

]
, (20)

with |r| =
√

x2
orb + y2

orb =
√

rT r. As depicted in Fig-
ure 1, the orthogonal basis RT N of the Gaussian co-
ordinate system can be obtained from the orthogonal
basis XY Z of the ECI frame by means of three succes-
sive rotations




xorb
yorb

0


= RZXZ (xCOE )




x
y
z


 , (21)

with

RZXZ (xCOE ) = RZ(ω)RX(i)RZ(Ω) (22)
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where matrix

RZ(Ω) =




cosΩ sinΩ 0
−sinΩ cosΩ 0

0 0 1


 (23)

describes the first rotation around the Z axis of an an-
gle Ω, matrix

RX(Ω) =




1 0 0
0 cos i sin i
0 −sin i cos i


 (24)

describes the second rotation around the X of an angle
i, matrix

RZ(ω) =




cos(ω) sin(ω) 0
−sin(ω) cos(ω) 0

0 0 1


 (25)

describes the third rotation around the Z axis of an an-
gle ω . Thanks to the orthonormal property of rotation
matrices, equation (21) can be easily inverted, giving




x
y
z


= RT

Z (Ω)RT
X(i)RT

Z (ω)




xorb
yorb

0


 ; (26)

following the same reasoning, the Cartesian velocity
vector can be expressed as




vx

vy

vz


= RT

Z (Ω)RT
X(i)RT

Z (ω)




vx,orb
vy,orb

0


 . (27)

Further details can be found, e.g., in [11]. Summariz-
ing, it is possible to compute xCOE , given xECI , by first
solving the scalar implicit equation (6) for E, and then
the explicit vector equations (19)-(20), (26)-(27).

2.5 Conversion formulae: EOEs to Cartesian

The conversion formulae from EOEs to Cartesian co-
ordinates in ECI are slightly more involved. The
results are summarised here; for further details, the
reader is referred to, e.g., [1, 5, 8].
The eccentric longitude K can be computed by solving
the implicit equation

ltheta +Θ(t) = K +P1 cos(K)−P2 sin(K). (28)

The ECI coordinates are then given by



x
y
z


= ρ




(1+Q2
2−Q2

1)cos(L)+2Q1Q2 sin(L)
(1+Q2

1−Q2
2)sin(L)+2Q1Q2 cos(L)

2Q2 sin(L)−2Q1 cos(L)


 ,

(29)




vx

vy

vz


= n




x
|r|

d|r|
dl +σ

[
(1+Q2

2−Q2
1)

dcos(L)
dK +2Q1Q2

dsin(L)
dK

]

y
|r|

d|r|
dl +σ

[
(1+Q2

1−Q2
2)

dsin(L)
dK +2Q1Q2

dcos(L)
dK

]

z
|r|

d|r|
dl +2σ

[
Q2

dsin(L)
dK −Q1

dcos(L)
dK

]


 ,

(30)
where

|r|= a(1−P1 sin(K)−P2 cos(K)),

ρ =
|r|

1+Q2
1 +Q2

2
,

σ =
a

1+Q2
1 +Q2

2
,

γ = 1+
√

1−P2
1 −P2

2

sin(L) =
a

γ|r|
[
(γ−P2

2 )sin(K)+P1P2 cos(K)− γP1
]

cos(L) =
a

γ|r|
[
(γ−P2

1 )cos(K)+P1P2 sin(K)− γP2
]
.

3 COEs and EOEs for simulation of
orbit dynamics

When orbital control problems are studied, it is usually
necessary to integrate the equations of motion of the
satellite under the action of gravity (due to the Earth or
any other celestial body), of the space environment and
of the actuators’ thrust. The usual approach, known as
Cowell’s method (see [3]), is to integrate the equations
of motion in cartesian coordinates

ṙ = v (31)

v̇ = ag(r)+
F
m

(32)

where ag is the acceleration of gravity, F is the sum of
all the other forces, and m is the satellite mass. applied
by the actuators. First-cut models assume a point-mass
model

ag =−GMr/‖r‖3, (33)

while accurate simulations require more detailed mod-
els of the gravitational field, usually in the form of a
series expansion (see, e.g., [12]). In both cases, the
differential equations are strongly non-linear; there-
fore, despite the use of high-order integration algo-
rithm, tight tolerances end up in a fairly high number
of simulation steps per orbit.
If the satellite motion is described in terms of COEs
or EOEs, it is easy to observe that the variability of
the six orbit elements is much smaller than that of the
Cartesian coordinates. In particular, it is well-known
that in case of a point-mass gravity field with no other
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applied forces, the first five parameters are constant,
while the mean anomaly and the mean longitude in-
crease linearly with time. All existing high-order in-
tegration methods have error bounds which depend on
Taylor expansions of the state trajectory. One can then
conjecture that if the COEs/EOEs are used as state
variables, instead of the Cartesian vectors r and v, the
state trajectories will be smoother, and therefore the in-
tegration algorithm will be able to estimate them with
with a higher relative precision using much larger time
steps, compared to the Cartesian coordinates case.
Recalling the definition of vector xECI in (4), letting
z = xCOE or z = xEOE depending on the choice for
the new state variables and denoting by g(·) the trans-
formation relating z and x, equations (31)-(32) can be
written in compact form as

ẋ = f (x) (34)

x = g(z). (35)

If a state variable change from x to z is now performed,
the following equations are obtained

∂g(z)
∂ z

ż = f (g(z)) (36)

which can be solved for ż provided that the new state
variables z are uniquely defined

ż =
(

∂g(z)
∂ z

)−1

f (g(z)) (37)

x = g(z). (38)

The Jacobian for gCOE is generically well defined and
becomes singular only in the case of a circular and/or
equatorial orbit. In this case the EOEs are needed, as
the Jacobian for gEOE is well defined in this case.
The model (37)-(38), which is now in standard state-
space form, has two very important features:

• the right-hand side of (37) is much less variable
than the right-hand side of (34), so it will be eas-
ier to integrate the equations with a higher accu-
racy;

• in case an accurate model of the gravity field is
used, it is not necessary to reformulate it in terms
of the COEs/EOEs, as the right-hand side of (37)
uses the compound function f (g(z)).

Remark 1 The accurate computation of long-term so-
lutions for dynamical problems associated with pure
orbital motion has been a subject of extensive research

for decades. In particular, the so-called class of sym-
plectic integration methods (see, e.g., [4] and the ref-
erences therein) provides an effective and reliable so-
lution to the problem. In the framework of the present
study, however, the aim is to improve accuracy in the
computation of orbital motion while retaining the ad-
vantages associated with the use of a general-purpose
object-oriented modelling environment, in which not
only orbital dynamics can be simulated, but also the
coupled attitude motion, as well as the associated
mathematical models of sensors, actuators and con-
trollers for orbital and attitude control. This more gen-
eral framework requires the use of general-purpose in-
tegration algorithms for ODEs/DAEs.

4 Modelica implementation

The concepts outlined in Section 3 are easily im-
plemented with the Modelica language. The start-
ing point is the Body model of the standard Mod-
elica.Mechanics.MultiBody library [9]: this is a 6
degrees-of-freedom model of a rigid body, which can
be connected to other components to form a multi-
body system model. The original model has six de-
grees of freedom, corresponding to 12 state variables:
the three cartesian coordinates and the three velocity
components of the center of mass, plus three suitable
variables describing the body orientation and the three
components of the angular velocity vector. Assuming
that the gravitational field is applied exactly at the cen-
ter of mass (the gravity gradient effect is computed in a
separate model and thus not included here), the trans-
lational and rotational equations are completely de-
coupled, so it is possible to focus on the former ones,
leaving the latter ones untouched.
First of all, the equations to compute the gravity ac-
celeration as a function of the cartesian coordinates
using accurate field models are added by inheritance
to the standard World model of the MultiBody library,
which only offers the most basic options of no gravity,
constant gravity and point mass gravity (see [7, 10]).
Then, the standard Body model must be enhanced by:

1. adding the COEs a, e, i, ω , Ω, M or the EOEs a,
P1, P2, Q1, Q2, lΘ as new model variables;

2. adding the equations relating COEs/EOEs to the
cartesian coordinates;

3. switching the stateSelect attribute for the r and v
vectors of the Body model to StateSelect.avoid,
and for the COEs/EOEs to StateSelect.prefer.
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The Modelica compiler tool will then perform the
transformation from (34)-(35) to (37)-(38) automati-
cally, using symbolic manipulation algorithms.

A first implementation option is to extend the Body
model by inheritance, adding the above-mentioned
features, and thus deriving two enhanced models
BodyKepler and BodyEquinoctial; this approach is
documented in [2].

A second option is to put the additional variables and
equations in a separate model with a multibody flange
interface, and then connect it to the unmodified Body
model within a wrapper model that also sets the pre-
ferred state variables. This option perfectly fits the ar-
chitecture of the Spacecraft Dynamics library, where
such a structure was already used in order to include
the models of the interaction of the satellite with the
space environment: gravity gradient torque, aerody-
namic drag, solar radiation, etc. (see [10], Fig. 3). In
fact, the library described in [10] already contained a
similar model to compute the orbital parmeters; that
model, however, contained explicit inverse conversion
formulae (from cartesian coordinates to COEs), and
was designed to be used with cartesian coordinates as
states. Since either the COEs or the EOEs can be used,
the wrapper model must actually contain two condi-
tionally declared, mutually exclusive models (one for
each choice of coordinates), which are both connected
to the standard Body model; a flag in the wrapper
model decides which of the two will actually be ac-
tivated in the simulation model.

The Modelica code defining the new models is very
compact and easy to check, which is an important fea-
ture to ensure the correctness of the resulting model.
As already noted, the accurate models of the gravity
field, previously implemented in [7, 10], can still use
the Cartesian coordinates as inputs, and are thus left
unchanged.

As to the computational efficiency, the workload at
each time step is increased, compared to the standard
ECI formulation, by the conversion formulae, the Ja-
cobian computation and the solution of the linear sys-
tem (37). However, as will be demonstrated in the next
section, this additional overhead is more than com-
pensated by the fact that the differential equations are
much easier to integrate in the new state variables, re-
sulting in a faster simulation time and in a much tighter
accuracy.

5 Simulation examples

In this Section, the results obtained in comparing the
accuracy obtained by simulating the orbit dynamics
for two Low Earth orbiting (LEO) spacecraft and a
GEO one will be presented. As previously mentioned,
for the purpose of the present study we focus on the
simulation of the unperturbed dynamics, i.e., only the
gravitational acceleration computed from a point-mass
model for the Earth is considered. In this case, the
orbit is an ellipse (closed curve), having well-defined
features. Therefore, this assumption allows us to in-
troduce two simple criteria in order to evaluate the ac-
curacy of the performed simulations, namely:

• The period of an unperturbed elliptical orbit can

be computed a priori and is given by T = 2π
√

a3

µ ,
so a first measure of simulation accuracy can be
given by the precision with which the orbit actu-
ally closes during the simulation. To this purpose,
the following stopping criterion has been defined
for the simulation: the integration is stopped
when the position vector crosses a plane orthogo-
nal to the initial velocity and passing through the
initial position. Then, the final time is compared
with the orbit period and the final position is com-
pared with the initial one.

• Furthermore, for an unperturbed orbit the angular
momentum h = r× v should remain constant, so
a second measure of accuracy for the simulation
is given by the relative error in the value of h, i.e.,
the quantity

eh =
‖h−h(0)‖
‖h(0)‖ . (39)

The considered orbits have been simulated us-
ing the Dymola tool, using Cartesian and Keple-
rian/Equinoctial coordinates, in order to evaluate the
above-defined precision indicators. The DASSL inte-
gration algorithm has been used, with the smallest fea-
sible relative tolerance 10−12. The RADAU algorithm
has also been tried with the same relative tolerance,
yielding similar results which are not reported here for
the sake of conciseness.

5.1 A near-circular, LEO orbit

The first considered orbit is a LEO, near circular one
(see Figure 4), characterised by the following initial
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state, in Cartesian coordinates:

r(0) =




6828.140×103

0
0


 ,

v(0) =




0
5.40258602956241×103

5.40258602956241×103




The results obtained in the comparison of Cartesian
and Keplerian coordinates are summarised in Table 1.
As can be seen from the Table, the precision achieved
in the actual closure of the orbit improves significantly
when using Keplerian coordinates as states: the sim-
ulated period is very close to the actual one and both
the period error and the position error are significantly
smaller.

Figure 4: The considered LEO, near circular orbit.

Similarly, in Figure 5 the time histories of the relative
error on the value of the orbital angular momentum
are illustrated, for a simulation of about one day: the
results are clearly very satisfactory in both cases, how-
ever while in the case of Cartesian states the relative
error is significantly larger than machine precision and
is slowly increasing, in the case of Keplerian states the
relative error is much smaller and appears to be more
stable as a function of time (see also the mean value of
the relative angular momentum error, given in Table
1). Finally, note that the use of Keplerian parameters
also gives significant benefits in terms of simulation
efficiency, as can be seen from the last column of Ta-
ble 1.

5.2 A highly elliptical, LEO orbit

The second considered orbit is again a LEO one, but
it is characterised by a high value of the eccentricity

Figure 5: Relative errors on the orbit angular momen-
tum - near circular orbit: Cartesian (top) and Keplerian
(bottom) coordinates.

(see Figure 6, where it is also compared with the cir-
cular orbit considered in the previous case) and by the
following initial state, in Cartesian coordinates:

r(0) =




6828.140×103

0
0


 ,

v(0) =




0
5.40258602956241×103

7.29349113990925×103




As in the previous case, Table 2 shows the precision
achieved in the actual closure of the orbit: as can be
seen, the errors on the simulated period are of the same
order of magnitude for both choices of state variables.
The position errors, on the other hand are significantly
smaller when simulating the orbital motion using Ke-
plerian rather than Cartesian states.

Similarly, in Figure 7 the time histories of the relative
error on the value of the orbital angular momentum are
illustrated, for a simulation of about one day. In this
case, the results show that using Cartesian states the
relative error is again significantly larger than machine
precision and is slowly increasing, while using Keple-
rian states the relative error is of the order of machine
precision.

Finally, the gain in terms of simulation efficiency can
be verified from the last column of Table 2.
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Table 1: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and Kep-
lerian coordinates - near circular orbit.

States ∆T [s] ‖∆r‖ [m] Mean eh Number of steps
Cartesian −1.00332×10−6 1.69711×10−3 1.5373×10−9 959
Keplerian 2.38369×10−8 2.17863×10−5 4.7528×10−13 376

Table 2: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and Kep-
lerian coordinates - highly elliptical orbit.

States ∆T [s] ‖∆r‖ [m] Mean eh Number of steps
Cartesian −1.17226×10−5 4.39241×10−3 1.2927×10−10 3650
Keplerian 1.48665×10−5 2.67799×10−7 2.5223×10−16 1120

Figure 6: The considered LEO, highly elliptical orbit,
compared with the circular one considered in Section
5.1.

5.3 A GEO orbit

The last considered orbit is a GEO one, characterised
by the following initial state, in Cartesian coordinates:

r(0) =




4.21641×107

0
0


 ,

v(0) =




0
3074.66

0




Table 3 shows the accuracy improvement achieved
when simulating the orbital motion using Equinoctial
rather than Cartesian states. As in the previous case,
also for the simulation of GEO orbits it appears from
the inspection of the time histories of the relative error
on the orbital angular momentum (depicted in Figure

Figure 7: Relative errors on the orbit angular momen-
tum - highly elliptical orbit: Cartesian (top) and Kep-
lerian (bottom) coordinates.

8) that in the case of Cartesian states the relative er-
ror is slowly increasing over time, while in the case of
Equinoctial states the relative error appears to be more
stable (see also Table 3).
Finally, the advantages provided by the use of
Equinoctial parameters in terms of simulation effi-
ciency are confirmed by the data provided in the last
column of Table 3.

6 Concluding remarks

A method for the accurate simulation of satellite or-
bit dynamics on the basis of the Modelica MultiBody
library has been presented. The proposed approach is
based on the use of Keplerian and Equinoctial parame-

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

The Modelica Association 513 Modelica 2008, March 3rd − 4th, 2008



Table 3: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and
Equinoctial coordinates - GEO orbit.

States ∆T [s] ‖∆r‖ [m] Mean eh Number of steps
Cartesian −2.79186×10−5 1.88208×10−2 1.0323×10−10 793

Equinoctial −2.92057×10−8 8.91065×10−5 6.8574×10−16 20

Figure 8: Relative errors on the orbit angular momen-
tum - GEO orbit: Cartesian (top) and Equinoctial (bot-
tom) coordinates.

ters instead of Cartesian coordinates as state variables
in the spacecraft model. This is achieved by adding to
the standard Body model the equations for the trans-
formation from Keplerian and Equinoctial parameters
to Cartesian coordinates and exploiting automatic dif-
ferentiation. The resulting model ensures a significant
improvement in numerical accuracy and a reduction in
the overall simulation time, while keeping the same
interface and multibody structure of the standard com-
ponent. Simulation results with a point-mass gravity
field show the good performance of the proposed ap-
proach. The validation with higher order gravity field
models is currently being performed.
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Abstract

In this work, it is described how effects of rotational
mechanics represented in three dimensions can be de-
scribed in an efficient way. The ideas have been im-
plemented in the Rotational3D library which is intro-
duced in this paper. Special attention is payed to the
influence of joints and how 1D rotational and multi-
body representations can be combined. Comparison
of accuracy and efficiency with MultiBody is shown
as well as typical application examples.
Keywords: Rotational mechanics, Rotational3D,
Multi-Body, Driveline, Shaft

1 Introduction

There is large class of rotational mechanical systems
where 1-dimensional revolution, or spin, is the dom-
inating motion. Examples of such systems are auto-
motive drivelines, transmissions, and steering mecha-
nisms [1, 2]. These rotational systems are often part of
general 3-dimensional multi-body systems with which
they interact. This may be reaction forces and torques
from brakes or motors, or gyroscopic moments re-
sulting from motion orthogonal to the spin direction.
It can also be kinematic effects on the spin motion
from universal joints with bending angle coupled to
3-dimensional motion of multi-body parts.
Systems of this class may in parts be described with
the Modelica Standard Library (MSL) [3] by using
the the 1-dimensional formalism of the Rotational li-
brary, or by the full multi-body formalism of the
MultiBody library [4]. The 1-dimensional approach
gives a low-complexity representation that allows for
fairly straightforward modeling of components such
as clutches and gears. Simple reaction torques can be
applied to multi-body parts by using the Mounting1D

component. Gyroscopic effect may be included by us-
ing the Rotor1D component instead of the normal rota-
tional inertia. These composite Rotational and Multi-
Body models in the Modelica Standard Library were
introduced in [5]. They were designed for modeling
of automatic transmissions, and are useful in contexts
where the complete rotational mechanism is mounted
on one multi-body part. In more general cases they
have the limitations of not describing all interaction
effects. Other drawbacks are the lack of information
on mechanism geometry and the very rudimentary vi-
sualization.
Using MSL, a full model that includes all interaction
effects requires that also the spin motion is described
with MultiBody models. This results in overly com-
plex and inefficient models where the 1-dimensional
rotation is hidden in transformation matrices. The ro-
tation angle is difficult and computationally expensive
to extract. It is also only available in the range [−π,π]
and it is therefore tricky to track revolutions. Compo-
nents such as shafts introduces a lot of constraint equa-
tions when defined with standard multi-body joints.
The Rotational3D library was designed to combine
the advantages of the Rotational and MultiBody ap-
proaches. In particular, this means:

• Efficient description of the spin motion

• Reaction torques and forces

• Geometry and kinematic effects

• Visualization

• Interfacing to both MultiBody and Rotational

As a result, Rotational3D is very suitable for e.g. auto-
motive applications and it is an established part of the
VehicleDynamics Library [6].
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2 Modelling principles

The main idea is to describe the spin motion similarly
as in the Rotational library, and provide references that
are coupled to MultiBody frames.

2.1 Connector definition

To represent the reference and the shaft motion, the
following information must be communicated in a
connector.

1. The rotation angle around the axis of rotation

2. The torque around the axis of rotation

3. The forces and torques acting on the reference
frame

4. A reference frame with position and orientation

5. The direction of the axis of rotation, n

6. The axis that defines zero rotation, q

Items 1 and 2 can be described by a Rotational flange
and items 3 and 4 by a MultiBody frame. In addi-
tion, the reference axes n and q are required. The n
and q axes were explicitly defined in the connector in
early versions of Rotational3D. Now they are instead
implicitly defined as the x and y axes of the reference
frame, resulting in the following connector definition1:

connector Flange
MB.Interfaces.Frame frame

"Reference frame";
Rt.Interfaces.Flange flange

"Rotation around frame x-axis relative y-axis";
end Flange;

In Figure 1, the representation of the connector is seen.

2.2 Coupling 1D and 3D effects

Consider the fundamentals of an inertia, the angular
acceleration of the inertia is a sum of the contributions
of the flange and the frame so that the resulting torque
at the flange, τ f lange is defined2 as

τ f lange = J
(
ω̇ f lange + n̂ · ω̇ f rame

)
(1)

1A similar connector definition is also used in [7] and has been
introduced in the Modelica Standard Library as "FlangeWithBear-
ing". The scope of this is different as it essentially is intended as a
Rotational connector with an optional "bearingFrame" that allow
for reaction torques to be applied.

2This can also be found in [5].

Figure 1: Animation view of an axle in a bearing with
a connector reference shown. Axis-of-rotation (n), ref-
erence rotation (q), actual rotation (red arrow) and the
angle ϕ .

and the torque at the frame, τ̄ f rame is defined by

τ f rame + n̂τ f lange = J
(
n̂ω̇ f lange +ω f rame × n̂ω f lange

)
.

(2)
Here ω f lange, ω f rame, n̂, and J refer to the angular ve-
locity of flange and frame, spin axis, and inertia, re-
spectively. As a result, the torque at the flange, de-
pends on the motion of the frame and vice versa.
Another example of how information from both con-
nectors are required to formulate a model is a tyre
model. Typically, the longitudinal force generated by
the tyre is dependent on the wheel’s spin velocity. Un-
like for example a wheel speed sensor that measures
the speed relative to the hub, the total rotational veloc-
ity around the spin axis, ωtot , is required.

ωtot = ω f lange + n̂ ·ω f rame (3)

2.3 Avoiding over- and under-determined
systems

Consider Figure 2: With two mounted bearings (1),
each bearing is mounted to a MultiBody frame and
by supplying parameters for n and q, the rotation axis
and reference is defined in the Rotational3D connec-
tor. This model is over-determined since two con-
nectors, both specifying the reference is connected.
Correspondingly, if none of the connectors in a set
would have the reference specified, the model would
be under-determined (2).
This is avoided by a connection rule using two connec-
tors with different colours, the grey is unconstrained
and the white is constrained: Each connection set must
have one and only one white connector and there must
never be a loop containing only white connectors.
This rule is somewhat simplified, consider for exam-
ple the under-determined example from Figure 2 (3).
Here, both ends of the shaft are attached to white
connectors and there is no loop consisting on only
white connectors. Still, the model is over-constrained
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1 2 3

Figure 2: Example of under- and over-determined systems: Loop consisting on only white connectors (1).
The right-hand flange of the shaft is un-connected and under-determined (2). A model that is over-constrained
through the Rotational part (3).

since the Rotational part is forming a loop. This of
course could be handled by the rule above. It would
require that there were four Rotational3D connectors
to cover the combinations of constrained and uncon-
strained connectors.
Still, however, this would not be sufficient for the
general case since there are cases where some of
the MultiBody variables are constrained and some
not, which ultimately would lead to an unreasonable
amount of connectors.

3 Library contents

Unlike for many other libraries, Rotational3D compo-
nents are not intended to be used entirely on its own,
but together with Rotational and MultiBody compo-
nents. Only parts that cannot be modelled in Rota-
tional are implemented. This includes shafts, inertias,
visualizers, and other models where either the geome-
try or inertial effects are considered. In addition, there
are models that allow both Rotational and MultiBody
models to be used with the library, especially mounts
and housings.
Figure 3 shows some highlighted components: The
MultiBodyMount (1) translates a Rotational3D con-
nector to a rotating MultiBody frame and the Rota-
tionalMount (2) allow Rotational models with action
and reaction torques to be connected. The Supporte-
dRotationalMount (3) is a version of (2) including a
bearing and thus has an additional MultiBody connec-
tor to define the orientation of the flange. The Flange
visualization (4) visualizes the vectors n and q as well
as the rotation angle φ as seen in Figure 1 which is use-
ful both for debugging and comprehension. The Shaft
component (5) defines the motion between two flanges
without reference. It imposes no constraints between

1 2 3

4 5 6

7 8 9

Figure 3: A selection of components from Rota-
tional3D.

the flanges since it is assumed to be flexible also in the
length direction. The twist characteristics is defined by
connecting components to the Rotational connectors
and additionally, inertial effects can be added via the
MultiBody connectors. The rotation angle is defined
based on the choice of joint type made, either univer-
sal and constant velocity. The Inertia (6) corresponds
to the Rotor component but additionally contains geo-
metric information as well as mass properties and the
corresponding visualization.

As an extension to the basic mounts (1-3), there
are also housings suitable for components such as
gear boxes. The SupportedHousing (7) allow for
ideal gears to be directly connected to the Rotational
flanges. The SupportedHousing2 (8) is an adaption to
handle gearboxes from e.g. the PowerTrain library [8]
requiring a MultiBody support frame for internal in-
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ertias and animation. There are also sensors, such as
the AbsoluteRotationalVelocity (9), described in Sec-
tion 2.2.

4 Examples

As explained earlier, Rotational3D is intended to be
used together with both Rotational and MultiBody
components. This section explains and exemplifies
when Rotational3D is suitable and how component
and subsystem models can be designed.

4.1 Bevel gear

The first example shows two bevel gear components.
Consider first the upper diagram layer in Figure 4,
showing a bevel gear with an external support frame
(1). To this frame, two SupportedRotationalMount
components (2) are connected, each containing a bear-
ing that specifies the orientations of the two axles.
These mounts are connected to a Rotational.GearR2R
component (3) that contains the 1D gear characteris-
tics. Each mount is also connected to a connector (4)
and visualization for gear wheel and axle (5). Both
connectors are white since their orientation is fully
specified and as seen in the animation view (6), there
are two bearings except for the axles and gear wheels.

Now consider the lower diagram, showing the same
bevel gear but without the support frame. Instead,
the left connector is grey, indicating that this compo-
nent has to be connected to an outside bearing. The
left mount is here a RotationalMount, and as a conse-
quence, no bearing is present in the visualization.

4.2 Steering system

Steering systems for passenger cars are typically de-
signed as illustrated in Figure 5. The steering wheel
is attached to the steering column (1) which in turn is
connected to a shaft that is connected to the pinion of
the rack-and-pinion mechanism (3). Each connection
requires a joint (4) with two degrees of freedom to al-
low the shaft to rotate around its length axis. The uni-
versal joint is the most common type, consisting of two
revolute joints in series forming a cross. Unlike more
advanced joints, the universal joint has a varying ratio
over a revolution, depending on the bend angle (α).

This require careful design of the geometric layout
as well as the rotation of the cross and depending on
these two factors, the resulting gear ratio of the mech-
anism will vary. Figure 6 shows the difference in rack

SupportedBevelGear

BevelGear

1

2 2
3

4 4

5 5

6

Figure 4: Diagram layer and visualization of two bevel
gear models.

3

1

α

4

2
4

Figure 5: Typical steering system layout (right) and
universal joint geometry (left).
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Figure 6: Difference in rack position as function of
steering wheel angle.
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Figure 7: Transmission model for the VehicleDynam-
ics library using PowerTrain library components.

position for the steering system in Figure 5, compared
to the same system but with constant velocity joints.

4.3 Automatic Transmission

Another advantage of Rotational3D is its compatibil-
ity with other Modelica libraries. Figure 7 shows
an example of a seamless integration of two libraries
for an automatic transmission. It is defined from a
standard interface in the VehicleDynamics library and
completed with shift mechanism (1), shift controller
(2) and a housing (3). The torque converter (4) and the
gear box (5) are from the PowerTrain library [8]. Note
that the PowerTrain components use a MultiBody sup-
port frame as discussed in Section 3.

Table 1: Translation and simulation results from Dy-
mola [9].

MB Rt3D
linear systems {10,3,3,2} {3,3}

non-linear systems {10} {1}
simulation time 1.91 0.047

4.4 Comparison with MultiBody

Two implementations of a drive shaft are compared. A
drive shaft is typically used to transfer axial rotational
motion between two moving bodies. Using MultiBody
primitives to define a non-elastic shaft with universal
joints yields the series R-U-P-U-R. R denotes a revo-
lute joint, here representing the bearings, P is a pris-
matic and U is a universal (two orthogonal revolute
joints).
Figure 9, shows an animation screen shot of the per-
formed simulation where both the MultiBody (MB)
and the Rotational3D (Rt3D) representations are in-
cluded on top of each other. The trajectory of the first
universal joint is shown as well as vectors for the re-
sulting forces and torques. The first shaft end is driven
with a constant speed relative to its bearing while the
required drive torque as well as the speed at the other
shaft end is shown, Figure 9.
Table 1 shows the number of linear and non-linear sys-
tems of equations and the simulation time for the two
cases described above. By avoiding the constraints
imposed by the MultiBody primitives, the number of
non-linear equations are drastically decreased which
makes the Rotational3D implementation about a factor
40 faster and less sensitive to the specified accuracy of
the integrator.

5 Limitations

Although the library concept is proven to be efficient,
it requires that some fundamental rules are followed.
As already stated, there is a connection rule to avoid
over- and under-constrained models. Additional, relat-
ing to the problems with the representation of multiple
revolution in MultiBody, it is required that the relative
rotation between two reference frames is less than one
revolution.

6 Conclusions

This work presents a new library that combines the ad-
vantage with Rotational and MultiBody representation
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Figure 8: Animation view of the comparison and val-
idation example with motion, forces and torques indi-
cated. The MultiBody and the Rotational3D models
are overlayed.
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Figure 9: Comparison of the MultiBody and the Rota-
tional3D implementations. Speed at the second shaft
end (upper two plots) and required drive torque at first
shaft end (lower two plots).

of rotational mechanics. It gives the same simulation
results as MultiBody representations, often at a frac-
tion of the cost. An example shows a factor of around
40. More complex mechanisms such as drivelines are
often difficult/impossible to get to work in MultiBody.
These are built seamlessly in Rotational3D.
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Abstract 

This paper presents methods of sensitivity calcula-
tion applied to a multi-axial test rig for elastomer 
bushings. In this context, the effect of parameter 
variations on system variables is analysed by using 
different tools. Aspects like modelling, modelling 
effort, computing time and accuracy are discussed.  
This paper is based on results, which were developed 
in the Fraunhofer collaborative project “Computer 
Aided Robust Design (CAROD)”. 
 
Keywords: parameter sensitivity; Monte-Carlo simu-
lation; elastomer test rig; DAE; Dymola; DASPK; 
MATLAB 

1 Introduction 
Tolerances of material quality, manufacturing proc-
esses and assembly operations lead to scattering 
product properties. In mass production therefore 
more or less significant deviations of the desired 
“ideal” properties occur. Resulting from wear and 
degradation, also during product life cycle continu-
ous changes of component and system characteristics 
take place.  
The named uncertainties are only covered insuffi-
ciently in traditional development workflows of 
mechatronical products. In most cases, simulations 
without any parameter scatter are performed to opti-
mise mechanical and mechatronical systems and to 
analyse their durability and reliability. 
The objective of Robust Design is to analyse the ef-
fects of scattering component behaviour in early de-

velopment phases and to optimize products. This 
presentation will focus on sensitivity analysis, which 
typically is an initial task in robust design studies. 
The prior objective is to determine parameters, 
which highly affect the product behaviour. 
The paper starts with a short description of the cho-
sen technical example: A 3 DOF test rig for elas-
tomer bushings. Subsequently, two multi-body-
simulation models of the test rig using MATLAB 
and Modelica are presented, including a cross-
comparison of the particular simulation results. In 
the following, the method of “sensitivity calculation” 
is introduced, which has conceivable potentials to 
lower the effort for sensitivity analyses. To validate 
the results, the implementation of a Monte-Carlo 
(MC) analysis is treated, which is based on repeated 
calls of the Dymola simulator. The results of this MC 
analysis are again compared with an MC analysis 
performed with MATLAB. Finally, based on the 
analysis results, the application and performance of 
the methods for sensitivity evaluation are discussed. 
 

2 Technical Example: Test Rig for 
Elastomer Bushings 

2.1 Application and Technical Description 

The methods described in this paper are presented by 
example of a multi-axial test rig (figures 1 and 2), 
which is owned by Fraunhofer LBF. The test rig is 
mainly used for sign-off tests of automotive elas-
tomer bushings considering service loads. Further 
on, the bushing’s dynamic transmission behaviour 
can be characterised. 
 

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer Bushings

The Modelica Association 521 Modelica 2008, March 3rd − 4th, 2008



 
 

Fig. 1: Multi-axial test rig for characterisation and testing of elastomer 
bushings at Fraunhofer LBF and CAD model of a typical elastomer 
bushing (right) 
 

Using servo-hydraulic actuation, variable cyclic 
loading of more than 100 Hz is feasible. Based on a 
transmission design with pre-stressed cardan joints, 
the load directions “axial (x)”, “lateral (y)” and “tor-
sion (α)” at the bolt can be realised isolated or in 
combination, respectively. To minimise wear and 
friction, hydrostatic linear guides between bolt and 
bail as well as bail and base plate are used. The 
movement of the bolt – and therefore the displace-
ment of the elastomer bushing – is measured by sen-
sors, which are positioned near the bushing’s clamp-
ing device. The reaction forces are measured by a 
piezoelectric measurement platform. 

 
Fig.2: CAD model of the test rig, declaration of bodies and degrees of 
freedom (“absolute”) 
 

2.2 Multi-Body-Simulation Model of the Test 
Rig and Simulation Tools 

To analyse the dynamic behaviour of test rig me-
chanics, multi-body-simulations (MBS) are used (cp. 
[1]). In this context, the models typically include 
rigid bodies, which are linked by joints and force 
elements. 
Corresponding, the MBS model of the elastomer test 
rig includes the rigid bodies “bolt”, “bail”, “piston” 
and “shaft”, while following joints and force ele-
ments are applied between the bodies (cp. figures 2 
and 3): 

- Bolt-bail: cylindrical joint x/α, damping x/α 
(hydrostatic bearings) 

- Bail-base plate: prismatic joint y, damping y 
(hydrostatic bearing and friction of hydraulic 
cylinder) 

- Bolt-base plate: 6 DOF, stiffness x/α/y and 
damping x/α/y (elastomer bushing) 

- Bolt-shaft: cardan joint, no force element 
- Shaft-piston: cardan joint, no force element 
- Piston-base plate: cylindrical joint x/α, 

damping x/α (friction of hydraulic cylinder) 
 
The transmission characteristic of the elastomer 
bushing is modelled by using the approaches 

FE,x=cEx3⋅x³+cEx1⋅x+dEx1⋅dx/dt, 
FE,y=cEy3⋅y³+cEy1⋅y+dEy1⋅dy/dt and 
ME,α=cEα3⋅α³+cEα1⋅α+dEα1⋅dα/dt, 

which describe nonlinear stiffness and linear damp-
ing behaviour for each load component. The parame-
ter settings are based on measurement data derived 
by tests with a commercial elastomer bushing. 
Comparable to the physical test rig, the MBS model 
is actuated by axial forces Fx, torsion Mα (piston) and 
lateral forces Fy (bail). 
 

  
Fig.3: Multi-body simulation model of the test rig („top view“) 
 
The MBS model was set up in MAT-
LAB/SimMechanics as well as in Modelica (using a 
Dymola solver).  
 

2.3 Comparison of Modelica and MATLAB 
Model  

To compare the MBS models built in the MATLAB 
and Modelica environment, two test cases were de-
fined. The first test case is characterised by sinusoi-
dal forces and moments: 
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- Fx=3.0⋅106⋅sin(314⋅t) [N] 
- Fy=3.4⋅108⋅sin(t) [N] 
- Mα=104⋅sin(150⋅t) [Nm] 

 

In contrast, the second test case includes the applica-
tion of noise signals (figure 4). These signals were 
generated with a MATLAB script, which contains 
the rand command.  
 
 
 
 
 
     
 
Fig. 4: Applied noise signals in test case 2 
 
Figures 5 and 6 show the calculated displacements x 
and y [mm] as well as the torsion α [rad] of the body 
“bolt” for the two test cases. 
      
 
   
 
     
      
 
   
 
 
 

Fig. 5: Test case 1 - Solution (Dymola)                           
 
 
 
 
 
 
 
 
    

 

 

Fig. 6: Test case 2 – Solution (Dymola) 
 
To compare the MBS models created in Modelica 
and MATLAB, the displacements x and y as well as 
the torsion α of the body “bolt” were analysed in the 
time domain. Figure 7 shows the calculated dis-
placements and torsion for test case 1, exemplarily. It 
is obvious, that both models lead to nearly identical 
results. This conclusion is affirmed by the results 
concerning case 2. 

       
Fig. 7: Comparison of results from Modelica and MATLAB model  
(case 1)  
 

2.4 Treated Scenario 

The investigations target a virtual scenario, which 
describes the production of a small series of (only) 
theoretically identical test rigs. Due to manufacturing 
tolerances the test rig components will differ more or 
less, leading to scatter of the test rig’s behaviour.  
To examine the scenario, prior parameters of the 
MBS model have to be defined, which are affected 
by assumable manufacturing tolerances. In this con-
text, 13 parameters have been identified: 

- Masses of all rigid bodies 
- Inertias “α ” of bodies “piston”, “shaft” and 

“bolt” 
- Inertia “γ ” of body “shaft” 
- Damping coefficients concerning hydrostatic 

linear guides “bail-base plate (y)” and “bail-
bolt (x,α)” 

- Damping coefficients concerning friction of 
hydraulic cylinders (“piston”: x/α, “bail”: y) 

In the following, the sensitivity of the test rig dynam-
ics on variations of these parameters is examined by 
sensitivity calculation and MC analyses. 
 

3 Sensitivity Calculation 

3.1 Method of Sensitivity Calculation 

The main idea is to pre-evaluate the sensitivity of the 
test rig performance due to variations of single pa-
rameters. Beside information concerning the per-
formance scatter to be expected, promising “adjust-
ing screws” for system optimisation can be derived. 
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The performance and dynamics of the test rig are 
analysed using multi-body-simulation. To perform 
sensitivity calculation, the analytical equations of 
motion have been set up explicitly using the La-
grange approach. Thus, the system equations are 
available in symbolic form. The DAE/ODE system 
of the elastomer test rig is described by 3 equations 
of motion (1) to (3) with 3 state variables x(t), y(t) 
and α(t) as well as 23 system parameters (13 pa-
rameters to be varied, 10 fixed parameters). The sys-
tem is excitated by sinusoidal forces and moments 
(compare (1) to (3), case 1) as well as noise signals 
(case 2).  
        

3 2 2
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3 2 2

2 2 2 2
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The performance and dynamics of the test rig are 
evaluated by analysing the resulting displacements x 
and y as well as the resulting torsion α of the body 
“bolt”, which directly loads the elastomer bushing. 
Sensitivity calculation examines the effects of minor 
parameter deviations from their nominal values for 
the behaviour of the dynamic systems.  
In this case systems are regarded, which are de-
scribed by differential-algebraic equations (DAEs) of 
the form 
         F(x, x, p, t) = 0            (4) 

, the equations of motion of the system, whereas   
x(t) n∈  are state variables and mp∈  summa-
rises parameters of all types, which mean diverse 
determining factors on developing of the variables.  
The factor of interest is the influence, which changes 
of parameters cause of developing of the variables, 

the so-called sensitivities of parameter 
( ) 

i

x t
p

∂
∂

(the 

sensitivity of variable x concerning parameter ip ). 
These sensitivities are computed for the evaluation 

of the interesting influence. Sensitivities are func-
tions of time t. Also these functions can be used as a 
basis for the determination of derived functions. 
By differentiation of the system (4) according to all 

ip  the following system can be set up for the com-
putation of first-order parameter sensitivities:              

i

F F +  = -       (i=1,...,m)    
pi i

x F x
x p x p
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

     (5) 

(4) together with (5) can currently be solved by Dy-
mola, if (5) is added explicitly. The code DASPK [2] 
can directly solve the DAE (4) and (5), where (5) is 
generated within the code automatically. 
 

3.2 Results of Sensitivity Calculations 

Dymola and DASPK were used to calculate both 
solution and sensitivities of the elastomer test rig. 
For the equations of motion the results for x, y and α 
were calculated. The solutions from Dymola and 
DASPK are in accordance. In the following, the in-
fluence of parameters on the axial displacement x 
and the torsion α of the bolt are illustrated.  
The first-order sensitivities for case 1 are computed 
using DASPK (figures 8 to 15). The solutions are 
shown in 8 and 10 (see also figure 5 using Dymola). 
The figure 9 shows first-order parameter sensitivities 
of x regarding parameters of mass. The timeline cor-
responds to figure 8. Figure 11 where the timeline 
corresponds to figure 10 shows the first-order pa-
rameter sensitivities regarding parameters of inertia.  
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Fig.8: Detail of solution (DASPK)    Fig.9: Detail of first-order parame- 
                                                            ter sensitivities of x (DASPK)              
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Fig.10: Detail of solution (DASPK)   Fig.11:  Detail of first-order           
                                                         parameter sensitivities of x (DASPK)              
                                             

By classifying the amplitudes of the time-depending 
sensitivity functions (e.g. figures, 9, 11, 12, 13, 14, 
17 and 18) it can be evaluated, which parameters 
have a  large, a marginal or no influence on the solu-
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tion of the system. Parameters with a significant in-
fluence to solution x are the parameters of mass mK, 
mW, mD and the parameters of inertia jKx, jWz and 
jDx, see as an example figure 12 and 13. Concerning 
sensitivities of y, also parameters of inertia and mass 
have an influence. Parameters with a significant in-
fluence to solution α are the inertias jKx, jWz and 
jDx. 
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Fig.12: Detail of first-order parameter sensitivities of x regarding all    
parameters (DASPK) 
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Fig.13: Detail of first-order parameter sensitivities of x regarding 13 
specified parameters) (DASPK)  
 
Again figure 14 illustrates the described results ex-
emplarily of parameter of mass mK regarding x and 
α. 
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Fig.14: Comparison of influence of parameter of mass mK on x and α 

 
Solutions of the original system using different pa-
rameter values confirm the sensitivity calculations. 
Figure 15 illustrates the range of tolerance of solu-
tion x regarding variation of all parameters (± 0,5% 
and ± 1%). The graphic shows that by increasing 

time the range of tolerance band is increasing. That 
is why parameter changing causes not only different 
amplitudes but also variations in the time behaviour. 
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Fig.15: Detail of range of tolerance of solution x regarding variation of 
all parameters (DASPK) 

 
In case 2 (figures 17 and 18), sensitivity calculations 
are carried out by means of Dymola. The resulting 
first-order parameter sensitivities are approximations 
by method of difference quotient. This method is 
explained by a scheme which is illustrated in figure 
16. The original model was parallel instantiated with 
different parameter values, which are necessary for 
difference quotient calculation. 
 
 
 
 
 
 
 
 

Fig.16: Method of difference quotient using Dymola 

 
Figure 17 shows that all considered parameters have 
nearly no influence on the solution x of the system, 
whereas parameters of mass mK, mW and mD are 
dominating parameters.  
 
 
 
 
 
 
    
 
 

 

Fig.17: First-order parameter sensitivities of x for 13 specified parame-
ters (difference quotient) 

 
Parameter with a significant influence on solution α 
are parameter of inertia jKx, jWx and jDx, see figure 
18.  Regarding case 2, first-order parameter sensitivi-
ties will also be carried out by means of DASPK.  
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Fig.18: First-order parameter sensitivities of α for 13 specified parame-
ters (difference quotient) 

 
The results show, that sensitivity calculation leads to 
comparable results for test case 1 and test case 2. 
Related to these sensitivity computations it can be 
summarised that additionally to the determination of 
the solution of a concrete DAE system also sensitiv-
ity computations are possible. As noted above, the 
results from Dymola and DASPK are in accordance. 
Concerning the results of sensitivity calculations, the 
evaluation of influence of the parameters on the tar-
geted result values is feasible. 

4 Monte-Carlo Analysis 

To evaluate the results of sensitivity calculation MC 
analyses [3] were performed by usage of both Mode-
lica and  MATLAB models. 
 

4.1 Modelica Model 

Within the Dymola simulator MC simulation is of-
fered as a tool-specific feature. In this paper, another 
possibility was used which will also be presented as 
a poster on the Modelica’2008 conference.  
In the Modelica model the parameters which are to 
be varied randomly get their values via a function 
call. This function, which can be coded as a Mode-
lica function or a C-Function, is parametrised by the 
user with parameters of the desired random distribu-
tion. Repeated Dymola calls (via the scripting lan-
guage) cause the randomly choice of the value of the 
chosen parameter. The results of each simulator run 
have to be collected. 
In this case, a uniform distribution with the nominal 
value 6.0 and the tolerance ±10% was used as an 
example, which is specified in the model in this way: 
 
 
 
 
 

Sensitivity calculation described in section 3 yielded 
an evaluation of system parameters. Then MC analy-
ses for located dominating parameters were deter-
mined. 
The results of MC analyses for case 1 are illustrated 
by figures 19 to 23.      
             

 

 

 

 

 

 

 

    

 

 

Fig.19: Tolerance band of x, y and α regarding parameters of mass    
 

        

 

 

 

 

 

 

 

 

           

Fig.20: Detail of tolerance band of x, y and α regarding parameters of 
mass    
 

Figure 21 shows that parameters of mass have only a 
marginal influence on solution α. These result veri-
fied the small tolerance band of α regarding parame-
ters of mass.  
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Fig.21: Sensitivity of α regarding parameters of mass (DASPK) 
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Fig.22: Tolerance band of x, y and α regarding parameters of inertia      

 

 

 

 

 

   

 
 

Fig.23: Detail of tolerance band of x, y and α regarding parameters of 
inertia      
 

The results for case 2 are shown by figures 24 to 26. 

 

  

     

 

 

 

 
 

Fig.24: Tolerance band of x, y and α regarding parameters of mass         

       

 

 

 

 

 

 

 

 
Fig.25: Tolerance band of x, y and α regarding parameters of inertia 

 

 

 

 

 

 

 

 

 

 
 

Fig.26: Detail of tolerance band of x, y and α regarding parameters of 
inertia  

    

MC analyses verified the results of sensitivity calcu-
lation, see section 3. 
 

4.2 MATLAB Model 

The sensitivity analysis of the MATLAB model was 
performed with the Fraunhofer LBF inhouse soft-
ware MASIMO. The software creates sample sets of 
user-defined parameters based on Latin-Hypercube-
Sampling methods and automatically performs the 
needed simulations in MATLAB. MASIMO was, 
among other things, applied during the EC funded 
project “MODBOGIE” [4] to perform sensitivity 
analysis of a complex locomotive model. 
The MC analyses each contained 100 simulations for 
test case 1 and test case 2. All 13 parameters (cp. ch. 
2.2) were set to vary in a range of ±10% of their 
nominal value, while an equal distribution of pa-
rameter values was defined, respectively.  
To analyse the resulting time series of the simula-
tions, scalar evaluation quantities xm, ym and αm were 
defined, taking the arithmetic mean value of the 
amount of displacements and torsions x(t), y(t) and 
α(t). Following, the parameter xm is examined, ex-
emplarily. 
Figure 27 shows an qualitative Anthill plot of xm as a 
function of the piston mass for test case 1. Each 
point represents the (converted) result of one single 
simulation of the MC analysis. The diagram shows 
the trend, that an increasing piston mass leads to de-
creasing values of xm. In general, Anthill plots can be 
used to get a first impression of sensitivities and 
trends. 
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Figure 27: Anthill-plot of xm as a function of piston mass 

 
To derive further information, correlation coeffi-
cients between the result values xm, ym and αm and 
the varied input parameters can be applied. Figure 28 
exemplary shows the correlation between xm and the 
input parameters. In this context, negative correlation 
coefficients point out, that an increasing parameter 
value leads to decreasing result quantities. It is obvi-
ous, that the masses of piston, shaft and bolt affect xm 
dominantly. 

 

 
Figure 28: Correlation of xm with the varied parameters (1…13), case 1 

 
Similar investigations were performed for the result 
values xm and αm. The analysis of αm showed prior 
sensitivities on the inertias of piston, shaft and bolt, 
while ym is dominantly affected by the masses of all 4 
bodies. 
The analysis of test case 2 led to comparable results. 
Again, the body masses of piston, shaft and bolt af-
fect xm, while the torsion αm is dominantly influ-
enced by the inertias of these bodies. ym again is 
dominantly affected by the masses of all 4 bodies. 
 

5 Conclusions 

In this paper, the application of sensitivity calcula-
tion was presented by example of a multi-body simu-
lation model of an elastomer test rig. The results 
show, that sensitivity calculation has the potential to 
pre-evaluate prior parameters of a model, which ex-

emplarily can be deeper analysed by a following MC 
analyses. An indispensable precondition for applying 
sensitivity calculation is the provision of the equa-
tions of motion in a symbolic representation. 
Especially for complex models with a high number 
of DOF or long periods to be computed, the preselec-
tion of parameters can lead to a significant reduction 
of computational effort. Even in case of the test rig 
example, which only comprises 4 DOF and rather 
small time series to be computed (< 2 seconds), each 
simulation of the MC analysis took approximately 2 
minutes (Pentium 4, 3 GHz). Resulting, a complete 
analysis with 100 simulations and 13 parameters 
took more than 3 hours.  
A sensitivity calculation using DASPK respectively 
13 parameters (until tend 1 s) took approximately 10 
minutes. Using Dymola a sensitivity calculation (as 
shown in figure 16) took maximal approximately 40 
minutes and a MC analysis with 50 simulations and 
4 varied parameters maximal approximately 12 min-
utes. Resulting, a complete MC analysis using Dy-
mola with 100 simulations and 13 parameters (2 sec-
onds) would take approximately 2.5 hours. These 
computation times point out, that sensitivity calcula-
tion is able to reduce effort considerably.  
Within the Dymola simulator, MC simulation is of-
fered as a tool-specific feature. In this paper a more 
common possibility was presented, which describes 
the MC method on the Modelica language totally. 
Both methods are very time consuming. Using Dy-
mola the effects of parameter tolerances can be cal-
culated by MC simulation (with a high computa-
tional effort), using the sensitivity system (5), which 
has to be added manually or using the finite differ-
ence approximation (see figure 16). 
Using the code DASPK, system (5) is generated 
within the code automatically. It would be desirable, 
if this possibility (and also regarding a similar sys-
tem for second-order parameter sensitivity) would be 
existant also in Dymola. So far, an operator of sensi-
tivities like the existing operator der (), the deriva-
tion with respect to time, is absent.  
Note, that the solver DASPK allows the computation 
of first-order parameter sensitivities. The interpreta-
tion of these results leads to a classification of the 
importance of the system parameters regarding the 
effect to the variables.    
 

6 Outlook 

The next steps will cover following topics: 
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Parameter Sensitivities of Second-Order using 
DASPK 

In this section a short description is given to deter-
mine second-order parameter sensitivities by means 
of DASPK. By means of differentiation of the sys-
tem (5) according to all ip  second-order parameter 
sensitivities are computed. As mentioned before, the 
code DASPK can solve the DAE (4) and (5). By dif-
ferentiation of the system (4) according to all ip  and 
using of this system as a new system (4) in the 
source code, the second-order parameter sensitivities 
are generated automatically. 
Another way to determine the second-order parame-
ter sensitivities is the modification of source code of 
DASPK. Therefore, an aim is to extend the source 
code of DASPK to generate the system of second-
order parameter sensitivities automatically by differ-
entiation of system (5). Then DASPK could solve 
(4), (5) and also the system of second-order, where 
(5) and the system of second-order could be gener-
ated within the code automatically. 
 

Introduction of scalar evaluation quantities 

In continuative work, analyses concerning scalar 
evaluation quantities, which are derived from the 
results in the time domain, are planned. Examples for 
these scalar evaluation result quantities are the first 
eigenfrequency or the mean value of the amplitude 
spectrum in a defined frequency range. The first ei-
genfrequency can be computed in MATLAB directly 
from the condition matrix of the elastomer test rig 
model. Using Dymola, the condition matrix can be 
generated and denoted by linearisation of the original 
model. Within Modelica there are also matrix func-
tions, which are useful for this context. The first ei-
genfrequency can be derived from simulations in the 
time domain and a following Fourier transformation. 
For each DOF x, y and α, then a scalar quantity can 
be calculated.  
Regarding sensitivity calculation, problems can oc-
cur in this context, because scalar evaluation quanti-
ties are not directly available in the DAE system. If 
the evaluation quantity can be calculated during the 
simulation, sensitivities are automatically present. 
Otherwise, derived evaluation variables have to be 
calculated by post-processing. This challenge will be 
discussed in further publications. 
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Abstract

The development and design of new high-lift drive
systems is a complex and iterative process, which is
often depending on experience. Especially results de-
termined in the predevelopment phase and based on
uncertain assumptions have decisive influence on the
system specification and thus on the system design.
In order to reduce development time and optimize the
development process, a rapid generation and adapta-
tion of simulation models for analysis of transient sys-
tem behaviour is essential. This article presents an
computer-integrated approach for further reduction of
the high-lift development process. An interface to
Modelia should enable an automated system model
generation. A suitable component library is introduced
and verified by simulation of the Airbus A380 flap ac-
tuation system.
The purpose of this article is to present the project of
a computer-aided development process as well as an
adequate component library for assembling simulation
models of high-lift drive systems.
Keywords: high-lift system; power drive system; sys-
tem development

1 Introduction

In order to reduce take-off and landing airspeed, mod-
ern transport aircraft are equipped with high-lift sys-
tems. The extension of slats and flaps at the wing’s
leading and trailing edges augments the effective wing
area and also allows for higher angles of attack thus in-
creasing the lift coefficient. Figure 1 depicts the high-
lift surfaces, as well as the corresponding drive and
actuation system.
A central power drive unit (PDU), mounted in the cen-
ter fuselage, provides energy for driving a shaft trans-
mission, which ensures mechanical synchronisation of
the left and right actuation systems. The shaft trans-
mission is routed across the wingspan by numerous

bearings, while universal joints and gearboxes com-
pensate changes in direction. Branch gears transmit
the mechanical energy to rotary or ballscrew actuators
which are coupled with the flap traverse mechanism.
High actuator gear ratios reduce fast turning transmis-
sion inputs to slow panel movement.
As part of the secondary flight control, the high-lift
drive system has to be fault-tolerant and fulfill high re-
quirements regarding the reliability. While the power
drive unit and the slat flap control computer are of re-
dundant design, the shaft transmission system offers a
single load path only. Sufficient mechanical strength
of all elements in the actuation system is required for
all possible system states. Peak loads occurring as a
result of a system failure are often a design case for the
mechanical components of the drive system. Thus, the
analysis of transient system behaviour is of uttermost
importance for the determination of strength require-
ments for the drive train’s mechanical elements. As
aerospace applications require certified components,
no standard but custom-build components and assem-
blies have to be installed. In consequence, component
parameters characterising their dynamical behaviour,
e.g. the mass moment of inertia or the friction charac-
teristics, are unknown in the early design phase. Thus,
these parameters have to be estimated based on the
knowledge of existing similar products.
Owing to numerous changes of the system architec-
ture, requirements, constraints or parameters, the ef-
fort for installing and maintaining a complete sim-
ulation model in the early design and specification
phase is not justified. For this reason, simplified mod-
els are used for a rough evaluation of peak loads,
while adequate safety margins compensate uncertain-
ties. However, increasing mechanical strength nor-
mally involves an increasing mass. Thus, considerable
potentials in system weight reduction might be wasted.
In this report an integrated approach is presented that
aims at an optimisation of the high-lift drive system,
as well as its development process. Moreover, an au-
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Figure 1: High-lift segments and power drive train at leading and trailing edge

tomated generation and easier maintenance of a com-
plex simulation model for analysis of transient system
behaviour should be realised in order to make simula-
tion results available in the predevelopment phase. A
software tool combining knowledge based methods for
high-lift design and steady state calculations is to be
extended to transfer available system information into
a simulation model for analysis of transient behaviour.
Modelica’s characteristic of being object-oriented and
providing a simple way to generate simulation mod-
els by combining library components makes it predes-
tined for this task. In order to facilitate modelling a
complex high-lift drive train, a library containing all
required components has been created.

2 System description and modelling

The basic elements of a high-lift drive system, namely
the power drive unit, the actuators and the shaft trans-
mission connecting actuators and drive unit, were in-
troduced in chapter 1. Besides gearboxes, shafts, joints
and bearings that are essential for the shaft routing,
there are further components required to react to me-
chanical failures. A shaft rupture leading to a separa-
tion of flap segments might result either in an asym-
metric flap setting or even the complete transmission
system might be decoupled from the PDU so that the
aircraft looses its high-lift function in a critical situa-

tion. Furthermore, jamming in the flap tracks might
cause an asymmetric flap setting as well as an over-
load in actuation system and wing structure. In order
to avoid an unacceptable flap asymmetry that cannot
be compensated by the rudders, safety brakes are in-
stalled at the spanwise ends of the shaft transmission.
These wing tip brakes (WTB) are activated if the mon-
itoring systems identifies a failure by comparing the
position at the transmission ends, the drive units out-
put angle and the commanded position.
Moreover, the installation of torque limiting devices
reduces loads in the drive system and structure in case
of jamming in one of the drive stations. High loads
and load gradients result from rapid deceleration of the
system by either jamming or brake activation.
The analysis of such transient behaviour requires a
nonlinear model. Figure 2 exemplifies a flap drive
system architecture and its elements. For the purpose
of an acceptable simulation time, modelling each me-
chanical element separately is not practicable. Thus,
adjacent parts are merged into a lumped model. The
total inertia and torsional stiffness can easily be cal-
culated from the elements connected in series. Other
variables like friction coefficients or backlash can be
determined accordingly.
While the system model in contrast to the real drive
system posesses concentrated parameters, an appro-
priate discretisation must not change the dynamic be-
haviour of the system. Different approaches have
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Figure 2: Schematic representation of a flap drive system and its model according to [4]

proven their value. In [2], Neumann proposes to sub-
stitute all transmission elements between the down-
drives by at least two systems made up of spring,
damper and mass. Adapting the distribution of the tor-
sional stiffnesses, the relevant natural modes can be
preserved.
A closer look at the distribution of drive system ele-
ment masses and torsional stiffnesses reveals that in-
stalled gearboxes make up a major share of the total
mass moment of inertia, while the torsional stiffness is
mainly influenced by long shaft elements. Another ap-
proach, reducing the model order by summing up the
mass moments of inertia around those areas that al-
ready show an accumulated inertia, like gearboxes, is
presented in [4]. On the other hand, a single torsional
spring represents the torsional stiffness of the elements
between those inertias.
Both methods show a good correlation between simu-
lation and measured data.

3 Development of high-lift actuation
systems

The design and construction process of a new high-
lift actuation system starts early in the overall devel-
opment process of a new aircraft. Thus, only few and
uncertain information is available at the beginning. Es-
pecially in the concept and preliminary design phase,
the requirements, system constraints and component
data often change. The data becomes more reliable
and more detailed while the development process pro-
ceeds. However, mandatory inputs for the design pro-
cess of the high-lift drive systems that have to be avail-

able from the start are:

• the number and type of actuators. The application
of either a geared rotary actuator or a ballscrew
actuator depends on the planned flap kinematics.

• effective airloads at the actuators.

• wing geometry and available installation space in
the wing area.

• maximum travel of the actuators and required
time for their adjustment.

The development and design of the mechanical trans-
mission system, the hydraulic and/or electric power
drive unit and the monitoring and failure detection sys-
tem is complex and highly interdependent. The focus
in this article is on the actuation system.
With the listed inputs, a first drive system architecture
can be designed schematically. To guarantee a uni-
form motion of the actuators, gear ratios have to be
determined accordingly. Mechanical properties of the
components have to be estimated at first. Experience
from the development of former drive systems is of
tremendous value for this parameter estimation.
If gear ratios, characteristic friction coefficients and
the architecture are known, steady state calculations,
e.g. for determination of the drive torque required by
the PDU and torque limiter settings, are possible.
For a rough evaluation of maximum loads resulting
from transient changes in consequence of wing tip
brake activation or torque limiter lock out, simple
models seem practicable. As proposed in [4], the part
of the transmission that is in focus of the analysis can
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Figure 3: Concept for an computer-aided development process of high-lift drive systems

be transformed to a torsional oscillator with a single
inertia J∗. For dynamic similarity, the torsional stiff-
nessc∗ of the vibrator is adjusted, such that the first
eigen mode of the complete transmission system and
the reduced model are identical. Presuming a sudden
deadlock in the transmission and neglecting nonlinear
influences, the kinetic energyEkin of the transmission
converts to potential energyEpot in the spring, allow-
ing the calculation of the peak load:

Ekin = Epot

⇒ 1
2
·J∗ ·ω2 =

1
2
·c∗ ·∆ϕ2 =

1
2
· τ2

s

c∗

⇒ τs,max = ωmax·
√

c∗ ·J∗ . (1)

Thus, the possibility to do rough system evaluations
and trade-offs is provided. For example, the system
dependency on the chosen gear ratio could be anal-
ysed.
Regarding equation (1), another problem seems ob-
vious. The maximum transmission speed, especially
after a mechanical disconnect, depends on nonlinear
friction characteristics. While the effort of generating
a complex simulation model and the time for running
these simulations is not justified as long as most pa-
rameters are uncertain and many changes are neces-
sary, the need for more detailed system analysis when

the system specification reaches a mature level and re-
liable data are available is obvious.

In order to reduce development time, the Institute of
Aircraft-Systems Technology at Hamburg University
of Technology is working on a tool called WissBaSys
to support the design process. Particularly, the efforts
in early design and specification phases, that are in
focus, could be reduced by numerous computer-aided
features, which are introduced hereafter.

While the architecture of high-lift transmission sys-
tems may change, they generally consist of a rela-
tively small number of different mechanical compo-
nents. Thus, a library of generic, parameterised com-
ponents has been created. A graphical user interface
(GUI) offers the possibility to connect these generic
elements to a complete transmission system. The re-
sulting system layout can easily be changed by adding
or removing components.

In order to support the difficult task of parameter es-
timation when reliable data are not available, not only
default values are provided, but also functions describ-
ing an interdependence between variables are sup-
ported. Furthermore, the user has access to an external
database containing extensive information about many
existing aircraft components.

Another characteristic of the preliminary design phase
is the handling of uncertain knowledge and checking
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the system requirements after every change. For this
reason, continuous domains are attached to all vari-
ables. This is the basis for an interval constraint sat-
isfaction problem (ICSP). Constraint propagation as it
is presented in [5] enables the evaluation of nondirec-
tional equations and inequalities containing variables
with interval domains.
Establishing an ICSP brings further useful advantages.
Enabling nondirectional evaluation, trade-off studies
are encouraged. Furthermore, violations of system re-
quirements or constraints are detected automatically
within the constraint propagation process.
The concept of a computer-aided development pro-
cess is illustrated in figure 3. The system architec-
ture is assembled utilising generic library components.
System and component parameters are estimated with
help of data base information, default values and em-
pirical estimation functions. An automated generation
of simplified models enables approximation of maxi-
mum load result from transient behaviour. The system
analysis is completed by steady state calculations. The
ICSP automatically checks all system requirements so
that the basis for a system synthesis is available. While
synthesis methods allow for an evaluation and optimi-
sation of slat and flap traverse mechanisms [1] an all-
including high-lift optimisation on aircraft level is not
available up to now.
Containing all relevant component data, the transfer
to a complex nonlinear simulation model would com-
plete the development process. The way Modelica
uses for modelling by combining generic library com-
ponents offers ideal possibilities for an interaction in
this context.
WissBaSys supports design studies in early develop-
ment phases and generates lumped models of reduced
order. An appropriate Modelica model has to be
named for general concentrated transmission sections.
Presuming the allocation of available and model pa-
rameters is existent, model instances corresponding to
the concentrated parameters can be generated. With
the knowledge that some parts execute special func-
tion, e.g. the wing tip brake, additional models have
to be inserted. If an allocation of simulation models
for the mechanical elements in the transmission sys-
tem is existent, the generation of the complete simula-
tion model can be realised.

4 HighLift library for drive systems

The high-lift drive system consists of the mechanical
actuation system, hydraulic drive units, as well as a

control and fault detection system. Here, the actua-
tion system and the power drive unit are considered in
more detail. For a determination of maximum trans-
mission loads, the mechanical components of the drive
train can be modelled as one-dimensional rotational el-
ements. These are characterised by their mass moment
of inertia, a torsional stiffness, structural damping, me-
chanical backlash, gear ratio and the friction charac-
teristic. While the modelsInertia, ElastoBacklashand
IdealGearof Modelica’s standard library cover most
of these attributes a new friction model is needed and
introduced in this chapter.
Besides models representing a nonlinear torsional os-
cillator, some components fulfill additional tasks that
have to be taken into account. These components are
the safety brakes and mechanical torque limiters. The
HighLift library contains models for a shaft brake, an
ideal torque limiter, the general mechanical rotational
part and a geared rotary actuator. Moreover, hydraulic
components necessary for modelling hydraulic power
drive units are available.
The focus is on the mechanical drive train and its rele-
vant models are discussed in the following. All models
are designed such that they need only the information
that is relevant for a specification.

This model represents the brake function of the wing
tip brake, which is mounted in the wing structure.
If the brake is activated, the compression of friction
packages causes a friction torque that stops the trans-
mission. Essential parameters describing the brake be-
haviour are the maximum dynamic brake torque, max-
imum static brake torque and the time for reaching the
maximum dynamic torque. Thus these are the only in-
put variables of the model which extends the interfaces
RigidandFrictionBase.
In order to allow different approaches for describing
the transient change of the friction torque when the
brake is activated, the model’s inputu is the normal-
ized maximum dynamic brake torquetauB_max. Af-
ter reaching a halt, the static friction torque might
increase up to the brake’s maximum limit load
tauB_lim. In contrast to the models available in
the standard library, friction coefficients are no longer
needed here.
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A coupling consisting of balls embedded along the cir-
cumferece of two flanges guarantees a positive con-
nection in normal operation mode. In case a torque
limit is passed, the balls start to move along a ramp
thus pushing one of the flanges against a friction de-
vice. The increasing relative angle between the flanges
results in an increasing brake torque.
The torque limiting function has two characteristics.
First of all, a brake torque depending on the relative
angle of the flanges is induced. Moreover, the torsional
stiffness changes within the lock out process. While
the balls are in motion, the stiffness decreases signifi-
cantly compared to the normal operation mode. When
the balls reach their end stop, the device is grounded
and the torsional stiffness changes again.

Figure 4: Nonlinear torsional stiffness characteristic of
a mechanical torque limiter

For modelling these characteristics, a torsional spring
with nonlinear stiffness, according to figure 4, is
needed. Furthermore, the dynamic brake torque in-
creases after lock out and reaches its maximum when
the balls reach their end stop.
A new spring model has been created. Required in-
puts are the lock out torqueτ1 and the end stop torque
τ2 as well as the different torsional stiffnesses for all
three states. Compared to the standard spring, this
model has an additional outputy describing a normal-
ized brake torque:

y =





0 : ϕrel < ϕ1

1 : |ϕrel| ≥ ϕ2
|ϕrel|−ϕ1

ϕ2−ϕ1
: ϕ1 ≤ |ϕrel|< ϕ2

(2)

Combining the nonlinear spring with a shaft brake as

figure 5 shows, an ideal mechanical torque limiter is
modelled.

Figure 5: Ideal torque limiter model

As shown in its symbol the general rotational me-
chanical element consists of anElastoBacklashmodel
and a modifiedInertia as well as of anIdealGear.
The LossyInertamodel takes friction losses into ac-
count. Most elements of the transmission system like
bearings show friction behaviour corresponding to the
Stribeck Friction Law:

τ f ric,S = τCoulomb+dvis ·ω + τStribeck·e− fexp·|ω| (3)

However, the detailed analysis of single state gear-
boxes shows additional friction losses that highly de-
pend on the transmitted loads [6]. This phenomenon
is valid only when the unit is in motion and the break-
out has occurred. Based on the results of sophisticated
analyse of gearbox friction behaviour, a combined ap-
proach appears feasible. As discussed in [3] bearing
losses and load dependent gear stage losses differ. For
representation of a total drag torque, the friction torque
is made up of the bearing friction according to the
Stribeck law which is depending on ambient condi-
tions and gearbox losses characterised by a gearbox
efficiencyηGE:

τ f ric = τ f ric,S+(1−ηGE) · τload . (4)

While ηGE varies between 0 and 1, it represents the
dependence on the transmitted torque and is easily de-
termined by measurement.
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Most Airbus aircraft use planetary gears with high gear
reduction for flap and slat actuation. Their dynamic
behaviour has essential effects on the complete high-
lift actuation system. Exact modelling of these compo-
nents is of vital importance for the reliability of sim-
ulation results. Analysis of the friction behaviour of
these actuator types also shows remarkable influence
of the transmitted loads on the friction torque [2].
Furthermore, the load-dependent friction changes with
the energy flow direction. Generally, driving against
opposing load has better efficiency than in the case of
aiding loads. The load-dependent friction does not oc-
cur stepwise as soon as the unit begins to move, but
increases smoothly after a change in direction.

Figure 6: Normalised input torque of a geared rotary
actuator with constant load

For validation a geared rotary actuator has been tested
and its friction behaviour determined [2]. Simulation
results using the model described above show good re-
semblance to test data as presented in figure 6. For
validation of the actuation system measured data of
the actuator loads as well as the power drive unit’s
speed is an inputs to the model. The contact of the gear
wheel teeth is the reason for the load-dependent fric-
tion torque [3]. When a turnaround occurs, the wheels
do not turn simultaneous but consecutively. Thus, the
contact between the gear wheels establishes smoothly.
Since the geared rotary actuator is modelled as a single
stage gearbox in order to reduce the model order, this

phenomenon can be represented by the gearbox effi-
ciencyηGE as a function of the input angleϕin. If the
unit stops,ηGE increases linearly to 1 after a speed
threshold is crossed. Consequently, load-dependent
friction diminishes according to equation (4). When
the unit starts to move again,ηGE is a function ofϕin,
while its final value depends on the sign of the trans-
mitted power. Figure 7 shows this characteristic.

Figure 7: Gearbox efficiency for deceleration (a) and
acceleration (b)

Further Models

The models presented in detail here are of vital impor-
tance for modelling a complete high-lift actuation sys-
tem. Furthermore, the HighLift library contains mod-
els for inducing mechanical failures in the drive train.
For this purpose, an element that can be used for a me-
chanical disconnection and another model that causes
jamming at a specified time are included. Besides the
transmission system, the power drive unit is of major
interest. Hydraulic component models for turbulent
resistances, servo valves, a differential cylinder as well
as an example that uses these components for mod-
elling a PDU’s drive train with a variable displacement
hydraulic motor (VDHM) are included.

5 Transient simulation of Airbus
A380 flap actuation system

For a verification of the presented models the Air-
bus A380 flap actuation system is taken into account.
The number of actuators and mechanical elements in
total outnumbers that of all other flap actuation sys-
tems of Airbus aircraft. The actuation system utilises
geared rotary actuators, a wing tip brake and a sys-
tem torque limiter that is installed between the power
drive unit and the first downdrive. A test rig replicat-
ing the A380 high-lift drive system of one wing only,
has been installed at the Airbus facilities in Bremen
in order to run certification tests. Utilising the models
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Figure 8: Airbus A380 flap actuation system and model

of the HighLift library the actuation system is mod-
elled and verified by means of measured data. Figure
8 presents a schematic view of the transmission sys-
tem and a lumped model of reduced order in Modelica.
Furthermore, sensor positions are marked in figure 8.
For modelling the approach presented in [4] and dis-
cussed in 2 is used.

For validation test data of the actuator loads and the
PDU speed are used as input. The drive systems starts
to operate against increasing opposing actuator loads.
After an acceleration phase the system speed is almost
constant until a position threshold is reached and the
speed is reduced before the system stopps at its deter-
mined position.

Figure 9 shows that the speed within the shaft trans-

Figure 9: Transmission speed

mission system varies only slightly. Comparing simu-
lation and test data for the input torque at the system
torque limiter (STL) that depends on the exact mod-
elling of the complete actuation system, the data show
good conformability. While the simulated break out
occurs 0.5 seconds earlier than in the test the simu-
lation results are very accurate afterwards. Figure 10
compares simulation and test results for the specified
sensor positions.

Now the introduced model is used to analyse a failure
case scenario. Att1 the disconnector model is used to
simulate a shaft rupture between system torque limiter
and first downdrive while the transmission system

Figure 10: Simulated and measured actuation system
input torque
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Figure 11: Transmission speed and torque at the wing tip brake after shaft rupture and brake activation

drives against opposing loads. After the mechanical
disconnection the complete system is accelerated by
the applied actuator loads. The failure is detected and
the wing tip brakes are applied att2 and cause a system
stop. In consequence of the rapid deceleration,
load peaks occur within the shaft transmission. The
maximum is to be found at the safety brake.
Figure 11 compares test rig data and simulation re-
sults for transmission speed and torque at the wing tip
brake. Although simulated and measured speed have
different gradients during the acceleration phase, their
oscillatory behaviour is similar and their value att2 is
almost identical. The simulated deceleration phase is
shorter as it was in the test. Nonetheless, the maximum
transmission loads differ only slightly.

6 Conclusion and future work

This article presents the development and design of
high-lift actuation systems and its implied challenges.
For further reduction of development time for new
high-lift systems a computer-aided approached is as-
pired. In order to enable an automated generation of
nonlinear models for simulation of the complete drive
train, a library containing all essential elements of the
described drive system is introduced. With the help of
the modelled components the Airbus A380 flap actu-
ation system has been modelled. Simulating a normal
extension cycle, the simulation model provides results
that are close to measured data. The verified model is
used for analysis of maximum loads when the safety
brakes are applied after a shaft rupture.
While the basis for an interface between the design

tool WissBaSys and the Modelica environment has
been established by the implementation of the pre-
sented HighLift library, its execution is still outstand-
ing. Furthermore a simulation of the complete system
including the power drive unit as well as the slat flap
control computer is necessary.
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Abstract 

The steady-state model for a solar field contains a 
large number of equations including conditional 
statements. For a yearly energy yield analysis the 
operational state (on duty, off duty) of the solar field 
may change from one time instant to the other. Due 
to the strongly varying boundary conditions a simu-
lation run without convergence problems is not 
likely. For this reason a lookup-table model is de-
signed to calculate the five output variables of the 
solar field depending on the four input variables. The 
interpolation model is based on the existing MODE-
LICA model for 2D-interpolation and can be used 
for table interpolation tasks independent of the tech-
nical application. The structure of the model and a 
method for the automatic generation of the required 
interpolation data from the complex solar field 
model is described.      
Keywords: solar power plant; look-up table; interpo-
lation 

1 Introduction 

Solar thermal power plants are one of the most inter-
esting options for renewable electricity production. 
For the calculation of the annual energy yield of 
these plants steady-state models are used. The calcu-
lation method which is based on mass and energy 
balances is called for every hour of the year with the 
corresponding weather data input and delivers an 
output of electric energy. This approach works well 
as long as transient effects in the plant can be ne-
glected. When a thermal storage has to be considered 
an additional transient model has to be implemented. 
Since the solar field and the power block can still be 
represented as a steady-state block, the final plant 
model is composed of very complex steady-state 
models for the solar field and the power block and a 
rather simple transient model of the storage system. 
For an annual calculation on an hourly basis, the 
model is called 8760 times with input data that might 

be strongly varying from hour to hour. First tests 
with the complex steady-state models show that ro-
bustness of the simulation is not satisfying. Due to 
the large changes in input parameters and model de-
pendencies it is very likely that an annual calculation 
might terminate before reaching the end time. 
The reason for the complexity of the solar field 
model is the aspect that the model has to describe the 
operation in full load, part load and stand-by mode. 
While mass and energy balances are derived for 
regular field operation this is not the case for the 
stand-by mode. In order to determine the time instant 
with irradiation conditions sufficient for a switch 
from stand-by into part-load operation the set of bal-
ance equations has to be solved with a modified set 
of input parameters even if the field is shut-down. 
Implementing the equations within the MODELICA 
language yields a number of conditional statements 
that have to be operated by the solver. Robustness of 
the resulting system is hard to check and may differ 
from one field layout to the other.  
A way to couple the complex steady-state field 
model with the simple transient thermal storage 
model is developed by replacing the equation-based 
solar field model by a table-based interpolation. 
When analyzing the system it is found that the solar 
field output is determined by just four independent 
inputs. Unfortunately, the existing interpolation 
model in MODELICA is limited to two independent 
variables. Within this paper, a MODELICA model is 
presented that allows a three dimensional interpola-
tion using the MODELICA 2D-interpolation model. 
By an additional interpolation level the capability 
can easily be extended to an interpolation in four 
dimensions.  

2 Solar field model characteristics 

The solar field is composed of a large number of 
parabolic trough collector rows arranged in parallel. 
The water fed into the field at high pressure is pre-
heated, evaporated and superheated by the solar irra-
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diation. This kind of system is called a Direct Steam 
Generation parabolic trough power plant [1]. Apart 
from general parameters of the field, the output of 
the solar field is determined by the following input 
variables: 

- Direct normal irradiation, DNI 
- Ambient temperature, T_amb  
- Feed water specific enthalpy, h_in 
- Operating pressure of the field, p_out 

All of these are a function of time with the first two 
taken from the weather data file and the last two be-
ing determined by the whole plant model. In addition 
to the generated mass flow, four more outputs have 
to be provided by the model, so the list of output 
variables reads: 

- Steam mass flow, m_out 
- Field inlet pressure, p_in 
- Field outlet temperature, T_out 
- Recirculation pump power, P_rec 
- “Field in operation”-indicator, FIO 

A MODELICA solar field model is available that 
describes the relation between input- and output pa-
rameters based on the physical equations. The model 
allows changes in the solar field configuration in an 
easy way by simply changing some parameters that 
e.g. determine the number or arrangement of collec-
tor rows. It is therefore suited for the design of a so-
lar field but is not suited for annual energy yield 
analysis. 

3 General approach 

The physically based solar field 
model is replaced by a table in-
terpolation model that calculates 
one output variable (e.g. m_out) 
based on a set of interpolation 
data and the three input variables 
(h_in, p_out, DNI). Extension to 
the forth input variable is done by 
linear interpolation in the ambi-
ent temperature (T_amb). For 
each of the five output variables 
the same interpolation model can 
be used with an individual set of 
interpolation data. The interpola-
tion data are automatically gener-
ated by calling the physical solar 
field model from a MATLAB 
script for all nodes of the interpo-
lation data. The outputs of the 

solar field are stored in MATLAB .mat files and can 
directly be read by the MOCELICA interpolation 
model. Within the following sections the automatic 
generation of the interpolation data and the structure 
of the interpolation model will be described.   

4 Generation of interpolation data 

Since a large number of solar field configurations, 
each described by one set of interpolation data, is to 
be analysed for the yearly output, an efficient 
method is needed to generate the interpolation data. 
For the interpolation routines in MODELICA one 
look-up table in three dimensions (variation of input 
variables p_out, h_in, DNI) has to be provided for 
each of the five output variables (m_out, p_in, T_out, 
P_rec, FIO).  
This is realized by a MATLB script file that calls the 
MODELICA executable for all combinations of in-
put variables. By use of the DYMOLA-MATLAB 
interface the output variables are then stored by the 
MATLAB script in a “.mat”-file. For each output 
variable a separate file is generated that stores the 
three vectors of parameter variations 
    p_steps =[p_start : dp_: p_end] 
    h_steps =[h_start : dh_: h_end] ; 
    I_steps =[I_start : dI_: I_end] ; 

and the three-dimensional result matrix containing 
the results at the nodes defined by the vectors above. 
The procedure is illustrated in figure 1. 
Due to the complexity of the solar field model it is 
initialized with a fixed set of parameters. The desired 
operating point for each input parameter combination 

Complex MODELICA model

compile: dymosim.exe, dsin.txt
MATLAB script file

define variation in 3 parameters

store parameter ramps as .mat file

call dymosim from MATLAB interface

store relevant output data in result files

Interpolation based MODELICA model

.mat files containing interpolation nodes

loop over all
variations

Figure 1: Procedure for generation of interpolation data 
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is then reached by a ramp in the three input vari-
ables. The final state of the ramp (values of the input 
variables for the actual combination) is stored by the 
MATLAB script in a .mat file before the executable 
is called. The data are then read by the executable to 
define ramps in the input variables that lead from the 
fixed initialization state to the desired final state. 
This approach has the advantage that no problems 
with the initialization occur during the parameter 
variations due to the stable initialization state. One 
separate call of the executable for each parameter 
variation is chosen, although the ramps might have 
been defined to generate a number of results points 
in one simulation run. The advantages for the im-
plementation chosen are: 

- only one data point is lost if the simulation 
does not converge 

- high flexibility in the definition of the pa-
rameter variations (e.g. no need for equidis-
tant grids) . 

The output variable FIO is very important for the 
following interpretation of the interpolated data since 
it determines if a data point calculated by interpola-
tion is valid. The value is set to false if the solar field 
can not be operated for the combination of input 
variables or if the simulation has not converged. In 
both cases, the data points obtained from the interpo-
lation do not represent a physical state of the solar 
field.  
In order to allow direct access to the interpolation 
data from the MODELICA 2D-interpolation model 
CombiTable2D the data a stored in the following 
way. For each value of input variable x3, e.g. 70 bar, 
80 bar, 90 bar, 100 bar, 110 bar, a set of 2D-
interpolation data are stored in one separate matrix. 
In our example, these matrices are named data1 to 
data5. The matrix contains in the first row the vector 
of nodes in variable x2 and in the first column the 
vector of nodes in variable x1. The matrix is then 
filled with the output data at the corresponding 
nodes: 
0      x2(1)    x2(2)   ...  x2(ih) 
 
x1(1)  dat(1,1) dat(1,2)...  dat(1,4) 
 
x1(2)  dat(2,1) dat(2,2)...  dat(2,4) 
 
...    ...      ...     ...  ... 
 
x1(iI) ...      ...     ...  dat(iI,ih) 
 
All data matrices together are stored in one sin-
gle .mat-file. This file holds all data necessary for the 
3D-interpolation in variables x1, x2 and x3. For each 

output variable that has to be described by 3D-
interpolation a separate file is generated. This allows, 
in principle, an arbitrary number of output variables. 
In our example, five output variables are used with 
the data stored in the files FIO.mat, m_flow.mat, 
p_in.mat, P_rec.mat, T_out.mat.  

5 3D interpolation model 

The three-dimensional table interpolation used in the 
yearly analyzer is based on the two-dimensional ta-
ble interpolation model available in the MODELICA 
standard library. This model is very efficient since 
the search for the interpolation interval starts at the 
result found in the last time instant. The two dimen-
sional interpolation model is used to interpolate in 
the variables x1 (DNI) and x2 (h_in) for a fixed value 
of variable x3 (p_out). For each value of the variable 
x3 defined in the vector p_steps one value ui (i=1:n) 
for the output variable is calculated. The final output 
value is then generated by a 1-D interpolation in the 
n results ui. The procedure is illustrated in figure 2. 
The model that holds the following equations is 
named Kennlinie3D (german word for Characteris-
tic3D). In the following, the code of this model is 
described. The model contains three inputs 
Modelica.Blocks.Interfaces.RealInput x1; 
Modelica.Blocks.Interfaces.RealInput x2; 
Modelica.Blocks.Interfaces.RealInput x3; 

for variables x1, x2 and x3. In the solar field example 
these inputs correspond to h_in, DNI, p_out. The 
result is delivered via output 
Modelica.Blocks.Interfaces.RealOutput y; 

A data structure is defined to provide information on 
the upper and lower limits of x1 and x2 as well as the 
matrix name in the interpolation file that holds the 
interpolation data.  
encapsulated record interpolation_source 
      Real   x3; 
      Real   min_x1; 
      Real   max_x1; 
      Real   min_x2; 
      Real   max_x2; 
      String table_name; 
end interpolation_source; 

In the model n instances of this data structure are 
created as parameters by:  
parameter interpolation_source[:] 
      IP_source; 

In Dymola, the data can be entered via the graphical 
user interface which is shown in figure 3. In this ex-
ample, 2-D-interpolation in x1 and x2 data have been 
generated for five pressure levels from 70 bar up to 
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110 bar. The interpolation data are found in matrices 
data1 to data5 in the interpolation data file defined 
by parameter String SourceFile= "p_in".  

 The variable x1 (h_in) may vary between 500 kJ/kg 
and 1100 kJ/kg and the variable x2 (DNI) between 0 
and 1000 W/m2. The 2-dimensional interpolation is 
done in n MODELICA interpolation blocks which 
are instantiated by 
 Modelica.Blocks.Tables.CombiTable2D    
     IP_table[n]( 
         each tableOnFile=true, 
         each fileName=SourceFile, 
         tableName={IP_source[i].table_name 
                    for i in 1:n} 
                ); 

The inputs x1 and x2 and connected to the corre-
sponding inputs u1 and u2 of the n interpolation 
blocks, taking into account the variable range limita-
tions defined in IP_source. 
for i in 1:n loop 
   IP_table[i].u1= 
      max(IP_source[i].min_x1,  
          min( IP_source[i].max_x1, x1 ) 
          ); 

   IP_table[i].u2= 
      max(IP_source[i].min_x2, 
          min( IP_source[i].max_x2, x2 ) 
          ); 
end for; 

The final result is calculated by weighting the n out-
puts of the 2D-interpolation blocks 
  y = sum(  IP_table[i].y*weight[i]  
            for i in 1:n ); 

The weighting factors are calculated from a linear 
interpolation in the variable x3. For example, a value 
of x3=82e5 Pa would lead to a vector of weighting 
factors weight =[0  0.8  0.2  0  0]. The Dymola rou-
tine dymTableIpo1 is used for the interpolation. This 
routine has to be initialized by 
when initial() then 
   Weight_tableID=dymTableInit( 
           1.0,  
           smoothness,  
           "NoName", 
           "NoName", 
           Weight_matrix, 
           0.0); 
end when; 

and called with the command 
for i in 1:n loop 
   weight[i] =  
      min(1.0, 
          max(0.0,dymTableIpo1( 
                  Weight_tableID, 
                  Weight_columns[i], 
                  x3))  ); 
end for; 

with the corresponding declarations 
parameter Real[:,:]   Weight_matrix = 
    [IP_source.x3, diagonal(ones(n))]; 
 
parameter Integer     Weight_columns[:]= 
    2:size(Weight_matrix, 2); 
 
Real     Weight_tableID; 
Real[n]  weight; 
parameter  
   Modelica.Blocks.Types.Smoothness. 
   Temp   smoothness =  
   Modelica.Blocks.Types.Smoothness. 
        LinearSegments; 

 

x1 x3

x2

x1 x3

x2
x1 x3

x2
x1 x3

x2

x2

x1

x3

y
x3

ui

n  2D-table interpolations weighting of n signals

Figure 2: Structure of the 3D interpolation model

Figure 3: Screenshot of the Dymola graphical user interface for IP_source with five pressure levels 
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6 Solar field model with 3 inputs 

The solar field model SolarField_Characteristic 
based on the interpolation is assembled from five 
3D-interpolation blocks of type Kennlinie3D as 
shown in figure 4. The three input connectors for 
h_in (red lines), DNI (blue lines) and p_out (green 
lines) are connected to the corresponding inputs of 
the 3D-interpolation blocks. Based on the interpola-
tion data provided in files FIO.mat, m_flow.mat, 
p_in.mat, P_rec.mat, T_out.mat the outputs FIO, 
m_flow, p_in, P_rec and T_out are calculated. The 
values are only valid if the indicator FIO is 1. In case 
this value is smaller than 1, a default value, e.g. 
70 bar for p_in, is used instead of the calculated 
value.  

7 Extension to four dimensions 

As mentioned in the beginning of this text the solar 
field output depends on one more variable namely 
the ambient temperature. Since the dependence on 
this variable is nearly linear three nodes in ambient 
temperature (0 °C, 20 °C, 40 °C) are sufficient for 
the model. For each of the three temperature levels a 
separate set of interpolation data is generated. Three 
instances of the solar field model Solar-
Field_Characteristic are created with the outputs 
linearly weighted with the actual ambient tempera-
ture T_amb. The weighting is realized by the same 

approach as in the 3D-interpolation model using the 
Dymola function dymTableIpo1. For reusability a 
model called WeightedSignals is defined. Figure 5 
shows a screenshot of the final solar field model with 
the three SolarField_Characteristic models each 
representing one level of ambient temperature and 
five WeightedSignals models that are responsible 
for weighting obtained from the three interpolation 
models. 
 

 
Figure 5: Solar field model with three instances of the 
SolarField_Characteristic model representing three 
levels of ambient temperatures 
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Figure 4: The SolarField_Characteristic model composed of five 3D-interpolation blocks of type Kennlinie3D
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8 Conclusions 

A MODELICA model Kennlinie3D for table inter-
polation in three dimensions is developed. The 
model is based on the MODELICA 2D-interpolation 
model CombiTable2D which gives access to an effi-
cient interpolation routine provided by Dymola. In-
terpolation to four dimensions is possible with an 
additional interpolation level supported by the devel-
oped model WeightedSignals. In order to allow a 
large number of parameter studies a method is de-
veloped that automatically generates the required 
interpolation data from a complex solar field model. 
Due to the universal design of the models they can 
also be used apart from the solar field application.   
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Apendix: Source code of model WeightedSignals
 

 

model WeightedSignals  

 

  Modelica.Blocks.Interfaces.RealInput  x      “actual value of x”; 

  Modelica.Blocks.Interfaces.RealInput  u[n]   “values at nodes x_param”; 

  Modelica.Blocks.Interfaces.RealOutput y      “interpolation result”; 

   

  parameter Real    x_param[:] "interpolation nodes” 

                             // (here [0°C, 20°C, 40°C] ) 

  parameter Integer n=size(x_param,1) "Dimension of signal vector"; 

  parameter Modelica.Blocks.Types.Smoothness.Temp  

      smoothness=Modelica.Blocks.Types.Smoothness.LinearSegments  

      "smoothness of table interpolation”; 

 

  parameter Real[:,:] Weight_matrix     = [x_param, diagonal(ones(n))]; 

  parameter Integer   Weight_columns[:] =  2:size(Weight_matrix, 2); 

  Real                Weight_tableID; 

  Real[n]             weight             “weights of the values u[i]”; 
   
equation  

  for i in 1:n loop 

     weight[i] = dymTableIpo1( Weight_tableID, Weight_columns[i], x); 

  end for; 

  y = sum(  u[i] * weight[i]    for i in 1:n); 

  

when initial() then 

   // Initialize Weighting functionality      

   Weight_tableID=dymTableInit(1.0,smoothness,"NoName","NoName",Weight_matrix, 0.0); 

end when; 

 
end WeightedSignals; 
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Abstract 

A new Modelica library for the modeling and simu-
lation of 2-dimensional mechanical systems has been 
developed. It is based on the existing Mode-
lica.Mechanics.MultiBody library and implements a 
number of simplifications and optimizations for 2-
dimensional environments, which bring the advan-
tages of a reduced complexity of the modeling proc-
ess as well as a reduced computational effort. Addi-
tionally, new components are present for joints with 
curve-curve contact (e.g. cam follower joints). The 
basic approach is, to have a 1:1 mapping of pack-
ages, models and functions, if this makes sense, and 
specialising them to 2 dimensions. 
Keywords: 
Modelica, planar multi-body, contact mechanics. 

1 Introduction 

The PlanarMultiBody library is a Modelica package 
providing 2-dimensional mechanical components to 
model in a convenient way planar mechanical sys-
tems. The main design goal of the library was to util-
ize the fact that in such systems coordinates, direc-
tions and rotations can be expressed and computed in 
a much simpler way than in 3-dimensional systems.  
A typical example of this library is a mechanism 
with 2 kinematic loops as shown in the Figure 1. 

 
Figure 1: A planar mechanical system containing 

2 coupled kinematic loops 

The PlananMultiBody library, 
see screenshot to the right, has 
the following main features: 
• In 2-dimensional systems, the 

orientation of any object with 
respect to another one can be 
described by a single angle. 
This simplifies the notation for 
orientation of objects consid-
erably. The use of the “orien-
tation objects” from the Mode-
lica.Me
brary can be dropped com-
pletely, as well as the special 
handling of the orientation ob-
ject with Connections.Root 
(..), Connections.Branch(..) operators to define the 
connected network of coordinate systems in order 
to handle over-determined DAEs. The require-
ments for a Modelica translator to process models 
of this library are therefore much less as for the 3-
dim. Modelica.Mechanics.MultiBody library.  
The visualizer objects used in the Multi

chanics.MultiBody li-

• Body li-

• del joints based on two 

brary for the animation of objects have been al-
tered to achieve two aims: Firstly, all animation 
objects can be addressed as 2D objects, e.g., the 
bars used to animate a fixed translation have a 
length and a width, no height. The Visualiz-
ers.Advanced.Shape object, as well as the objects 
used for animating all kinds of arrows, includes 
input values for length, width and position. Sec-
ondly, because the actual animated shapes are still 
3D-objects, the height is automatically set to a 
very low value which gives the animation a 
“pseudo-planar” look.  
The possibility to mo
curves sliding along each other. In model Planar-
Multibody.Joints.CurveCurveJoint, different 
curve objects can be selected. They all contain 
functions used to compute three vectors depend-
ing on a curve parameter s: the curvePosition,, the 
curveTangent and the curveNormal. The Planar-
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MultiBody.Joints.CurveCurveJoint object in-
cludes two instances of arbitrary curve objects, 
each connected to a frame. This joint constrains 
the movement of its two frames by requiring 
proper contact conditions for the two curves. 
These are computed using the two curve parame-
ters s1 and s2. Additional curves needed by a user 
can easily be added by just providing the neces-
sary equations of the curve and its normal and 
tangent vectors. 

2 Describing Orientation 

The simplified way of describing absolute and rela-

3 PlanarMultiBody 

The “Frame” connector is used to connect planar 

ctor r that is directed from the ori-

• the 

It is agram is constructed, 

elica.SIunits; 

on vector"; 

 x-axis world to frame"; 

n world frame"; 

in world frame"; 

As usual, if velocities or accelerations are needed, 

4 Elementary Components 

Using the “Frame” connector and the utility func-

4.1 PlanarMultiBody.World 

This model represents a global coordinate system 

tive orientation of objects is the most significant im-
provement for modeling planar systems compared to 
model the same system using the 3-dimensional 
MultiBody library. For notational convenience the 
word “frame” is used in the sequel as a synonym for 
“coordinate system”. Instead of using three orthogo-
nal unit vectors to define a specific frame we can do 
that with a single angle φ that describes the rotation 
of that frame with respect to the global coordinate 
system around the only possible axis of rotation, the 
z-axis. To define the position and rotation of a sec-
ond frame relative to the first one is equally simple: a 
two-dimensional vector r_rel and a relative angle 
φ_rel are everything that is needed. Given the abso-
lute angles φ_a and φ_b of two different frames, the 
relative angle can be computed by simply stating 
φ_rel= φ_b − φ_a . 

Frame Connector 

multibody components together. It is rigidly fixed at 
an attachment point of a mechanical part. A frame 
“frame a” is described with respect to the world 
frame using the 
• 2-element ve

gin of the world frame to the origin of frame a 
and is resolved in the world frame and by the 
angle φ between the x-axis of the frame and 
x-axis of the world-frame.  
 assumed that a free body di

i.e. that a cut is performed between mechanical parts 
that shall be connected together at frame a. In the cut 
plane a resultant cut force fa and resultant cut torque 
τa act on frame a. Since in planar multi-body systems 
there are no advantages to express vectors in local 
frames, all vectors, and especially fa, are expressed in 

the world-frame. The resultant cut torque is a scalar 
along the z-axis of the world-frame. To summarize, 
the connector is defined as: 

connector Frame 
  import SI = Mod
  SI.Position r[2]  
     "Absolute positi
  SI.Angle phi 
     "Angle from
  flow SI.Force  f[2]  
     "Constraint force i
  flow SI.Torque t     
     "Constraint torque 
end Frame; 

they can be obtained by applying the derivative op-
erator der(...). This also holds for the angular veloc-
ity which is simply der(phi), where as in the Mode-
lica.Mechanics.MultiBody library the computation of 
the angular velocity is complicated and is performed 
with a function. 

tions in PlanarMultiBody.Frames, it is straightfor-
ward to implement the elementary components that 
are usually available in multi-body programs. The 
PlanarMultiBody library has about 40 components. 
The most important ones are shown in Table 1. Ex-
actly like in the Modelica.Mechanics.MultiBody li-
brary, equations are only defined on “position” level. 

fixed in ground. It is used as inertial system in which 
the equations of all elements of the PlanarMultiBody 
library are defined and is the world frame of an ani-
mation window in which all elements of the Planar-
MultiBody library are visualized. Furthermore, the 
gravity field of the multi-body model is defined here. 
Default is a uniform gravity field; a point gravity 
field can also be selected. The world object is also 
used to define default settings of animation proper-
ties (e.g. the width of the rectangles representing a 
revolute joint). The world object itself is animated as 
a coordinate system with 2 axes and labels.  
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Abbreviations: 
        ra,ϕa,fa,τa := frame_a.r, .phi, .f, .t 
        rb,ϕb,fb,τb := frame_b.r, .phi, .f, .t 
   resolve1(..) := Frames.resolve1(..) 
grav := world.gravityAcceleration(..) 

World 

 

 
 
 
rb = 0 
ϕb = 0 

Parts.Fixed 
Translation 

 

 
rb = ra + resolve1(ϕa, rrel) 
ϕb = ϕa 
0 = fa + fb 
0 = τa + τb + rrel × fb 

Joints.Revolute 

 

rb = ra  
ϕb = ϕa + ϕrel 
0 = fa + fb 
0 = τa + τb 

Joints.JointRR 

 

rrel0 = rb - ra  
L*L = rrel0* rrel0 
0 = fa + fb 
fa = frod * rrel0 / L 
0 = τa 
0 = τb 

Parts.Body 

 

w = der(ϕa) 
z = der(w) 
rCM0 = resolve1(ϕa, rCM) 
rabsCM0 = ra + rCM0 
g = grav(rabsCM0) 
v = der(rabsCM0) 
a = der(v) 
fa = m * (a – g) 
I * z = τa – rCM0 × fa 

Table 1: Elementary components of PlanarMultiBody. 

4.2 PlanarMultiBody.Parts.FixedTranslation 

This component defines a fixed translation of a 
frame. It is, e.g., used to define frames for several 
attachment points on a body. The equations state that 
the position vector of frame_b is defined from the 
position vector of frame_a and the relative position 
vector rrel from frame_a to frame_b (rrel is defined as 
parameter “r”). Since frames are translated, the an-
gles in the two frames are set equal. Finally, a force 

and torque balance of this massless part is present in 
the Modelica model. 

4.3 PlanarMultiBody.Joints.Revolute 

In planar systems, the only possible axis of rotation 
is the z-axis, so this component always defines such 
a rotation using a vector φrel. When φrel  = 0, frame_a 
and frame_b coincide. Unlike in the Mode-
lica.Mechanics.MultiBody library, the absolute ori-
entation vector of frame_b, frame_b.phi, can easily 
be obtained by stating  

frame_b.phi = frame_a.phi + φ_rel.  
As with most other joints, the generalized coordi-
nates (here: φ_rel and its derivative ω_rel) have the 
attribute stateSelect = StateSelect.prefer in order that 
they are selected as states if possible. The position 
vectors of the two frames are identical and there is a 
force and torque balance present. Instead of imple-
menting an additional model “ActuatedRevolute”, a 
conditional 1-dim. flange connector is present onto 
which a drive train can be attached driving the revo-
lute joint, e.g, with components from the Mode-
lica.Mechanics.Rotational library. There is a Boolean 
parameter drivenFlange present to activate or deacti-
vate the additional flange. 

4.4 PlanarMultiBody.Parts.Body 

This component defines the mass and inertia proper-
ties of a body. They are defined using the following 
parameters: m for the mass, the position vector r_CM 
from the origin of frame_a to the center of mass (re-
solved in frame_a) and the inertia value I. There is a 
Boolean parameter enforceStates present which de-
fines if the positon vector r and orientation angle φ 
of frame_a should be use as states. These variables 
have the attribute stateSelect = if  enforceStates then 
StateSelect.always else StateSelect.avoid. The fea-
ture to have potential states both in joints and in bod-
ies makes it easier to model systems with bodies 
which are connected to the environment without us-
ing a joint or freely moving bodies. 

4.5 PlanarMultiBody.Joints.JointRR 

This component fixes the distance between its two 
frames to parameter L, but does not constrain the 
orientation angles of any of them. Therefore it can be 
used as a replacement for two revolute joints con-
nected by a fixed translation. Using this component 
reduces the order of the nonlinear equation system 
and helps avoiding problems with non-linear equa-
tion systems caused by kinematic loops. The cut 
force is constrained to act only along the vector be-
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tween the origins of the two frames. Finally, a force 
and torque balance is present in this component. 
There is an additional object called PlanarMulti-
Body.Joints.JointRRWithMass present which in-
cludes a mass fixed relative to the two frames of the 
joint. 

 
Figure 2: The diagram level of the model animated in 

Figure 1 using two instances of JointRRWithMass 

5 Force Elements 

Force elements exert forces and torques between two 
frames. Because these elements, although they have 
obviously been altered to fit into the different orien-
tation setup of this new library, are virtually identical 
in their functionality and structure to the ones in the 
MultiBody library, we will not discuss them here in 
great detail. For a more detailed description of the 
most important force elements, see [1].  

6 Animation 

The animation environment in Dymola [2] is native-
ly a 3-dimensional one, and all animated objects 
therefore have to be programmed in that way. How-
ever, the Modelica.Mechanics.MultiBody library 

utilizes a single model to realize virtually of all its 
animations, MultiBody.Visualizers.Advanced.Shape. 
The following features were implemented into the 
PlanarMultiBody animation engine: 
• Having a user-interface with purely 2-

dimensional animation parameters gives the user 
the convenience of not having to deal with a z-
coordinate that only exists in the animation and 
has nothing to do with the planar system being 
modeled. 

• To provide users with a maximum of freedom of 
design, either side of a 3d-object displayed by 
the “FixedFrame” component of the library can 
be used as a “pseudo-2d” object. E.g. a cylinder 
can be used as a circle or a rectangle. For this 
purpose, a boolean parameter “zDirection” was 
added to the Shape object which rotates the 
animated object by 90° around the y-axis. 

• To avoid overlapping of objects in the “pseudo-
2D” animation, it is possible to shift an object 
along the z-axis of the animation using the 
parameter “heigthShift”. 

• The heigth of all objects is automatically set to a 
low value which results in the desired “pseudo-
2D” look of the animation. 

Table 2 shows all the parameters of the 
PlanarMultiBody.Visualizers.Advanced.Shape object 
with their default values and a short description of 
their functionality. 

 
Table 2: Parameters of the PlanarMultiBody.Visualizers.Advanced.Shape object 
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7 Curve-Curve Contact 

With Joints.CurveCurveJoint, the PlanarMultiBody 
library includes a new joint making it possible to 
simulate two surfaces having to remain in contact 
with each other. In every instance of this joint, the 
user can choose two out of a library of curves used to 
simulate the connected surfaces. Each curve is fixed 
to one frame of the joint, in the sequel we will use 
the name curve_1 for the curve object connected to 
frame_a and curve_2 for the one connected to 
frame_b. The main idea is to have two variables s1 

and s2, one for each curve, in the CurveCurveJoint 
model, which stand for the path parameter of the re-
spective curve, describing the current contact point 
on the curve with respect to a fixed starting point. 
Usually “s”is the arc-length along the curve, but this 
need not to be the case in general. For a given value 
of their respective curve-variables, curve_1 returns a 
relative position vector from frame_a to the point of 
contact as well as the normal and tangent vector at 
that point on the curve. 

 

7.1 Joints.CurveCurveJoint 

As mentioned above, this mod-
el includes two frames as well 
as two instances of a “curve 
object”. The possibility of 
choosing the curves inside the 

actual instance of the joint is realized by including 
them as “replaceable” objects: 

 
In the equation section of the CurveCurveJoint 
model, position, normal and tangent variables are 

connected to the respective variables in the curve 
objects.  

 

r1_rel = curve1.position(s1); 
r2_rel = curve2.position(s2); 
r1 = Frames.resolve1(frame_a.phi,r1_rel); 
r2 = Frames.resolve1(frame_b.phi,r2_rel); 
normal1  = Frames.resolve1(frame_a.phi, 
                       curve1.normal(s1)); 

normal2  = Frames.resolve1(frame_b.phi, 
                       curve2.normal(s2)); 

tangent2 = Frames.resolve1(frame_b.phi, 
                      curve2.tangent(s2)); 

More importantly, the kinematic constraint equations 
as well as the force and torque balances of the joint 
and the curves are defined here: 
First, the distance between the contact point on 
curve_1 and the one on curve_2 is set to zero: 

 
{0,} = frame_b.r + r2 - (frame_a.r + r1);

Then, additional equations ensure that the contact 
point is actually an osculation point of the two 
curves, meaning that their standard normal vectors 
point in the same direction with different signs: 

 

0 = Modelica.Math.atan2( 
      normal1*tangent2, -normal1*normal2); 

tangent1 

tangent2 

normal1 

normal2 

curve_1 

curve_2

The formulation of this condition is from Hans Ols-
son [3] and requires some explanation: The contact 
conditions on the normal could be formulated as 
“normal1*normal2=0”. However, this equation has a 
singular Jacobian and therefore every solver would 
have severe difficulties. The condition could also be 
formulated as “normal1*tangent2 = 0”, as often sug-
gested in literature. Here, we have the problem that a 
contact where normal1 and normal2 are directed in 
the same direction, will also fulfill this equation and 
therefore it can happen that during simulation sud-
denly a wrong contact appears. The formulation used 
in the CurveCurveJoint is basically using the “nor-
mal1*tangent2 = 0” formulation, but uses this as the 
first argument to the “atan2(..)” function. As second 
argument “-normal1*normal2” is used. The 
“atan2(..)” function has the property that the signs of 
the two arguments determine the quadrant of the so-
lution. Especially, only if the second argument is 
positive, -π/2 <= atan2(x,y) <= π/2. Therefore, in the 
solution point “0 = atan2(x,y)”, the second argument 
“-normal1*normal2” must be positive which means 
that the two normal’s have to be directed in opposite 
direction. 

Figure 3: Normal and tangent definition of  
curve-curve contact 

replaceable Joints.Internal.Circle  
  curve1(phi=frame_a.phi,r_0=frame_a.r) 
   extends 
    PlanarMultiBody.Interfaces.BaseCurve 
         (phi=frame_a.phi, r_0=frame_a.r) 

Finally, force and torque balances are included: 
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7.2 Predefined Contact Curves 

The package PlanarMulti-
Body.-Joints.Internal in-
cludes the models which are 
predefined in the 
CurveCurveJoint object. Ad-
ditional curves can easily be 
added by a user. We will use 
the Ellipse model to explain 
the functionality of these 
objects. All curve-definition 
models extend a model 
called PlanarMultiBody.Interfaces.BaseCurve which 
defines the basic input variables r_0 and phi which 
are the absolute position vector and orientation angle 
of the frame to which the curve is attached.  
The BaseCurve model also establishes the three 
functions position, normal and tangent and their ba-
sic input and output variables. The input variable s is 
the curve parameter; the 2-dimensional output vector 
is called r, n or t depending on the function. To en-
able the different curve-definition models to have 
different versions of these functions, they are defined 
as “replaceable encapsulated partial functions” in 
BaseCurve.  

 
Every curve model has its own set of parameters 
used to adjust the actual curve surface In case of the 
ellipse there are two of them: a and b, defining the 
length of the two ellipse-axis.  
Furthermore, there is always at least one parameter 
defining the path parameter of the animated curve. In 
case of the ellipse, the final parameter C is the ap-
proximated circumference of the Ellipse computed 
from the given parameters a and b. In the models 
which define non-closed curves, e.g. “StraightLine”, 
there is an input parameter instead of this final pa-
rameter allowing the user to define how long a part 
of the curve should be animated.  

Additionally, there are the usual animation-
concerned parameters animation, switching the ani-
mation of the curve on or off, and color, defining the 
color of the animated curve. Finally, the parameter 
ns defines how many points should be used to inter-
polate the animated curve and the SwitchSide pa-
rameter defines on which side of the curve the con-
tact should occur. 

// Force and torque balance of joint 
zeros(2) = frame_a.f + frame_b.f; 

0 = frame_a.t + frame_b.t + 
     Frames.cross(frame_b.r - frame_a.r, 
                  frame_b.f) 
 
// Force and torque balance of curve1 
f_contact1 = -normal1*f_N; 
  zeros(2) = frame_a.f + f_contact1; 
  0 = frame_a.t +  
      Frames.cross(r1, f_contact1); The most important part of a curve-definition model 

are of course the three functions actually defining the 
shape of the curve: curvePosition, curveNormal and 
curveTangent. They extend the respective functions 
in the BaseCurve model by including the necessary 
additional parameters and adding an “algorithm” 
section with the statement computing their output 
variable. Here we present the CurvePosition function 
from the Ellipse model as an example: 

Finally, the model includes an algorithm computing 
the points used to animate the curve in its current 
position defined through the curve parameter. This is 
done by filling three coordinate vectors with length 
ns. These vectors are actually realized as ns*2 matri-
ces, the second columns being filled with slightly 
shifted values to ensure better visibility of the ani-
mated curve. The animation is performed with Dy-
mola’s built-in support for parameterized surfaces. 

model Ellipse "Ellipse contact curve" 
  extends 
   PlanarMultiBody.Interfaces.BaseCurve( 
    redeclare final function position = 
             curvePosition(a=a,b=b,C=C), 
    redeclare final function normal = 
         curveNormal(a=a,b=b,C=C,sw=sw), 
    redeclare final function tangent = 
             curveTangent(a=a,b=b,C=C)); 
protected 
  function curvePosition 
    extends PlanarMultiBody.Interfaces. 
                     BaseCurve.position; 
    input Modelica.SIunits.Length a 
          "Length of a-axis of ellipse"; 
    input Modelica.SIunits.Length b 
          "Length of b-axis of ellipse"; 
    input Modelica.SIunits.Length C  
           "Approximated circumference"; 
  algorithm  
    r := { a*sin(s*2*pi/C), 
          -b*cos(s*2*pi/C)}; 
  end curvePosition; 
... 
end Ellipse; replaceable encapsulated partial 

  function normal 
    input  Real s    "Curve parameter"; 
    output Real n[2] "Normal to curve"; 
end normal;

M. Höbinger, M. Otter

The Modelica Association 554 Modelica 2008, March 3rd − 4th, 2008



 

7.3 Examples 

Package PlanarMultiBody.Examples.CurveCurve-
Joint includes a number of examples demonstrating 
the use of this new joint. The most obvious example 
is probably the classic Cam-Follower setup. In this 
model, an elliptic object driven by gravity acting 
upon a body attached to it turns on a revolute joint 
fixed to the ground. It is connected to an object with 
a straight surface being attached to a prismatic joint 
and forced into movement by the ellipsoid (see 
model schematic und animation in next Figure 4). 

 
It it realized by connecting frame_a of a CurveCur-
veJoint to the world frame through a revolute joint 

joint. Then the appropriate curves have to be selected 
by double clicking on the joint and selecting them 
from a dropdown menu (see next Figure 5). 

  final parameter Real s_min=0  
                  "Minimum value of s"; 

  final parameter Real s_max=C  
                   "Maximum value of s"; 
algorithm 
  for i in 1:ns loop 
    s := s_min + (i - 1)* 
               (s_max - s_min)/(ns - 1); 
    r := Frames.resolve1(phi, 
                          position(s)); 
    x[i,1] := r_0[1] + r[1]; 
    x[i,2] := r_0[1] + r[1] + 0.01; 
    y[i,1] := r_0[2] + r[2]; 
    y[i,2] := r_0[2] + r[2] + 0.01; 
    z[i,1] := 0; 
    z[i,2] := 0.01; 
  end for; 

and doing the same with frame_b using a prismatic 

 demonstrates the 

 
 

The th ssibil-

 
Finally, a body is attached to frame_a of the joint

Figure 5: Selecting a curve in the 
CurveCurveJoint menu

 
and the start value of the ellipses curve parameter is 
set to an appropriate value to ensure that the system 
is not in an idle position at time 0. 
Another example from this package
effect of the switchSide parameter, see Figure 6. Two 
CurveCurveJoint objects are present, both describing 
the contact between two circles. In the upper circle-
circle contact, switchSide = true, whereas in the 
lower circle-circle contact, the default switchSide = 
false is used. The effect can be seen in Figure 6. 

Figure 4: Model and animation of CamFollower

  
Figure 6: Example CurveCurveJoi SwitchSides nt

demonstrating the switchSide parameter

ird example, see Figure 7, shows the po
ity of more complex curves by using an ellipse dis-
torted by a sinus wave. This curve has amplitude and 
frequency of the wave as additional parameters. 
Here, a very small circle attached to a small body 
runs along the distorted ellipse. It is connected to the 
world frame using a prismatic joint. 
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Figure 7: Example SinusEllipse demonstrating more 

complicated curve-curve contacts 

8 Conclusions 

The PlanarMultiBody library is a mechanical library 
to model planar mechanical systems. The main ad-
vantage is its simplicity and that no special symbolic 
manipulation features of the Modelica simulation 
environment is needed, contrary to the Mode-
lica.Mechanics.MultiBody library that describes 3-
dim. mechanical systems. Therefore, the PlanarMul-
tiBody library is well suited for teaching, but also for 
a quite large class of technical problems that are 2-
dim. in nature. Besides standard joints, the Planar-
MultiBody library allows the definition of curve-
curve contacts, especially to describe cam-follower 
types of contact. The non-standard formulation  [3] of 
the contact condition with the atan2(..) function has 
proven to result in reliable solutions of the occurring 
non-linear algebraic equation systems. 
It is planned to include this library as free package in 
the Modelica Standard Library after an evaluation 
phase. Currently, there is also an Interpolation pack-
age under development. Once available, it is planned 
that the curve descriptions in the curve-curve contact 
description can be optionally described by splines of 
this package. 
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Implementation of Hybrid Electric Vehicles using the
VehicleInterfaces and the SmartElectricDrives Libraries
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Abstract

In this paper different configurations of hybrid electric
vehicles summarized in the SmartHybridElectricVe-
hicles library were examined and simulated. The
presented simulation models and results were created
and achieved with Modelica using Dymola. The
models represent different kinds of electric and
hybrid electric vehicle configurations. Furthermore,
different strategies for operating the hybrid electric
vehicles energy sources are provided. The parameters
needed for parameterization of the vehicle models
were, in case of the electric vehicle, taken from real
measurements on the vehicle and vehicle components.
For all other models parameters were assumed due
to a lack of measurement data. In the library three
Modelica packages specifically designed for modeling
systems including mechanical components, electrical
components and control components have been used.
These are the SmartElectricDrives library, the Vehi-
cleInterfaces library and the PowerTrain library. Due
to the object oriented architecture of these libraries all
necessary components needed for the implementation
and simulation of electric and hybrid electric vehicle
configurations are provided and can be reused. Hence,
the efficiency optimization of such configurations gets
eased by these libraries.

Keywords: simulation, modeling, hybrid electric vehi-
cles, optimization, fuel consumption, operating strat-
egy

1 Introduction

In this contribution a simulation library, the SmartHy-
bridElectricVehicles (SHEV) library, will be pre-
sented. This library is developed by arsenal research
with focus on automotive applications, such as electric
and hybrid electric vehicles (HEV). The SHEV library

is written in Modelica language [1] and simulated us-
ing the Dymola simulation environment. The library
is implemented on the basis of the VehicleInterfaces
(VI) library [2]. Therefore compatibility with all other
libraries based on the VI library is ensured. For sim-
ulations of the electrical components the SmartElec-
tricDrives (SED) library [3] is used. The StateGraph
library, included in the Modelica Standard Library
(MSL), has been chosen for modeling the operating
strategies of the included vehicles. All mechanical
components, such as the power train including trans-
missions, differentials, axles, etc. are provided by the
PowerTrain library.

2 Electric Vehicle

An electric vehicle using the above mentioned li-
braries was modeled as depicted in figure 1. This
configuration consists of a front axle modeled in the
driveline model, a transmission (trans.) with
one gear and an electric machine (MG2). Attention
is paid to the energy consumption during a simulated
drive cycle. Therefore the quasi stationary model of
an electrical excited DC machine with integrated con-
verter and control system, including voltage and cur-
rent limitation as well as flux weakening from the SED
library is used here. For powering the vehicle, an en-
ergy source (battery) is modeled using a simple
idealized battery model included in the SED. This bat-
tery model consists of a constant capacitor and a con-
stant internal resistor only. All mechanical compo-
nents, such as brakes, chassis and driveline
are taken from the PowerTrain library. They are pro-
vided there as ready to use models. For controlling the
vehicle velocity (acceleration pedal and brake pedal
position) a virtual drivermodel taken from the Pow-
erTrain library was adapted. In the controller model
(control.), different operating strategies are imple-
mented.
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Figure 1: The Modelica simulation model of the electric vehicle

2.1 Operating strategies

Three different operating strategies are implemented
in the controller of the electric vehicle. These strate-
gies are modeled using the StateGraph library of the
MSL. All operating strategies control the reference
torque of the electric machine. In the first case ref-
erence torque of the electric machine is limited be-
tween maximum machine torque and zero. The refer-
ence torque is restricted to be positive only. In this first
operating strategy, only the drive mode of the electric
machine is active, no recuperation occurs.
The second operating strategy includes the basic func-
tionality of the first operating strategy with an addi-
tional recuperation mode. When the virtual driver ac-
tuates the brake pedal, the electric machine is driven in
generator mode and the battery is recharged. The ref-
erence torque of the electric machine is directly pro-
portional to the brake pedal position. Additionally, ve-
hicle deceleration occurs by mechanical braking.
The third operating strategy is split into two braking
mode levels. During the first stage, vehicle decel-
eration occurs by electrical braking and recuperation
only. The battery is charged. If the demanded ref-
erence braking torque exceeds the electric machines
maximum torque, additional mechanical braking oc-
curs.
In the last two strategies electrical braking and hence
electrical recuperation only occurs if the battery state
of charge decreases beneath a certain limit. By reach-
ing the upper set limit, electrical braking is switched
off to prevent overloading and damaging the battery.
The model of the electric vehicle in figure 1 was simu-
lated with all three operating modes in the New Euro-
pean Drive Cycle (NEDC). The state of charge (SOC)

Figure 2: Simulated state of charge of the battery dur-
ing different operating strategies

of the battery was compared and is shown in figure
2. mode1 represents the first operating strategy with-
out recuperation, mode2 the second operating strategy
with proportional recuperation and mechanical brak-
ing and mode3 the third implemented operating strat-
egy. Due to a high recuperation ratio mode3 is the
strategy with the lowest energy consumption and the
highest recuperation potential, respectively. Mainly
electrical braking occurs and therefore the battery is
recharged more than in any other implemented strat-
egy.

3 Series Vehicle

The series hybrid electric vehicle depicted in figure 3
is modeled based on the electric vehicle model. It con-
tains an additional internal combustion engine (ICE),
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Figure 3: The Modelica simulation model of the series hybrid electric vehicle

engine, and an electric machine acting as genera-
tor, MG1. The generator is driven by the ICE and is
used to charge the battery. The operating maps and
the fuel consumption of the ICE are taken from a Toy-
ota Prius, according to [4]. The basic drive modes for
the MG2 are taken from the electric vehicle. Addition-
ally, different operating strategies for the ICE and the
MG1 have been implemented. With the disabled re-
cuperation mode of the MG2 and a disabled generator
MG1, the behaviour of the series vehicle is the same
as the electric vehicle. For operating the MG1 a shift
of the ICE operating point is implemented. It is de-
pendent on the demanded electrical power and, hence,
the required torque and speed of the generator. The
input value for this operating strategies are the mea-
sured motor power and the current generator power,
respectively. During a change of the demanded gen-
erator power the strategy calculates the most efficient
operating point of the ICE regarding fuel consump-
tion. In figure 4 the shifting between two operating
points with different demanded generator power is
depicted. τmax is the maximum torque and τmin is the
drag torque of the ICE. These two operating points
of the ICE are those with the highest efficiency and
the lowest fuel consumption, respectively. The operat-
ing strategy is modeled in the controller (control.)
block and based on different control algorithms that
will not be described here in detail. The control is in-
dependent of size and type of the electric machine as
well as of the size of the ICE, which means, that any
kind of ICE or machine can be included in the model.
Currently the user can choose between two engines
and various transient and quasi stationary electric ma-
chines in different power classes.

Figure 4: Operating point shift of the internal combus-
tion engine

4 Parallel Vehicle

The parallel HEV, figure 5, contains an ICE, engine,
and an electric machine acting as starter/generator,
MG1 with two shaft ends. This electric machine is
used for starting the ICE, for boosting during driving
mode and for recharging the battery. The electric ma-
chine, MG1, is coupled on one side with the ICE by a
mechanical clutch, C1, and on the other side with the
transmission by a mechanical clutch, C2. The mechni-
cal clutch, C2, is embedded in the transmission model
(trans. + C2). Using this kind of power train
configuration, it is possible to switch between more
driving modes. Potential driving modes are driving
with the electric machine only, driving with engine and
electric machine (ICE and boosting electric machine),
start/stop operation of the ICE, load point shifting of
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Figure 5: The Modelica simulation model of the parallel hybrid electric vehicle

the ICE and recuperation during vehicle deceleration.
Exemplarily, two operating strategies for the ICE and
the starter/generator are simulated and shown here.
The first operating strategy demonstrates the basic
operating strategy of a conventional vehicle, only
driven by the ICE without recuperation or start/stop
operation. The second operating strategy manages
the start/stop driving operation of the ICE and the
starter/generator. The comparison of the fuel con-
sumption of the ICE is depicted in figure 6, where
Σconventional is the fuel consumtion of conventional
driving and Σstart/stop is the fuel consumption during
start/stop operation, respectively. Both vehicle mod-
els are simulated in an NEDC operating cycle. The
SOC of the battery is balanced in both models at start
and end of the simulation, figure 7. One can see, that
the state of charge of the conventional vehicle remains
unchanged, because no electrical driving or boosting
occurs. By contrast the SOC during start/stop opera-
tion shows slight changes. During standstill the engine
is switched off. By activating the acceleration pedal,
the engine is started by the electric machine. While
accelerating the engine, the SOC decreases until the
engine has reached idle speed. Then the electric ma-
chine switches to recuperation mode and the battery is
recharged to the upper set limit. Due to a fuel saving
during standstill, the vehicle with start/stop operating
mode shows a slightly lower fuel consumption as the
conventional vehicle.

5 Electric Vehicle Validation

For validation of the HEV models and the SHEV li-
brary the electric vehicle was used in a first step, be-

Figure 6: Comparison of the fuel consumption of con-
ventional and parallel hybrid electric vehicle

Figure 7: Comparison of the battery SOC of conven-
tional and parallel hybrid electric vehicle
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description value unit
vehicle mass 1625 kg
front area 2.653 m²
wheel radius 0.285 m
inertia of electric machine 0.2 kgm²
final gear ratio 7.35 -
aerodynamic resistance
coefficient

0.407 -

rolling resistance coefficient 0.0144 -

Table 1: Parameters of the chassis model and driving
resistances derived from measurements

cause measurements on and electric vehicle could be
accomplished easily. A Citroën Belingo electrique ve-
hicle was chosen for validation, according to [5]. After
determination of the component parameters, all single
components and the entire electric vehicle model were
parameterized. Afterwards simulation results were
gathered and compared with measurement results of
the real vehicle.

5.1 Parameterization

Every component of the electric vehicle model needs
a set of parameters which have to be determined prior
to the simulation. They have been derived from nu-
merous measurements on all mechanical and electri-
cal components and data sheets. The data sheet for
the electric machine is taken from a Peugeot Partner
Electric vehicle which has the same as the Citroën
Berlingo Electrique, according to [6]. For the param-
eterization of the chassis model and the driving re-
sistances, freewheeling curves of the electric vehicle
were determined. Out of these measurements param-
eters listed in table 1 were calculated and used for the
simulation.
For a detailed battery simulation a dynamic battery
model was developed at arsenal research, whereas for
the simulation and validation of the entire electric ve-
hicle power consumption the more simplified idealized
model was used. The parameterization of both battery
models, linearized and dynamic, is based on measure-
ments on the real vehicle battery using a standardized
charging/discharging test cycle. Throughout this in-
vestigation it was possible to determine the parameters
of the battery.
The electric machine as described in the data sheet ac-
cording to [6] was parameterized with the values listed
table 2.

description value unit
nominal armature voltage 162 V
nominal armature current 110 A
nominal excitation current 12.5 A
nominal rotor speed 1340 rev/min
maximum rotor speed 6500 rev/min
warm armature resistance 0.069 Ω
armature circuit inductance 0.00169 H
warm excitation resistance 9.47 Ω
excitation circuit inductance 0.0947 H

Table 2: Parameters of the electric machine according
to the Peugeot Partner data sheet

Figure 8: Comparison of the measured and simulated
freewheeling curve of the electric vehicle

5.2 Model Validation

The validation of the electric vehicle model was ex-
ecuted first on component level and then regarding
the complete vehicle. All mechanical and geometri-
cal parameters, the electrical parameters of the electric
machine and the battery as well as the overall power
consumption of the entire electric vehicle were deter-
mined. The vehicles driving resistances such as aero-
dynamic and rolling resistances have been calculated
based on the measured freewheeling curve. For val-
idating the electric vehicle resistance model the sim-
ulated freewheeling curve is compared with the mea-
sured one in figure 8. The very small difference be-
tween the real measured and the simulated freewheel-
ing curve allows the assumption, that the driving resis-
tances have been chosen in an accurate way.
For validation of the vehicles power train, the elec-
trical excited DC machine, the DCDC converter and
the battery model are validated. For modeling the
electric machine a torque controlled quasi stationary
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Figure 9: Power and torque curves of electric machine

model, taken from the SED library, was used. The
electric machine is driven by a reference torque and
the simulation covers the entire admissible electric ma-
chine speed range. The maximum feasible inner elec-
tric torque and the mechanical output power in de-
pendence on the electric machine speed is depicted in
figure 9. This parameterization is based on the elec-
tric machine manufacturers data sheet and shows good
congruence with the measured values.
Using measurement results of the voltage, current and
temperature gathered during road test procedures, the
complex battery model was parameterized. The mea-
surement results were recorded during a ride through
the city of Vienna, Austria. For the battery model
and the entire electric vehicle validation the measured
curents were used as reference signals. The measured,
Vmeasured , and simulated, Vsimulated , battery voltages are
depicted in figure 10. The deviation of the voltages is
assigned to the fact that some cells of the real battery
were slightly damaged. Though, the overall voltage er-
ror of less then 5% is still in an acceptable bandwidth
and shows the applicability of the used models.

6 Conclusions

The presented vehicle simulations allow the determi-
nation of the energy and fuel consumption as well as
the identification of the economic savings potential
by integrating alternative vehicle drive train concepts.
Using the developed SHEV library different HEV con-
cepts and operating strategies can be analyzed and
tested very quickly . Based on the developed vehicle
models different potential concepts have been identi-
fied and analyzed under different application scenar-

Figure 10: Mesured and simulated battery voltage

ios. A significant acceleration of the development pro-
cess of HEV drive train concepts and technologies can
be achieved and effort can be reduced. The achiev-
able improvements of a HEV concept highly depend
on the specific driving cycle and the boundary con-
ditions, e.g. driving time without recharging possibili-
ties, recharging time during standstill periods, recharg-
ing during recuperation, recharging during load point
shifting of the ICE operating point, etc. Therefore,
these boundary conditions should be defined prior to
the simulations to assure simulation results that can
match the real system behaviour in a satisfying way.
Furthermore, already small changes in the control
strategy can have big influence on the overall energy
consumption. Also these steps of development can be
simulated by means of this library in a rather easy way.
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SHEV SmartHybridElectricVehicles

HEV hybrid electric vehicle

VI VehicleInterfaces

PT PowerTrain

SED SmartElectricDrives

MSL ModelicaStandardLibrary

NEDC New European Drive Cycle

SOC state of charge

ICE internal combustion engine
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Abstract 
There is growing evidence that anthropogenic carbon 
dioxide (CO2) emissions as a by-product of the com-
bustion of fossil fuels for energy use is raising the 
earth’s temperatures and potentially leading to irre-
versible climate change. Additionally the growth in 
global emissions is likely to rise at an increasing rate 
due economic growth, especially in developing 
countries. Leading climate change mitigation strate-
gies require a global CO2 emission permit trading 
regime which is postulated to facilitate the lowest 
cost emission reduction options and technologies. 
However, given the technologies are still maturing 
the economic considerations appear to dictate slow 
initial reductions which will then grow at an increas-
ing rate as technologies such as wind, solar and car-
bon capture and storage mature. These economic 
considerations however may be in conflict with 
longer-term optimization of costs and benefits, 
which may be better addressed by earlier interven-
tion. In this paper we present a Modelica model de-
signed to allow exploration of the tradeoffs between 
least cost emission cuts and early stabilization of 
atmospheric carbon dioxide. 

1 Introduction 
The energy and climate systems are now intimately 
bound through human activity. The evidence that 
anthropogenic carbon dioxide (CO2) emissions as a 
by-product of the combustion of fossil fuels for en-
ergy use is raising the earth’s temperatures and po-
tentially leading to irreversible climate change [6]. 
Additionally the growth in global emissions is fore-
cast to rise rapidly due to economic growth, espe-
cially in developing countries. In order to minimize 
the impacts of rising emissions on global tempera-
tures and potentially catastrophic events such as 
multi-metre sea level rises deep cuts are required 
early [5,16]. 

The leading climate change mitigation strategies 
require a global CO2 emission permit trading regime 
which is postulated to facilitate the lowest cost emis-
sion reduction options and technologies. However, 
given the technologies are still maturing the eco-
nomic considerations appear to dictate slow initial 
reductions which will then grow at an increasing rate 
as technologies such as wind, solar and carbon cap-
ture and storage mature. 

A significant question in the politics of climate 
change has been the trade-off between the costs of 
mitigation versus the costs of doing nothing. What is 
missing is a model quantifying the costs and benefits 
of the rate of of mitigation, taking into account that 
early strategies may be less efficient than later ones, 
yet have more value for mitigation if it is accepted 
that early mitigation is better than late mitigation, 
since effects accumulate. 

The leading climate change mitigation strategies 
require a global CO2 emission permit trading regime 
which is postulated to facilitate the lowest cost emis-
sion reduction options and technologies. This kind of 
scheme has its origin in earlier approaches to emis-
sions reduction, such as the US Acid Rain Program, 
initiated by the Clean Air Act of 1990 [17], with the 
underlying theory of artificial markets being created 
to correct for market failures dating back to the late 
1960s [18].  

Given that the technologies are still maturing, the 
economic considerations appear to dictate slow ini-
tial reductions which will then grow at an increasing 
rate as technologies such as wind, solar and carbon 
capture and storage mature – hence the need not only 
to create an artificial market, but to explore how to 
use price as an instrument to drive change at the ap-
propriate rate. 

In this paper we present a Modelica model which 
explores the tradeoffs between least cost emission 
cuts and early stabilization of atmospheric carbon 
dioxide. 
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1.1 Model assumptions 

1.2 The climate system 

The climate model allows for either linear or expo-
nential growth in emissions and in atmospheric car-
bon dioxide; current trends look linear but exponen-
tial growth may occur in the worst case if growth in 
energy use tracks population growth. As a first ap-
proximation, although there are indications that envi-
ronmental sinks may saturate [7], we assume a fixed 
ratio of natural CO2 sinks (plants, land, ocean) to 
emissions. This assumption is reasonable if abate-
ment measures are effective (changes in the ocean in 
particular can be rapid [8]), i.e., this is a conservative 
assumption for the benefits of early abatement. 

Our climate model assumes the following pa-
rameters: 

• We assume all variation in greenhouse cases, at a 
first approximation, is in CO2 (reasonable since 
methane outputs have stabilized since 1990, and 
CO2 output is the largest single anthropogenic 
contributor to greenhouse gases [10]) and there-
fore work with gigatonnes CO2-equivalent 
(GtCO2-eq)  

• We base our scenarios on the IPCC’s, which vary 
total emissions increases from 2000 to 2030 from 
9.7 GtCO2-eq to 36.7 GtCO2-eq off a baseline of 
39.8 GtCO2-eq, prior to mitigation [11] 

• Total sinks including oceans and land-based con-
sumers of CO2: 50% of anthropogenic CO2 pro-
duction (30% oceans, 20% land) [9] 

Our starting point is the scenarios defined by the In-
tergovernmental Panel on Climate Change (IPCC) 
[12]. These scenarios are intended to illustrate a 
range of possibilities, without attempting to predict 
the likelihood of any one outcome [13]. Any of these 
scenarios could equally well be modeled and for 
completeness all should be modeled. However, for 
purposes of illustrating the use of Modelica, we fo-
cus here on using only one base scenario, and vary 
mitigation strategy assuming a given trend in energy 
demand. Specifically, we choose the A1C scenario, 
because that represents high growth with maximal 
convergence of developing economies with devel-
oped economies. This scenario combination is rele-
vant because of the debate as to whether mitigation 
implies forcing unremitting poverty on developing 
countries [14,15]. 

1.3 Structure of Paper 

The remainder of this paper is structured as follows. 
In Section 2, we develop a model, based on plausible 
parameters, In Section 3, we present examine outputs 
of the model, and discuss future applications. Fi-
nally, Section 4 concludes with an overall discussion 
of findings and proposals for future work. 

2 The Model 

2.1 Methodology and assumptions 

• We assume that the system is continuous 
since all physical process are continuous and 
the abatement and economic changes happen 
slowly 

• Assume that the influence of abatement 
paths impacts only the cost of abatement 
represented by the carbon price. We don’t 
model the feedback in the other direction 

• Assume that 50% of emissions are absorbed 
environmentally 

2.2 The economics of abatement 

We develop a simple model based on the technology 
assessments of McKinsey and Co.’s climate change 
mitigation team in Sweden [19,20]. This model in-
cludes a cost curve for marginal abatement inte-
grated with a mean reverting model for global energy 
prices. 

• Assume that costs reduce over time as 
learning occurs 

o constant learning rates for effi-
ciency of energy production and 
use 

• There are two ways to reduce emissions: 
o efficiency-based which reduces 

total energy produce to meet 
same “virtual demand” 

o increase proportion of zero-CO2 
energy 

• Underlying energy price remains constant 
and is increased only through carbon 
pricing (likely to be incorrect as supply 
fails to keep up with demand, e.g., as ap-
pears to be happening at time of writing 
with oil). 
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2.3 Model design 

The continuous assumption allows use to use ordi-
nary coupled differential equations (ODEs). 

Data from IPCC converted to rates of emission 
change and energy production/efficiency change and 
are incorporated as growth parameters in ODEs. 

The most significant equations are: 
 

1) U' (t) = E(t) x U(t) + L 
2) PE' (t) = PE-MRR x (PLT + PC x CBI – PE) 
3) PC ' (t) = PC-MRR x (PA – PC) 

Equation (1) allows us to express energy use U as an 
exponential component E and a linear component L. U 
represents virtual energy as explained above: it is the 
trend in energy demand, not taking into account that 
actual energy use may be less owing to efficiency 
gains. In our examples in this paper, we hold E to zero. 

Equation (2) captures the variation in energy 
price (PE) in terms of the energy price mean rever-
sion rate (PE-MRR) which captures the tendency for 
price spikes to smooth out, long term energy price 
(PLT), the modeled carbon price (PC), the carbon in-
tensity at the start of the modeled time (CB). 

Equation (3) models the trend in carbon price in 
terms of  the carbon price mean reversion rate (PC-

MRR) and abatement cost (PA). 
This is a closed form model for the interaction be-

tween energy costs under a carbon pricing regime 
and the concentration of carbon dioxide in the at-
mosphere. 

These equations can be expressed in Modelica as 
follows: 

 
der(energyUse) = // (1) 

energyGrowthExp * energyUse + 

energyGrowthLinear; 

der(energyPrice) = // (2) 

energyPriceMRR * 

(longTermEnergyPrice + 

carbonPrice * baseCarbonIntensity – 

energyPrice); 

der(carbonPrice) = // (3) 

carbonPriceMRR * (abatementCost – 

carbonPrice); 

 

This model is provided as a starting point, so the pa-
rameters should be taken as examples. Given that the 
IPCC has deliberately not provided probabilities for 
their scenarios [12], in the same spirit we do not claim 
that our specific examples are predictions, but rather 
case studies on which predictions can be built, once it 

becomes clearer which scenarios are most likely. 

3 Results 
We have run some variations on parameters through 
the model, to illustrate how scenarios can be ex-
plored. 

The A1C scenario explored here in its worst case 
with no mitigation results in rapid growth in carbon 
emissions, resulting in atmospheric CO2 of the order 
of 800 parts per million (ppm), as illustrated in Fig-
ure 1(a). In this scenario, most energy by 2100 is 
carbon-based, as we have assumed zero mitigation: 
no increase in efficiency, no increase in non-emitting 
energy sources. With mitigation CO2, peaks at 
around 450ppm (Figure 1(b) illustrates the early 
mitigation strategy; the late mitigation strategy is 
similar with a slightly higher, later peak). 

Our mitigation strategy is based on reducing 
emissions to those of the B1T IPCC scenario. The 
early mitigation and late mitigation strategies are 
based on assuming the same cumulative reduction in 
emissions, but reversing the order, with faster change 
earlier in the more aggressive scenario. 

 
(a) No mitigation, high Carbon growth 

 
(b) With mitigation 

Figure 1. CO2 concentration 

 
Figure 2. Energy Pattern (late mitigation) 
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Figure 2 illustrates the change in energy pattern 
with our late mitigation (less aggressive) strategy. In 
this scenario, an abatement strategy has already 
started in 2000, and increases up to 2060, when new 
measures start to ease off. In the meantime efficiency 
measures increase up to 2050. In graphs, energyUse 
means “virtual” energy demand (energy demand not 
taking into account reductions caused by efficiency), 
energyReal is actual energy demand, allowing for 
efficiency measures, energyBlack is energy resulting 
in carbon emissions, and energyZeroCO2 is emis-
sion-free energy. 

Figure 3 contrasts the less aggressive (a) and 
more aggressive (b) strategies, this time leaving out 
the “virtual” energy line, since it is the same in all 
cases. Required non-emitting energy goes below 
zero in (b) because we are more than meeting the 
emission target in early years without adding more 
zero-emission energy, by aggressive efficiency 
measures. This is a flaw in the model, since we 
should not force abatement costs to be higher for 
more mitigation than is actually needed. 

When we compare costs, the two mitigation 
strategies come out approximately equal – in the end. 
As illustrated in Figure 4 (cost scaled to no mitiga-
tion = 1), the fast mitigation strategy results in higher 

energy costs in the interim. However, the following 
limitations in the model favour the late mitigation 
strategy and therefore make it appear the better strat-
egy in terms of cost: 

• The constant learning rate assumption bi-
ases the simulation towards lower costs 
for late mitigation, as new technologies 
are more efficient, later 

o in practice, an aggressive mitiga-
tion strategy is likely to increase 
the learning rate e.g. if carbon 
taxes are passed through to low 
emission R&D 

• Extra costs of late mitigation to the envi-
ronment are not factored in, especially if 
environmental sequestration becomes less 
efficient as CO2 levels rise 

• Extra costs of early decommissioning of 
polluting plant would be higher in a late 
mitigation strategy, as a higher fraction of 
such plant would be built later in the 
strategy 

We should however note that even where the 
faster mitigation strategy is more expensive, the gap 
is not large (at most 2%), owing to the fact that effi-
ciency strategies are included in the mix. 

4 Conclusions 
This model provides a starting point for evaluating 
abatement paths for bringing CO2 levels into line 
with requirements for stabilizing climate change. 

We have modeled a limited range of scenarios to 
illustrate the techniques. Once it becomes clearer 
which scenarios are more probable, it will be a sim-
ple matter to rerun the model with different parame-
ters. 

In our future work we will investigate a wider 
range of scenarios, and fine-tune the model for a bet-
ter fit to the real world, for example, changes in envi-
ronmental sequestration as CO2 levels rise. We will 
also fine-tune economic assumptions, to allow for a 
range of policy options such as more aggressive sup-
port for R&D for low-emissions technologies, and 
carbon taxes. 
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(a) Less aggressive strategy 

 
(b) More aggressive strategy. 

Figure 3. “Real” Energy Pattern 

 
Figure 4. Energy cost relative to no mitigation 
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Appendix – The Complete Model 
 
class CarbonWorldXIIa 
 
  parameter Integer scenario=1 "1 for faster 
early abatement, to 2 for slow early 
abatement or 3 for 0 abatement";   
 
  parameter Real gamma = 0.006725 "Correction 
factor which can be used to account for 
concentration dependent sequestration such as 
sea and bio-"; 
 
  parameter Real absorptionFactor = 0.5; 
 
  Real emission(start = baseEmission); 
  Real carbConc(start=384)  
    "Carbon Concentration"; 
  Real abatementCO2(start = 
startAbatementCO2); 
  Real abatementEfficiencyCO2 (start=0); 
  Real abatementCO2Imputed; 
  Real energyZeroCO2 (start = 0 ); 
  Real energyEfficiency (start = 0 ); 
  Real energyReal (start = 0); 
  Real abatementCost; 
  Real energyPrice(start = 
   longTermEnergyPrice); 
  Real carbonPrice(start =  
    longTermCarbonPrice); 
  Real energyUse (start = baseEnergyUse); 
  Real energyBlack; 
  Real totalCarbonIntensity; 
  Real totalCarbonIntensity100; 
  Real efficiencyValue(start = 
    startEfficiencyValue); 
  parameter Integer abateCO2 = 1, 
    efficiencyEnergy = 2, abateEffciency = 3; 
  Real abatementStepsCO2(start =  
    plans[1, scenario, abateCO2]); 
  Real  efficiencyStepsEnergy (start =  
    plans[1, scenario, efficiencyEnergy]), 
  Real abatementStepsEffciency(start =  
    plans[1, scenario, abateEffciency]); 
 
    parameter Real plans [:,:,:] = { 
    {{0.22, 0.69, 0.2},{0, 0, 0.76},{0, 0, 
0}}, 

    {{0.22, 0.69, 0.2},{0, 0, 0.76},{0, 0, 
0}}, 
    {{0.57, 5.33, 0.56},{0.72, 15.23, 1.11}, 
     {0, 0, 0}}, 
    {{1.07, 10.64, 0.58},{1.01, 17.76, 0.86},  
     {0, 0, 0}}, 
    {{1.16, 14.02, 0.65},{0.99, 19.04, 0.83},  
     {0, 0, 0}}, 
    {{1.69, 23.47, 0.72},{1.52, 25.11, 0.78},  
     {0, 0, 0}}, 
    {{1.84, 28.18, 0.76},{1.84, 28.18, 0.76},  
     {0, 0, 0}}, 
    {{1.52, 25.11, 0.78},{1.69, 23.47, 0.72},  
     {0, 0, 0}}, 
    {{0.99, 19.04, 0.83},{1.16, 14.02, 
0.65},{0, 0, 0}}, 
    {{1.01, 17.76, 0.86},{1.07, 10.64, 
0.58},{0, 0, 0}}, 
    {{0.72, 15.23, 1.11},{0.57, 5.33, 
0.56},{0, 0, 0}}, 
    {{0, 0, 0.76},{0.22, 0.69, 0.2},{0, 0, 
0}} 
    }; 
 
  parameter Real abatementCatchupRate=1 "From 
final abatementPlan to end of sim"; 
 
parameter Real energyGrowthExp=0.0, 
energyGrowthLinear=20.0/(GJ_MWh/energyConvFac
tor); 
  parameter Real tonnesToPPM =0.127365 "from 
H:-aliebman-My Research-Energy-Climate 
Change-Emissions trading-AL - Carbon Trading 
Research-Modelica Models-
CalibrationData.xls"; 
  parameter Real carbonToCO2 = 3.664 
"Conversion between mass Carbon and Carbon 
Dioxide";  
 
  parameter Real startEfficiencyValue= 31.06 
"150 $/tCO2e"; 
  parameter Real startAbatementCO2=5 "tCO2e"; 
  parameter Real learningRate=0.02; 
  parameter Real GJ_MWh=3.6, 
energyConvFactor=GJ_MWh "GJ_MWh or 1.0"; 
  parameter Real baseEmission=40 "40 GtCO2e 
from energy sector - McKinsey", baseEnergyUse 
= 411*energyConvFactor/GJ_MWh "IPCC Special 
Report on Emission Scenario (SRES) 2000 - 
linear fit and interpolation between 1990-
2050 "; 
  parameter Real baseCarbonIntensity = 
baseEmission /baseEnergyUse "0.7 
/energyConvFactor - tonnes/MWh converted to 
tonnes/GJ"; 
  parameter Real carbonPassThrough = 1; 
  parameter Real longTermEnergyPrice = 80 
/energyConvFactor; //"$100/MWh long term 
energy price" // Will need to be a dynamic 
quantity later 
  parameter Real longTermCarbonPrice = 0.0; 
// "$20/tCO2 long term abatement /carbon 
cost" // Need to check this actually makes 
sense!   
  parameter Real energyPriceMRR = 1.0 "Energy 
price mean reversion rate"; 
  parameter Real carbonPriceMRR = 1.0 "Carbon 
Price mean reversion rate" ; 
  Real relEnergyPrice (start = 1); 
  Real energyCostTrend (start = 1); 
  Real scaledEnergyPrice (start=0); 
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  Integer which (start = 2); // used which = 
1 to initialize abatements 
 
  function nextStep 
    input Real data[:,:,:]; 
    input Integer i,j,k; 
    output Real step; 
  algorithm 
    step := data[i,j,k]; 
  end nextStep; 
 
equation 
  energyCostTrend = relEnergyPrice * 
energyUse / baseEnergyUse; 
  // useful to compare strategies on cost 
  relEnergyPrice = energyPrice / 
longTermEnergyPrice; 
  // useful to compare energy cost across 
strategies that vary total use 
  scaledEnergyPrice = relEnergyPrice * 
energyReal / energyUse; 
  abatementCost = 
efficiencyValue*(sqrt(abatementCO2/startAbate
mentCO2) - 1); 
  der(efficiencyValue) = - 
learningRate*efficiencyValue " - 
longTernmEnergyPrice * 
someKindOfCarbonIntensity)"; 
 
  when sample(0, 10) then //StartTime 
    which = if pre(which) < size(plans,1) 
then 
      pre(which) + 1 else pre(which); 
  end when; 
 
  abatementStepsCO2 = nextStep (plans, which, 
scenario, abateCO2); 
  efficiencyStepsEnergy = nextStep(plans, 
which, scenario, efficiencyEnergy); 
  abatementStepsEffciency = nextStep(plans, 
which, scenario, abateEffciency); 
 
  der(abatementCO2) =  abatementStepsCO2; // 
This is a carbon dioxide quantity 
 
  der(energyEfficiency) = 
efficiencyStepsEnergy*energyConvFactor/GJ_MWh
; // This is an energy quantity 
 
  der(abatementEfficiencyCO2) =  
    abatementStepsEffciency; // This is a 
carbon dioxide quantity 
 
  energyZeroCO2=(abatementCO2-
abatementEfficiencyCO2)/baseCarbonIntensity; 
  energyBlack = energyUse - energyEfficiency-
energyZeroCO2; 
  emission = energyBlack*baseCarbonIntensity; 
  
abatementCO2Imputed=energyZeroCO2*baseCarbonI
ntensity; 
 
  totalCarbonIntensity = emission/energyUse; 
  der(carbConc) = 
tonnesToPPM*(emission*absorptionFactor)- 
gamma*carbConc; 
 
  der(energyUse) = 
energyGrowthExp*energyUse+energyGrowthLinear;  
  der(energyPrice) = energyPriceMRR*( 
longTermEnergyPrice + 
carbonPrice*carbonPassThrough* 

baseCarbonIntensity - energyPrice); 
  der(carbonPrice) = 
  carbonPriceMRR*(abatementCost - 
carbonPrice); 
  totalCarbonIntensity100= 
    100*totalCarbonIntensity;   
  energyReal = energyBlack + energyZeroCO2; 
end CarbonWorldXIIa; 
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Abstract 

This paper describes the model of an adsorption 
chiller. The model follows a component modeling 
approach based on the Modelica Media and Mode-
lica Fluid Library. New models describe the phe-
nomenon of condensing, evaporation and adsorption. 
A new library has been created to describe the physi-
cal properties of adsorption materials. First simula-
tions were performed and are compared to measured 
data of an existing machine. The simulated curves 
show good accordance to measured data. 
Keywords: thermally driven chiller, adsorption 
chiller 

1 Introduction 

Facing a globally increasing cold demand to cover 
the need of comfort in hot areas and at the same time 
facing the problem of global warming, the market for 
thermally driven chillers is increasing. Thermally 
driven chillers produce cold but are powered by heat 
instead of mechanical work (electricity). Depending 
on the application, heat sources with temperatures 
above 70°C such as solar heat, waste heat or heat of 
a cogeneration unit can be used.  

 
Fig.  1: Thermally driven chiller (TDCs) pump heat 
from a low temperature heat source at TC to a middle 
temperature heat source at TM and are powered by 
heat at a temperature level TH (TC<TM<TH ). 

 
Fig. 1 shows the working principle of a thermally 
driven chiller. It pumps heat from a low temperature 
heat source at TC to a middle temperature heat source 
at TM powered by heat at a temperature level TH 
(TC<TM<TH ).  

 
Fig. 2: Scheme of an adsorption chiller with two ad-
sorbers. Cited from [3]. 
Fig 2 shows the technical implementation of an ad-
sorption chiller. It shows four vacuum vessels for the 
four main components evaporator, condenser and 
two adsorbers. Each component contains a heat ex-
changer that is connected to one of the three heat 
reservoirs TC, TM and TH as mentioned in Fig 1. The 
water in the loops is called chilled water, cooling 
water and hot water, respectively. The components 
are separated by four flaps that control the vapor 
flow in the machine. An expansion valve connects 
the condenser to the evaporator. 
At a low pressure and low temperature level refriger-
ant (here: water) evaporates in the evaporator and 
passes the flap to the left adsorber (2). Thereby it 
takes up heat from the chilled water. The left ad-
sorber adsorbs the water vapor at the surface of the 
adsorbent coating (here: silica gel). The energy re-
leased during this exothermal process is passed to the 
cooling water. 
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In the meantime the second adsorber (1) at the right 
side gets desorbed powered by energy of the hot wa-
ter loop. This occurs at a higher pressure level by 
heating the adsorbent. The released water vapor 
passes the flap to the condenser where it condenses 
and releases energy to the cooling loop. The conden-
sate afterwards passes an expansion valve before 
reaching the evaporator.  

2 Structure of the adsorption chiller 
model 

Fig. 3 shows the Modelica representation of the 
process described above. The four main components 
condenser, evaporator and two adsorbers are sepa-
rated by four flaps. All models are connected via the 
fluid port of the Modelica Fluid Library [1]. A causal 
connector represents the expansion valve between 
condenser and evaporator. 

E_in

E...

A...

A...

A...

A...

C...

C...

 
Fig.  3: Modelica representation of the adsorption 
chiller main components. 

2.1 Functional Component Models 

All main components used in the model have a simi-
lar design. Fig. 4 shows the graphical representation 
of the condenser.  
The model mainly uses components from the Mode-
lica Fluid Library. The ports at the top lead to the 
hydraulic connections (here cold water). The golden 
box in the middle represents a finned heat exchanger 
which is described below. As a first approximation, 
the heat transfer coefficient describing the condensa-
tion of water vapor at the heat exchangers surface is 
assumed to be constant. Therefore, a constant ther-

mal conductor taken from the Modelica Standard 
Library connects the heat exchanger to a condensing 
model. In the condensing model simple heat and 
mass conservation equations are taken into account. 
Within this model, no mass and energy storage takes 
place. All condensate is released to the water outlet 
connector which is a causal output connector and 
was especially designed for this purpose. Opposed to 
the standard Modelica Fluid connector it only trans-
mits flow variables (m_flow, H_flow) but no state 
variables (p, h), since the later change during the ex-
pansion process in the expansion valve. 
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Fig.  4: Graphical Modelica representation of the con-
denser. 
The models for the evaporator and the adsorber have 
the same structure as the condenser but the condens-
ing model is replaced by an evaporation model and 
an adsorption model, respectively.  
The evaporation model in the evaporator contains 
basically the same heat and mass conservation equa-
tions as the condensing model, but additionally heat 
and mass is stored to describe the refrigerant pool 
that covers the heat exchanger. Moreover, the con-
nector for the condensate is defined as input as a 
counterpart to the condenser. 
The adsorption model contains fundamental heat and 
mass conservation equations with internal storage to 
describe the adsorption process. The load 

),( Tpfx =  describes the amount of refrigerant 
that is adsorbed by the adsorbent 

adsorbent

trefrigeran

m
m

x =  
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In equilibrium the load only depends on temperature 
and pressure at the adsorbent surface. The specific 
adsorption enthalpy  as well as the equilibrium 
relation  are defined in the adsorption 
material package described below. However, the 
speed of adsorption is described as a simple linear 
relation between driving pressure and mass flow 

adh
),( Tpfx =

)( ppm sat −= β&  

where  is the saturation pressure for the refriger-
ant in the adsorbent, 

satp
p  is the vapor pressure in the 

vessel and  is the mass flow of refrigerant into or 
out of the adsorbent. 

m&
β  is an effective diffusion co-

efficient that describes the kinetics and so for is a fit 
parameter [2]. 

2.2 Finned Heat Exchanger Model 

Fig. 5 shows a graphical representation of a finned 
heat exchanger model. It is a simple model consist-
ing of different heat capacities for fins and tubes and 
a constant heat transfer coefficient model that repre-
sents the heat transfer from the hydraulic medium in 
the pipe to the pipe’s wall. The pipe model from the 
Modelica Fluid Library is applied. 
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Fig. 5: Modelica representation of a simple finned heat 
exchanger. 

2.3 Adsorption chiller piping model 

Fig. 6 shows a graphical representation of the ad-
sorption chiller piping. The purpose of the piping is 
to distribute the flow of the three loops for hot water, 
cooling water and chilled water to the four main 
components.  
The connections to the hot water, cooling water and 
chilled water loops are shown on the left side. The 
connections to the four vessels from Fig.  3 are on 
the right side. The single valve in the lower right 

controls the distribution of the cooling water be-
tween condenser and cooled adsorber. From a hy-
draulic point of view both vessels are arranged in 
parallel. 
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Fig. 6: Modelica representation of the piping of the 
adsorption chiller. 
The two three-way-valves in the upper left of Fig. 6 
control the forward flow of hot water and cooling 
water. Either the one or the other adsorber is con-
nected to the hot water loop and cold water loop, 
respectively. Similarly, the two three-way-valves in 
the middle control the reverse flow. An external con-
troller connected via the control connector at the bot-
tom controls the valves. In order to improve the effi-
ciency of the chiller the reverse flow valves are 
switched according to the temperatures in the reverse 
flow of the adsorbers. The warmer outlet flow is 
connected to the hot water and the colder outlet flow 
to the cooling water. Therefore, temperatures at the 
adsorber outlets are delivered to the controller. 
Switching of the valves in reverse flow occurs at a 
later time than switching of the valves in forward 
flow.  

3 Adsorption Material Properties 

At Fraunhofer ISE different adsorption materials are 
measure and characterized. The material package in 
the adsorber model is therefore defined as replace-
able and simulation can be performed with different 
materials.  
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3.1 Description of the adsorption physics 

According to Dubinin’s theory [4] the physical equi-
librium between temperature, pressure and load in 
the adsorber can be described by knowing only one 
function  

)(AfW =  

in which kg
mW 3][ =  is the adsorption volume onto 

the adsorbent surface that describes how much vapor 
can be adsorbed. Therefore, it is proportional to the 
load 

Wx ⋅= ρ  

where ρ  is the density of the refrigerant in the liq-
uid adsorbed state. The adsorption potential 

kg
JA =][  describes the conditions of pressure and 

temperature charactering adsorption process and is 
defined as 

p
p

TRA trefrigeranln⋅⋅=  

with specific gas constant R , saturation pressure of 
the pure refrigerant  and saturation pres-
sure

trefrigeranp
p of the refrigerant in the adsorbed state. Also 

the adsorption enthalpy  is derived from the 
characteristic material equation: 

adh
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Here  is the specific evaporation enthalpy of the 
refrigerant and 

vh
α  is the linear thermal expansion 

coefficient of refrigerant in the adsorbed state. 

3.2 Implementation of adsorption data in Mod-
elica 

The implementation of the adsorption material prop-
erties in Modelica follows Dubinin’s theory to de-
scribe all parameters with the  relation. In 
practice, for the specific adsorption enthalpy also the 
derivative 

)(AfW =

A
W
∂

∂  is needed since Modelica cannot 

perform this transformation. Therefore, three func-
tions are needed to describe the properties of a mate-
rial: 
The first function describes the relation between W 
and A (which may contain piecewise-defined func-
tions), the second function gives the according de-
rivative and the third function contains the needed 
coefficients. The first two functions therefore are 
extended by the coefficient function. 

Each material package is then extended by a partial 
base class package. In this partial package all physi-
cal adsorption properties as described above are cal-
culated. 
So far, all implemented adsorption materials work 
with water as refrigerant but in principle it is possi-
ble to extend the package to the physical properties 
of other adsorption pairs like methanol/activated car-
bon. 

4 Preliminary results and discussion 

Simulations with real measured data as input have 
been performed in order to compare the model with a 
real machine. As working water according to the 
IAPWS-formulation from the Modelica Media Li-
brary and pair silica gel from the adsorption materi-
als package are used. Measurement data come from 
the SorTech SKA PT 402 chiller. Data for tempera-
ture and mass flow at the inlets of the adsorption ma-
chine are given as inputs for the simulation from the 
measurement. Weight of adsorbent and heat capaci-
ties are given as parameters. Moreover, switching 
times for forward valves in the adsorption chiller 
piping are set manually, whereas reverse flow valves 
are switched by the controller as described above.    
Fig. 7 compares measured data with the simulated 
results. It shows the measured temperatures at the 
inlet and outlet of the hot water, cooling water and 
chilled water loops versus time. Moreover, simulated 
results at the outlets are shown. 

 
Fig. 7: Comparison between measured and simulated 
data. Temp_HW_in.T, Temp_MW_in.T and 
Temp_E_in.T are input data for the inlets of the ad-
sorption chiller. Temp_HW_out.T, Temp_MW_out.T 
and Temp_E_out.T are simulated temperature values 
at the chiller’s outlets. HW_out_Measured.y, 
MW_out_Measured.y and CW_out_Measured.y are 
measured outlet temperatures. 
A half cycle needs approximately about 500s. After 
this time adsorption or desorption, respectively, stops 
and the valves in the piping model are switched to 
change operation mode. Therefore, a complete ad-
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sorption/desorption cycle needs about 1000s. The 
peaks especially in the hot and cooling water loop 
are caused by this switching process.  
The simulated curves show good accordance to the 
measured data. After the switching process the simu-
lated output temperature from the hot water loop 
(Temp_HW_out.T) and measured data 
(HW_out_measured.y) start from a similar tempera-
ture and converge against the same final desorption 
temperature.  
The same is true for the simulated and measured val-
ues (Temp_MW_out.T) and (MW_out_measured.y), 
respectively, in the cooling water loop.  
In both loops the simulated temperature differences 
after the switching process are smaller than the 
measured values. This might indicate that the switch-
ing in the reverse flow valves of the SKA PT 402 
happens to soon.  
Inlet temperatures actually were supposed to be con-
stant temperatures but the test bench for the chiller 
was not able to handle the high power requirement 
which resulted in oscillating inlet temperatures. For 
example the middle temperature level 
Temp_MW_in.T shows a double overshoot in the 
time interval 5800s-5900s. The model can handle 
this fluctuation. At the outlet Temp_MW_out.T and 
MW_out_measured.y both show a reaction to the 
fluctuation. But since the model does not include the 
length of the pipes between adsorber and thermome-
ter the simulated reaction happens before the real 
measured events. 

5 Conclusion 

A simulation model for an adsorption chiller on a 
component approach has been implemented in Mod-
elica. Even though it consists of simple equations for 
heat and mass transfer it already shows good accor-
dance to measured data. It demonstrates the principle 
functions of the adsorption chiller and shows reac-
tion to dynamic changes. 
Moreover a package for different adsorption materi-
als has been designed according to Dubinin's Theory. 
New measurements will also contain pressure data in 
the adsorption machine, with this data it will be pos-
sible to calibrate the free parameters in the model 
which are currently only first approximations. 
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Abstract 

The paper describes the integration of non-Modelica 

submodels to a complete Modelica model. We show, 

that the Modelica standard interfaces to external 

code (external function and external object) are not 

suited to integrate the behavior of non-trivial models. 

The necessary enhancements of the external object 

interface are worked out and the usage is demon-

strated.  

 

Keywords: External Function, External Object, 

C-Interface 

1 Introduction 

With ITI-SIM and SimulationX [1] the company ITI 

develops and distributes software for system simula-

tion since 1991. SimulationX provides full support 

for Modelica since release 3.0. The steadily growing 

acceptance of these programs is based on a modern 

user interface, which enables engineers an easy 

access to modeling, simulation and optimization 

techniques by using efficient calculation methods 

associated with a wide range of libraries and tools. A 

large contribution to this success is the availability of 

interfaces to other CAE tools like MAT-

LAB/Simulink, MSC.ADAMS or SIMPACK. In 

addition to various forms of co-simulation the C 

code based exchange of models between different 

tools is also supported. This enables the user to coo-

perate across team boundaries independent of the 

finally used simulation tools. The encapsulation of 

the model functionality, which will be achieved by 

the compilation of the code generated from the origi-

nal model, also allows an effective protection against 

unwanted insight into the parameters and behavior. 

With the description of this interface, as well as our 

proposal for its integration into the Modelica lan-

guage we want to make available the described ad-

vantages to the whole Modelica community. 

2 Motivation 

There are different motivations to integrate non-

Modelica submodels into Modelica models:  

1. Sometimes a component is modeled using a spe-

cialized simulator for a specific physical domain 

(e.g., SIMPACK for complex multi body sys-

tems or GT-POWER [2] for combustion en-

gines). For system simulation within a Modelica 

simulator the component should be integrated in-

to a Modelica model. Often the model functio-

nality of the special simulator can be exported as 

C-code. 

2. A supplier has developed a model of a compo-

nent in Modelica. He wants to supply this model 

to the OEM but wants to protect his know how, 

contained in the physical model. The safest way 

to do that is to provide the model in binary form 

as a compiled library with a well defined inter-

face. 

  

 

Figure 1: Modelica model with embedded external 

components 
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Modelica currently supports the following interfaces 

to external functionality [3]: 

 external function interface 

 external object interface 

According to the Modelica Language Specification 

results of external functions may only depend from 

their arguments, i.e., the functions have no internal 

memory. Complex models do have a memory.  

External objects as an improvement of external func-

tions provide a memory context which is reported 

between the function calls.  

Beside the more or less complex function for the 

right hand side of an ODE or DAE, external models 

may contain discrete states, state- or time-dependent 

events, or delay buffers. To integrate those into the 

simulation, information about the objects have to be 

exchanged between the external model and the simu-

lation environment. The Modelica external object 

interface does not provide the functionality to ex-

change this information. It must be extended to an 

"External Model Interface." The following chapter 

describes the requirements to the external model in-

terface resulting from the features of complex  

models. 

The inclusion of controller code (e.g. ECU code gen-

erated by the Real Time Workshop from The Math-

Works) is not subject of this article. Such compo-

nents must be called with a constant sample rate dur-

ing the simulation. This can be done utilizing the 

existing Modelica interfaces (external function or 

external object). No extensions are necessary. 

3 Requirements for External Model 

Interface 

3.1 Requirements Resulting from Model Fea-

tures 

At first we consider external models, which are 

represented by ordinary differential equations 

(ODE). The equations may contain discontinuities.  

Such systems are represented by following equa-

tions: 

)t,r,z,p,u,x(fx   (1) 

)t,r,z,p,u,x(gy   (2) 

)t,s,r,p,u,x(hz 1  (3) 

)t,z,p,u,x(hr 2  (4) 

 

 

with: 

 x ....... Continuous states 

 u ....... Inputs 

 y ....... Outputs 

 p ....... Parameters 

 z ....... Discrete states 

 r ........ Root functions 

 s ....... Sample variables 

 t ........ Time. 

Equation (1) represents the right hand side (RHS) of 

the ODE. Equation (2) represents the calculation of 

the outputs. Both calculations should be separated in 

different functions to enable an optimum arrange-

ment of the external model in the calculation se-

quence of the enclosing model. 

The other equations deal with event handling and 

discontinuities.  

Events: 

Two kinds of events must be handled: time events 

and state-dependent events. Time events are pro-

duced by timers or the Modelica sample keyword. 

They are signaled from the solver to the model by 

setting corresponding sample variable s. 

State events are signaled from the model to the solv-

er by zero crossings of the root functions r. Discrete 

variables z can change its values only at events. 

According to our experience a reliable event han-

dling is crucial for a robust and fast calculation. 

Reinitialization of States: 

At event instants state values may be reinitialized by 

the external model. The solver should be informed 

about such an operation. 

Additional Model Information: 

External models of specific domains may provide 

further information which eases a robust and fast 

solution. Examples are minimum and maximum 

permissible values for states (e.g. absolute tempera-

tures and pressures have to be positive). 

Other models could provide the Jacobian matrix di-

rectly. 

It depends on the simulator, if this data is used. 

Special Features: 

Some special features demand actions on valid 

model data. For example, the buffers of delay blocks 

must be updated with valid data once after a success-

ful time step. For that reason, the external model 

must be called once after successful steps with valid 

data and must be informed about that. 
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Other model features may require the allocation and 

freeing of memory or data is to be read from files 

once. For that reason special functions must be 

called once at the beginning and the end of the simu-

lation run. 

3.2 Requirements Resulting from the Integration 

into the Enclosing Model 

For integration of the external model into the enclos-

ing Modelica model the external model calls must be 

correctly positioned in the calculation sequence. 

If the outputs of the external model depend only 

from states, the arrangement is simple: the external 

model must be called before one of the outputs is 

needed.   

If the external model has direct feed through (outputs 

depend directly from inputs) the situation is more 

complex. The external model must be called before 

the outputs are needed and after the inputs are calcu-

lated. If the enclosing model defines dependencies of 

the inputs from the outputs of the external model, we 

have algebraic loops. The simulator must treat them 

in an appropriate manner. 

For this reason it is essential for the external model 

to provide the information, which output depends on 

which input(s). If the model creator is not able to 

offer this structural information, the worst case (each 

output depends from each input) has to be assumed. 

3.3 Technical Requirements 

The external model interface for Modelica should be 

similar to the Simulink S-function interface from 

The MathWorks [4]. This interface is quite well 

adopted and widely used. 

The realization of the data transfer should be simula-

tor-specific. The external model accesses the data via 

functions or macros. These functions or macros are 

provided by the target simulator. 

The external model interface should be usable by 

non-Modelica simulators too. These simulators 

should be able to use and/or to create models using 

the interface. 

We will assume that at least the interface part of ex-

ternal models is written in C. How the external mod-

el is linked to the simulator is tool specific and de-

pends on the capabilities of the operating system. 

 

 

4 The External Model Interface 

The external model interface can be seen from the 

following three perspectives: 

 Specification of the functions and data provided 

by the external model. 

 Specification of the calling sequence by the  

solver. 

 Specification of the interface to Modelica. 

These three views to the external model interface are 

shown in Figure 2. 

 

EMI

EMSolver

Modelica

Simulator

em.dll

EMI

EMSolver

Modelica

Simulator

em.dll

 

Figure 2: Three views to the external model interface 

 

On the other hand the interface provides a set of 

utility functions which can be called from external 

model code. 

According to the requirements we get the following 

data flow between the components (Figure 3). 

 

External Model

)t,r,z,p,u,x(fx 

)t,r,z,p,u,x(gy u y

GUI

Enclosing Model
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Figure 3: Data flow 
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The details, i.e. which data is to be provided by 

which function, are part of the complete specifica-

tion, which will be published by the authors. 

4.1 External Model View 

The data transfer is realized via the external model 

context, the structure emc. The external model must 

implement the following functions:  

void emiInitializeSizes(emc *C) 

 Defines the dimensions of the model. 

 Transfers additional information (input – output 

dependencies) 

 Is called multiple times before the calculation. 

void emiStart(emc *C) 

 Is called once at the beginning of the simulation 

run. 

 Can be used, e.g., to allocate memory. 

void emiInitializeSampleTimes(emc *C) 

 Transfers constant sample times. 

 Is called once at the beginning of the simulation 

run. 

void emiInitializeConditions(emc *C) 

 Sets the initial conditions for continuous and dis-

crete states. 

 Is called once at the beginning of the simulation 

run. 

void emiTerminate(emc *C) 

 Is called once after the simulation run. 

 Allocated memory can be freed here. 

 

The following functions are called multiple times 

during one calculation step: 

void emiDerivatives(emc *C) 

 Computes the RHS of the ODE (1), and (3) dur-

ing event iteration. 

void emiOutputs(emc *C) 

 Computes the outputs (2). 

void emiZeroCrossings(emc *C) 

 Computes the root functions (4). 

 

The next function is called once after a successful 

calculation step: 

void emiUpdate(emc *C); 

 Called after a successful calculation step with va-

lid data. 

It is not allowed to access the data in the external 

model context emc directly. Instead, a set of func-

tion or macros is to be used, e.g.: 

emcSetNumContStates(emc *C, int_T n) 

 Sets the number of continous states. 

emcGetContStates(emc *C) 

 Returns a pointer to the state array. 

emcSetSolverNeedsReset(emc *C) 

 Informs the solver about a reinitialization of 

states. 

 

The implementation of the emc and the access func-

tions are target tool specific and must be provided by 

the simulator manufacturer. 

4.2 Solver View 

Figure 4 shows a simplified flow chart of the solu-

tion process for a Modelica model. It demonstrates 

which functions are called at each stage.  

 

 

 

Figure 4: Solution process flow chart 

 

If the integrator works iteratively, the functions 

emiOutputs and emiDerivatives may b 

called several times at the same time be instant with 

temporary data. These functions are to be imple-

mented as reentrant and must not store any data.  

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 582 Modelica 2008, March 3rd − 4th, 2008



For these purposes emiUpdate is called with valid 

data once after a successful time step.  

The method for robust handling of discrete variables 

during event iteration is an open issue at the moment. 

There are several possibilities, which should be dis-

cussed with other simulator vendors. 

4.3 Modelica View 

This section describes the enhancements of the ex-

ternal object call interface to the external model in-

terface. The information to be exchanged between 

the external model and the Modelica simulator are of 

two types: 

 Data for the model (parameters, inputs, outputs). 

These are exchanged via usual function argu-

ments and appear inside the Modelica model. 

 Data for the solver (states, derivatives, residuals, 

discrete states, root functions…). These are han-

dled implicitly by the simulator using the external 

model context. 

We suggest the new Modelica built in type "external 

model" as an extension of the external object inter-

face. The implicit declaration of the type could be: 

class ExternalModelInterface 

 extends ExternalObject; 

  function constructor 

   input String emName; 

   output ExternalModelInterface emi; 

   external "C" emi=initEM(emName); 

  end constructor; 

  function destructor 

   input ExternalModelInterface emi; 

  external "C" terminateEM(emi); 

 end destructor; 

end ExternalModelInterface; 

 

The calculation function is declared implicitly as 

follows: 

function calcEM 

 input ExternalModelInterface emi; 

 input Real u[nu]; //inputs 

 input Parameter Real p[np]; //parameters 

 output Real y[ny]; //outputs 

 external "C" y=calcEM(emi, u, p); 

end calcEM; 

 

Differing from the external object interface, the func-

tions initEM, terminateEM and the calculation 

function calcEM do not correspond one to one to 

the functions of the external model. During the sym-

bolic analyses of the model these functions have to 

be mapped to the appropriate function calls of the 

external model. 

The dimensions (nu, np, ny) and the dependencies 

of the outputs from the inputs must be known during 

the symbolic analyses. This information should be 

provided by the external model. To get this informa-

tion, the external model must be called already dur-

ing the analyses. This is another difference to the 

external object interface. 

The usage of the external model interface in a Mod-

elica model is: 

 

 

model Block "Block with External Model" 

 input SignalBlocks.InputPin u1; 

 input SignalBlocks.InputPin u2; 

 input SignalBlocks.InputPin u3; 

 output SignalBlocks.OutputPin y1; 

 output SignalBlocks.OutputPin y2; 

 ExternalModelInterface emi=  

   ExternalModelInterface("c:\test.dll"); 

 equation 

 {y1,y2}=calcEMI(emi,{u1,u2,u3},{1,2,3}); 

end Block; 

 

As denoted before, the Modelica model handles only 

the inputs, outputs, and parameters of the external 

model. The other information is exchanged implicit-

ly between the solver and the external model. If the 

user wants to access such internal data for debugging 

purposes, special functions could be provided. 

Access to the states could be given by: 

function getEMStates 

 input ExternalModelInterface emi; 

 output Real x[nx]; //states 

 external "C" x=getEMStates(emi); 

end getEMStates; 

5 Application Scenarios 

5.1 Hand-Written External Models 

External models can be developed by any program-

mer. The complete API with all necessary data struc-

tures and functions is described in a programmer’s 

manual. Normally it should be the exception to im-

plement an external model completely by hand. In-

stead, the adaption and integration of existing source 
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code according to the external model interface re-

quirements will be the typical task. This way is prac-

ticable for single solutions and non-commercial ap-

plications. The necessary work can be simplified by 

using precast templates. 

 

Figure 5: Work flow for hand-written external  

models 

5.2 Tool-Generated External Models 

For commercial CAE tools the automatic generation 

of external models is feasible. The Code Export 

Wizard integrated in SimulationX is already able to 

generate source code for various target platforms.  

 

Figure 6: Work flow for tool-generated external 

models 

Among S-functions for MATLAB/Simulink and 

UFORCE-routines for SIMPACK [5] also real time 

targets like ProSys-RT from Cosateq [6] are sup-

ported. For the automatic generation of EMI-

conform model code a new target project type was 

added to the SimulationX Code Export Wizard. The 

wizard assists the user in the selection of inputs, out-

puts, and parameters. If a supported compiler is in-

stalled, SimulationX is able to build the External 

Model DLL immediately. The resulting model li-

brary does not need any additional runtime modules 

and can be distributed without limitations. 

6 Conclusions and Outlook 

We have shown how the interface to an external 

model in SimulationX is structured.  

In one of the next Modelica Design meetings, we 

will make a proposal for the new predefined partial 

class ExternalModel which represents the model 

context inside the Modelica language. 

The external model interface will be open for other 

software vendors. The interface itself does not con-

tain Modelica specific parts. In this way external 

model components could be created and used by 

non-Modelica simulators too.  

The authors explicitly invite interested colleagues for 

discussions about the interface proposal. A detailed 

specification is available on requested. 
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Abstract 
Steady state 0D/1D models are useful to check, 
validate and improve through simulation the energy 
performances of existing heat and/or power plants. 
They are also used to find the best design  that meets 
required economical criteria. 
A library of fully static 0D thermal-hydraulics 
component models was built. It contains the models of 
a grid furnace, gas combustion chamber, electrical 
boiler, steam boiler, multifunctional heater, waterwall 
gas/water steam exchangers, tubular air heater, steam 
turbine, condenser, aero-condenser, pump, drum, 
valves, pipes, gas turbine, compressor, kettle boiler, 
mixer and splitter etc... 
This library now enables us to build models of any 
CHP plant. A 0D steady state model of the MiraFiori 
heat and power plant was built in order to check, 
validate and improve the energy performances of the 
plant. A multi configurations steady state model of a 
combined heat and power biomass plant was built, the 
plant satisfies the steam demand during all the year 
and produces electricity with its remaining energy. 
Models were built by connecting the component 
models in a technological way, so that its topology 
reflects the process flow diagram of the plant.  
A preliminary calibration of the Mirafiori model was 
made based on measurement data obtained from on-
site sensors and using inverse calculations. The best 
steam cycle configuration for the Biomass CHP plant 
was chosen computing various normal conditions 
points. The models were then able to compute 
precisely the distribution of the steam/water mass flow 
rates, pressure and temperature across the network, the 
exchangers thermal power, and the performance 
parameters of all the equipments. They converge very 
quickly, provided that the iteration variables are 
properly fed in by the user (approx. 5% of the total 
number of variables).  

1 Introduction 
Modelling and simulation play a key role in the 
design phase and performance optimization of 
complex energy processes. 
Steady state 0D/1D models are useful to check, 
validate and improve through simulation the 
energy performances of existing heat and/or power 
plants. They are also used to find the best design  
that meets required economical criteria. 
The modelling and simulation of the plant was 
originally carried out with LEDA. LEDA is a tool 
developed and maintained by EDF since 1982 for 
the modelling and simulation of the normal or 
incidental operation of nuclear and conventional 
thermal plants. 
For present and future models, we are using 
MODELICA modelling tool. New blocks and 
models are being developed with Modelica and 
standard guidelines have been adopted for power 
plants modelling. It is now used at EDF-R&D as 
well as in Engineering Departments. 
Modelica models are used by EDF to improve its 
knowledge about existing or future types of power 
plants, check the design performances and 
understand important transients situations. 
Besides technical benefits of Modelica, it is likely 
that using a free and non proprietary language will 
promote partnerships around joint R&D and 
engineering projects, thus giving the opportunities 
to share development costs between participants. 
Two Steady State CHP models with Modelica - 
Mirafiori overall model and Multi-configuration 
Biomass model  - were built in 2007. 
The modelling and simulation were carried out 
with the commercial tool Dymola, as it is the most 
advanced Modelica based tool up to now. 
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2 Modelling practices at EDF 
Modelling and simulation play a key role in the design 
phase and performance optimization of complex 
energy processes. At EDF, modelling and simulation 
of the plant was originally carried out with LEDA. 
LEDA is a tool developed and maintained by EDF for 
the modelling and simulation of normal or incidental 
operation in nuclear and fossil-fuel power plants. 
LEDA models are used by researchers and engineers 
in order to improve their knowledge of existing or 
future types of power plants, to check the design 
performances and to understand important transient 
situations. 
EDF traditionally used steady state models in order to 
check precisely the performances and the design given 
by manufacturers. EDF used dynamic models to check 
automation and operating procedures and to optimise 
design for a specific operation. 
In order to improve the performance of its simulation 
tools while reducing their cost, EDF R&D made the 
decision to replace LEDA with Modelica and the 
commercial tool Dymola. 
Application fields 

• Nuclear power plants. 
• Thermal fossil fuel fired power plants 

(pulverized coal, fluidized bed, ...). 
• Combined heat and power plants. 
• Waste to energy. 

Utilization fields 
• Operation and maintenance. 
• Design and analysis. 
• Innovative technologies. 

3 EDF Modelica Library 

3.1 Component models 
A library of fully static 0D thermal-hydraulics 
component models was built. It contains the models of 
a grid furnace, gas combustion chamber, boiler, 
electrical boiler, steam boiler, multifunctional heater, 
waterwall gas/water steam exchangers, tubular air 
heater, steam turbine, condenser, aero-condenser, 
pump, drum, valves, pipes, gas turbine, compressor, 
kettle boiler, mixer and splitter etc... 
The model equations take into account the non-linear 
and the state-of-the-art physical behaviour of each 
important phenomenon. 

3.2 The thermodynamic properties 
Properties of flue gases  

The thermo-physical properties of the flue gases 
(for the exchangers, gas turbines, compressors, gas 
combustions chambers, …..) were computed using 
Fortran subroutines called MONOMELD. 
Properties of water and steam 

The properties for water and steam were computed 
from polynomials defined by the international 
standard IAPWS-IF97. The efficient original 
Modelica implementation of H. Tummescheit was 
used.  
 

4 The Mirafiori model 
Steady state model of the MiraFiori heat and power 
plant was built in order to check, validate and 
improve the energy performances of the plant. The 
model contains six units (systems) of production : 
� HP water/steam cycles with 3 gas boiler, 
� IP water/steam cycles with 4 gas boiler, 
� 2 combined cycles, 
� 2 GT. 

As it has already been mentioned, MiraFiori is a 
fully static model. 
The full model is built by connecting the 
component models in a technological way, so that 
its topology reflects the functional schema of the 
plant (see Figure 7 in the appendix). It is composed 
of 420 elementary models, generating 9560 
variables and 1950 non-trivial equations. 
The model is composed of : 7 gas boilers,14 
exchangers, 10 steam turbine stages, 15 pumps, 28 
pressure drops, 4 gas turbines, 4 compressors, 4 
kettles boilers, 4 gas combustions chambers, 
several mixers, several collectors and several 
boundary conditions. 
It is very important to provide an efficient way to 
handle the iteration variables, as the task of setting 
them properly is time consuming. It is by no way 
automatic, since it requires a good expertise of the 
problem to be solved (the number of iteration 
variables represent roughly 5% of the total number 
of variables). 

4.1 Model calibration 
The calibration phase consists in setting the 
maximum number of thermodynamic variables to 
known measurement values (enthalpy, pressure, 
mass flow rates), taken from on-site sensors during 
performance tests. This method ensures that all 
needed performance parameters, size 
characteristics and output data can be computed. 
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A preliminary calibration of the model was made 
based on measurement data obtained from on-site 
sensors. The model was then able to compute 
precisely the distribution of water and steam mass 
flow rates, pressure and temperature across the 
network, the exchangers thermal power, and the 
performance parameters of all the equipments. It 
converges very quickly, provided that the iteration 
variables (approx. 5 % of the total number of 
variables) are properly fed in by the user.  

Figure 1 shows the evolution of the efficiencies of 
the boilers as a function of the ambient air 
temperature calculated through Dymola, the 
variation of the efficiencies of the boilers is  +/-1% 
compared to the nominal value. 
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The main computed performance parameters are : 
• the ellipse law coefficients of the turbines, 
• the isentropic efficiencies of the turbines, 
• the pressure drop correction coefficients of the 

exchangers and of the pipes between pieces of 
equipment. 

• the compression ratio of the GTs. 
Figure 1 - Efficiencies of the boilers as a 
function of the ambient air temperature  

Etc. 
 

 The main computed outputs are : 
• fuel mass flow rate of gas boilers, Figure 2 shows the efficiencies of the boilers as a 

function of the excess air, the boilers efficiencies 
vary from 94,4% down to 92% when the excess of 
air passes from 10% (nominal value) to 90% 
(maximum value recorded on the operating data). 

• Air mass flow rate of gas boilers, 
• thermal power of exchangers, 
• temperatures and pressures in places where no 

sensor are installed.  
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4.2 Simulation results 
After calibration, the model allowed us to make what-
if simulation and provide to the plant operators : 
• The performances of the equipments (for example 

boiler performances), 
• The global efficiencies of the water/steam cycles, 
• The gains or extra costs associated with the 

varying operating conditions of the unit 
(condenser pressure, exhaust temperature, excess 
air, fouling coefficients…), 

• The best operating point with respect to the 
various operating conditions of the unit. 

Figure 2 - Efficiencies of the boilers as a 
function of excess air 

 
4.3 Sensitivity analysis Figure 3 shows the efficiencies of the boilers as a 

function of temperature of the exhaust flue gases, 
the boilers efficiencies decreases by 2% when the 
temperature of the exhaust flue gases passes from 
110 °C (nominal value) to 150 °C (maximum value 
recorded on the operating data). 

Then, the model allowed us to make a sensitivity 
analysis of the effect of air mass flow rate (excess air), 
ambient air temperature (combustive), temperature of 
the exhaust flue gases and the condenser vacuum on 
the thermo-hydraulic behaviour of the power plant 
and the efficiencies of boilers. 
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Figure 3 - Efficiencies of the boilers as a function of 

the temperature of the exhaust flue gases Figure 5 - Evolution of the steam turbine power 
of GT as a function of the condenser vacuum 

Figure 4 shows the evolution of the power of gas 
turbines of the combined cycles as a function of 
ambient air temperature. The nominal value of power 
of gas turbines is 80.5 MW for ambient air 
temperature at 20 °C. 

4.4 Correction curves 
The correction curves used to forecast the behavior 
of the pieces of equipment. These correction 
curves represent a simplified physical model of the 
plant, which is fed into a mathematical model used 
to compute on a six-week period the cheapest 
operating scenario which meets environmental and 
technical requirements. 
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The different correction curves create with the 
model are: 
• Gas boiler : (Boiler Power / Fuel Power) , 
• Steam turbine : (Mechanical Power / Boiler 

Power) , 
• Gas turbine : (Mechanical Power / Fuel 

Power) , 
Figure 4 - Power of gas turbines of the combined 

cycles as a function of the ambient air temperature 
• Combined cycle : (Total mechanical Power / 

Fuel Power). 
  
Figure 5 shows the evolution of the steam turbine 
power of the combined cycles as a function of the 
condenser vacuum, the loss of the steam turbine 
power is about 7,5 MW, between a condenser vacuum 
of 50 mbar and a vacuum of 250 mbar. 
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Figure 6 - Example of correction curve : 
Evolution of the boiler power as a function of 

the fuel power 
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5 Biomass CHP steady state 
model 

Recent developments of environmental concerns 
drove states to promote renewable energies and 
energy efficient solutions. Some invitation to tender 
often are proposed so as to create new biomass CHP 
plants at the best operating cost. 

5.1 Need 
Companies answering to these invitations to tender for 
biomass CHP plants shall be able to choose the best 
configurations for the plants in order to reach the 
following criteria: 

• The yearly average efficiency (steam + 
electricity) is greater than 50%; 

• The plant is able to satisfy the steam demand 
of the customer (usually an industry) at all 
time; 

• The yearly biomass consumption is fixed; 
• The return on investment time is as low as 

possible. 
Usual studies for this type of issue only give an 
efficiency at nominal point for one or two plant 
configuration. Models are able to provide various 
configurations and what-if studies in order to broaden 
the range of efficiency calculations and help the 
company to choose the best investment. 
One of these companies asked us to assist them by 
creating and using a MODELICA Biomass CHP 
plant. 

5.2 Building the model 
This model uses the same library as the Mirafiori one. 
It is a fully static model. It also needs to use the same 
physical properties as Mirafiori. 
The full model is built by connecting the component 
models in a technological way, so that its initial 
topology reflects the functional schema of the more 
complex plant (see Figure 7C in the appendix). 
In order to be able to answer to many different 
situations, we created some variables in some of the 
component model enabling to switch itself on or off. 
This multi configurations steady state model of a 
combined heat and power biomass plant contains 96 
elementary models, generating 2162 variables and 460 
non-trivial equations. 
 

5.3 Multi – configuration calculations 
at normal operating condition 

First the model is able to give figures at nominal 
point for various situations. 
The same model can simulate 16 different plant 
configurations: 

• w/wo air heater 
• w/wo reheaters 
• w/wo water heating 
• w/wo condenser 

NB: any fuel can be set into the grid furnace, but 
its physical equations are ideal for solid fuels (coal, 
waste, biomass etc.). 
The plant works with a fixed biomass flow rate, it 
satisfies the steam demand during all the year and 
produces electricity with its remaining energy. 
We make an inverse calculation (such as the 
calibration phase for Mirafiori model) with 
DYMOLA setting the nominal parameter to their 
expected value in the plant projects. 
The results given by the model are : 

• The efficiency at nominal point (steady 
state calibration), 

• The electric power produced 
 
These results at nominal point are a first step to 
choose the best configuration regarding the 
investment cost of each type of plant. 
 

5.4 What-if steam demand varies? 
Of course, the results given at nominal point are 
not consistent to know precisely the average 
performance on a one-year operation. 
Consequently, we use what-if ability of 
DYMOLA/MODELICA model in order to realize 
the following computations : 

• What-if simulation varying any parameter: 
e.g. steam flow rate, 

• Economic study on a one-year typical 
steam demand (what-if quasi-static 
simulation). 

The forecast of steam demand is defined as a load 
curve with 365 values of flow rate (one per day). It 
is based on measurements made by the customer 
on a past year considered as normal. The variation 
of the steam flow rate makes the global efficiency 
vary and changes the electric power produced. 
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Hence the best yearly average figures (global 
efficiency, electric power) are given by the model. 
It gives a much better forecast of the incomes that will 
be generated by the plant. 

5.5  Creation of a tool for non-modeller 
The executable file of the model has been integrated 
in an easy-to-use Excel sheet for non-modelers, and it 
was given to our customer. 
With this tool, one who is not used to models can 
make calculations on any plant configuration and 
launch what-if calculation varying steam demand. 
 

5.6 Trigeneration issues 
An absorption chiller model is being created in the 
static library. This could represent one-stage or two 
stage Water/LiBr systems on hot water or hot flue gas. 
This will give us the ability to model trigeneration 
systems in order to compute performance figures for 
existing and projected plants and to simulate various 
behavior. 
The optimal point, harder to find for a trigeneration 
than for a CHP, will easily be found with a 
DYMOLA/MODELICA model. 
 

Conclusion  
Two Steady State CHP Models were built with 
Modelica to evaluate the capacity of Modelica based 
tools to perform steady state direct and inverse 
computations for the sizing of power plants. 
 
To even further reduce the effort required to do 
Modelica modelling and simulation for such systems, 
it is necessary to provide more advanced tool 
functionalities to handle efficiently the iterations 
variables, and trace the automatically generated 
numerical system back to its original mathematical 
equations, as declared by the user with the Modelica 
language. 
Nevertheless, this work shows that the Modelica 
technology is mature enough to replace proprietary 
solutions such as LEDA for the steady state modelling 
and simulation of power plants. 
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Appendix 
HP Water/steam cyclesIP Water/steam cycles

 
 

Figure 7A - Parts of the Dymola model of “Mira-Fiori 

Combined cyclesGas turbines

 

Figure 7B - Parts of the Dymola model of “Mira-Fiori 
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Figure 7C  Dymola steady state model of a biomass CHP plant 
 

 
 
 

B. El Hefni, B. Bride, B. Pechine

The Modelica Association 592 Modelica 2008, March 3rd − 4th, 2008



Efficient Analysis of Harmonic Losses in PWM Voltage Source
Induction Machine Drives with Modelica
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Abstract

This paper presents an approach to calculate the cop-
per and core losses caused by harmonics of the PWM
of a voltage source inverter. For the analysis some
models of theSmart Electric Drives(SED) library,
and additionally, aModelica library for modeling
AC circuits by means of electric time phasors, are
used. With the proposed analysis the influence of
space phasor PWM signals on the machine efficiency
is investigated. AModelica model of a speed con-
trolled induction machine drive working at different
load points and different switching frequencies is
presented. The results of the simulation are compared
and discussed.

Keywords: induction machine, inverter, speed con-
trolled drive, efficiency, copper losses, core losses,
space phasor PWM, SED library

1 Introduction

In most variable speed drives pulse width modulation
(PWM) voltage source inverters are used. Usually
machine design tools only consider the fundamental
harmonic of the stator voltage when calculating the
losses. The major aim of the presented work is to in-
vestigate the negative impact of PWM switching on
additional losses in the machine windings and the iron
cores. These additional losses are caused by harmon-
ics of the voltage and the current due to the PWM. The
harmonic losses of the induction machine are modeled
using the AC library, which is based on the stationary
analysis with complex time phasors [1].
A number of algorithms for PWM voltage generation
are available. Some well known techniques are unipo-
lar voltage switching and bipolar voltage switching
[2], harmonic elimination [3] and space vector PWM
[4]. In fact there are many more techniques in which

the basic principles of the ones mentioned are used
with some modifications. Different PWM algorithms
cause different voltage harmonics. These voltage har-
monics give rise to current harmonics due to the ma-
chine impedance. The voltage harmonics cause addi-
tional core losses whereas the current harmonics cause
additional losses in the stator and rotor winding of the
machine. Moreover, the frequency of the carrier sig-
nal has a significant influence on the voltage and cur-
rent spectra and consequently increases the losses aris-
ing in the machine. It is widely accepted that PWM
switching has a negative impact on the efficiency of
the drive and some efforts had been undergone to cal-
culate the amount of losses caused by PWM switching.

In [5, 6, 7, 8, 9] finite element analysis (FEA) tech-
niques are implemented, which require high computa-
tional expenses for calculating the additional losses. In
an FEA model the ohmic heat losses due to the PWM
switching are inherently covered. The additional core
losses are computed by a frequency and flux depen-
dent model, which is evaluated locally throughout the
machine volume.

Alternatively, the harmonic losses can be assessed
keeping the processing efforts low by defining specific
loss factors [10]. In this case it is crucial to keep the
energy balance between the electric terminals and the
shaft of the machine consistent.

In this paper the energy balance is implemented
straight forward by defining an equivalent circuit [11,
12, 13, 14]. The presented work is based solely on
analytical equations using data from conventional in-
duction machine calculation programs without FEA.
An equivalent circuit with elements taking deep bar
effects and the influence of the stator voltage and the
stator frequency on iron losses into account is used to
calculate the harmonic losses with the principle of su-
perposition. The proposed models are designed such
way that it takes only little effort to replace the PWM
algorithm by an alternative one and to change machine
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Figure 1: Three phase full bridge.

Figure 2: Possible voltage space vectors of a three
phase space vector PWM.

data in order to benchmark different variable speed
drive setups.

2 PWM voltage generation

The PWM waveform depends on the control unit and
the converter topology. In this work one of the most
commonly used PWM waveforms is analyzed, the
space vector PWM. Space vector PWM can be im-
plemented if a three phase converter of the topology
shown in fig. 1 is used. The states of the six switches
(S1 to S6) must be chosen such way that the switches
of one leg of the converter switch complementary. Ne-
glecting dead times, it must hold that whenever one
switch of a leg is ON the other one must be OFF. By
no means both can be ON at the same time.
There are eight possible combinations for the switch
commands, which result in seven elementary output
voltage space vectors as shown in fig. 2. By using
PWM for switching between these seven elementary
space vectors any space vector position can be real-
ized. The output phase voltages of a space phasor
PWM controlled three phase full bridge are shown in
fig. 3. Using the models of ideal switching con-
verters and the respective PWM control blocks from
the SED library [15, 16], it is possible to compare the
”quality” of PWM signals with different switching fre-

Figure 3: Reference signals and resulting PWM sig-
nals,vPWM, of the investigated space vector PWM al-
gorithm.

quencies (and with different switching algorithms). In
fig. 4 the spectra of space vector PWM with two dif-
ferent frequency ratios are shown wherevre f is the
phase voltage amplitude of the reference space vec-
tor rotating with constant angular speed and magni-
tude and fre f is the frequency of the phase voltage.
The frequency per unit (p.u.) isf

fre f
and the voltage

p.u. is v
vre f

. It appears that space vector PWM with
high switching frequency,fSwitch, causes considerably
lower harmonics with low order numbers than space
vector PWM with low switching frequency. If the
spectrum of the PWM voltage signal and the frequency
dependent impedances of the machine are known the
harmonic copper losses and the harmonic core losses
can be calculated. It can be shown that high switch-
ing frequencies help decreasing the iron losses and the
copper losses in voltage source inverter drives.

3 Model of the copper losses

The copper losses in an induction machine can be de-
termined by using the well known single phase equiv-
alent circuit [17]. Figure 5 shows theModelicamodel
of the investigated induction machine. This equivalent
circuit represents the machine behavior in steady state
operation. The connectors used in the equivalent cir-
cuit model contain complex current time phasors as
flow variables and complex voltage time phasors as
potential variables. Furthermore, the reference frame
of the time phasors is defined by a reference angleϕ in
the connectors. For the calculation of the copper losses
the deep bar effects of the rotor stray inductance and
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Figure 4: Spectra of space vector PWM voltages with
low and with high switching frequency.

the rotor resistance are considered. Skin effects in the
stator resistance and stator inductance are neglected
because they can be mostly avoided through wires with
small radial length in the stator winding [18]. Satura-
tion effects are neglected as well.
The slip with respect to a certain harmonic depends
on the orders of this harmonic. It can be shown that
the rotational directions of the spatial harmonic waves
of the stator field are dependent on the order number
[19]. Therefore the slip related to the different voltage
harmonics,

sν =
ων −ωm

ων
(1)

whereωm is the shaft speed of an equivalent two pole
machine and the angular velocities of the harmonic
waves of the stator quantities,

ων = ω1 ·ν. (2)

Using (1) and (2) the slip can be written as

sν = 1− 1−s1

ν
. (3)

In a symmetric induction machine withm phases fed
by PWM voltages the order numbers of the harmonics
of the stator field [20] are

ν = 2·m·k+1, (4)

where

k = {0,±1,±2,±3, ...} . (5)

It is well known that

R
′
rν =

Rrν

sν
= Rrν +Rmechν (6)

with

Rmechν = Rrν
1−sν

sν
. (7)

For each harmonic order, the power dissipated byRrν
represents the copper losses in the rotor and the power
dissipated byRmechν represents the mechanical power
of the machine distributed to the shaft (without con-
sidering stray load losses) [17].
According to [21] the deep bar effects in rotor bars
with rectangular profile can be considered by a resis-
tance factor

KRν = ξν ·
sinh(2ξν)+sin(2ξν)
cosh(2ξν)−cos(2ξν)

(8)

and an inductance factor

KIν =
3

2ξν
· sinh(2ξν)−sin(2ξν)
cosh(2ξν)−cos(2ξν)

, (9)

with

ξν = h·
√

µ0 ·2π fν
2ρ

· b
bs

. (10)

The subsidiary quantityξν is a function of the bar
height,h, the frequency of the voltage harmonic,fν,
the specific resistance of the rotor bars,ρ, the width
of the rotor bar,b, and the width of the rotor slot,bs.
Hence, the rotor resistance,

R
′
rν = KRν ·R

′
r,var +R

′
r,const. (11)

In (11) the constant resistance,R
′
r,const, represents the

end rings and the parts of the rotor bars that are not
embedded in the slots whereas the variable resistance,
KRν ·R

′
r,var, represents the parts of the rotor bars that

are embedded in the slot.
The rotor stray inductance is modeled the same way:

L
′
rσν = KIν ·L

′
rσ,var +L

′
rσ,const (12)

By calculating the stator current,Isν, and the rotor cur-
rent, I rν, of the single phase equivalent circuit for all
harmonics, the stator and rotor copper loss increase
due to the harmonics can be expressed by

pCu,s∑ ν = ∑(|Isν|2)
|I s1|2

−1 (13)

and

pCu,r ∑ ν = ∑(Rrν · |I
′
rν|2)

Rr1 · |I ′r1|2
−1 (14)
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Figure 5: Equivalent circuit of an induction machine
implemented withModelica.

Consequently, the total harmonic copper losses are

PCu∑ν = PCu,s1 · pCu,s∑ ν +PCu,r1 · pCu,r ∑ ν (15)

wherePCu,s1 andPCu,r1 are the stator and rotor copper
losses with respect to the fundamental wave.

4 Model of the core losses

The core losses,PFe, in an induction machine can be
divided into two parts: the hysteresis losses and the
eddy current losses [22, 23, 24, 25]. Hysteresis losses,
PFe,h, and eddy current losses,PFe,e, can both be ex-
pressed as functions of the magnetic flux linkage,ψ,
and the stator frequency,f :

PFe,h = Fh{ψ2, f} (16)

PFe,e = Fe{ψ2, f 2}. (17)

Considering that the voltage is directly proportional to
the flux linkage and the frequency according to

Vν = ψν ·ων (18)

the hysteresis losses and eddy current losses caused by
the harmonics of the stator voltage can be calculated
per unit to

pFe,hν = [(
f1 ·Vsν

fν ·Vs1
)2 · fν

f1
] =

f1 ·V2
sν

fν ·V2
s1

(19)

pFe,eν = [(
f1 ·Vsν

fν ·Vs1
)2 · ( fν

f1
)2] =

V2
sν

V2
s1

. (20)

In the equivalent circuit shown in fig. 5 the hysteresis
and the eddy current losses are both considered in one
conductorGFeν. Using the hysteresis losses,PFe,h1,
and the eddy current losses,PFe,e1, of the fundamental
together with (19) and (20),

GFeν =
PFe,h1

3·V2
sν
· pFe,hν +

PFe,e1

3·V2
sν
· pFe,eν. (21)

Hence, the total harmonic core losses

PFe∑ ν = 3·∑(GFeν ·V2
sν) (22)

which can also be written as

PFe∑ ν = PFe,h1 ·
{[

∑ pFe,hν
]
−1

}
+

+ PFe,e1 ·
{[

∑ pFe,eν
]
−1

}
. (23)

5 Simulation setup

In mining, chemical, waste water, gas or oil industries
there are high-power medium-voltage variable speed
drives used that work with IGCT or IGBT convert-
ers. Such IGCT converters have switching frequency
ranges around 1 kHz and IGBT converters work with
frequencies up to 10 kHz [26].
In this paper a high-power medium-voltage water
pump drive is simulated. The specifications of the
investigated induction machine are shown in table 1.
The spectra of the voltage waveforms generated by
space vector PWM are calculated using the SED li-
brary and theModelicaStandard library in a Dymola
simulation environment. In fig. 6 the model calculat-
ing the harmonic components from the inverter voltage
is shown. The model contains three ideal reference
voltage signals, a block generating the PWM switch-
ing commands, and a model representing a three phase
full bridge with integrated DC-link voltage source as
well as a Fourier analysis block. In the Fourier analy-
sis block the Fourier coefficients,ak andbk, get calcu-
lated according to the Euler-Fourier formulas [27] with
two integrators and a sine and a cosine signal source.
The spectral components are computed by converting
the Cartesian coordinates,ak andbk, to polar coordi-
nates,dk and ϕk. From the generated spectral com-
ponents the harmonic losses are processed through a
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Table 1: Parameters of the high-power medium-
voltage induction machine.

Induction Machine

Pole Pairs 2
Nominal Power [kW] 1600
Nominal Frequency [Hz] 50
Nominal Voltage [V] 6000
Nominal PF 0.873
Nominal Slip [%] 0.25

Fourier synthesis in the model shown in fig. 7. The en-
capsulated induction machine model applied for loss
calculation is depicted in fig. 5. It is fed with an array
of stator voltage time phasors.
In the induction machine model the inner torque com-
ponents,Tinnerν, with respect to a harmonic,ν, are
computed by

Tinnerν = p· Pinputν − (PCu,sν +PFeν)
(2·π · fν)

, (24)

where p is the number of pole pairs,Pinputν are the
electrical input power components of the machine,
PCu,sν are the stator copper loss components,PFeν are
the iron loss components, andfν are the harmonic sta-
tor frequencies. The shaft speed of the induction ma-
chine is controlled by an integral action controller such
way that the fundamental component of the mechani-
cal power

Pairgap1 = Tinner1 · (2·π · f1), (25)

matches the reference power,Pre f . Since the friction
losses,Pf r , are not considered in the equivalent cir-
cuit, the reference power with respect to the shaft of
the machine model is determined by

Pre f = Pm,re f +Pf r , (26)

wherePm,re f is the desired mechanical power of the
induction machine. If the actual power,Preal, at the
shaft of the machine model matchesPre f , the desired
operation point is reached.
The harmonic losses of the inverter drive are com-
puted for two different operation points of the ma-
chine. In case A the machine is operated at nominal
supply frequency,fNominal, and nominal mechanical
power, PNominal. In case B the machine is simulated
at fNominal

3 and PNominal
27 . The reason for assessing case B

is to investigate the influence of the harmonic losses
specifically in variable speed drives that are connected

Figure 6: Model used for the PWM signal analysis.

Figure 7: Model of the PWM voltage source induction
machine drive.

with mechanical loads such as pumps or fans. Many
of these loads have an approximately quadratic speed
dependent load torque characteristic.
Besides the variation of the operation point also the
converter switching frequency is varied. The harmonic
spectra of the PWM voltages with switching frequen-
cies of 1950 Hz, 1050 Hz and 450 Hz are calculated
and fed to the machine model.

6 Simulation Results

In table 2 the simulation results of the machine fed
with space vector PWM are presented. The investi-
gations show that increasing the PWM switching fre-
quency decreases the total harmonic core losses. The
total harmonic core losses at a switching frequency of
450 Hz are about 60% higher than at a switching fre-
quency of 1950 Hz. It can also be seen that the total
harmonic copper losses rise much more than the total
harmonic core losses. In case A, for instance, the total
harmonic copper losses become more than ten times
higher if the switching frequency gets decreased from
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Table 2: Modelica simulation results of the high-power medium-voltage induction machine drive.

Case A: Case B:
f = fNominal f = fNominal

3
P = PNominal P = PNominal

27

Switching Frequency = 1950 Hz

Machine Output Power (Fundamental) [W] 1600000.00 59259.30
Shaft Speed [rpm] 1496.34 499.62
Stator Current (Fundamental) [A] 179.85 49.19
Power Factor (Fundamental) 0.87 0.38
Friction Losses [W] 5566.00 1996.00
Core Losses (Fundamental) [W] 10706.50 3039.31
Stator Copper Losses (Fundamental) [W] 8453.70 630.36
Rotor Copper Losses (Fundamental) [W] 3928.22 47.19
Core Losses (Harmonics) [W] 582.59 377.65
Stator Copper Losses (Harmonics) [W] 20.84 5.46
Rotor Copper Losses (Harmonics) [W] 436.41 152.45

Efficiency (Fundamental) [%] 98.24 91.21
Efficiency considering Harmonics [%] 98.18 90.46

Switching Frequency = 1050 Hz

Machine Output Power (Fundamental) [W] 1600000.00 59259.30
Shaft Speed [rpm] 1496.32 499.62
Stator Current (Fundamental) [A] 180.33 49.18
Power Factor (Fundamental) 0.87 0.38
Friction Losses [W] 5566.00 1996.00
Core Losses (Fundamental) [W] 10651.60 3037.93
Stator Copper Losses (Fundamental) [W] 8499.40 630.16
Rotor Copper Losses (Fundamental) [W] 3952.34 47.21
Core Losses (Harmonics) [W] 678.37 561.57
Stator Copper Losses (Harmonics) [W] 73.31 21.81
Rotor Copper Losses (Harmonics) [W] 1115.07 463.48

Efficiency (Fundamental) [%] 98.24 91.21
Efficiency considering Harmonics [%] 98.13 89.76

Switching Frequency = 450 Hz

Machine Output Power (Fundamental) [W] 1600000.00 59259.30
Shaft Speed [rpm] 1496.17 499.61
Stator Current (Fundamental) [A] 183.42 49.14
Power Factor (Fundamental) 0.87 0.38
Friction Losses [W] 5566.00 1996.00
Core Losses (Fundamental) [W] 10312.80 3029.27
Stator Copper Losses (Fundamental) [W] 8796.23 628.91
Rotor Copper Losses (Fundamental) [W] 4108.64 47.35
Core Losses (Harmonics) [W] 917.97 763.86
Stator Copper Losses (Harmonics) [W] 461.05 125.53
Rotor Copper Losses (Harmonics) [W] 4429.64 1780.97

Efficiency (Fundamental) [%] 98.23 91.22
Efficiency considering Harmonics [%] 97.88 87.62
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1950 Hz to 450 Hz. The results also show that the har-
monic stator copper losses only make up for a small
share of the entire losses caused by the PWM harmon-
ics. The biggest parts of the PWM harmonic losses
are the harmonic rotor copper losses, especially when
the drive is operated at low switching frequencies. The
overall machine efficiency without stray load losses is
also presented in table 2.

It appears that the consideration of harmonic losses
only causes an efficiency decrease from 98.24 % to
98.18 % in case A withfswitch = 1950 Hz. The effi-
ciency decreases from 98.23 % to 97.88 % forfswitch=
450 Hz. For case B the impact of the harmonics is
much higher on the efficiency. Atfswitch = 1950 Hz
the efficiency decreases from 91.21 % to 90.46 %. The
largest impact on the efficiency is due to a switching
frequencyfswitch= 450 Hz.

From this comparison one can conclude that when de-
signing a machine for variable speed drives the PWM
harmonic losses should be taken into account, espe-
cially if PWM frequencies below 1 kHz are used. Fur-
thermore, the overall efficiency values show that as
long as the machine is operated close to the nomi-
nal operation point (case A) with switching frequen-
cies above 1 kHz the PWM harmonic losses can be ne-
glected.

7 Conclusions

An analytical approach to calculate the copper and
core losses caused by the harmonics of PWM volt-
ages in variable speed induction machine drives is pre-
sented. The derived equations are implemented in
Modelicalanguage applying the AC library for model-
ing electric circuits by means of time phasors. By us-
ing the proposed models the PWM harmonic losses of
a high-power medium-voltage induction machine with
1600 kW are calculated. Furthermore, the influence of
reduced load and changes in the switching frequency
are investigated. The results show that if the switch-
ing frequency is low and the machine is likely to be
operated at low load points the PWM harmonic losses
can decrease the overall efficiency of the machine con-
siderably. Still, as long as the switching frequencies
of the PWM are above 1 kHz and the load point does
not vary significantly from the nominal load point the
PWM harmonic losses can be neglected.
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Abstract 

Monte Carlo simulation allows to obtain statistical 
information derived from estimates of the random 
variability of component parameters. The paper 
demonstrates how to describe the random character-
istic of parameters in a tool-independent manner in 
Modelica. Using the multi-run facilities of a simula-
tion engine statistical analysis can be carried out 
without any code intervention concerning the tool. 
The approach is based on the SAE 2748 standard. 
Solutions of implementation problems with respect 
to Modelica are discussed. This paper is based on 
results, which were developed in the Fraunhofer col-
laborative project “Computer Aided Robust Design 
(CAROD)”. 
 
Keywords: Statistical analysis, SAE 2748, Monte 
Carlo simulation 

1 Introduction 

It is more and more required within industrial appli-
cations to consider the influence of the variability of 
design parameters on the behaviour of systems. For 
instance yield and reliability often depend on the 
statistical characteristics of such parameters [1].    
Monte Carlo methods are widely used to analyze the 
effects of parameter tolerances. In a Monte Carlo 
simulation, a mathematical model of a system is re-
peatedly evaluated. Each run uses different values of 
design parameters. The selection of the parameter 
values is made randomly with respect to given distri-
bution functions. Monte Carlo simulation is very 
time consuming. A lot of simulation runs are re-
quired to investigate the behavior of a system subject 
to the statistical distribution of parameters. Neverthe-
less, Monte Carlo simulation is very favored in vari-
ous application areas where an analytical relation 
between design and system parameters is difficult to 
find. For example mixed-signal electrical systems 

consisting of analog and digital components often 
belong to this class of systems.  
The objective of this paper is to make a proposal 
how to handle the description of random parameters 
in Modelica in a tool-independent way. Furthermore 
a way is presented how to carry out a Monte Carlo 
simulation within an existing simulation engine. It is 
only required that the simulator supports multiple 
runs of a simulation task. 
  The approach is close to the standard J 2748 pre-
pared by the Electronic Design Automation Stan-
dards Committee of the Society of Automotive En-
gineers (SAE) that describes random parameter han-
dling in a VHDL-AMS simulation problem [2, 3].  
Describing parameter variations in nearly the same 
way in VHDL-AMS and Modelica offers the oppor-
tunity to reduce the effort to provide random parame-
ter data in the design process and to avoid misunder-
standings.  

2 SAE-Standard J 2748 

Some basic requirements that are supported by the 
SAE J 2748 standard are summarized in the follow-
ing. The basic idea is to add information to charac-
terize the parameters. Thus, it should be possible to 
use existing models also for statistical analysis. In 
detail it is required 
• Usage of the same model for nominal and 

Monte Carlo analysis  
• Possibility to assign different statistical distri-

butions to each constant or parameter 
• Support of continuous and discrete distributions 
• Permission of user-defined distributions 
• Possibility to specify correlation between con-

stants 
From a practical point of view the following points 
should also be mentioned 
• Independent random number generation for any 

constant 
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• Reproducibility of Monte Carlo simulation 
within the same simulation tool 

Statistical distributions are characterized from an 
engineering point of view. That means the mathe-
matical parameters as for instance the moments are 
derived from engineering parameters as nominal 
value, tolerances, minimum and maximum values. 
The standard provides implementations of basic 
regular distribution functions. Futhermore, standard 
functions are provided that allow to declare user-
defined distributions. Also truncated distributions 
are supported that limit the random numbers to a 
given interval. 
 
Table 1: Regular distribution functions [3] 

UNIFORM Uniform distributed values  

NORMAL Gaussian distributed values 

PWL_CDF Piecewise-linear description of a cumula-
tive distribution function  

PWL_PDF  Piecewise-linear description of a prob-
ability density function 

BERNOULLI Bernoulli distribution 
DISCRETE_CDF 
DISCRETE_PDF 

Tabular description of the probability of 
discrete values 

 
The VHDL-AMS implementation details are online 
available [4]. 

3 Method 

Methods to create random numbers are in general 
based on a (0,1) uniform distributed values. 
 

 
Fig. 1.  (0,1) uniform random number generator 
 
Widely used methods to generate random number 
with a given distribution are the inverse transforma-
tion approach based on the cumulative distribution 

function and its modifications for truncated distribu-
tions. The Box-Muller algorithm can be applied for 
normal distributed numbers [5].Thus, the main prob-
lem during parameter initialization for Monte Carlo 
Simulation is to generate independent (0,1) distrib-
uted values. [2] describes the requirements to a built-
in random number generator provided by a tool. 
The basic idea of a tool-independent random number 
generator is shown in Fig. 1.  The seed values that 
are needed to generate a sequence of random num-
bers are immediately saved in a file. 
With the help of global parameters it is possible to 
switch between nominal and statistical analysis ei-
ther w.r.t. parts of a description or the entire simula-
tion task. 

4 Realization with Modelica 

Using Modelica the idea of a tool independent ran-
dom number generation is realized in the following 
way. As an example the uniform distribution is used 
which produces uniformly distributed values within 
the interval (nominal – tolerance*nominal, nominal  
+ tolerance* nominal). For better reading some de-
tails compared to the final solution are simplified. 

4.1 Randomly changed parameters 

To supply a parameter (or a constant) with randomly 
generated values it is necessary to specify random 
distribution in the Modelica source code. Instead of  
 
  parameter Real p = nominal; 

 
which specifies a fixed parameter, the specification 
of the uniform distribution function call is: 
  
  parameter Real p = uniform(nominal,  
                             tolerance); 

4.2 Random number generation 

The Modelica function uniform is an interface to a C 
function. It is defined like this: 
 
function uniform  
  input Real Mean; 
  input Real Tol; 
  output Real random_value; 
external "C" uniform(Mean, Tol,  
                     random_value); 
end uniform; 

 

Save seed 
values 

RND  
generator 

(0,1) uniform 
distributed values 
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Within the C function the randomly distributed val-
ues have to be calculated. An example is the follow-
ing function: 

 
void uniform (double M, double Tol,  
              double *aus) 
{ double xMin = M * (1.0 - Tol); 
  double xMax = M * (1.0 + Tol); 

    if (xMin > xMax)  
  { xMax = xMin; 
    xMin = M * (1.0 + Tol); 
  } 
  *aus = xMin + (xMax - xMin)*RND();    
} 

 

The random function is a (0,1) uniformly distributed 
random value generator for instance according to 
Schrages method [8]: 
 

double RND() 
{ FILE   *read_fp, *write_fp; 
  long   seed = 2,  M = 2147483647;   
  long   A = 16807, Q = 127773; 
  long   R = 2836,  k; 
  double F = 1.0/ M; 
 
  read_fp = fopen ("seed.dat","r"); 
  fscanf (read_fp, "%ld",&seed); 
  fclose(read_fp); 
 
  assert( seed != 0 );                  
  k = seed / Q;                         
  seed = (seed - k * Q) * A - k * R;  
  if ( seed < 0 ) seed += M;            
    
  write_fp = fopen ("seed.dat","w"); 
  fprintf (write_fp, "%ld", seed); 
  fclose(write_fp);  
      
  return seed * F;                      
} 

  

By access to the file “seed.dat” , which has a fixed 
name, the seed value is saved between two calls of 
the random function.  
In the final solution a global change of the seed file 
name is possible. In case of a nominal analysis the 
final function uniform would deliver the Mean value. 
A more convenient way would be to provide the ran-
dom number generator RND by a Modelica function. 
This would allow to formulate the random distribu-
tion functions using Modelica language constructs 
only. This approach could not be realized in the used 
tool environment. From the language point of view it 
must be possible that a Modelica function called with 
the same arguments may deliver different results. For 
this reason, for instance VHDL(-AMS) distinguishes 
between pure and impure functions. 

Furthermore, the RND function above could be re-
placed by the random number generator incorporated 
in a Modelica simulator  by a tool provider. In this 
way the file access to seed.dat can be avoided. 

4.3 Application 

After having specified the parameter to be changed 
in the Modelica source code, the Modelica function 
with the foreign function interface to the C domain, 
and the C function “random”, the following steps are 
necessary: 
A file “seed.dat” has to be generated, which contains 
an integer starting number for the sequence of ran-
dom values. If a sequence shall be repeated, the same 
seed number must be chosen. 
Then  the model under investigation (which contains 
the parameter specification mentioned above) has to 
be simulated by a Modelica simulator repeatedly. 
The number of repetitions depends on the wanted 
number of trials for the Monte Carlo simulation. Af-
ter each single simulation the interesting results must 
be saved. The results can be visualized or used in 
posteriori calculations. 

4.4 Remarks 

The method allows easily to define both correlated  
and dependent random values of parameters. A sim-
ple example might explain the procedure: 
 
  parameter Real p1 = uniform(1, 0.1); 

  parameter Real p2 = uniform(p1, 0.01); 
 

If the same sequence of randomly generated values is 
desired (e.g. to investigate a special effect) the same 
seed number and the same seed file name have to be 
used at the beginning. 

5 Example 

 
Fig. 2.  Monte-Carlo-Plot for variables 
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In the DifferenceAmplifier of Modelica.Electrical. 
Analog.Examples [9]. the resistance R of the resistor 
R2 is randomly generated by the following formula-
tion:  
  ... 

  Basic.Resistor R1(R=0.0001); 

  Basic.Resistor R2(R=uniform(100,0.05)); 

  Basic.Resistor R3(R=0.0001; 

  ... 

Repeated simulations using Dymola show that 
R2.n.v (the thick line pencil) is sensitive with respect 
to R2.R. The voltage R4.n.v (thin line) is not sensi-
tive to that parameter. Basing on the Monte Carlo 
results further calculations (density distribution …) 
are possible.  
Furthermore, the randomly chosen parameter values 
can also be visualized or used for further calcula-
tions. The following figure shows the above speci-
fied parameter R2.R which is uniformly distributed 
in the interval (95, 105) (=100 – 100 * 5%, 100 + 
100 * 5%). 

 
Fig. 3.  Randomly chosen parameter R2.R 

6 Discussion 

The proposed approach realizes a simple Monte 
Carlo simulation based on behavioral descriptions in 
Modelica. Beyond the focus of this paper is the us-
age of the results of the Monte Carlo simulation for 
other purposes. For example the data could be used 
to create Response Surface Models. This would re-
quire to save the randomly generated parameters of 
any simulation run. Also improved techniques to 
create the random numbers and reduce the simula-
tion effort could be applied. For instance possibilities 
of so-called importance sampling [6] could be ap-
plied using user defined functions. 
The Monte-Carlo-Simulation is also possible using 
the Dymola Monte-Carlo feature. The advantage  of 
the suggested way is: 

• It is a more general, tool independent ap-
proach. 

• The user is free to define its own distribution 
based on the RND function. 

• Correlations can be defined easily. 
• For documentation purposes the distribution 

specification is part of the model files. 
The approach in [7] is also simulator independent, 
but is uses a (firm-)specific nested toolkit. Our way 
is defined only using the Modelica language. 
Whether a language construct like ours is used in [7] 
is not documented. 

7 Conclusions 

An approach to handle statistical analysis problems 
within Modelica is presented. It is based on the SAE 
J 2748 standard. The current version allows Monte 
Carol simulations if the used simulation engine sup-
ports multiple runs in a simple way. If the approach 
is accepted it could also be the basis of efficient im-
plementation in Modelica simulators. In this case the 
generation of the sequences of (0,1) distributed uni-
form random numbers must be supported without 
file access. 
The applicability of the approach is demonstrated 
with the help of a simple example from the existing 
Modelica standard library. Only existing tool and 
language features are used. This and the orientation 
to the SAE standard are the main advantages of the 
approach compared to [7]. 
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Abstract 

A benchmark library is presented which collects 
models for testing and comparing different analog 
and hybrid simulators as well as their numerical 
simulation algorithms. Many of these models are 
described with Modelica and simulated with Dymola 
and the Modelica-related simulator Mosilab. But 
VHDL-AMS descriptions are also used to compare 
simulation results of Modelica simulators with those 
of other types of simulators. The motivation of the 
selection of benchmark problems, the modeling and 
documentation “style guide”, and some small exam-
ples from electronics and mechanics are described. 

1 Motivation 

The development of new simulators and model li-
braries has to be accompanied by intensive simula-
tions of test examples and their comparison. The first 
reason for collecting a new benchmark library was 
the development of a Modelica-based simulator 
Mosilab [1] and accompanying test examples to en-
sure the Mosilab functionality. But, there are some 
other objectives: 

• comparison of Mosilab with commercial 
Modelica simulators: Dymola, SimulationX; 

• potential extension to comparisons with 
other analog simulators (e.g. VHDL-AMS, 
Verilog-AMS, SystemC-AMS); 

• getting experiences with the numerical prop-
erties of the implemented solvers and their 
robustness (e.g., influenced by simulator 
control parameters); 

• testing extreme cases (e.g., depending on the 
number of variables and equations as well as 
numerical parameter values); 

• collecting models with a special focus on 
systems with variable structure; 

• preparation of regression tests; 
• and, last but not least, pedagogical aspects: 

for use in lectures and tutorials. 
Therefore, the construction or selection of bench-
mark models has to fulfill many criteria. The  
ARGESIM comparisons ([2], [3]), published in the 
journal Simulation News Europe (SNE) and via 
http://www.argesim.org/ , have a similar goal. They 
are considered here from a common point of view. 
Further suggestions are expected from benchmarks 
in other disciplines ([7], [8]) or with a general meth-
odological background ([9]). 

2 Types of simulation problems 

The benchmark models are selected with respect to 
the following tasks: 

• simple tests of keywords and other language 
constructs (especially for compiler tests and 
version checking in the new Mosilab simula-
tor), 

• simple but non-trivial electric circuits (from 
RLC circuits up to transformers and rectifi-
ers),  

• testing typical numerical simulation prob-
lems (e.g. stiff differential equations, discon-
tinuities, simulation of ideal oscillators) 

• more complicated transistor models which 
lead in many cases to numerical simulation 
problems in simulators which are not spe-
cialized for electronic applications, 

• test of advantageous description means (e.g. 
object oriented approaches) 
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• erroneous models (e.g. parallel ideal voltage 
sources) to check the simulator’s behavior in 
error cases 

• inclusion of some “classical”, mostly non-
electrical ARGESIM comparisons in new or 
updated form (until now: C1, C3, C5, C7; in 
preparation: C11, C12), 

• testing the capability of simulating systems 
with variable structures (also called “struc-
tural variability” or “model structure dynam-
ics”, see [3], [4], [5], [6]): rectifiers with 
ideal diodes, voltage duplexers with two 
ideal diodes, constrained pendulum C7, 
string pendulum, 

• modeling with embedded statecharts (as a 
potential extension of the Modelica lan-
guage), especially for the Mosilab capabili-
ties of handling variable structures. 

 
1 Introduction 5

2 Small examples, taken from Modelica 6
2.1 Damped RLC oscillator (rlc_osci) 6
2.2 Transformer (trafo) 8
2.3 Ideal diode (ideal_diode) 12
2.4 MOS inverter (mos_inv) 15
2.5 MOS oscillator (mos_osci) 18
2.6 Switched capacitor integrator (sc_integrator) 23
2.7 Test of integrator’s error (integr_error) 27
2.8 Voltage duplexer (Vduplexer) 30
2.9 Graetz rectifier with resistive load (ideal_graetz) 34
2.10 Graetz rectifier with RC load (ideal_graetz2) 38

3 ARGESIM examples 43
3.1 Comparison 1 (comparison_1) 43
3.2 Comparison 3 (comparison_3) 48
3.3 Comparison 5 (comparison_5) 55
3.4 Comparison 7 (comparison_7) 61

4 Examples with structural variability 63
4.1 Ideal diode using events (ideal_diode_event): 63
4.2 Ideal diode using statecharts 64
4.2.1 1st realisation (ideal_diodeSC) 64
4.2.2 2nd realisation (ideal_diodeSCcon) 67
4.2.3 3rd realisation (ideal_diodeSCdyn) 69
4.2.4 4th realisation (ideal_diodeSCvN) 71
4.3 Voltage duplexer using statecharts 75
4.3.1 1st realisation (VduplexerSC) 75
4.3.2 2nd realisation (VduplexerSCcon) 78
4.3.3 3rd realisation (VduplexerSCdyn) 81
4.4 Comparison 7 using statecharts 84
4.4.1 1st realisation (comparison_7SC) 84
4.4.2 2nd realisation (comparison_7SCdyn) 86
4.5 String pendulum with free motion (fadenpendel) 88
4.6 String pendulum with free motion using statecharts 96
4.6.1 Realisation fadenpendelSC 96
4.6.2 Realisation fadenpendelSCaF 102
4.6.3 Realisation fadenpendelSC1 103
4.6.4 Realisation fadenpendelSC3a 103
4.6.5 Realisation fadenpendelSCdyn 106
4.7 Switched capacitor integrator in QV formulation 112
4.7.1 Realisation without statecharts (sc_integrator_QV) 112
4.7.2 Realisation with statecharts (sc_integrator_QVSC) 116  

 
Table 1: Benchmark library 

 

ARGESIM continues the comparisons by bench-
marks with extended information and prepares spe-
cial benchmarks with emphasis on various modeling 
approaches. In 2008, benchmarks for hybrid model-
ing and simulation will be published, addressing dif-
ferent modeling techniques for four or five systems 
(constrained pendulum, rotating pendulum, heat dif-
fusion with different regimes, rotor dynamics). 

The content of the actually implemented benchmark 
library is summarized in Table 1. It consists of three 
main sections. In the first section, some electrical 
examples are collected. The second section deals 
with a selection of the ARGESIM benchmarks, 
which are mainly published in the journal Simulation 
News Europe (SNE). The third section collects ex-
amples which are characterized by a variation of the 
model structure. Such systems lead to different sets 
of differential-algebraic equations and the need of 
exchanges between them from time to time during 
the simulation process ([1], [4], [5], [10]). 

3 Documentation 

Each test example is documented in the same man-
ner:  

• short description of the problem and the rea-
son for selecting this model,  

• graphical description (schematic/sketch), 
• definition of relevant physical quantities and 

dimensions, 
• interface description (e.g., type of signals 

and quantities), 
• textual input description in the Modelica 

language, 
• applied simulator control parameters,  
• graphical simulation results and some addi-

tional textual information,  
• discussion of results (e.g., accuracy, run-

time behavior) and detected problems. 
If the models should be used for regression tests, 
further regimentations are necessary. 

4 Examples 

In this section, some interesting benchmark tasks are 
collected and discussed shortly. All examples are 
characterized by variable structure because serious 
numerical problems consist yet in very small sys-
tems.  
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4.1 Electric example 

The electric example shall illustrate the application 
of different models of a diode component. For this 
purpose, the diode is used within two different well-
known set-ups: a one-way rectifier with an ohmic 
load (shown in Fig. 1) and a Graetz rectifier with an 
ohmic-capacitive load (depicted in Fig. 2). 
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Figure 1: One-way rectifier with ohmic load 
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Figure 2: Graetz rectifier with ohmic-capacitive load 

 
First, the piecewise-linear (PWL) diode model of the 
Modelica Standard Library is used. The relevant 
source code is shown in Table 2. This model imple-
ments the behavior of an idealized switching diode 
consisting of a piecewise-linear voltage-current char-
acteristic. A so-called auxiliary variable is used 
which implements a parametric representation of the 
length of both straight lines [11], [12], [14]. 
 
model IdealDiode

extends OnePort; 
parameter Real Ron= 1.E-5, 
parameter Real Goff= 1.E-5;
Boolean off(start=true);
Real s; 

equation 
off = s < 0; 
v = s*(if off then 1 else Ron); 
i = s*(if off then Goff else 1); 

end IdealDiode;
 

Table 2: Source code of diode using auxiliary variable 

Second, an ideal diode model was implemented:  
• The voltage in flow direction is zero (con-

ducting state). 
• The current in the blocking direction is zero 

(cut-off state). 
Conditional equations are used for voltage and cur-
rent always forcing at least one of them to zero. The 
source code is shown in Table 3. This implementa-
tion requires an event handling by the simulator. 
model IdealDiodeEvent  

extends OnePort;
Boolean blocking(start=true);

equation 
blocking = if pre(blocking) 

then v<0 else i<0;
if blocking then

i = 0;
else

v = 0;
end if;

end IdealDiodeEvent;  
Table 3: Source code of diode using conditional equation 

 
With all simulators under test, very similar simula-
tion results were received for the one way rectifier. 
Exemplarily, Fig. 3 shows simulation results for 
some voltages calculated by Mosilab using the PWL 
diode model. The results of the other simulators are 
the same. This statement also holds for the ideal di-
ode model no matter which simulator is tested. Of 
course, the current of the blocking diode is now ex-
actly equal to zero or, vice versa, the voltage of the 
conducting diode now vanishes completely. 
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Figure 3: Simulation result from Mosilab for a one-way rectifier  

 
In contrast, the electric circuit of the Graetz rectifier 
can only be simulated using the PWL diode model 
(Table 2). The property of such a circuit, that two 
diodes of the four must unconditionally be closed (or 
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opened) at the same time, is the reason for this fact. 
This conclusion is valid for Dymola as well as for 
Mosilab. To handle a circuit with a Graetz rectifier 
using ideal diodes, it is necessary to qualify a simula-
tor with the feature of finding a valid new model 
structure from the complete set of structures at each 
switching point in time. 
Some simulation results for the Graetz rectifier using 
the PWL diode model are shown in Fig. 4 and Fig. 5. 
Fig. 4 depicts some voltages while the corresponding 
currents are shown in Fig. 5. 
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Figure 4: Voltages of the Graetz rectifier circuit 
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Figure 5: Currents of the Graetz rectifier circuit 

 

4.2 Two-state model 

The two-state model considered here is the  
ARGESIM comparison C5 which is of high interest 
regarding to the numerical behavior of each simula-
tor. The problem consists of the two simple differen-
tial equations: 
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−+=
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In Equ. (1), the parameters c1 and c3 are fixed while 
c2 and c4 have different values depending on the 
actual state of the system. State 1 is valid as long as 

8.51 <y . Reaching this value, the system state is 
changed to state 2 which, then, is valid until 1y  goes 
below 5.2 . All parameters and initial conditions 
were chosen in a very sophisticated manner. This 
way, the numerical accuracy of the simulators under 
test can be investigated by looking at the switching 
points in time, especially at the last one (denoted 
with t5) which appears generally at about 5 Sec-
onds.  
The Dymola result computed by the DASSL solver 
using the highest possible numerical accuracy (toler-
ance is set to 1E-12) shall be taken as reference for 
other simulators. The last switching point in time 
appears at t5=4.999999646. Other solvers, like 
Runge-Kutta methods, are less suitable for such kind 
of a simulation task.  
With Mosilab, the switching point in time is found 
very well if using the IDA solver which is very simi-
lar to the DASSL method. With an absolute toler-
ance of 1E-14 and a relative tolerance of 1E-10, 
the switching point in time can be determined to 
t5=4.999999645. Surely, this is a very good re-
sult. But using lower tolerances or using one of the 
other numerical solvers of the Mosilab simulator 
leads to more inexact results. 
Exemplarily, Fig. 6 shows the time behavior of 1y  
using Dymola with the DASSL method as mentioned 
above. 

0.0 2.5 5.0
0

1

2

3

4

5

6
y1

 
 
Figure 6: Time behavior of state variable 1y  
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4.3 String pendulum 

A string pendulum is shown in Fig. 7. A point mass 
is able to perform circular or free (downfall) move-
ments – so-called phases (see Fig. 7A). The circular 
movement is characterized by a stretched (but non-
widening) thread, i.e. the mass has the maximal pos-
sible distance to the fixing point. In contrast, the 
mass has a smaller distance and the thread is folded 
during the free movement. This is an extension of the 
well-known mathematical pendulum with small 
elongations and without the downfall phase.  
 

 
Fig. 7: String pendulum 

A) Geometrical configuration 
B) Mathematical problem formulation of both phases  
C) Simulation results 

 

The simplest description of the circular motion uses 
polar coordinates; the downfall motion may be de-
scribed with Cartesian coordinates. There are two 
differential-algebraic equation systems with two and 
three variables, respectively, describing both phases 
(see Fig. 7B). In phase 1 (circular movement), the 
stretching force F in the thread is greater zero. In 
phase 2 (free movement), the distance r between 
point mass and fixing point is less than the length L 
of the thread. The “indicator functions” ( 0<F  and 

Lr ≥ ) are used to detect the points in time of a nec-
essary switching between the phases. 
A large initial impulse results in a sequence of circu-
lar and free movements. This is illustrated in Fig. 7C. 
The point mass performs two “circles” followed by 
some swinging movements. The time behavior of the 
mass position and the corresponding force F are 
shown in Fig. 8 and Fig. 9, respectively. 
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Figure 8: Pendulum’s mass position (x and y) 
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Figure 9: Force F in the thread 

 
This description is closely related to a statechart de-
scription, which can be formulated with the State 
Graph Library and simulated using Dymola or with 
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an extended Modelica description for the Mosilab 
simulator. 
The model implementation depends strongly on the 
applied simulator. In Dymola, it is necessary to use 
the same number of equations in both phases. There-
fore, some dummy equations have to be introduced. 
In simulators like AnyLogic or Mosilab, different 
numbers of equations are allowed in various model 
states. 

5 Summary and outlook 

This collection of benchmark problems is under de-
velopment in connection with the Mosilab develop-
ment [1] and has its roots in a Fraunhofer-internal 
research project GENSIM. Some parts of these ex-
amples will be published in connection with new 
Modelica-oriented projects. Problems of more gen-
eral interest will be prepared for the widely-
distributed ARGESIM comparisons. 
The collection of benchmarks presented here has 
proved as a powerful tool for testing the numerical 
behavior and the modeling limits of different simula-
tors. In this paper, only some examples of general 
interest are described. 
The collection is under continuous development. The 
pool of tasks as well as the tested simulators and the 
different modeling languages have to be extended. 
It is intended to include parts of the benchmark ex-
amples into the regression test library ModelicaTest, 
which is used by the Modelica Design Group for de-
veloping the Modelica Standard Library. 
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Abstract
Investigation of large technical systems by simulation
of long time periods requires effective methods. One
possibility to handle such problems is the implementa-
tion of simulation models which use suitably simplified
descriptions of the real behaviour of technical systems.
In some cases, however, operating modes with highly
dynamic processes have to be investigated. These proc-
esses may occur suddenly within long time periods of
behaviour with none or very low dynamics, which can
be considered as static behaviour. In such cases, it
would be advantageous to be able to switch from the
simplified model mentioned above to a more complex
model describing the real behaviour in more detail. 

In the paper, four different Modelica models for wind
turbines are presented. On the one hand, two static
models – the “simple static model” and the “static me-
chatronic model” – are shown representing two
different instances of a simplified behaviour. On the
other hand, two dynamic models – the “mechanical
model” and the “dynamic mechatronic model” – are
presented which describe the dynamic behaviour of a
wind turbine in more detail. Furthermore, a method
will shortly be proposed to exchange one model with
another one at certain points in time (see also [5]). Such
structural changes allow the application of that particu-
lar model of behaviour which suits the current situation
best. Using this method, the simulation of a complex
mechatronic system like a wind turbine can very effec-
tively be carried out. Additionally, some simulation
results will be given to show the advantage of the meth-
od proposed.

1 Introduction
The proportion of renewable energy in industrial coun-
tries is growing with increasing speed. The usage of
wind turbines plays an important role among these
forms of power generation. A wind turbine is a com-
plex mechatronic system consisting of mechanical
parts, electrical components, and a very complex con-
trol strategy. 

Investigation of wind turbines using numerical simula-
tion becomes more and more important. Therefore,
design, construction and scheme of operation of the
turbine under investigation must be taken into account.
The level of detail which is necessary for a special
model depends on the questions which are to be an-
swered by the simulation results. On the one hand, we
have to distinguish between models of single turbines
and whole wind parks. In the paper, model types suita-
ble for both situations will be presented. On the other
hand, behavioural models describing only the flow of
electrical energy stand in opposition to models which
use voltage and current as time-depending electrical
quantities. Again, both types of models are introduced
here.

Every type of a wind turbine model presented in this
paper is suitable for a well determined level of detail.
Every model uses a particular set of physical quantities
to describe the corresponding physical behaviour. All
models are equipped with interfaces that allow a simple
exchange of one model with another one at arbitrary
points in time. This property makes it possible to inves-
tigate a complex mechatronic system like a wind
turbine as exact as necessary depending on the current
situation of operation simply by using the actually best
suiting model of behaviour.

In the following section, the general logical scheme of
operation of the construction type of wind turbine con-
sidered in this paper is outlined. The four models are
presented in section 3. Some simulation results are giv-
en in section 4.

2 Scheme of operation
There is a great variety of types of existing wind tur-
bines (see e.g. [6], [7], [8], [14]). All of them have
advantages and disadvantages. However, the most
widely used type of a wind turbine is equipped with a
so-called pitch control and an asynchronous generator
([6], [9]). With such a turbine, the energy harvested
from the wind can be influenced by controlling the
pitch angle which is the angle of the rotor blade across
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its longitudinal axis. The simplified logical scheme of
operation of such a wind turbine is shown in Fig. 1.

The controller always tries to harvest as much as possi-
ble energy from the actual wind. To this end, the
controller uses the actual speed of wind and the actual
speed of rotor as input signals to calculate the pitch an-
gle. This angle then again mainly determines the
angular momentum acting on the rotor. Hence, the rotor
speed and, therefore, the speed of the electric generator,
is influenced by the controller. Going into more detail,
the controller endeavours to put the point of operation
into a maximum of the power coefficient’s array of
curves, which are exemplarily depicted in Fig. 2. In
this figure,  is the power coefficient,  stands for
the speed ratio between blade’s tip and wind
( ,  – radius of rotor,  – speed of
wind), and  denotes the pitch angle. In Fig. 2, five
curves of the whole array for fixed values of  are
shown (solid lines). The dotted line depicts an approx-
imation of the connecting curve of the maximum points
of all -curves using the pitch angle  as a parameter.
Using such an array of curves, the controller chooses a
pitch angle which determines the rotor speed in such a
way that as much as possible energy can be harvested
from the actual wind. A realistic array of -curves –
implemented in the models of the next section – was
taken from [15].   

3 Wind turbine models
In this section, four different models of a wind turbine
characterized by a pitch angle and an asynchronous in-
duction generator are presented. All these models use
the speed of wind as an input variable. Number and
physical quantity of the output variables depend on the
particular model. The direction of the wind (and the
variation of the direction) is not considered in any tur-

bine model presented here. Hence, investigations of
changing wind directions, their measurement, as well
as the dynamic behaviour of a turbine when rotating
across its vertical axis (i.e. when “turning into the
wind”) are not included in the models considered in
this paper.

The range of applicability of every model depends on
its level of detail. The simplest one is called “simple
static model”. It is suitable for energy flow considera-
tions of whole wind parks. The “mechanical model”
allows simple dynamic investigations of the mechani-
cal part of a single turbine. With both models, no
interaction between the turbine and the energy grid can
be considered. Compared with this, the “static me-
chatronic model” and the “dynamic mechatronic
model” are physical models with a more sophisticated
design. They use characteristic quantities of both me-
chanical and electric domain. Because of the usage of
electric quantities like current and voltage of the gener-
ator, many interations between turbine and energy grid
can be taken into account. Hence, these models are well
suitable for investigations of the mutual influence of
different turbines within a wind park.

3.1 Simple static model
The “simple static model” is the simplest possible mod-
el describing the physical behaviour of a wind turbine.
The only input is the actual speed of wind. The output
quantity is the electric power which can be harvested
from the actual wind under the assumption of an opti-
mal operation of the turbine’s controller. 

The relation between speed of wind and electric power
is shown in Fig. 3. It consists of two main areas: the
partial load range and the full load range (see e.g. [16]).
Within the partial load range, the speed of wind is slow-
er than a value  which is called the nominal
speed of wind. Here, the electric power is a cubic func-
tion of the speed of wind. The full load area is the range
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Figure 1:   Wind turbine’s logical scheme of operation
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of wind speeds which are higher than the nominal val-
ue. Here, the electric power does not depend on the
actual speed of wind. Instead, it is assumed to be con-
stant. Finally, the electric power is set to zero for both
very small values and very high values of . Within
these ranges, the system is not in operation because of
inefficiency and safety, respectively.

The “simple static model” describes a simple relation
between speed of wind and electric power without any
dynamics. No more characteristic quantities of a tur-
bine are used. Therefore, the model can only be used if
all components of the turbine work correctly. Of
course, behavioural simulations with this model are re-
ally very fast. Hence, the model is suitable for
considerations of energy flows with single turbines as
well as with whole wind parks (consisting e.g. of 100
or more installations). The determination of bottle
necks within the energy grid while assuming typical
wind profiles for the park location may be of special in-
terest in this context.

3.2 Mechanical model
The “mechanical model” implements the main proper-
ties of the turbine’s mechanical subsystem. Like with
the “simple static model”, the actual speed of wind is
used as the only input and the electric power is the out-
put. In the model, some dynamics of mechanical
components are included. 

The appropriate logical scheme is shown in Fig. 4. The
pitch angle is governed by the controller according to
the maximum power coefficient principle (see Fig. 2).

Depending on the actual speed ratio  between the
blades’ tip and wind, the nominal pitch angle is choos-
en so that the power coefficient becomes a maximum
value (i.e. the point of operation is located on the dotted
line in Fig. 2). After a change of wind speed, the pitch
angle has to be readjusted. This has to be done in con-
sideration of the limited angular velocity and
acceleration of the rotor blades. The profile of angular
velocity assumed here is a so-called trapezoid profile
(see Fig. 5, where the angular velocity  is plotted
against time ). It consists of an acceleration region, a
range with constant speed and a deceleration region.
Using this profile, the pitch angle is changed if neces-
sary. This way, the so-called pitch dynamics is included
in the “mechanical model”. Then, the actual pitch value
influences the driving torque via the array of curves of
the so-called torque coefficient. A sketch of this array
is shown in Fig. 6. In this figure,  denotes the torque
coefficient, where  is again the speed ratio and  is
the pitch angle. The realistic array of -curves imple-
mented within the “mechanical model” is taken from
[15]. The same array is also applied within both me-
chatronic models (see sections 3.3 and 3.4). Using the
actual value of  at a time, the driving torque  is cal-
culated according to

(1)

(  – air density). After computation of driving torque,
the rotor acceleration is determined using the following
torque balance

(2)
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(  – rotor’s moment of inertia related to gear box ratio,
 – load torque,  – damping coefficient). For this

purpose, the generator’s load torque is calculated by
Kloss’s approximation for an asynchronous induction
machine (see e.g. [13])

, (3)

where  denotes the slip (  –
breakdown torque,  – breakdown slip,  – grid’s
angular frequency). Finally, the electric power  fed
into the grid (the model’s output) is assumed to be
equal to the mechanical power (a given efficiency fac-
tor may be taken into account).

The “mechanical model” describes the electrical power
fed into the grid as a function of the speed of wind. This
description includes the main dynamics of the wind tur-
bine’s mechanical subsystem and takes into account the
correct calculation of the driving torque using the
pitch-depending torque coefficient. Therefore, many of
the mechanical characteristic quantities are provided
for a dynamic simulation by the model. The model is
suitable for investigations of the dynamic behaviour of
the mechanical part of a single wind turbine if the dy-
namics of the electrical part is either negligable or not
of interest. An example for such investigations is e.g.
the problem of finding the optimal time interval for
measuring the speed of wind and – corresponding to
this question – the optimal strategy for controlling the
pitch angle.

3.3 Static mechatronic model
The “static mechatronic model” extends the “mechani-
cal model” mentioned before by an electrical
subsystem. Like with both models before, the actual
speed of wind is used as an input. But additionally, the
voltage of the energy grid is used as input, too. The out-
put is the electrical current fed into the grid. Therefore,
the mechatronic models (the static one here and the dy-
namic one in the next section) implement a fully bi-
directional connection between the turbine’s electrical
subsystem and the energy grid.

The appropriate logical scheme is shown in Fig. 7.
Most of the mechanical subsystem is realized in the
very same way like in the “mechanical model”. This
concerns the pitch angle adjusting with its dynamics,
the calculation of driving torque, and the determination
of rotor’s acceleration via torque balance. Only Kloss’
approximation of an asynchronous induction machine
is substituted by an equivalent circuit.
The electrical subsystem of the “static mechatronic
model” realizes only its steady state behaviour. Consid-
ering only steady states, the phasor description of
sinusoidal quantities leads to an adequate mathematical
model for the electrical subsystem (see e.g. [2], [12]).
An appropriate equivalent circuit for the asynchronous
induction generator (see Fig. 8) is used. Please note
that all underlined symbols in this figure denote
phasors (  is a voltage phasor,  is a phasor of an
electric current – both are also used in Fig. 7) whereas

, , , and  denote ohmic resistor, inductance, an-
gular frequency, and slip, respectively.

The electrical subsystem is implemented using a spe-
cial Modelica library for phasor domain-based
systems. This library was already presented at the last
Modelica conference (see [3]). Hence, details to the
phasor description and the special library shall not be
given here. In [3], we also pointed out that – with such
a model – a so-called quasi-stationary mode can be de-
scribed under some weak assumptions. With a wind
turbine, such an operating mode is characterized by
slow dynamics of the mechanical subsystem and a se-
quence of steady states of the electrical subsystem. See
[3] for more details.
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The “static mechatronic model” realizes a complete
mechatronic system of a wind turbine consisting of a
controlling part, a mechanical part, and an electrical
part. Due to the application of phasor domain-based
electrical quantities, the high dynamics of the electrical
subsystems (usually the 50 Hz or 60 Hz sinusoidal os-
cillations) do not carry any weight concerning dynamic
simulations of the whole system. Hence, this model is
well suitable for investigations of the behaviour of
many turbines of a wind park, especially for consider-
ations of mutual interactions between the turbines and
the grid or between different turbines connected with
the same part of the grid.

3.4 Dynamic mechatronic model
The “dynamic mechatronic model” is the most com-
plex one described within this paper. Like with the
“static mechatronic model”, the actual speed of wind
and the voltage of the grid are used as inputs while the
output is the electric current fed into the grid. Hence,
the model implements a fully bi-directional connection
between turbine and grid.

The appropriate logical scheme is shown in Fig. 9. The
mechanical submodel is completely equal to that of the
static mechatronic model. The important difference to
this model mentioned above is the implementation of
the fully dynamic behaviour of an asynchronous-type
generator. Please note that time-depending electrical
quantities ( , ) are used in Fig. 9 instead of
phasors. In the usual case of a three phase grid, such a
model of a generator consists of six time-depending
electrical currents (three stator currents and three rotor
currents) which require, of course, six differential
equations to calculate them. One extra (algebraic)
equation is necessary to determine the load torque pro-
duced electrically (see e.g. [4]). Because of the
generator equations and the sinusoidal electrical quan-
tities appearing there, high dynamics is involved in the
turbine’s model. Hence, a dynamic simulation using
such kind of model needs small solver steps. This fact
leads to time-consuming simulation experiments.

The “dynamic mechatronic model” realizes a fully dy-
namic model of the mechatronic system of a wind
turbine. Both subsystems (mechanical and electrical)
are described by differential-algebraic equations.
Merely, the power electronics with its switching effects
is neglected. Hence, this model is well suitable for in-
vestigations of the behaviour of a single wind turbine
taking into account many dynamic effects from me-
chanical and electrical domain. Especially, the
interaction between a wind turbine and the energy grid
can be considered in a detailled way with this model.
Enormous simulation times because of the high dy-
namics of many electrical quantities are a disadvantage
of this model.

3.5 Model exchange
Investigations of interesting questions concerning wind
turbines often require dynamic simulations over very
long time periods. To carry out such analysis in a con-
veniently effective manner, special simulation methods
are necessary. The main influence to the dynamic be-
haviour of a turbine is exerted by the wind. On the one
hand, there are long time periods with only few varia-
tions of its speed. Within these periods, a simulation
model consuming as less as possible calculation time is
of interest. On the other hand, there are short time in-
tervals, where the speed of wind is changing very fast.
In such critical cases, the compliance of given condi-
tions of operation is very important. Hence, a dynamic
simulation with a sufficient level of detail is of essential
importance.

To handle the problem of changing demands to the lev-
el of detail of a model, the exchange of one submodel
with another one at proper points in time is proposed.
The points in time of a necessary change from the sim-
ple model to the detailled one can e.g. be found by
monitoring the acceleration of the wind (i.e. the varia-
tion of the speed of wind). If the accerelation value
exceeds a well defined border then the model change is
necessary. Switching on and off of main consuming de-
vices may also be of interest. Here, the points in time
are predetermined. The switching back from the de-
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tailled model to the simple one may be carried out if the
dynamics of the complete system is faded away.

Both switching operations – from low level to high lev-
el of detail and vice versa – have to be performed taking
into account the possibly changing number of differen-
tial and algebraic equations. That means that three
steps are to be done: 
• The dynamic simulation may be terminated at a

certain point in time.
• The actual state of the old model has to be trans-

formed into the new model.
• Consistent initial values for the complete set of

equations of the new model have to be found. 
For more information concerning this way of realisa-
tion, please refer to [5].

3.6 Model implementation
The models presented here have been implemented us-
ing the Modelica Standard Library, extended by some
physical relations and algorithms in order to provide an
arbitrary wind profile, to model the whole turbine’s
control strategy, to handle the pitch angle adjustment,
as well as to carry out some approximations concerning
the coefficient’s arrays of curves (power coefficient,
torque coefficient) included in the models. Additional-
ly, a Modelica library for phasor domain-based
description (see [3]) is used in case of the “static me-
chatronic model”.

Unfortunately, a real switching between different lev-
els of detail – i.e. an exchange of model parts in such a
way that the equations of the “inactive” part at a time
are excluded from the equation set of the numeric solv-
er – is not supported by most Modelica simulators until
now. For this reason, parts of the following results are
achived by a kind of “step-wise” simulation.

4 Simulation results
Considering the four models of wind turbines present-
ed in section 3, the mechatronic models are the most
interesting ones. Therefore in this section, some simu-
lation results are shown which were reached using
these two models. 

Please imagine a little wind park connected to some
consumers. A similar (but simplified) scenario is
shown in Fig. 10. Dynamic simulations of such a com-
plex system using the “dynamic mechatronic model”
would require a huge simulation effort. An investiga-
tion of the system’s behaviour for, say, one year would
hardly be possible. The only way to earn some results
within a reasonable time effort is to operate with chang-
ing submodels. To this end, the “static mechatronic
model” and the “dynamic mechatronic model” are al-
ternately applied. Depending on the actual situation,
either the static model or the dynamic model is used to
describe the complete system.

4.1 Functionality test
First, a functionality test for the two mechatronic mod-
els is presented. This this end, a rapid change of speed
of wind – a zooming ramp which is nearly a step – is
assumed as input signal at time  (see Fig. 11).
Such a sudden step is admittedly very unlikely for a re-
al wind turbine. But the functionality test was
intentionally performed under extreme conditions. 

The step responses of the two wind turbine models are
shown in the following figures (Fig. 12 ... Fig. 15). In
all these figures, the prefix “smm” (corresponding to a
solid line) means that the result originate from the
“static mechatronic model” while the string “dmm”
(corresponding to a dashed line) indicates the “dynam-

wind parkmore producers / consumers

consumers consuming devices
(industrial plant,
public building, …)

other producing devices
(e.g. photo-voltaic)

energy grid

Figure 10:   Energy grid with wind park and consumers
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ic mechatronic model”. In Fig. 12, the time progress of
the pitch angles is depicted. Both angles are very fast
justified by the controller from 0° to 20°. The small dif-
ference of the ramp’s increase is caused by the fact that
the controller uses both the speed of wind and the rotor
speed as input signals. The rotor speed is shown in
Fig. 13 for both models. Here, the different behaviour
of both models is illustrated. The static model calcu-
lates significantly higher values than the dynamic
model. This is valid in the time interval of the changing
pitch angle as well as in the time of constant rotor
speed. The same behaviour is demonstrated in Fig. 14.

This figure contains the curves of the angular velocity
of the generator which is connected to the rotor via an
ideal gear with a speed ratio of 1:180. Fig. 13 and
Fig. 14 show after a very close look that the dynamic
model needs less more time to react to the sharp change
of wind speed. That means on the other hand that the
static model does not yield correct results in such cases.
Finally, the same effect is shown in Fig. 15 which de-
picts the corresponding time history of the electric
power produced by the turbine and fed into the grid.
Though in this diagram, the difference between both re-
sults is not such significant like with the turbine’s rotor
speed of with the generator’s angular velocity. Howev-
er, the dynamic model needs less more time to reach the
area of constant electric power. 

4.2 Long-term simulation
In this section, results of a long-term simulation are
given. Using such investigations, on the one hand the
suitability of different models and on the other hand the
rate of effectiveness of model exchange can be deter-
mined. As already pointed out in section 3.6, a “step-
wise” simulation method is necessarily applied here
because of the inability of most Modelica simulators to
handle models with exchanging parts correctly. In this
context, “step-wise” simulation method means that the

Figure 11:   Sharp change of wind speed

Figure 12:   Pitch angle

Figure 13:   Turbine’s rotor speed

Figure 14:   Generator’s angular velocity

Figure 15:   Electric power
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three step mentioned in section 3.5 were carried out not
driven by the simulator but forced by the user. In other
words, different tasks had to be performed where the
model exchanges were done by transforming the actual
state into the new model and starting a further simula-
tion task. Possibly, new developments (see e.g. [1], [5],
[10], [11]) will improve the situation in the near future.

The simulation period shall have a length of 1200 s.
The used wind profile along the complete time interval
is a realistic profile near to wind data meassured in re-
ality. The shape of the wind profile is depicted in
Fig. 16. It has three regions with relatively low wind
speeds between 5 m/s and 10 m/s (time intervals: 0-
30 s, 60-80 s, 100-120 s). In contrast, there are two re-
gions with high or middle speeds of wind of about
20 m/s and 15 m/s, respectively (time intervals: 33-
55 s, 80-100 s). 

First, the complete task was computed using the “static
mechatronic model”. On a nowadays standard PC (In-
tel T2400 dual-core CPU with 1.8 GHz each), the
simulation took only 1.8 s. But the results can only be
understood as a sequence of steady states (see [3]). In
highly dynamic situations, the numeric error of such a
calculation method may not be neglected. But if per-
forming the complete task using the “dynamic

mechatronic model”, it takes much more time to finish.
On the same PC, a time effort of 43.5 s was needed.

A compromising solution is shown in Fig. 17. The five
regions mentioned above are investigated using the
“static mechatronic model” because the wind shows
only low dynamics there. The corresponding time his-
tory of the turbine’s electric power is indicated by solid
lines. However if monitoring high wind dynamics, the
“dynamic mechatronic model” is used. The corre-
sponding power curves are indicated by dashed lines.
The dynamic model is used during the four short time
intervals between the five steadied regions. This way, a
model exchange is needed at eight points in time. These
are marked in Fig. 17 by changing line types.

5 Summary
A wind turbine is a complex mechatronic system con-
sisting of mechanical parts, electrical components, and
a very complex control strategy. The article deals with
a widely used type of wind turbines which is equipped
with a so-called pitch control and an asynchronous gen-
erator. Four different models for describing the static
and/or dynamic behaviour of such a wind turbine are
presented. Every model implements a well determined
level of detail and uses a particular set of physical
quantities to describe the corresponding physical be-
haviour. All models are equipped with interfaces that
allow model exchanges. This property makes it possi-
ble to investigate a complex mechatronic system like a
wind turbine as exact as necessary depending on the
current situation of operation simply by using the actu-
ally best suiting model of behaviour.

In the paper, two static models are shown representing
two different instances of a simplified behaviour (a
simple characteristic curve and a static model using
mechanical and electrical components). Furthermore,
two dynamic models are presented which describe the
dynamic behaviour of a wind turbine in more detail (re-
specting only the dynamics of the mechanical
subsystem or taking into account the dynamics of me-
chanical and electrical components). In addition, a
method of model exchange at certain points in time is
proposed. Such structural changes allow the applica-
tion of that particular model of behaviour which suits
the current situation best. Using this method, the simu-
lation of a complex mechatronic system like a wind
turbine could very effectively be carried out. 

Additionally, some simulation results using the two
mechatronic models are given. Both a functionality test
performed under extreme conditions as well as an in-
vestigation using a realistic wind profile are included. 

Figure 16:   Realistic shape of wind speed

Figure 17:   Electric power with switching models
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Abstract

This paper presents a tool created in Excel which en-
ables interfacing with Dymola. The tool was created 
to  simplify  batch  simulations  and  allow easy  post 
processing of a large number of simulations. The in-
terface handles both steady state sweeps of a model 
as  well  as  continuing  from  a  previous  simulation. 
Support for calibration using linear regression is also 
implemented  which  allows  calibration  of  simpler 
models. 

Keywords: Excel; Simulation; DDE; Scripting; Dy-
mola; Batch simulation; Steady State; Interface 

1 Introduction

When simulating a large number of cases, either to 
validate a model against measurement data or when 
acquiring experimental  results, there is strong need 
to be able to organize and get a good overview of 
both the experiment setup and the result of the simu-
lations.  The  ExcelInterface  greatly  improves  and 
simplifies  both  the  post  processing  and  setup  in-
volved  when  running  a  batch  of  simulations  with 
changing  boundary  conditions  between  the  cases. 
The tool allows the user to define a number of cases 
to run and then get the result  from the simulations 
presented in Excel for easy comparison. This gives a 
good overview of what has been set  in the model, 
without actually changing the model code allowing 
the model stored in Dymola to be generic and instead 
all different simulation cases are defined in the Excel 
sheet.
Doing the same thing using Dymola directly would 
force the user to make model changes for each pa-
rameter set, create multiple models where each uses 
a  different  parameter  set  or  make  a  custom made 
script file where the simulation cases are defined. All 
these options are quite time consuming and do not 
provide a good overview. 

Having the result in Excel also enables the use of the 
tools  included  in  the  program.  Excel  and  its  tools 
have the advantage that  the knowledge and use of 
them are wide spread which means that it is not nec-
essary for a person with Modelica or Dymola knowl-
edge to analyze and make further post processing of 
the result. This simplifies the result exchange when 
working with someone without any prior Modelica 
knowledge. 

2 Overview 

The tool is built using VBA (Visual Basic for Appli-
cations) which comes with Excel.  The communica-
tion between Excel and Dymola  is performed both 
using  files  and  a  DDE connection  established  be-
tween Dymola and Excel. 

When simulating, the interface works by creating a 
Dymola  script  based on chosen settings in the Ex-
celInterface. This script is executed in Dymola, using 
DDE commands sent from Excel. For each simula-
tion, specified output values are saved in temporary 
files  which are  read by Excel  after  all  simulations 
have completed.  In Excel the result  is  presented at 
position  and  with  appearance  defined  by  the  user 
through  the  interface.  The  communication  is  illus-
trated in Figure 1.

Figure 1 Communication between Excel and Dymola
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3 Setup

The ExcelInterface  contains  a  setup  sheet,  seen  in 
Figure 2, where all cases to be simulated are speci-
fied. A case is defined by a unique name used in the 
interface,  a  path to a  model  file  and the  Modelica 
path  to  the  model  to  be  simulated  within  the  file. 
Each case can be enabled and disabled deciding if 
they are run or not when starting the simulations. 

Figure 2 Setup sheet of the ExcelInterface

For each case a new excel sheet is created where the 
user has to specify a number of parameters including 
work directory, integrator, tolerance, number of sim-
ulations cases and simulation time as seen in Figure
3. 

Figure 3 Sheet specific for a case

The input and output variables to/from the model are 
selected from menus in Excel. The first time a model 
is  to  be  simulated  through  the  ExcelInterface, the 
model has to be analyzed to find all parameters and 

variables contained in the model. A DDE connection 
is  used between Excel  and Dymola  to execute  the 
commands  necessary  to  perform  these  operations 
which include:

• translation and simulation of the model
• parameter  and  variable  names  extraction 

from the generated result file
• saving  extracted  parameter  and  variable 

names in a user specified file

This  procedure only has to  be performed once for 
every model as any following need to add paramet-
ers/variables the saved file is used. 

Figure  4 Tree view menu with parameters and vari-
ables

Input and output variables are then selected from the 
generated tree view menu, seen in  Figure 4, and fi-
nally values are set in the generated input table such 
as the one shown in Figure 5.

Figure 5 Set boundary conditions

4 Running Simulations

There are two ways to run multiple simulations using 
the ExcelInterface: 

• Steady State Simulations
• Continue Simulation

o Continue from First
o Continue from Previous
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4.1 Steady State Simulations

This option simulates  the specified cases one after 
another and the results at the specified end time are 
returned. In case of a model that initializes in steady 
state,  the simulation time should be set to zero for 
faster execution, for all  other cases the user has to 
determine a simulation time that is long enough for 
the simulation to reach steady state. 

Structural parameters are parameters which force a 
re-compilation of the model as they change the gen-
erated code structure. A good example of structural 
parameters is discretization parameters. If all select-
ed input parameters are non-structural the model is 
only  translated  and  compiled  once,  enabling  fast 
simulations. As it may not always be trivial to know 
which parameters in a model that are structural, the 
ExcelInterface  automatically  detects  if  a  structural 
parameter was selected as an input parameter. If one 
or more structural parameters are detected the model 
has to be retranslated between each run case.  

Figure 6 Input and output in Excel

Figure 6 shows an example on how the output in Ex-
cel can look like after a successful simulation. In the 
example four different cases were run and two pa-
rameters  (init.mdot_init and  init.p_in_init)  were 
changed between the simulations.

4.2 Continue Simulation

Besides running each simulation as a separate case, 
the ExcelInterface offers two other ways for series of 
steady state calculations. The most common reasons 
for  using these options are that  the model  can not 
successfully  initialize  at  every  steady  state  point 
and/or  that  the initialization phase  of  the model  is 
very time consuming making it practical to continue 
from  a  initialized  model  that  has  reached  steady 
state. 

By connecting ramp blocks to the boundary condi-
tions of the simulated model where the start values 
of  the output  signals  equal the end value from the 
previous simulation it is possible to start each new 
simulation  from steady  state  and  then  change  the 
boundary conditions by setting desired height of the 
ramp blocks. 

Continue from First simulates the model for a spec-
ified time and then the remaining simulations contin-
ue from this point. This makes it possible to define a 
number of transients using, for instance, ramp blocks 
and sweep any number of steady state points. 

Figure 7 shows the outlet evaporator temperature in 
an AC-cycle  simulation  where the model  was first 
simulated until it was in steady state. Once this point 
was  reached  (after  200  seconds)  five  simulations 
were executed from the end of the first  simulation 
where the inlet air temperature was changed between 
the simulations.

Figure  7 Example result when using “Continue from 
First”

The  second  option  Continue  from  Previous also 
simulates  the  model  for  a  specified  time and then 
each specified case continues from the previous sim-
ulation. 

A Continue from Previous run is illustrated in Fig-
ure 8 where the outlet evaporator temperature of an 
AC-cycle is shown. The initial simulation is contin-
ued after 200 seconds. After this time 5 simulations 
are run where each one is 100 seconds long. 
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Figure  8 Example result when using “Continue from 
Previous”

For both these options it is possible to start the simu-
lations from a saved result file. Using this option the 
initial  simulation, which takes  the model  to steady 
state, is skipped. Instead all initial values are taken 
from the result file.    

4.3 Plotting and Dynamic Result

For all simulations performed using the interface it is 
optional to include plots of chosen variables in Ex-
cel. Enabling this option is useful to get a quick visu-
al comparison of the different simulation results and 
when it is necessary to verify that the model really 
reached steady state after an initial transient. 
The plots are created by extracting wanted trajecto-
ries from the result files and saving them in sheets 
within the work book making the trajectories easily 
accessible.  

5 Usage  Example  –  Charge  Opti-
mization

To find the optimal charge of an AC-Cycle the cycle 
is first almost completely drained and then filled in 
multiple steps until the accumulator of the cycle is 
over filled. At each step important values such as the 
power, pressures, subcooling and superheat tempera-
tures are measured. 
Simulating this procedure in one continuous simula-
tion might prove difficult as it is often necessary to 
simulate  between  8  and  15  points  altogether  and 
there is a risk that the simulation will fail during the 
transition between, at least, two of the points. If this 
happens it is quite time consuming to re-run the sim-

ulation and there are no guarantees it will work the 
second time around either.   
Using the ExcelInterface the risk is minimized when 
simulating the charge optimization using the contin-
ue feature  of  Dymola.  The experiment is  setup by 
adding a controlled flow source, to the cycle, which 
fills  the  accumulator  with  refrigerant  at  specified 
time as shown in . 

Figure 9 Cycle with controllable flow source

In  the  ExcelInterface  the  start  time  of  the  filling, 
height and offset of the set-point ramp block is se-
lected as input parameters and the experiment is run 
using Continue from First. Finally, the cycle model 
is  parameterized  to  begin  the  continue  simulations 
having a charge of 150 kg/m3.

Figure 10 Setup in the ExcelInterface

Assuming that the initial simulation, which controls 
the charge down to 150 kg/m3 passes the whole ex-
periment will not fail if a single simulation fails. In-
stead of risking having to redo the whole experiment 
the worst case scenario is now that some of the simu-
lations have to be redone because they crashed.   
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Figure 11 Plot of specific charge.  5 points were simu-
lated from 200-400 kg/m3

6 Summary

The ExcelInterface has proven to be an efficient tool 
to  use  when doing  batch  simulations  over  a  large 
number of steady state points. 
The interface gives the user a good overview of the 
cases to simulate and simplifies the post processing 
of the result as well as speeding up the setup of the 
experiments. This in combination with the fact that 
Excel is a well known program which many people 
have  experience  working  with  gives  the  interface 
great flexibility and a broad user base.
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Modeling of Cold Plates for Power Electronic Cooling
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Abstract

This paper deals with the cooling of high power
electronic devices. Usually those devices dissipate 5
- 10% of their electrical power, therefore (convective)
cooling is needed. Power electronics can be cooled
directly by air or a non-conductive fluid via (forced)
convection. However discharging the heat of the
power electronics via convective heat transfer with
air leads often to a large cooling elements due to the
poor heat transfer coefficient of air. Also in most
applications the direct contact between the electronic
and the cooling fluid is undesirable.
For these applications the use of cold plates can be
an option. The fluid flows through a plate (see. fig.1)
which is directly connected to the electronic. This

Figure 1: Cold plate

type of cooling is far more effective than air cooling,
since the cold plate can be designed in order to cool
also high power density electronics without resulting
in a disproportional increase of the space envelope.
The fluid temperature can be increased with respect to
the air temperature, without decreasing reliability and
durability of the power electronics components.
Using cold plates open up possibilities of decen-
tralised cooling which can improve the efficiency of
the cooling system.
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†email: vasel@tu-harburg.de, Tel:+49 4042878 3765
‡email: schmitz@tu-harburg.de, Tel:+49 4042878 3144
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This paper presents a model library developed in
order to model power electronics cooling. The library
provides on the one hand heat loss models for basic
power electronics equipment itself, like IGBTs, and
on the other hand thermodynamic models for different
cold plates. Lumped models of the cold plates can be
used in large system simulations whereas cold plate
models using a distributed approach are foreseen for
more detailed analysis.
To be able to calculate the temperature distribution
in the cold plate, the solid and fluid parts of the cold
plate have to be discretised in all directions (see fig.2).

Figure 2: Cold plate model

The library is based on Modelica.Fluid, however for
the modeling of the single phase cooling medium, the
compressibility of the liquid is considered in order to
avoid large non-linear system of equations.
An important aspect of the library is the coupling of
the power electronic models to the cold plate model.
Hereby an efficient algorithm is needed which enables
the user to connect an unlimited number of power
electronic components of any size to arbitrary places
on the cold plate.
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Additional to the simulations a test rig is built,
where the cold plates are tested. Whereas the models
can be used for both, single phase and two phase
cooling, on the test rig only single phase cooling is
investigated. Since the fluid channels often have a
complicated finned structure, where the geometric pa-
rameters are usually not accessible, the measurements
are needed to validate the cold plate models. Hereby
a large emphasis is placed on validating the pressure
drop and heat transfer correlations, as well as the time
constants.

Keywords: Modelica; Simulation; Cold plate; Cool-
ing; Power Electronics

K. Dietl, J. Vasel, G. Schmitz, W. Casas, C. Mehrkens

The Modelica Association 628 Modelica 2008, March 3rd − 4th, 2008



Heavy Vehicles Modeling with the Vehicle Dynamics Library
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Abstract

This paper presents and describes recent extensions
to the Vehicle Dynamics Library (VDL) for heavy
and commercial road-vehicle modeling and simula-
tion (VDL/Trucks). Until now, the VDL was targeted
mainly at passenger cars applications (VDL/Cars).
Users in this domain have been particularly enthusi-
astic about the openness, flexibility, and extensibility
compared to many competing solutions. These advan-
tages which are inherent to Modelica technology are
even more important for heavy vehicles applications,
where a much larger set of vehicle configurations and
variations must be supported. It has therefore been nat-
ural to extend the scope of the library also into this
field with the VDL/Trucks options presented in this
paper. New components and templates have been in-
troduced to reflect many standard chassis layouts. A
number of new experiment templates are also supplied
to make standard analysis tasks easy to perform.
Keywords: heavy vehicles; trucks; vehicle dynamics;
Vehicle Dynamics Library

1 Introduction

The Vehicle Dynamics Library (VDL) [1, 2] was orig-
inally designed for studies on vehicle handling for pas-
senger cars (VDL/Cars). It was early clear that an
extension into the heavy vehicles domain would be
natural. The inherent flexibility and extensibility of
the Modelica-based solutions offers great benefits in
this domain where a vast set of vehicle configurations
and variants must be handled, such as combinations
of trucks, tractors, full trailers, semi-trailers, tankers,
with various axle and powertrain configurations, and
also a wide range of payload conditions. This paper
introduces the VDL/Trucks option of VDL aimed at
modeling and simulation of heavy vehicles.
Vehicle dynamics analysis of heavy vehicles and pas-

Figure 1: Truck-fulltrailer in a double lane-change

senger cars have many common inputs such as a hu-
man driver model with similar driver-vehicle inter-
face, road and environment properties, etc, and outputs
of interest such as tire forces at the contact patches,
chassis and suspension motion. Joints, links, springs,
dampers, drivers, roads, and tires all produce simi-
lar types of constraints on the model. A large set of
model components are therefore common for cars and
truck modeling. There are, however, some major dif-
ferences between heavy commercial vehicles and pas-
senger cars when it comes to chassis layout. The num-
ber of axles, tires and trailers are some of the many
parameters that are combined to form a heavy vehi-
cle configuration, while cars have a more static setup.
This requires an even more flexible interface and tem-
plate design for heavy vehicles than for cars.

The heavy vehicles option has been developed from
the same library base as the car option. This means
that the new heavy vehicle models can benefit from an
already well tested and mature overall design.
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2 Heavy vehicle components

As mentioned above, there are many low level
components that are shared between VDL/Cars and
VDL/Trucks, but there are of course many examples
of new components and components that are used dif-
ferently in the context of heavy vehicles [3]. Essen-
tially, this is due to the difference in weight and di-
mensions. The higher over-all weight requires differ-
ent solutions and very large load variations means that
good performance have to be achieved for a wide vari-
ety of load cases. The higher center-of-gravity makes
rollover rather than road adhesion the handling limit in
many situations. This section highlights some of the
extensions made to VDL for heavy vehicle simulation
to address these differences. Figure 2 shows a screen
shot of parts of the library, indicating some important
new additions.

Figure 2: Screen shot of parts of VDL as it appears
in Dymola. Some main extensions to VDL for heavy
vehicles are indicated.

Suspension The suspension designs in heavy trucks
are usually axle-based for the steerable and non-
steerable wheels. Leaf springs are commonly used
for both axle guidance and load support and are im-
plemented as described in [4]. To meet the require-
ment of high load variations the leaf springs are often
mounted in such a way that the effective length of them
decreases when they are subjected to load. There are
also leaf spring versions that are equipped with helper
springs that becomes active when the vehicle is loaded.
Air springs are often used in heavy vehicle suspen-
sions in conjunction with trailing arms to easily ad-
just for different load cases, see Figure 3. Air springs
can be used to change the ride height of the vehicle by
increasing the air mass inside the spring, which also
results in a stiffer spring that can carry more load.

Figure 3: Typical heavy vehicle rear axles.

Frame The frame elasticity influences the load dis-
tribution between the axles, and therefore the available
grip from the tires. The elastic frame included in VDL
trucks has a torsional degree of freedom. It is easy to
add or change the degrees of freedom in the frame by
extending the interface so the common template con-
nectors are used.

Payloads The payloads can be static (e.g. a crane),
dynamic (e.g. a tank for liquid load) or have vary-
ing masses or mass distributions (e.g. cargo contain-
ers). These different cases are supported with user-
friendly configuration setup. The existing liquid pay-
load model considers the dimensions of the tank and a
rotational damped degree of freedom for slosh.

Cabin The truck cabin is usually suspended for
driver comfort since the chassis suspension must be
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Figure 4: Sine-excitation of a tractor-trailer combina-
tion with the liquid load in the tank modelled with with
a one degree of freedom to capture dynamic load dis-
tributions.

stiff to accommodate the high loads. The cabin
suspension is a linkage mechanism equipped with
springs, dampers and antiroll bars. The suspension
also causes a relative motion between the steering
wheel and the steering gear since the steering wheel
moves with the suspended cabin. This is incorporated
in the vehicle templates and ensures that it is easy to
change the different subsystems such as the cabin sus-
pension or the steerable axle linkage in an flexible way.

Couplings Heavy vehicle combinations often have
tractor (driven) and trailer vehicle units. The attach-
ment to guide and constrain the trailer can vary, but has
a significant effect on the handling and vehicle behav-
ior. One of the most common couplings is a fifth wheel
for the tractor/semi-trailer combination. Full trailers
and dollies usually have a draw bar and hook to attach
to the tractor, driven truck, or preceding trailer (in the
case of road trains). The coupling must have a mass on
both sides of the joint or be locked to avoid a singular
setup when no unit is attached on one side. This is
conveniently handled without much user intervention
by the available components and templates.

3 Heavy vehicle templates

The variation and configuration space of heavy vehi-
cle combinations are much larger then for normal pas-
senger cars. Also, the components can be of vary-
ing fidelity depending on the design and purpose of
the model. A new set of templates for heavy vehicle
components has therefore been developed to sustain
the user-friendliness offered in VDL/Cars. These new

templates are based on the same usage principles as the
car templates, where templates for aggregate models
are built by connecting replaceable components that
can be parameterized depending on application. An
example of a tractor template is given in Figure 5.

Figure 5: Tractor template with two rear axles.

The heavy vehicle interfaces for basic components are
largely the same as those for cars. Some changes in-
clude extra connections to incorporate the frame and
suspended cabin. The axle-based suspension models
typically have connectors for the axle and chassis, in-
stead of using separate connectors for the left and right
suspension linkage models. The templates still have
all connections and parameters predefined and propa-
gated between models so they only require the replace-
able components to be redeclared from the graphical
Dymola user interface.
The main chassis components include a number of sus-
pension models that contain one or more axles, frame,
coupling, wheels, and a body or payload. Trailers can
also include components for a dolly.
The suspension templates are based on axle con-
straints. The axle can be a steerable or non-steerable
version. The axle connects through the linkage to the
chassis. The linkage has external or internal force el-
ements such as coil/air springs or leaf springs, respec-
tively, to support the chassis. An anti-roll bar is at-
tached to the axle and chassis. The suspension compo-
nents vary from the most basic bounce and roll degrees
of freedom to detailed elasto-kinematic setups.

4 Experiments

Simulation experiments for passenger cars and heavy
vehicles have many similarities and correspondingly
share setup of e.g., drivers, roads and grounds, and en-
vironments. Just as for cars, both the open and closed
loop driver models are available. The double lane-
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change road maneuver as seen in Figure 1 is useful for
emergency handling evaluation since it excites the roll
motion which may cause roll-over [5]. The experiment
is set up using a driver model that follows the road path
defined by RoadBuilder [2]. The sine steering excita-
tion experiment shown in Figure 4 is instead realized
using an open loop steering robot while a drive robot
is keeping the speed constant.
For out-of-plane frequency response, the shaker table
can be used [2]. It is implemented as a ground model
containing patches with time dependent altitudes, de-
fined by inputs. Since a heavy vehicle can have more
than two axles, the shaker table has a configurable
number of patches to suite any number of axles and
wheel locations. Correspondingly, several suspension
rigs can be used together for detailed analysis of bogie
axles, see Figure 6.

Figure 6: Twin axle with load distribution linkage in a
suspension rig.

5 Customization

Just as for passenger cars and light vehicles,
VDL/Trucks is extended with a set of examples for
heavy vehicles. This includes both truck with full
trailer and tractor with semitrailer as seen in Figures 1
and 4, respectively. Thanks to the flexibility inherent
in the library, it is straightforward to re-configure these
and even build completely different equipages, as il-
lustrated by the examples in this section.

5.1 Road Train

Equipages with combinations of a truck or tractor with
two or more trailers forms a road train of the type com-

monly used in e.g. Australia. These vehicle combina-
tions allow for one driver to freight a larger amount
of cargo compared to a tractor pulling a single trailer.
Unlike rail-carried trains that are self steered by the
rail-wheel interaction, road trains are more sensible to
disturbances and may even exhibit instability if care
is not taken. Additionally, road trains are heavy and
thereby hard to stop which requires them to be able to
steer to avoid accidents. This puts high demands on
the design of trucks and trailers so that they safely can
be combined into road trains under a variety of load
conditions. In VDL, these configurations can be de-
fined and tested conveniently. Figure 7 shows a set-up
with tree trailers pulled by a tractor.

Figure 7: Road train with three trailers, diagram view
(top) and animation screen shot (bottom).

5.2 Moving tire test rig

Tire test rigs are can be subdivided into two main cat-
egories depending on if the tested wheel or the ground
surface is moving. For the latter case, the ground is
typically implemented as drum or a belt. The draw-
back with these two concepts are on one hand that the
belt only makes it possible to use elastic surface ma-
terial such as steel and on the other hand that a drum
has to have a curvature which impacts the tire-surface
contact. To avoid this and to enable testing on real road
surfaces such as gravel, asphalt, and ice under differ-
ent conditions with respect to moisture, temperature,
and so on, the tested wheel can be mounted on a mov-
ing rig, typically attached to a heavy truck. However,
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a moving rig is harder to control, especially since the
forces generated from the tested wheel will affect the
course of the truck. To investigate both the static and
dynamic effects of the total system of truck, rig, and
tire on resulting measurements, a moving tire test rig
was implemented by mounting a test rig with wheel
onto a truck model as illustrated in Figure 8. The re-
sults were then compared to standard test rig simula-
tions and real mobile-rig mesurement results and pro-
vided insight into the interpretation of sensor signals.

Figure 8: Mobile tire test rig mounted on a truck.

6 Simulink

Just as for passenger cars, heavy vehicles modeled
with VDL can be imported into the Simulink [7] en-
vironment. Figure 9 shows an experiment layout in
Dymola [6] used for the yaw control application in
Simulink shown in Figure 10. In applications like this
VDL/Trucks can provide models that are of great use
in the design and validation of various chassis control
functions.

7 Future

Currently the VDL/Trucks option is focused on the
chassis and covers well the most commonly used vehi-
cle types. VDL/Cars have more complete support for
full vehicle modeling with templates for powertrains,
drivelines, brakes, engines, etc. Future development
will move in the direction of complete vehicle model-
ing also for heavy vehicles. Until then, many compo-
nents are still available to build those subsystems from
base classes, but without extensive templates.

Figure 9: Experiment with in- and outputs for
Simulink. Inputs: Steering wheel angle, engine
torque, gear, wheel brake clamp forces. Outputs: Ve-
hicle states, tire forces and wheel spin velocities.

Figure 10: Yaw control application for the tractor-
semitrailer combination shown in Figure 9.

8 Summary

This paper shows how the Vehicle Dynamics Library
is extended with the VDL/Trucks option for heavy
and commercial road-vehicle modeling and simula-
tion. An overview of the recent additions is given and
it is shown with several examples how the openness,
flexibility, and extensibility from VDL/Cars is main-
tained and extended.
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Abstract 

In 1977, Christopher Alexander, Sara Ishikawa 
and Murray Silverstein published the book “A Pat-
tern Language: Towns, Buildings, Construction” [1].  
Although the topic of the book was architecture, it 
inspired Erich Gamma, Richard Helm, Ralph John-
son and John Vlissides in their approach to pattern 
based software development.  This ultimately led to 
the publication, in 1994, of the book “Design Pat-
terns: Elements of Reusable Object-Oriented Soft-
ware” [2] (also known as the “Gang of Four” or 
“GoF” book) which launched a major movement in 
the software development community toward pattern 
based software design.  The idea behind the pattern 
movement is to formally identify sound design solu-
tions to common problems. 

Since the publication of “Design Patterns” there 
have been numerous books published on the topic of 
software patterns.  Several of these books dealt with 
the sub-topic of anti-patterns [3,4].  In contrast to a 
normal pattern, anti-patterns are an attempt to iden-
tify common bad practices and ways they can be 
refactored using sound design patterns. 

The emphasis of the pattern community is, un-
derstandably, on object-oriented languages with pro-
cedural semantics.  This paper will build on previous 
work [5] identifying patterns in Modelica.  These 
design patterns include how medium properties can 
be handled in a flexible way, how to deal with sys-
tems with varying causality and differential index, 
idealized plant control and, finally, coordination be-
tween models.  In addition, this paper includes some 
extensive discussion of anti-patterns to avoid redun-
dant code, awkward data management and inflexible 
models. 

This paper continues the discussion on patterns 
within the Modelica community with the hope that 
this will encourage others to contribute patterns of 
their own.  One obvious benefit of such efforts will 
be additional resources for Modelica developers to 
make the process of developing models in Modelica 
easier.  In addition, we expect that many of the pat-

terns discussed will also generate proposals for im-
proving the Modelica language through new features 
and semantics. 
 
Keywords: patterns, anti-patterns 

1 Background 

When Alexander et. al., published their work, 
each pattern included four principle aspects, the pat-
tern name, the context in which the pattern applied, 
the problem the pattern attempted to address and the 
proposed solution.  This paper will focus primarily 
on the problem and solution. 

In September of 2006, Mark Dominus wrote an 
essay in his blog [6] in which he concluded with the 
following statement: 

 
“Patterns are signs of weakness in programming 
languages.  When we identify and document one, 
that should not be the end of the story. Rather, 
we should have the long-term goal of trying to 
understand how to improve the language so that 
the pattern becomes invisible or unnecessary.” 

 
This statement triggered quite a bit of controversy 
and many people argued with this assertion, not the 
least of which was Ralph Johnson [7], co-author of 
the original “Design Patterns” book who argued that 
patterns are simply manifestations of high level con-
cepts beyond the scope of language semantics. 

In this paper the assumption will be that the truth 
lies somewhere in between.  Some patterns are sim-
ply manifestations of design decisions made in the 
development of a given language.  Other patterns 
appear to address missing expressiveness in the un-
derlying language.  In some cases, patterns are sim-
ply introduced to encourage consistency and read-
ability above and beyond what is really the purview 
of language designers.  Along with the patterns 
themselves some discussion will be included indicat-
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ing to what degree each pattern (or anti-pattern, as 
the case may be) could be mitigated by changes in 
the language or standard library. 

2 Design Patterns 

2.1 Architecture Pattern 

2.1.1 Problem 
While building models to support a variety of 

systems and/or subsystems a large collection of 
models with many structural similarities have been 
developed.  Adding additional models involves con-
structing models either by copy and pasting large 
chunks from previous models or dragging and drop-
ping the complete model from scratch. 

There are two distinct issues being discussed.  
The first is the amount of work required to create a 
new model.  The second is about redundancy be-
tween models.  This pattern focuses on the former 
and the latter is discussed as part of the DRY anti-
pattern in Section 3.1. 

2.1.2 Solution 
When significant structural similarities exist be-

tween system or subsystem models then these mod-
els can be formulated in terms of architectures.  In 
doing so, each model becomes simply a variation of 
the architecture with the various interfaces replaced 
by implementations that are appropriate for that spe-
cific model. 

For example, building vehicle models by simply 
dragging all the usual constituents (e.g. engine, 
transmission, chassis, etc) into a diagram can be 
quite time consuming and tedious whereas building 
them as variations from a standard vehicle architec-
ture (e.g. [8]) can greatly reduce the overhead of cre-
ating and managing such models. 

2.2 Singleton Pattern 

2.2.1 Problem 
When building libraries of models it is some-

times necessary to design the library in such a way 
that there is a single instance somewhere that in-
cludes a definitive reference for some information.  
The basic idea is that within some scope there is ex-
actly one such instance.  The challenge is not simply 
how to access that “singleton” object but how to de-
sign the library so that this is handled well for users. 

2.2.2 Solution 
In languages like Java and C++, the use of the 

static qualifier on members provides a language 
supported mechanism for ensuring uniqueness within 
a given program.  The closest equivalent in Modelica 
would be a variable declared as constant.  How-
ever, the values of constants cannot be changed so 
while semantically similar, this is not adequate to 
achieve the singleton pattern.  Instead, the use of 
inner and outer qualifiers is a more common 
choice.  By referring to an inner instance it is pos-
sible for all outer references to act simply as “point-
ers” to a single object.  The use of inner and 
outer has an additional advantage (or disadvan-
tage, depending on how strict you need to be) which 
is that they can be nested inside each other. 

Two immediate examples of the singleton pat-
tern can be found in the Modelica Standard Library.  
The first is in the Multibody library.  The design of 
the library is such that it requires that there is exactly 
one instance of the so-called “world” object in the 
system to provide a reference coordinate system.  
Another example, which exploits the ability to nest 
one subsystem (requiring its own internally unique 
singleton) inside another subsystem, can be seen in 
the StateGraph library [9]. 

An example where the use of inner and 
outer is not currently sufficient is in dealing with 
“many to many” interactions.  For example, consider 
a model of the solar system.  Each planet exerts a 
gravitational force on all the others.  While it is pos-
sible to implement each gravitational force as an in-
dividual component that connects between every 
combination of planet instances in a system, it is 
more convenient and scalable to have some kind of 
(singleton) intermediary component that is somehow 
aware of all planet instances and can, within the con-
text of that single model, handle all interactions.  
Similar “many to many” requirements can be found 
in systems where collisions are possible between 
multiple bodies. 

2.3 Medium Model Pattern 

The medium model pattern is more generally 
called the “abstract factory” or “kit” pattern.  How-
ever in Modelica the most common use is to repre-
sent medium properties.  For this reason the name 
“medium model” is used since it is more familiar to 
the target audience of this paper having appeared in 
previous work [10, 11]. 
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2.3.1 Problem 
In a nutshell, the medium model pattern shows 

up in models that include multiple configurable types 
that must be, in some way, consistent with each 
other.  As already mentioned, this is something that 
occurs often when characterizing the medium of a 
given fluid system.  The configurable types typically 
include (but are not limited to) connector definitions 
and some kind of property evaluation model.  The 
essential point is that many assumptions about a fluid 
bind the definition of the connectors and the property 
evaluation together (e.g. the number of species).  For 
example, it would not make sense to combine the 
connector a multi-species gas with the properties of 
oil. 

2.3.2 Solution 
As mentioned previously, this approach is called 

the “abstract factory” pattern in other languages and 
it is usually achieved through abstract methods that 
return instances abstract types.  The consistency is 
assured by the implementation of the abstract fac-
tory.  Because Modelica lacks methods or even any 
appreciably dynamic object creation, the same effect 
is achieved in Modelica using replaceable packages. 

By using replaceable packages, it is possible for 
models to reference constants and types defined in 
the “constraining package” defined or implied in the 
replaceable definition.  A given “implementation” 
(e.g. a specific medium) can then redefine these 
types and constants in a consistent way (e.g. so they 
all represent the same medium).  The following sam-
ple code demonstrates the use of this pattern.  First, 
an abstract model of the medium must be defined: 
 
partial model AbstractMedium  
  constant Integer n “# of Species”; 
  connector Fluid  
    Pressure p; 
    flow MassFlowRate m_dot; 
    MassFraction Xi[n-1]; 
    flow MassFlowRate mXi_dot[n-1]; 
  end Fluid; 
  
  partial block Properties  
    input Pressure p; 
    input MassFraction Xi[n-1]; 
    output SpecificEnergy u; 
    output SpecificEnthalpy h; 
  end Properties; 
end AbstractMedium; 

 

Based on this abstract medium model, component 
models can then be written that rely on information 
from the medium model but without knowledge of 
what specific medium model is being used: 
 
model Component  
replaceable package MediumModel = 
  AbstractMedium; 

  MediumModel.Fluid c; 
MediumModel.Properties props( 
  p=c.p,X=c.X); 

equation  
// equations in this component 
// can reference the pressure 
// at the connector, c.p, or 
// properties of the fluid, 
// e.g. props.h 

end Component; 

 
Finally, an implementation of the medium model can 
be created by extending from the abstract medium 
model: 
   
package RealMedium  
  extends AbstractMedium(nspecies=2); 
  redeclare model extends Properties  
  equation  
    // This model may include things 
    // like property calculations or 
    // an equation of state. 
 end Properties; 
end RealMedium; 

 
One usability issue with this pattern is that when 

it is used in conjunction with the transport of physi-
cal information or behavior it is somewhat counter 
intuitive since the redefinitions of the medium model 
are propagated from “top down” when users think, at 
least conceptually, that the information should be 
propagated through connections.  For example, the 
Component model in the previous sample code 
would need to be instantiated with a modification 
specifying the medium model, e.g. 
Component comp( 
redeclare package MediumModel = 
 RealMedium); 

whereas most users would expect that “somehow“ 
the type of medium was dictated by what the instace 
was connected to.  While this is not an issue with the 

Patterns and Anti-Patterns in Modelica

The Modelica Association 649 Modelica 2008, March 3rd − 4th, 2008



pattern in general, it is an important consideration for 
language designers and tool vendors. 

2.4 Adapter Pattern 

2.4.1 Problem 
When working with architectures, it is necessary 

for the subsystem models to be developed so that 
they satisfy the interface prescribed by the architec-
ture.  However, there are many cases where the sub-
system model might be developed independently 
from an architecture and as a result it does not con-
form to any specific interface.  This situation may 
come about because the subsystem models were de-
veloped before the architecture or perhaps they were 
developed in an architecturally neutral way to avoid 
dependence on a particular architecture or to support 
multiple architectures. 

2.4.2 Solution 
In these circumstances, it may be necessary to 

develop adaptor components.  Such components pro-
vide a mapping from the interface that the subsystem 
currently has to the interface that is to be supported.  
There are two variations of this pattern.  In the first 
case, the subsystem is developed independently from 
any particular interface.  In this case, the develop-
ment of an adapter for the subsystem is a “one time 
only” process since other subsystems are unlikely to 
share the exact same interface (and if they do, they 
should probably be refactored as described in Sec-
tion 3.1). 

The other case is where the subsystem has been 
developed according to a specific interface (one that 
presumably other subsystems satisfy).  In this case, a 
general adaptor could be constructed that maps one 
interface onto another.  Such an adaptor could then 
be used as an adaptor for multiple subsystems.  This 
kind of adaptor pattern can also be used to imple-
ment compatibility between comparable interfaces 
across different architectures. 

The following code fragment shows an example 
of how the adaptor pattern is implemented.  First, let 
us consider the one potential (and greatly simplified) 
interface for a vehicle model: 
 
partial model VehicleInterfaceA 
  RealOutput vehicle_speed; 
end VehicleInterfaceA; 

 
Several vehicle models might be developed using 
this interface, e.g. 

 
model Vehicle1 
extends VehicleInterfaceA( 
  vehicle_speed=…); 
end Vehicle1; 
 
model Vehicle2 
extends VehicleInterfaceA( 
  vehicle_speed=…); 
end Vehicle2; 
 

Now consider an alternative vehicle model interface 
and system architecture definition: 
 
partial model VehicleInterfaceB 
RealOutput v_vehicle; 
end VehicleInterfaceB; 
 
partial model ArchitectureB 
replaceable VehicleInterfaceB vehicle; 
… 
end ArchitectureB; 

 
An adaptor between the different interfaces could be 
developed as follows: 
 
model VehicleAdaptor_A2B 
extends VehicleInterfaceB; 
replaceable VehicleInterfaceA vehicle; 
equation 
connect(vehicle.vehicle_speed, 
        v_vehicle); 

end VehicleAdaptor_A2B; 

 
Using this adaptor it is possible to build a system that 
utilizes ArchitectureB but uses an implementa-
tion of VehicleInterfaceA as follows: 
 
model System 
extends ArchitectureB( 
  redeclare VehicleAdaptor_A2B( 
    redeclare Vehicle1 vehicle)); 
end System; 

2.5 Parametric Behavior Pattern 

2.5.1 Problem 
In acausal modeling most components tend to 

describe the flow of some conserved quantity explic-
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itly in terms of the across variables (e.g. i=v*R).  
Other components describe the flow of conserved 
quantities implicitly in terms of constraints (e.g. an 
ideal voltage).  However, it is often quite useful to be 
able to describe components that describe the flow of 
conserved quantities in terms of both implicit and 
explicit relations depending on the state of the com-
ponent.  The simplest example of such a component 
is an electrical diode which either allows no current 
(explicit case) or no voltage drop (implicit case).  
Another slightly more complicated case would be a 
clutch which computes transmitted torque explicitly 
in terms of dynamic friction when disengaged or 
slipping but computes torque implicitly in terms of a 
kinematic relation when locked. 

2.5.2 Solution 
One “easy” way to describe such behavior is to 

compromise on the ideal nature of the behavior.  For 
example, where an ideal diode might describe the 
implicit and explicit behavior using the equations 
v=0 and i=0, respectively, a compromise model sac-
rifices the idealization might use the equations 
v=G*i and i=v*R, where G is chosen to be very 
small (to approximate the v=0 case) and R is chosen 
to be very large (to approximate the i=0 case).  The 
result of this compromise is that the behavior is now 
completely explicit in nature.  However, another 
consequence of this “easy” solution is that the sys-
tem of equations is very likely to be poorly condi-
tioned which means the system will be stiff and slow 
to simulate. 

A “better” solution (from the modeler’s perspec-
tive at least) is to capture the ideal behavior some-
how.  Not only is this possible but it can be a very 
elegant and useful way to approach such problems.  
The basic premise (which is presented in greater de-
tail in [12]) is to introduce a third variable and de-
scribe the behavior of the original variables in terms 
of the third parametric variable.  This approach is 
frequently used in geometric applications where it is 
not possible to use a particular coordinate axis as an 
independent variable to describe a line or surface.  
The same issue is present, for example, in a diode 
where it is not possible to write current explicitly in 
terms of voltage nor is it possible to write voltage 
explicitly in terms of current.  However, it is possible 
to write both in terms of a third parametric variable, 
e.g. 
 
  off = s<0; 
  v = if off then s*unitV else 0; 
  i = if off then 0 else s*unitC; 

where unitV and unitC are defined as follows: 
 
import Modelica.SIunits.Voltage; 
import Modelica.SIunits.Current; 
constant Voltage unitV=1; 
constant Current unitC=1; 
 

Analysis of this parametric approach shows that 
describing this kind of behavior is not simply an is-
sue with the expressiveness of the underlying model-
ing language but with the solution method.  While 
some basic solution techniques exist to deal with 
component models that are either implicit or explicit, 
the ability of a component to function in both ways 
creates additional complications for the underlying 
solver. 

One such complication is that switching between 
two different sets of equations during a simulation 
always brings with it the risk that the differential in-
dex of the system might change.  As such, the posed 
problem could be a variable index system.  In fact, a 
clutch model normally leads to a variable index sys-
tem when modeled using the parametric behavior 
pattern.  However, by understanding this in advance 
it is possible to differentiate the equations such that 
the index is no longer variable.  For this reason, it 
would be very useful if investigation into this issue 
showed that a general algorithm could be developed 
along similar lines.  Such an algorithm would most 
likely benefit from language features that directly 
supported this pattern. 

2.6 Perfect Control Pattern 

2.6.1 Problem 
Physical models typically include sensors and 

actuators and these are in turn normally connected to 
some kind of control system.  One of the burdens 
that model developers face is to provide some kind 
of actuator control strategy in addition to the base 
physical models.  In many cases, the model devel-
oper is not particularly interested in the dynamics of 
the controller but they need some function in the 
model to determine how the actuator will behave and 
so therefore implementation of controls is unavoid-
able.  Such implementations often take time both to 
construct and calibrate and many times they do not 
add any significant value to the model. 

2.6.2 Solution 
It is important to point out that this pattern is 

very specific to cases where the model developer 
simply wants a very good controller but they don’t 
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need to be very concerned about how such a control 
strategy would actually be deployed or implemented 
in hardware.  In these specific circumstances, it is 
often possible to rely on a “perfect” control strategy 
to control the device.  For example, consider a sim-
ple SISO plant model defined as follows: 
 
model PlantModel  
  input Real u; 
  output Real y; 
protected  
  Real dy = der(y); 
equation  
  2*der(dy) + dy + 4*y = u; 
end PlantModel; 
 
model ClosedLoop  
  PlantModel plant; 
protected  
  Real ybar = max(0,time-2); 
equation  
  plant.u = 10*(ybar-plant.y); 
end ClosedLoop; 
  
model PerfectControl  
  PlantModel plant; 
protected  
  Real ybar = max(0,time-2); 
equation  
ybar = plant.y; 
end PerfectControl; 

 
The simulation results from both types of control 

can be seen in Figure 1.  The basic idea of this pat-
tern is rather than including an explicit equation for 
the command to the system an equation prescribing 
the output is used.  This equation for the output acts 
as an implicit equation for the input.  It should be 
pointed out that this type of approach is limited to 
cases where the plant model is sufficiently invertible. 

Despite this limitation, this is a useful pattern that 
can be used in conjunction with some surprisingly 
complex systems.  For example, this approach is the 
same approach that is employed to create “back-
ward” drive cycle models (models where the vehicle 
speed is prescribed and the system resolves the 
torque required to meet the speed profile).  In addi-
tion, this same pattern can be used in conjunction 
with actuators like clutches and valves. 
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Figure 1:  Example of "Perfect" Control Pattern 

3 Anti-Patterns 

Patterns are primarily useful for intermediate to 
advanced users who, having written some substantial 
amounts of code, are able to recognize the emer-
gence of patterns and are interested in understanding 
how patterns can help them be more productive (as 
well as improve consistency and readability among 
project members). 

However, Modelica is still a relatively new tech-
nology with many new users.  As a result, anti-
patterns are probably at least as important as pat-
terns.  The reason is that anti-patterns can help nov-
ices to recognize weaknesses in code they have writ-
ten.  As such, anti-patterns are almost immediately 
applicable.  This section introduces several anti-
patterns and discusses refactoring approaches associ-
ated with each pattern. 

This is not to say that anti-patterns only apply to 
novice users.  Because Modelica improves developer 
productivity, it is very easy to write a large volume 
of code only to realize in hindsight that some anti-
patterns have developed.  As a result, the material in 
this section is applicable to a wide range of users.  
As such, the material in the anti-patterns section 
should be of particular interest to tool vendors since 
refactoring typically requires tool support. 

3.1 DRY Anti-Pattern 

3.1.1 Problem 
By far, the most common anti-pattern is the use 

of “copying and pasting” model code between mod-
els.  While this happens for a wide variety of reasons 
most of them are ultimately because users are not 
aware of the various mechanisms within Modelica 
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for code reuse.  In software development there is 
something known as the “DRY principle” where 
DRY is an acronym for “Don’t Repeat Yourself”.  
The DRY anti-pattern is one where the DRY princi-
ple has not been followed. 

The reason that the DRY principle is so impor-
tant (and which has led to the motto that “redun-
dancy is the root of all evil”) is that redundancy cre-
ates many problems.  Not only does it lead to ineffi-
ciency when building models it also means signifi-
cantly more work when maintaining those same 
models. 

3.1.2 Solution 
While this is a very common anti-pattern, the 

good news is that Modelica contains a rich supply of 
language features to help combat it.  The first lan-
guage feature all users should become familiar with 
is inheritance (specifically, the extends keyword).  
Once developers understand inheritance they should 
investigate the architecture pattern (described previ-
ously in this paper) which hinges on the replace-
able and redeclare keywords. 

One issue that prevents addressing this anti-
pattern is tool support for refactoring.  This mani-
fests itself in several ways.  First, it should be possi-
ble for users to change the names of components 
and/or classes and be assured that all references that 
use those names are also adjusted (ideally even if 
they are not even currently loaded).  Furthermore, 
refactoring of existing code often involves the exer-
cises of identifying commonality between existing 
models, composing base classes that contain this 
common code and then extending the original mod-
els from the base classes.  Without tool support, such 
refactoring can be very time consuming. 

3.2 Kitchen Sink Anti-Pattern 

3.2.1 Problem 
Another common anti-pattern is the “kitchen 

sink” anti-pattern.  There are two variations of this 
pattern.  For component models, the anti-pattern 
manifests itself as component models with too many 
equations by lumping several distinct types of behav-
ior together into a single component.  For subsystem 
models, the anti-pattern manifests itself in diagrams 
with an unnecessarily large number of components. 

3.2.2 Solution 
In both of these cases, a “divide and conquer” 

approach is required.  For the component variation, 
this means building component models that heed 

Occam’s Razor, “entia non sunt multiplicanda 
praeter necessitatem”.  In practical terms, this means 
building component models that attempt as much as 
possible to describe individual effects (e.g. inertia, 
compliance, dissipation, etc). 

In the case of subsystem models, refactoring is 
typically a matter of nesting some tightly coupled 
subset of components into a subsystem of their own.  
Again, tool support is an issue here.  Simulink has a 
very convenient feature to take a group of selected 
components and lump them into a subsystem model.  
Modelica tool vendors would do well to recognize 
the value of such functionality (and users would do 
well to remind them). 

3.3 Literal Data Overload Anti-Pattern 

3.3.1 Problem 
Modelica supports a wide range of ways to deal 

with data handling.  In theory, users can bring data in 
from an external database, they could read it from 
external files, etc.  However, the simplest way to 
import data into Modelica models is to enter it liter-
ally (e.g. parameter Real table[:,2] = 
[0, 1; 1, 2; 2, 3; …]).  While there is 
nothing wrong with this per se, it leads very quickly 
to the literal data overload anti-pattern.  The pattern 
is characterized by the tendency of models to rely on 
literal data.  While this is acceptable for simple com-
ponent models, this creates two problems with more 
complex models.  The first complication is that en-
tering tables of data is often quite inconvenient.  The 
second complication is that often times any given 
parameter cannot be changed independently.  For 
example data associated with a given electric motor 
might bring together the rotor inertia, internal resis-
tance, bearing friction, etc into a set of parameters.  
If a different motor is to be used, it is not simply a 
matter of changing a single parameter value but the 
entire set must be exchanged for another consistent 
set representing a different motor. 

3.3.2 Solution 
Both issues of entering literal data and parameter 

set consistency can be handled by creating records to 
represent such parameter sets and including the lit-
eral data only in the context of the record definitions.  
In addition, it is advisable to make use of the 
choices annotation so tools understand how the 
data will be used.  The result of such refactoring is 
that users will only see opaque references to complex 
and/or voluminous data sets rather than vast expres-
sions containing literal data.  It is also a advisable to 
provide useful descriptions of the data sets so tools 
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can provide users with clear descriptions of available 
choices. 

3.4 Parameter Data Overload Anti-Pattern 

3.4.1 Problem 
The previous anti-pattern addresses some of the 

issues associated with models that require large 
amounts of data.  While the aggregation prescribed 
for refactoring reduces the number of individual pa-
rameters a complex system with many components 
can still contain large numbers of parameter sets (and 
even the aggregations themselves may have an un-
wieldy number of parameters).  The result is parame-
ter dialogs that contain large numbers of parameter 
values and/or choices.  In these cases, further con-
solidation doesn’t make sense (since we do not want 
to aggregate data together that is actually independ-
ent or unrelated) as a way to address the overload. 

3.4.2 Solution 
In cases where aggregation is not an appropriate 

remedy the standard annotations for grouping pa-
rameters by tab and group can be utilized.  Rather 
than aggregate the data, the result of using the tab 
and group directives is to organize the data into a 
“tree” (i.e. the data is presented in a hierarchy where 
the first layer is determined by the tab and the next 
layers is determined by group).  In particular, com-
mon parameters should be organized such that they 
appear in the default tab and less common parame-
ters are assigned to later tabs.  Tab labels are also an 
important consideration since users should be able to 
determine quickly, based on the name, whether they 
need to look in a particular tab. 

4 Language Implications 

Many of the “normal” patterns found in [2] do 
not appear in this paper.  This is primarily because 
Modelica does not include concepts like pointers and 
methods which are fundamental to many of the pat-
terns.  Furthermore, it has been observed that many 
of the traditional patterns in software development 
essentially boil down to adding an additional level of 
indirection to an abstraction.  Since there are very 
few ways to express this indirection in Modelica, the 
number of patterns is fairly limited. 

One of the lingering questions from this discus-
sion is to what extent these patterns (or lack of pat-
terns) represent deficiencies in the language.  For the 
patterns and anti-patterns that are related to redun-
dant code (i.e. Sections 2.1, 3.1 and 3.2) the lan-

guage is well equipped to address these issues al-
though there are certainly ways that tools can assist 
model developers in more effectively utilizing those 
language features. 

Although the Singleton pattern is being used in 
several libraries it is this author’s opinion that the 
semantics of the language do not mesh as well with 
the pattern and modeler needs.  The use of inner and 
outer in this way has implications for robust model 
checking and the dependency on inner elements is 
not easily recognized or represented.  In addition, the 
“many to many” issue mentioned in Section 2.2.2 
requires improved expressiveness in the language. 

In the case of the medium model pattern, the in-
ability to express type constraints through physical 
connections is a serious limitation in the language 
and one that is recognized in the design group.  
Hopefully this deficiency will be addressed soon. 

Section 2.5.2 discusses how behavior can be de-
scribed parametrically.  However, there are many 
different ways to “phrase” this kind of behavior and 
they cannot necessarily be easily recognized by 
tools.  Having language elements for describing pa-
rametric relationships could not only bring consis-
tency how such behavior is described but it could 
also allow tools to automatically deal with variable 
index issues that currently burden developers (equa-
tion differentiation, continuity concerns, finite state 
machines, etc). 

5 Conclusion 

The goal of this paper is to identify common pat-
terns and anti-patterns to help users identify easy 
solutions for common problems as well as to prompt 
discussions within the Modelica design group on 
ways the language can be enhanced to either institu-
tionalize some of the best practices in these patterns 
or add language features to eliminate the need for 
these patterns. 
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Abstract 
In this paper we present a strategy for comment- and 
indentation preserving refactoring and unparsing for 
Modelica. The approach is general, but is currently be-
ing implemented for Modelica in the OpenModelica 
environment. We believe this to be one of the first un-
parsing approaches that can preserve all user-defined 
indentation and comment information, as well as fulfill-
ing the principle of minimal replacement at refactor-
ings. 
 
Keywords: Refactoring, comments, unparsing,, Mode-
lica. 

1 Introduction 
Integrated programming environments, e.g. InterLisp 
[11] and Eclipse [12] provide various degrees of sup-
port for program transformations intended to improve 
the structure of programs – so-called refactorings [5] 
(see also Section 10).  

Such operations typically operate on abstract syntax 
tree (AST) representations of the program. Therefore 
the program needs to be converted to tree form by pars-
ing before refactoring, and be converted back into text 
by the process of unparsing, also called pretty printing 
This is supported by a number of  environments (Sec-
tion  10). 

However, a well-known problem is that of preserv-
ing comments and user-defined indentation while per-
forming refactorings. Essentially all current environ-
ments either loose the comments (except for special 
comments that are part of the language syntax and AST 
representation), or move them to some other place. 
User-defined indentation is typically lost and replaced 
by machine-generated standard indentations. This is 
accepted by some developers, but judged as unaccept-
able by others. However, if the objective only is to im-
prove indentation, then a semi-automatic indenter can 
be used instead (Section 8.3). 

Currently Modelica-based tools are handling only dec-
laration comments that are part of the model and are 
discarding or moving all the other comments, i.e. the 
ones between /* */ and after //…. Such behavior is 
highly undesirable from a user perspective and heavily 
affects the ease-of-use of code-versioning tools. 

A goal for the work presented here is to support 
Modelica code refactoring with minimal disruption of 
user-defined comments and indentation. In this paper 
we present such an approach for unparsing in conjunc-
tion with refactorings. 

2 Comments and Indentation 
Regard the following contrived Modelica example. It 
has one declaration comment which is part of the lan-
guage syntax, and two “textual” comments Itemcomm 
and MyComm which would be eliminated by a conven-
tional parser. It is also nicely hand formatted so that the 
start positions of each component name in the text are 
vertically aligned. 
record MODIFICATION  "Declaration comment" 
 
  Boolean           finalItem; //Itemcomm 
  Each /* MyComm */ eachRef; 
  ComponentRef      componentReg; 
 
end MODIFICATION; 

Assume that this is parsed and unparsed by a conven-
tional (comment-preserving) unparser, putting two 
blanks between the type and the component name of 
each component. The manual indentation would be 
lost, and the “textual” comments would be moved to 
some standard positions (or be lost): 
record MODIFICATION "Declaration comment" 
 
  Boolean  finalItem; //Itemcomm 
  Each  eachRef; /* MyComm */ 
  ComponentRef  componentReg; 
 
end MODIFICATION; 
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3 Refactorings 
Below we make some general observations and give 
examples of refactorings. 

3.1 The Principle of Minimal Replacement 

For a refactoring to have minimal disruption on the 
existing code, it is desired that it supports the principle 
of minimal replacement: 

• When replacing a subtree, the minimal subtree that 
contains the change should be replaced. 

This also has the consequence of minimal loss or 
change of comments. For example, if a name (an identi-
fier) is changed, only the identifier node in the tree 
should be replaced, not the surrounding subtree. 

3.2 Some Examples of Refactorings 

Here we mention a few common refactorings. There are 
also numerous, more advanced and specialized refac-
torings. 

• Component name change. Change name of a com-
ponent name in a record. For example: 

record MODIFICATION  "Declaration comment" 
  Boolean           finalItem; //Itemcomm 
  Each /* MyComm */ eachRef; 
  ComponentRef      componentReg; 
end MODIFICATION; 

The name of the component reference name is cur-
rently componentReg, which is an error. It should 
be componentRef. We would like to change the 
name both in the declaration and all its uses, thus 
avoiding updating all named references by hand, 
which would be quite tedious. 

• Function name change. Change the name of a func-
tion, both the declaration and all call sites. 

• Add record component. Add a new component dec-
laration to record. In MetaModelica, that would also 
mean putting an underscore '_' at the correct posi-
tion in all patterns for that record type with posi-
tional matching. 

• Add function formal parameter. Add an input or 
output formal parameter to a function. The question 
is, how much is possible to do automatically? Add-
ing arguments to recursive calls to the function itself 
is no great problem, but calls from other functions 
can be more problematic since meaningful input 
data needs to be provided. This can be handled eas-
ily in those cases a default value can be passed to 
the function's new formal parameter. 

4 Representing Comments and User-
Defined Indentation 

How should information about comments and user de-
fined indentation be represented in the internal (AST) 
program representation? There are basically two possi-
bilities for a chunk of code, e.g. a model: 

• Tree. The AST representation is the main storage 
(the TRUTH). Comments and indentation as extra 
nodes/attributes in the AST. 

• Text. The text representation, including indentation 
and comments, is the main storage (the TRUTH). 

The tree approach may seem natural, since the refactor-
ings and the compiler operate on the tree representa-
tion. However, it has some disadvantages: 

• Since white space and comments can appear essen-
tially anywhere, between nodes, associated with 
nodes, the AST will become cluttered and increase 
the required memory usage and complexity of the 
tree, perhaps by a factor 2-3. 

• The large number of extra nodes in the AST may 
complicate code accessing and traversing the tree. 

Regarding the text representation we make the follow-
ing observations: 

• The text representation exists from the start, since 
this is the storage form used in the file system. En-
vironments like Eclipse use text buffers for direct 
interaction with the programmer. 

• The text representation includes all indentation and 
comment information, and is compact. 

• The structure of the program in the text representa-
tion is not apparent, and cannot be easily manipu-
lated. 

Why not combine the advantages of each representa-
tion, and try to avoid the disadvantages? 

• Use the text representation as the basic storage for-
mat including indentation and comment informa-
tion. The text might be conceptually divided into 
chunks, where for example each class definition 
gives rise to a text chunk. 

• Use the tree representation for compilation and 
refactoring. Create it when needed and keep it dur-
ing the current session. Create it piece-wise, e.g. for 
one class at a time. 

• Create a mapping from the tree representation to the 
text representation; each node in the tree has a cor-
responding position and size in the text representa-
tion. Create this mapping when needed, for appro-
priate pieces (e.g. class definitions) of the total 
model. 
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5 Implementation 
The following strategy is used for the implementation 

5.1 Base Program representation 

The text representation is the TRUTH, the source, and 
the AST representation is a secondary representation 
derived from the source, used during compilation and 
refactoring. 

The class information attribute of a class definition 
in the AST should be extended, e.g. with the byte start 
position (directly addressing within a file), or by a text 
chunk corresponding to the text of a class declaration. 
A package which contains classes would instead refer 
to the definitions of those classes. 

Text positions and text sizes of each AST node 
should be indirectly associated with each AST node. 

5.2 The Parser 

The following special considerations need to be ad-
dressed by the parser: 

• In order not to clutter the produced AST tree, the 
parser produces two trees: a standard AST tree, and 
a positioning tree (produced in parallel) with the 
same number of nodes, containing text positions and 
sizes of each subtree. 

• The parser should return the start text position and 
text size of each built AST tree. Moreover, if there 
are any comments within the AST tree text range, a 
list of the start positions and sizes of these com-
ments should be associated with the parallel tree 
node. 

• The pure AST tree should be clean and not cluttered 
with position and comment information. 

• As mentioned, a text position tree with the same 
number of nodes and children as the AST is created 
in parallel to the AST. The positioning tree is only 
produced when needed for refactorings or text posi-
tioning, and thrown away when not needed. 

For example, a child nr 3 of a node at level 2, will find 
its text positions in the parallel tree in the node at level 
2 and child nr 3. 

5.3 The Scanner 

The text position and size of each token is returned to-
gether with the token itself. 

5.4 The New Unparser 

The new unparser will use a combined strategy as fol-
lows, combining existing text with new text generated 
by the tree unparser: 

• If there exist already indented text associated with a 
node, use this text to produce the unparsing text. 

• If there is no existing text, this must be a new tree 
node produced by the refactoring tool. Call the tree 
unparser to convert this subtree into text that is in-
serted into the final unparsing result. 

6 Refactoring Process 
The following steps are to performed in this order dur-
ing the actual refactoring: 

• Traverse the AST and perform insertion/deletion/ 
replacement of subtrees. 

• For each insertion/deletion/replacement operation, 
put each such an operation descriptor in a list, to-
gether with the text position and size of the text of 
the subtree to be replaced/deleted etc. 

• After traversal, sort these operations according to 
text position, and perform the operations in the text 
in backwards order (take those at the highest text 
position first). 

7 Example of Function Name Refac-
toring 

The example below is used to illustrate the refactorings 
and the used combined tree and text chunk representa-
tion. 

All loaded models (including the Modelica pack-
age) reside in an un-named top-level scope that we can 
call Top. A model may be a top-level model, but more 
typically a package which in turn may consist of sub-
packages: 
01 within ParentPackage; 
02 package pack 
03  function addOne "function that adds 1" 
04   input Real x = 1.0; // line comment 
05   output Real y;      /*  multiple 
06                           line 
07                           comment */ 
08  algorithm 
09   y := x + 1.0; 
10  end addOne; 
11  
12  class myClass 
13    Real y; 
14  equation 
15    y = addOne(5); // Call to addOne 
16  end myClass;  
17 end pack; 

Line numbers are given to help the reader follow the 
example. The position tree constructed by the parser is 
given in the appendix as it is quite large. A portion of 
the abstract syntax tree is also shown in order to under-
stand the example. 
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A function name refactoring will be applied to the ex-
ample which will change the name of the function 
"addOne" to "add1", The refactoring can be per-
formed in the OpenModelica environment by loading 
the example and calling the interactive API function: 

loadFileForRefactoring("Example.mo"); 
refactorFunctionName(pack.addOne, "add1"); 

The compiler will execute the first command by calling 
the new parser that also builds the position tree together 
with the AST:  

(ast,posTree) = Parse.refactorParse(file); 

The result of the load command is two trees. The sec-
ond (posTree) is the position tree presented (partly) in 
the appendix. The first (ast) is the abstract syntax tree 
of the loaded file which is presented also in the appen-
dix entirely. Here is just a overview picture of the AST: 

 
Figure 1. AST of the Example.mo file. 

The figure shows that the program has one package 
with two public elements which are class definitions.  

Actually only two refactoring operations are needed 
to implement any refactoring: add and delete or add and 
replace. 

When refactorFunctionName is called the com-
piler will perform these operations: 

7.1 Lookup pack.addOne 

Lookup of a class definition is performed by walking 
the AST while keeping track of a numbered path in the 
tree. To reach the addOne identifier, the path: 1, 6, 1, 1, 
1, 5, 2, 1, 1 is applied. The path goes via the following 
AST nodes in order to reach the desired class name: 
PROGRAM [1] / CLASS [6] / PARTS [1] / 
PUBLIC [1] / ELEMENTITEM [1] / ELEMENT 

[5] / CLASSDEF [2] / CLASS [1] / 
IDENT("addOne") [1]. 

7.2 Lookup Any Uses of pack.addOne 

Lookup of the uses are performed by walking the AST, 
keeping track of the scope, while keeping track of a 
numbered path. To reach the function call of addOne, 
the path: 1, 6, 1, 1, 1, 5, 2, 1, 1 is applied. The path 
goes via the following AST nodes:  
PROGRAM [1] / CLASS [6] / PARTS [1] / 
PUBLIC [2] / ELEMENTITEM [1] / ELEMENT 
[5] / CLASSDEF [2] / CLASS [6] / PARTS[1] 
/ EQUATIONS [1] / EQUATIONITEM [1] /  
EQ_EQUALS [2] / CALL[1] / CREF_IDENT [1] 
/ IDENT("addOne") [1]. 

7.3 Apply the Refactoring to the Actual Text 

Now that the paths needed for the minimal refactoring 
were discovered in the AST, apply these paths to the 
position tree and fetch the positions of the elements at 
the end of the paths:  

• Function name: IDENT, Start:047, End:053 
• Function use:    IDENT, Start:313, End:319 

The text operations are applied bottom-up because oth-
erwise the character positions of the elements below an 
applied operation would change. Ordering of text op-
erations is needed to have them applied in a bottom-up 
fashion: 

• ReplaceText(file, 319, 313, "add1"); 
• ReplaceText(file, 53, 47, "add1"); 
• Close(file); 
• (ast, posTree) =   // re-parse the file 

 Parse.refactorParse(file);  

After the file is closed either a reparsing is performed 
to load the new AST (as exemplified here) or the refac-
toring operations are perfomed on the tree already in 
the memory. Of course the best alternative would be to 
perform the refactoring during lookup as we have im-
plemented it in the OpenModelica compiler.  

As one can notice the comments stay in place so 
there is minimal disruption to the text representation. 
This is very valuable from a user point of view but also 
for code-versioning tools. 

7.4 Calculation of the Additional Overhead 

There is not too much overhead for the refactoring both 
with respect to memory usage and time spent walking 
the tree. In the following table we discuss such over-
head and give specific numbers for needed memory 
size and time complexity of the refactoring procedure. 
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Memory overhead Time overhead 

Space is required for stor-
ing the position tree. The 
size of this space is two 
integers (of 4 bytes) for 
each AST node. Also the 
list of operations to be 
applied to the text needs 
memory for storing the 
paths and the operations 
themselves, but this mem-
ory is negligible com-
pared to the AST and po-
sition tree and can also be 
freed. 

Example: there are about 
50 nodes in the example, 
which means an addi-
tional memory of ~ 
50NrNodes x 2Positions x 
4Bytes = 400Bytes are 
needed for the position 
tree. Or course, the posi-
tion tree could be built on 
demand and the freed 
when memory is needed. 

Walking two trees while 
performing the refactoring 
has a time impact of  
NumberOfNodesWalked x 
O(1) to walk a node: 
O(NrOfNodesWalked). 
Walking the position tree 
while and applying the 
text operations to the file 
is negligible compared to 
the refactoring operation. 

Example: it took about 
0.2 seconds to perform the 
function name refactoring 
for the example file using 
the OpenModelica sys-
tem. Refactoring old 
graphical annotations of 
the Modelica Standard 
Library version 1.6 to the 
new style graphical anno-
tations took about 9.6 sec-
onds, which is very good 
for such a demanding 
refactoring. 

8 Unparsers/Prettyprinters versus 
Indenters 

As mentioned previously, an unparser converts an AST 
program representation into (nicely indented) text. A 
reformatting indentation tool uses another approach, it 
operates directly on the text representation to produce a 
more nicely indented text. 

8.1 Pretty printers/Unparser Generators 

An unparser generator produces an unparser from a 
specification, a grammar-like description of unparsing 
related aspects of the language. A number of systems 
mentioned in Section 8 support unparsing or generation 
of unparsers from such specifications. 

8.2 OpenModelica Tree Unparser 

The current OpenModelica version 1.4 unparser is hand 
implemented in MetaModelica, recursively traversing 
the AST while generating the Modelica text representa-
tion. It can be invoked by the OpenModelica list 
command. Comments are currently lost (except for dec-
laration comments). 

8.3 Reformatting Indentation in the OpenMod-
elica Eclipse Plugin 

A text reformatting indentation tool operates directly 
on the text representation, and analyzes the text by a 
combination of scanning and piecemeal heuristic partial 
parsing to recognize certain combinations of tokens. It 
inserts or removes white space in order to produce a 
nice indentation, or improve an existing one. Such 
mechanisms are typically invoked by the user on a few 
lines at a time, and are not completely automatic, the 
user is often required to perform the final adjustments. 
An advantage with this approach is that comments are 
not lost.  

This kind of indentation tool is for example avail-
able for a number of languages in their respective 
Emacs modes, or as part of Eclipse plugins, e.g. for 
C++, Java, and more recently for Modelica in the 
OpenModelica MDT Eclipse plugin. 

MDT includes support for automatic indentation, as 
described here and in [13]. When typing the Return 
(Enter) key, the next line is indented correctly. The user 
can also correct indentation of the current line or a 
range selection using CTRL+I or “Correct Indentation” 
action on the toolbar or in the Edit menu.  

Indentation can be applied to incomplete code as a 
heuristic Modelica scanner is used and the indentation 
is based only on the tokens generated by this scanner. 
The indenter indents one line at a time. For example, 
consider that line four (4) in Figure 2 should be in-
dented. The indenter asks the heuristic scanner to give 
tokens from the starting token in backwards direction to 
the start of the file until a scope introducer is recog-
nized, which for this particular file is model MoonAn-
dEarth. The reference position of the start of the scope 
introducer is computed and line four (4) is indented 
from this reference position one indent unit. The inden-
tation result is presented in Figure 2. 

Indenting Modelica code is far from trivial when in-
complete (possibly incorrect) code should be indented 
correctly. Most of the difficulty comes from Modelica 
scopes which are hard to recognize using just a scanner 
and some logic behind it. In languages like C/C++ and 
Java finding enclosing scopes is very easy as one char-
acter tokens are used for the scope opening and closing: 
"{" and "}". In Modelica you need at least two tokens 
and much more case analysis to find where a scope 
starts and ends. Complications also arise when mixing 
if-statements with if-expressions (which was further 
complicated by the introduction of conditional declara-
tions in the Modelica language). In this particular case 
we implemented a parser emulator that recognizes these 
constructs based on scanner tokens delivered back-
wards.  
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Figure 2. Example of code after automatic indentation. 

The indenter works well in almost all cases, but 
there are cases in which is impossible to find the cor-
rect indentation. For example when the indentation of a 
line consisting of "end Name;" is requested and the 
scope introducer for Name is not found (that is identi-
fier Name followed backwards by class, model, 
package, block, record, connector etc.) then 
the indenter fails and returns the indentation of the pre-
vious line.  

9 Further Discussion 
In this section we address some questions from the re-
viewers: 

Question: “A question I have always had is whether 
there are any "mistakes" in the grammar that should be 
corrected with respect to these issues.  Similarly, how 
is this handled with the Java tools in Eclipse?” 

Answer: The answer to this question highly depends on 
the syntactic mistake the user made. For example if an 
"end if;" is missing at the end of an equation sec-
tion, but is followed by "end Model;", then such a 
mistake can be automatically corrected using a heuristic 
parser. However, if an opening scope is missing, i.e., 
model Model (or alternatively an ending scope) there 
is no way to know where it should be introduced. There 
are a lot of places that can be proposed:  

• Just after the enclosing scope starts (after i.e., 
package MyPack introduction) if there exists such 
scope or the start of the file if no such scope exists. 

• Just after the every existing ending scope of a model 
found by going backwards from the end Model;  

Right now the Eclipse environment will call the 
OpenModelica compiler to parse the file each time the 
file is saved. The parsing errors are reported in the 
Eclipse environment as a list of errors, but also under-

lined where the error occurs as shown in Figure 3. Of 
course if the user selects an entire file and calls the 
automatic indentation routine, the indentation will work 
correctly if there are no large large grammatical errors 
in the file. 

 
Figure 3. Syntax checking. 

Question: “Dymola’s pretty printing algorithm does not 
appear to be deterministic (it sometimes changes files 
for no reason just because they have been re-saved).  
Please discuss this deterministic issue and also what 
implications the algorithms will have for version con-
trol tools (i.e. avoiding complex or unnecessary 
changes since this will complicate "merge" opera-
tions).” 

Answer: As exemplified in Sections 3.1 and 7 the dis-
ruption to the actual text is minimal so the code-
versioning tools would have no problem with merging 
operations. This was one of our goals when designing 
and implementing the refactoring tools presented in the 
paper. The algorithms in this paper also apply to Mode-
lica models constructed programmatically because 
these can also be viewed as refactorings. In general the 
construction of models programmatically is performed 
by a visual component diagram editor. The editor will 
give commands: addModel(…), addComponent(…), 
addConnection(…), etc., to the internal handler of 
the textual model (that works on the AST and the posi-
tionTree) which in the case of a file with code format-
ting will minimally disrupt the existing code and add 
all the new code correctly indented at the end or in 
other appropriate places. 

10 Related Work 
The term refactoring and its use in a general and sys-
tematic sense was introduced by Martin Fowler et al 
[5], also based on earlier work, even though similar 
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code transformation operations were previously avail-
able, e.g. in the InterLisp environment [11]. 

Early work in interactive integrated programming 
environments including unparsing/pretty printing sup-
porting a specific language was done in the InterLisp 
system for the Lisp language [11], common principles 
and experience of early interactive Lisp environments 
are described in [16], a generic editor/unparser/parser 
generator used for Pascal (and later Ada) in the DICE 
system [9], [10], the integrated Mjölner environment 
with mullti-language editing and unparsing support 
[17]. None of these approaches preserve comments 
when unparsing, except the InterLisp environment 
where the comments were already part of the AST 
which was just pretty printed with a more readable in-
dentation. However, also in the InterLisp case, all hand 
indentation and white space added by the user is lost, 
and text style comments (not part of the AST) are also 
lost. 

Many parser generation systems, e.g. ANTLR [14], 
Eli [6], CoCo [15], also support unparsing from the 
generated AST, but do not support preservation of 
comments and hand-made indentation. 

11 Conclusions 
We have given a preliminary description of refactorings 
together with an approach for comment- and indenta-
tion preserving unparsing. This is currently ongoing 
work. Part of the unparser and the refactorings are im-
plemented. A full prototype implementation is expected 
to be completed early spring 2008. 
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Appendix 
Here we give (parts of) the generated position tree (posAST) for the code in the example section. The start and 
end are given in character offsets. The nodes that have -1 as start/end position do not actually exist in the text, but 
they appear in here to have 1-to-1 mapping to the AST definitions. 

(Program, (Start: 1, End: 366, { 
 (list<Class>, (Start: 23, End: 366, { 
   (Class, (Start: 23, End: 366, { (Ident, (Start: 31, End: 35) 
     (Boolean Partial, (Start: -1, End: -1) (Boolean Final, (Start: -1, End: -1) 
     (Boolen Ecapsulated, (Start: -1, End: -1) (Restriction, (Start: 23, End: 30) 
     (ClassDef, (Start: 35, End: 356, { 
       (list<ClassPart>, (Start: 38, End: 356, { 
         (ClassPart, (Start: 38, End: 356, { 
           (list<ElementItem>, (Start: 38, End: 356, { 
             (ElementItem, (Start: 38, End: 264, { 
               (Element, (Start: 38, End: 264, { 
                 (Boolean final, (Start: -1, End: -1) 
                 (Option<RedeclareKeywords>, (Start: -1, End: -1) 
                 (InnerOuter, (Start: -1, End: -1) 
                 (Ident, (Start: -1, End: -1) 
                 (ElementSpecEL5, (Start: 38, End: 264, { 
                   (Boolean replaceable, (Start: -1, End: -1) 
                   (Class, (Start: 53, End: 264, { 
                     (Ident, (Start: 47, End: 53) 
                     (Boolean Partial, (Start: -1, End: -1) 
                     (Boolean Final, (Start: -1, End: -1) 
                     (Boolen Ecapsulated, (Start: -1, End: -1) 
                     (Restriction, (Start: 38, End: 46) 
                     (ClassDef, (Start: 53, End: 264, { 
                       (list<ClassPart>, (Start: 53, End: 264, { 
                         (ClassPart, (Start: 80, End: 250, { 
                           (list<ElementItem>, (Start: 80, End: 221, { 
                             (ElementItem, (Start: 80, End: 100, { 
                               (Element, (Start: 80, End: 100, { 
                                 (Boolean final, (Start: -1, End: -1) 
                                 (Option<RedeclareKeywords>,(Start: -1, End: -1) 
                                 (InnerOuter, (Start: -1, End: -1) 
                                 (Ident, (Start: 91, End: 92) 
                                 (ElementSpecEL3, (Start: 91, End: 100, { 
                                   (ElementAttributes, (Start: 80, End: 85, { 
                                     (Boolean flow, (Start: -1, End: -1) 
                                     (Variability, (Start: -1, End: -1) 
                                     (Direction, (Start: 80, End: 85) 
                                     (ArrayDim, (Start: -1, End: -1) 
                                   }) 
                                   (TypeSpec, (Start: 86, End: 90, { 
                                     (Path, (Start: 86, End: 90, { 
                                       (Ident, (Start: 86, End: 90) 
                                     }) 
                                     (Option<ArrayDim>, (Start: -1, End: -1) 
                                   }) 
       ... // truncated text due to its large size 
       }) (Option<String>, (Start: -1, End: -1) 
     }) (Info, (Start: -1, End: -1) 
   }) 
 }) 
 (Within, (Start: 1, End: 7,  
  (Path, (Start: 8, End: 22, {(Ident, (Start: 8, End: 22)}) 
) 
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Here is another version of the example with character positions for end and start of a Modelica construct: 
[001]within[007] [008]ParentPackage;[022] 
[023]package[030] [031]pack[035] 
[036]  [038]function[046] [047]addOne[053] [054]"function that adds 1"[076] 
[077]   [080]input[085] [086]Real[090] [091]x[092] [093]=[094] [095]1.0;[099] 
                             [100]// line comment[115] 
[116]   [119]output[125] [126]Real[130] [131]y;[133]       
                             [139]/*  multiple 
                                      line 
                                      comment */[221] 
[222]  [224]algorithm[233] 
[234]   [237]y[238] [239]:=[241] [242]x[243] [244]+[245] [246]1.0;[250] 
[251]  [253]end[256] [257]addOne;[264] 
[265] 
[266]  [268]class[273] [274]myClass[281] 
[282]    [286]Real[290] [291]y;[293] 
[294]  [296]equation[304] 
[305]    [309]y[310] [311]=[312] [313]addOne[319](5);[323] [324]// Call to addOne[341] 
[342]  [344]end[347] [348]myClass;[356] 
[357]end[360] [361]pack;[366] 

Parts of the abstract syntax tree (AST) of the Example.mo in the example section is presented below. The AST 
has exactly the same structure as the position tree. 

adrpo@KAFKA /c/home/adrpo/doc/projects/modelica2008/ 
$ omc +d=dump Example.mo 
Absyn.PROGRAM([ 
 Absyn.CLASS(Absyn.IDENT("pack"),  
  false, false, false, Absyn.R_PACKAGE, 
  Absyn.PARTS( 
   [Absyn.PUBLIC( 
     [Absyn.ELEMENTITEM( 
       Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , "function", 
         Absyn.CLASSDEF(false,  
          Absyn.CLASS(Absyn.IDENT("addOne"),  
           false, false, false, Absyn.R_FUNCTION,  
           Absyn.PARTS( 
            [Absyn.PUBLIC( 
             [Absyn.ELEMENTITEM( 
               Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED, "comp",  
                Absyn.COMPONENTS(Absyn.ATTR(false, Absyn.VAR, Absyn.INPUT,[]), 
                 Absyn.PATH(Absyn.IDENT("Real")), 
                 [Absyn.COMPONENTITEM( 
                   Absyn.COMPONENT(Absyn.IDENT("x"),[],  
                    SOME(Absyn.CLASSMOD([], SOME(Absyn.REAL(1.0))))), NONE)]), 
                Absyn.INFO("Example.mo", false, 4, 4, 4, 22)), NONE)),  
              Absyn.ELEMENTITEM( 
               Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , "component",  
                Absyn.COMPONENTS(Absyn.ATTR(false, Absyn.VAR, Absyn.OUTPUT, []), 
                 Absyn.PATH(Absyn.IDENT("Real")), 
                 [Absyn.COMPONENTITEM(Absyn.COMPONENT("y",[],  
                   NONE), NONE)]),  
                Absyn.INFO("Example.mo", false, 5, 4, 5, 17)), NONE))]), 
            Absyn.ALGORITHMS( 
             ALGORITHMITEM( 
              ALG_ASSIGN( 
               Absyn.CREF(Absyn.CREF_IDENT("y", [])),   
                Absyn.BINARY( 
                 Absyn.CREF(Absyn.CREF_IDENT("x", [])), 
                 Absyn.ADD, 
                 Absyn.REAL(1.0)))))],  
            SOME("function that adds 1")),  
            Absyn.INFO("Example.mo", false, 3, 3, 10, 13)) 
  ... // truncated text due to its large size 
 ], // end of Absyn.CLASS list 
 Absyn.WITHIN(Absyn.IDENT("ParentPackage") 
) // end Absyn.PROGRAM  
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Abstract

Modeling and simulation of physical systems is, in
general, a complex iterative process. Asserted models
are necessarily based on simplifications, and in many
cases are subject to improvement and optimization. In
this context, a wide range of applications of sensitivity
analysis can assist the modeling process, from param-
eter fitting and optimization through model validation
to statistical analysis and experimental design. These
common methods, among others, drew increasing
attention to a research area of scientific computing, i.e.
Automatic Differentiation (AD) of program code. The
main objective of this work is to compute derivatives
of variables in Modelica models using AD concepts
to assist sensitivity analysis applications. It is shown
how Open Modelica Compiler (OMC) and other
tools simplify the implementation of ADModelica,
a prototype of an AD-based tool for Modelica. As
a proof of concept, an application in the field of
biochemical networks is presented.

Keywords: Sensitivity Analysis, Automatic Dif-
ferentiation, Open Modelica, Biochemical Networks

1 Introduction

AD is a methodology that refers to algorithmic
techniques for semantic augmentation of numerical
programs with additional code for derivative com-
putations [6]. For many reasons, AD is a better
choice over other ways for computing derivatives
such as symbolic differentiation and finite difference
methods. In contrast to symbolic differentiation tools,
an AD tool does not generate the derivative formula
explicitly, but it computes the numerical values of
efficient derivative formulas expressed as a program.
Nevertheless, the derivative values using AD are as
accurate as the values of those generated by symbolic
algebra packages up to machine precision. Further-

more, the results are not affected by any truncation
errors, resulting from numerical differentiation using
divided difference methods.

This work is concerned with AD of Modelica mod-
els. Modelica is essentially targeted towards modeling
complex systems that can be described by differential
algebraic equation (DAE) systems:

F(t,x, ẋ, p) = 0, x(0) = x0(p) (1)

wherex∈Rn, p∈Rm, F : R2·n+m+1 → Rn. Assuming
that ∂F/∂x is non-singular for allp ∈ Rm, and that
∂x/∂ p is smooth enough, sensitivity analysis requires
the sensitivities∂x/∂ p of solution variables with re-
spect to perturbations in the parameters. These can be
calculated by solving the original DAE system (1) and
msensitivity systems:

∂F
∂ ẋ · ∂ ẋ

∂ p + ∂F
∂x · ∂x

∂ p + ∂F
∂ p = 0,

∂x
∂ p(0) = ∂

∂ p(x0(p))
(2)

obtained by explicit differentiation of (1) with respect
to p [14]. Additionally, the sensitivities∂xi/∂x j

of certain variablesxi with respect to other specific
variablesx j might be needed.

This paper presents first experiences with a prototype
of a tool, ADModelica, that augments Modelica mod-
els with Modelica code for computing certain sensi-
tivities, with minimal user efforts. Aiming at the full-
support of Modelica language constructs, we imple-
mented a first version, which supports most basic con-
structs of Modelica. The rest of the paper is structured
as follows. Section 2 introduces basic terminologies
and algorithmic aspects of AD. The Generalization of
the introduced concepts into the Modelica framework
is clarified in Sect. 3. Section 4 presents the ADMod-
elica tool and briefly discusses some design and imple-
mentation issues. In Sect. 5, applications in the field
of Biochemical Engineering using a special library is
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presented. Finally, conclusions are presented and fu-
ture work is discussed in Sect. 6.

2 Introduction to Automatic Differ-
entiation

Many techniques such as numerical differentiation
or computer algebra methods are used to compute
derivatives. However, AD has proved to be superior
over other ways for obtaining derivatives in terms of
computational efficiency, numerical precision and dis-
cretization parameters. ADIC [2] and ADIFOR [1] are
examples of a wide range of AD tools for differentiat-
ing C and Fortran programs respectively. In this sec-
tion, some basic terminologies of AD are introduced.

2.1 Basic Concepts

Formally, given a program P that computes a function:

f : x∈ Rn → y∈Rm

with n inputs andm outputs, a new codeP′ is sought
to compute the Jacobianf ′ = ∂y/∂x. The following
terms are commonly used in the context of AD:

• Independent variablesare program input vari-
ables with respect to which derivatives are
sought.

• Dependent variablesare output variables whose
derivatives are desired.

• A derivative objectrepresents some derivative in-
formation, such as a vector of partial derivatives
(∂z/∂x1, ...,∂z/∂xn)T of a variablezwith respect
to a vectorx = (x1,x2, ...,xn)T .

• Any program variable with which a derivative ob-
ject is associated is called anactive variable.

2.2 Algorithmic Aspects of AD

The key concept behind AD is that every computa-
tion, no matter how complex it is, is executed on a
computer as a sequence of a limited set of elemen-
tary operations, such as addition and multiplication,
and intrinsic functions, such as sine and cosine. The
derivative of each of these elementary operations can
be computed by applying the chain rule to combine
the local partial derivatives of each executed operator.
An AD tool operates by systematic application of the
chain rule on the numerical code. For example, let

a(x) and b(x) be intermediate values that depend on
an independent variablex, and letc := f (a,b). Then
by using the chain rule,∇xc the derivative of the de-
pendent variablec with respect tox is computed as:

∇xc :=
∂ f
∂a

·∇xa+
∂ f
∂b

·∇xb (3)

The chain rule is associative. Ify := f (g(x)), ∂y/∂x
can be computed by forwardly accumulating the
derivatives (i.e.∂ f/∂g and ∂g/∂x) in the computa-
tional path from the independent variable(s) (eg.x)
to the dependent variable(s) (eg.y). By exploiting the
associativity of the chain-rule, the augmented program
is generated to evaluatef (x) and the partial derivatives
of f simultaneously.

2.3 Why AD for Modelica?

AD is naturally implemented by Modelica compilers
to provide partial derivatives of functions for solving
the DAE index problem [12]. A DAE system of high
index is transformed into a solvable ODE system by
differentiating some equations selected by Pantelides’s
algorithm [13]. Here, AD is chosen for the fundamen-
tally different task of calculating sensitivities of solu-
tion variables, motivated by the following reasons:

• DAE systems are represented in Modelica by us-
ing components and connectors; internal formu-
las in components and models may be imple-
mented with loops and many branches. There-
fore, it makes sense to utilize existing tools and
concepts of handling DAE systems, used by mod-
elica compilers, for generating derivative formu-
las.

• For a Modelica model that computes a DAE Sys-
tem (1), a lot of common sub-expressions in
F, ∂F/∂x and ∂F/∂ p arise. In many cases,
these common sub-expressions need not to be re-
evaluated if these partial derivatives are computed
using AD.

• Compiler techniques used for reducing the di-
mension of a generated DAE system, can be
adopted by AD for reducing the number of equa-
tions needed to be differentiated , instead of blind
differentiation of all equations, as the DAE sys-
tem (2) suggests [4].

3 Differentiating DAE Systems

Assignments (eg.x := f (y,z)) are the main elemen-
tary units of procedural languages, whereas declara-
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tive equations (eg.f (x(t),y(t),z(t)) = 0) constitute the
main building units of Modelica. While an assignment
is a relation between inputs (a collection of values)
and one output, an equation is a relation between sev-
eral variables, that needs to be fulfilled concurrently.
This conceptual difference has vital consequences on
the way derivatives can be generated for DAE sys-
tems, namely, AD techniques for classical languages,
such as C/FORTRAN, are not necessarily applicable
for equation-based languages.

3.1 Example

Consider the DAE System

Ȧ =−v, A(0) = A0

Ḃ = v, B(0) = B0

v = vmax· A
A+k ·

Ik
B+Ik

(4)

describing the dynamics of a chemical reaction, in
which a chemical substance with concentrationA =
A(t) is converted to another chemical substance with
concentrationB = B(t). v = v(A,B, t) stands for re-
action rate andvmax, k and Ik stand for enzymatic pa-
rameters. The first two ordinary differential equations
represent balance equations, whereas the third equa-
tion describes the reaction rate using the well-known
Michaelis-Menten Kinetics [7]. The sensitivities of
x = (A,B,v)T w.r.t. parametersp = (vmax,k, Ik)T can
be computed as in (2) by adding the following equa-
tions:

Ȧp =−vp, Ap(0) = 0
Ḃp = vp, Bp(0) = 0
vp = ∂

∂ p f (A,B,vmax,k, Ik)
(5)

to (4), where

f (A,B,vmax,k, Ik) = vmax·
A

A+k
· Ik
B+ Ik

(6)

vp = ∇pv = (
∂v

∂vmax
,

∂v
∂k

,
∂v
∂ Ik

)T (7)

andAp,Bp are similar tovp. Given thatJp = I3 (Iden-
tity matrix of size 3), i.e.:

∇pvmax := (1,0,0)T ;
∇pk := (0,1,0)T ;
∇pIk := (0,0,1)T ;

(8)

(5) can be easily implemented in Modelica with the
help of arrays. Notice that := stands for assignments.

3.2 Utilizing Common Sub-expressions

Given that the values ofA(t) andB(t) are known for
a time pointt, v(t) and vp(t) can be computed from
the DAE systems (4) and (5). The third equation
vp = ∂ f/∂ p in the DAE system (5) consists of three
equations of similar algebraic structure. Excessive re-
evaluation of common sub-expressions arising inv and
vp can be avoided by dividing the equationv= f in the
DAE system (5) into a set of binary assignments using
the Abstract Syntax Tree (AST) ofv as shown in Fig.
1. The gradient ofv(t) is computed by forward accu-
mulation of the gradients of the intermediate variables
obtained by differentiating each assignment instead of
direct differentiation of the algebraic formula. An im-
plementation for the DAE systems (4) and (5) looks as
follows:

Ȧ =−v
∂
∂ t ∇pA =−∇pv

Ḃ = v
∂
∂ t ∇pB = ∇pv

u1 := vmax·A;
∇pu1 := ∇pvmax·A+vmax·∇pA;

u2 := A+k;
∇pu2 := ∇pA+ ∇pk;

u3 := u1 ·u2;
∇pu3 := ∇pu1 ·u2 +u1 ·∇pu2;

u4 := B+ Ik;
∇pu4 := ∇pB+ ∇pIk;

u5 := Ik/u4;
∇pu5 := (∇pIk ·u4− Ik ·∇pu4)/u2

4;
v := u3 ·u5;

∇pv := ∇pu3 ·u5 +u3 ·∇pu5;

(9)

In this way, common sub-expressions are evaluated
only once, and hence less arithmetic operations are
needed. The assignments can be implemented in Mod-
elica with the help of thealgorithmconstruct.

3.3 Limitations

While optimizing common sub-expressions works
well for AD of classical procedural languages, this
may not be the case with equation-based languages.
For example, in the DAE system (4),v(0) can be
computed by considering the available values ofA(0)
andB(0). Then,v(0) is used to compute subsequent
values ofA andB, and hence forth. That is, at each
iteration, A(t) and B(t) are used to computev(t).
In other words, the valuesv(t) depends on A(t) and
B(t). By this way, computingv(t) from A(t) andB(t)
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Figure 1: Abstract Syntax Tree (AST) ofv = f

in (9) does not change the dependency of variables.
However, in general, an equation can be divided into a
set of binary operations if the output variable depends
on the variables arising in the left hand side of all
intermediate assignments.

Additionally, the dimension of the rewritten DAE sys-
tem increases according to the way the Modelica com-
piler handles local variables. If intermediate results of
local variables are always stored, this exhausts extra
storage and computation time. Note that, the number
of local variables can be reduced by reusing local vari-
ables. For example, there is no need to introduce new
local variablesu4 andu5 if u1 andu2 are used instead.
Moreover, excessive use of thealgorithmsection may
disable some optimization methods for reducing the
dimension of a DAE system and hence worsen the per-
formance. Finally, side effects implied by the enforced
order of sub-expressions evaluation result in slightly
different results for state variables.

4 Automatic Differentiation of
Modelica Code

ADModelica is a prototype of a source-to-source AD
tool that strives to support Modelica programs. The
source-to-source approach employs a combination of
classical- and equation-based compiler techniques to
transform a program source code into a new source
code that computes the derivatives. This section gives
a quick overview of the implementation of ADModel-
ica.

4.1 Possible Approaches

There are three levels, on which AD of (implicit) DAE
systems can operate:

1. Library level: All library units (i.e. components
and connectors) are differentiated independently
to generate another library that additionally com-
putes parameter sensitivities of variables. Each
component is augmented with code for deriva-
tives.

2. Flat Model Level: The source code is given as
(or transformed into) pure equations, represented
by elementary Modelica’s constructs, rather than
physical formulation with components and con-
nectors. Sensitivity Equations are added in a new
Modelica model.

3. Generated C-code level: The generated C-code
is differentiated.

In [4], the above approaches are discussed in more de-
tails. The adopted approach is based on differentia-
tion on the flat model level. The current supported in-
put models, are namely those, which flattened models
have pure mathematical formulation. Particularly, in-
put models with components, connectors and arrays
with equations expressed asfor-loops are supported.
However, some control constructs in Modelica, such
asif, while and others, are not yet supported. As a re-
mark, AD of such classical languages constructs is a
well-know problem and has been successfully handled
[6].

4.2 Overview of ADModelica

Figure 2 shows the corresponding Modelica imple-
mentation of the DAE system (9). The user specifies
the independent variables. If not specified, all parame-
ters are considered as independent variables. To every
variablev of type Real an array representing the gradi-
ent of that variableg_v is associated. The array’s size
represents the number of independent variables. Each
entry of the array represents the derivative ofv with re-
spect to an independent variable. To each active vari-
able, a gradient is associated. ADModelica follows a
conservative strategy that considers all variables and
parameters active. In that case, non-interesting param-
eters have the zero gradients.

4.3 Design and Implementation

Implementing an AD tool from scratch, supporting
a wide set of Modelica grammar, would be an ex-

A. Elsheikh, S. Noack, W. Wiechert

The Modelica Association 672 Modelica 2008, March 3rd − 4th, 2008



Figure 2: Implementation of the DAE system (4) and
its Sensitivity Equations (5)

pensive and error-prone process. Therefore, existing
tools and software are utilized by ADModelica, par-
ticularly OMC [5]. OMC allows communication with
other tools through the CORBA interface. Figure 3
shows the main steps performed to generate a Mod-
elica model that computes additional required deriva-
tives. These steps are summarized as follows:

• Flattening: A high-level model is transformed to
a model with pure mathematical equations, using
the Open Modelica Compiler (OMC). ADModel-
ica makes use of the CORBA interface, offered
by OMC.

• Transforming to intermediate format: The
ModelicaXML parser [15] parses an input model
to an easy-to-handle format, in which the AST
representation of the equations are implicitly in-
herited. The ASTs are extracted into intermediate
format in Java classes.

• Analyzing: The dimension of the generated DAE
system is reduced by removing alias equations
(s.a.x = y andx+y = 0 ) [9]. The computational
path between variables is computed [3, 8].

• Differentiating: The ASTs of the derivatives are
computed. A conservative strategy is to differ-
entiate all equations. However, it is enough to

Figure 3: The Architecture of ADModelica

differentiate all equations laying in all Strongly
Connected Components (SCCs) of the computa-
tional path from the independent variable(s) to
the dependent variable(s).

• Unparsing: The differentiated model is gener-
ated with additional code for derivatives.

• Visualizing ASTs: Producing graphs of the
ASTs was proven to be useful during the course
of development, for finding potential semantical
mistakes.

5 Application

Modeling the dynamics of metabolic reaction net-
works has a wide spectrum of applications. Special
attention has been paid to modeling biochemical
systems with Modelica [11]. In general, the pa-
rameters expressing the characteristics of enzymatic
reactions (eg. reaction rate, enzyme activation/inhi-
bition constants, etc.) are one of the largest source
of uncertainty in modeling metabolic networks, and
are not necessarily known. Their values might be
estimated by fitting them to measured data, resulted
from stimulus-response experiments [16]. Estimating
the correct values of parameters can reveal hidden
information about the system. However, even in that
case, the asserted model alone does not explain the
underlying behavior.

Understanding the functions of enzymatic reactions
within a metabolic network can be achieved by
measuring changes to directed perturbations of certain
parameters (eg. quantity of a certain enzyme). While
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Figure 4: A dynamic Metabolic Network

this can be experimentally difficult or impractical,
it is easier to quantify the effect of these changes
using a validated model [17]. This can be achieved
by computing the sensitivities of reaction rates and
concentration to parameters∂ r/∂ p and ∂c/∂ p, and
the sensitivities of reaction rates to concentration of
metabolites∂ r/∂c. Using these sensitivities, the well
known quantities of Metabolic Control Theory, i.e.
the concentration and flux control coefficientsCM and
CF , can be calculated [10, 7].

In Figure 4, a dynamic metabolic network model
including reactions of the tricarbon acid cycle is
shown. The network has been implemented using a
specialized library for biochemical networks, making
use of many object-oriented features of the Modelica
language. Various classes (e.g. Enzyme, Metabolites,
Reactions) are the main common objects. Objects
are connected via interfaces for potential variables
(e.g. concentrationc) and flux variables (e.g. reaction
rate r). The dimension of the corresponding DAE
system of the flattened model is 690. The number of
non-trivial equations is 182. It takes few milli-seconds
to simulate the network using Dymola (Dynasim AB,
Sweden). The model was differentiated w.r.t. 64

independent variables, 49 of which are parameters
corresponding to enzymatic characteristics and 15
concentrations variables. The dimension of the
generated DAE is 12,270. It takes about 35 seconds
to get the network and corresponding sensitivities
simulated.

Investigations on the dynamics of metabolic network
models mostly follow a system perturbation starting
from a stationary state. In this example, the network
is stimulated by a pulse of the input metabolite PEP.
Results show that responses of following metabolite
pools are very fast (e.g. PYR) or delayed (e.g. AC-
COA). Especially in the case of the output metabo-
lite LYS the concentration change is rather low in the
given time frame. The results are used to identify some
model parameters, which show a higher sensitivity in
the instationary case directly after system perturbation,
as well as others, which generally do not have any sig-
nificant influence on the corresponding flux.

6 Summary and Future Work

This work shows that AD is a natural choice for com-
puting sensitivities of solution variables for Modelica
models. ADModelica is a prototype of a source-to-
source AD tool for the Modelica language. It follows
the flat model approach, as it is easy to implement be-
cause it does not consist of high-level language con-
structs. ADModelica utilizes OMC by using CORBA
communication. Potential improvements of ADMod-
elica can be achieved by making more use of OMC.
OMC access a lot of facilities that can be utilized by
ADModelica. Examples involve, but are not limited
to:

• Symbolic manipulation of algebraic equations

• An intermediate format for computational graphs
for DAE systems

• Utilizing the Dependency Flow Graph (DFG) of
variables for decomposing a large resorted DAE
system in Block Lower Triangular (BLT) format
into smaller DAE systems

These facilities are used for optimizing common sub-
expressions, reducing the number of equations needed
to be differentiated and computing sensitivities of
variables w.r.t. other (non input) variables. Although,
these are partially implemented by ADModelica, it is
certainly better to rely on the reliable well-maintained
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and continuously growing OMC.
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Abstract

The event synchronism in Modelica has been a subject 
of contradictory interpretations. An interpretation in­
spired  by  Scicos   formalism  [2]  has  been   shown  to 
provide desirable properties. In this interpretation, all 
independent  events   are   assumed asynchronous;   that 
includes  events  generated by  the  sample  keywords. 
But in analogy with the way multi­rate systems are 
modeled in Simulink, it is desirable also to consider 
sample  generated events as synchronous. In this pa­
per, we propose a special treatment for the keyword 
sample to overcome this dilemma. 

Keywords: Modelica,  Scicos, synchronism, real­time 
code generation

1. Introduction

In [1], it is argued that all Modelica events should be 
considered asynchronous unless they are derived ex­
plicitly from a single event. This is in contrast to Dy­
mola’s   implementation   where   all   events   are   con­
sidered  potentially   synchronous,   by  default.   In  Dy­
mola, simultaneity is interpreted as synchronism. In 
[1] it is shown that the asynchronous point of view not 
only leads to the generation of more efficient code but 
it can also allow for separate compilation of isolated 
modules.
It may be argued that with the asynchronous point of 
view,  non­deterministic  behavior  becomes  an   issue. 
But the problem of non­determinism here is not worse 
than   in   the   fully   synchronous   context   because   the 
reason for non­determinism in hybrid systems is the 
finite precision of the numerical solver. Indeed, it is 
not more nondeterministic to assume that two events: 
time > 3 and x < 2, where x is a continuous time vari­
able,  are asynchronous  than assuming that   they are 
potentially synchronous.

Asynchronous means that even if the two events occur 
(in theory) at exactly the same time, one is considered 
to occur just before or after. In the synchronous con­
text, the formalism considers also the case of the two 
events happening simultaneously and treats it differ­
ently. However in practice, since events such as x < 2 
are detected by  the zero­crossing mechanism of  the 
numerical solver, there is very little chance that two 
events be detected simultaneously even if theoretically 
they are simultaneous. So in the synchronous context, 
the non­determinism is even worse: not only there are 
three possible outcomes in the presence of two zero­
crossing events but the user is lead to believe that it 
can  count  on  simultaneous detection when  in  most 
cases the result is completely unpredictable.

The  sample  generated events,  even though not  pro­
duced   by   the   zero­crossing   mechanism   during   the 
simulation,   should  naturally  be  considered  as   inde­
pendent and thus asynchronous as well. But this goes 
against   the  usual  practices   in  Modelica  where syn­
chronism is often implicitly assumed. In this paper we 
propose a very special   interpretation of  the  sample 
keyword which not  only  leads   to  models   in accord 
with  our  asynchronous   framework  but   assures   syn­
chronism among sample generated events.

2. Asynchronous framework

In   the   asynchronous   interpretation  of   the  Modelica 
specification, two events are considered synchronous 
only   if   they   can   be   traced   back   to   a   single   event 
source. For example in the following model:

when sample(0, 1) then
  d = pre(d) + 1;

end when;

when d > 3 then
  a = pre(a) + 1;
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end when;

the   event   d   >   3   is   synchronous   with   the   event 
sample(0, 1). The former is the source of the latter. 
But in

der(x) = x ;

when sample(0, 1) then
  d = pre(d) + 1;

end when;

when x > 3 then
  a = pre(a) + 1;

end when;

the   two   events   are   not   synchronous.   There   is   no 
unique   source   of   activation   at   the   origin   of   these 
events. So these events are considered asynchronous 
even if  the two events are activated simultaneously; 
even if we can prove mathematically that they always 
occur simultaneously.
The basic assumption is that events detected by the 
zero­crossing mechanism of the numerical solver (or 
an equivalent  mechanism used to  improve perform­
ance) are always asynchronous. So even if they are de­
tected simultaneously by  the solver,  by default   they 
are treated sequentially in an arbitrary order. 

3. Special case of sample construct

Under the asynchronous assumption, and by treating 
the  sample  keyword as a macro, the following pro­
gram:

model M
  Boolean b;

  ...

equation
  b = sample(0, 1);

  when f(b) then
    ... g(b)...

  end when;

  ...

end M;

can be expanded as follows:

model M
  discrete time Integer k(start=0);

  Boolean b;

  ...

equation
  when time >= k then
    k = pre(k) + 1;

  end when;

  b = false;

  when change(k) and f(true) then

    ... g(true)...

  end when;

  ...

end M;

This means that we are lead to assume that different 
sample  statements generate asynchronous events (we 
also lose periodicity information contained in the ar­
guments of the sample). For example, in the model:

when sample(0, 1) then
  b = a;

end when;
when sample(0, 1) then
  a = b + 1;

end when;
the variables a and b are evaluated in an arbitrary or­
der and no algebraic loop is detected.. 
Dymola on the other hand assumes that all events are 
synchronous.   In   particular   it   assumes   that   all   the 
equations in both  when  clauses in this example may 
have to be satisfied simultaneously. That is why Dy­
mola finds an algebraic loop in this example. 
This seems reasonable; however Dymola also finds an 
algebraic loop in:

when sample(0, 1) then
  b = a;

end when;
when sample(0.5, 1) then
  a = b + 1;

end when;
when clearly no algebraic loop exists in this model. 

4. Periodicity information

The periodicity information may not be very useful 
for   simulation  but   it   is  precious   for   real­time code 
generation.   It   is   a   lot   easier   to  generate  embedded 
code for a discrete­time system when the system is 
periodic and all   the   timing  information  is  available 

R. Nikoukhah, S. Furic

The Modelica Association 678 Modelica 2008, March 3rd − 4th, 2008



during the code generation process. Consider for ex­
ample the following system, which represents a con­
tinuous time plant with a discrete­time failure detector 
and a reconfigurable controller. Different components 
of the detector/controller mechanism run at different 
frequencies; we say then that the system is multi­rate. 

Consider now the problem of hard real­time code gen­
eration for this mechanism, which contains three basic 
frequencies with periods 0.1, 0.5 and 0.35. The events 
corresponding to these three clocks are synchronized 
at different time instants. In general there could be 7 
different  situations for  which static code generation 
must be performed but in this particular case only 5 
situations come up. The important information to note 
here is that the system will function in a fully periodic 
way and the timing of all the situations can be com­
puted in advance thanks to information on the periods 
(and offsets if any) of the clocks. It turns out that in 
this case, the overall period is 3.5; the timings of dif­
ferent event situations are illustrated below:

To model such a system in Modelica, it is common 
practice   to   assume   synchronism   of   independent 

sample  sources   (this   is   done   in   particular,   by   de­
velopers of the Modelica Standard Libraries) and rep­
resent   each  clock  by  an   independent  sample  state­
ment. 
But in the asynchronous point of view adopted by us, 
following the replacement of the sample macros with 
the corresponding Modelica code as presented previ­
ously, the clocks become asynchronous. In this frame­
work, it is necessary to use a single clock and derive 
the other clocks by sub­sampling; otherwise the beha­
vior of the system will not correspond to the desired 
behavior. 

5. Synchronous sample

We have seen that on one hand it is desirable to con­
sider all independent events to be asynchronous and 
on the other hand, it is convenient to force, depending 
on their arguments, sample generated events as syn­
chronous. 
The type of synchronism considered here has nothing 
to do with the way Dymola enforces synchronism but 
it is rather close to Simulink’s way of handling multi­
rate systems and Scicos’ SampleClk blocks. The idea 
is   to   synthesize   a   basic   clock   at   a   precompilation 
phase so that all the synchronous clocks defined by 
sample  statements can be obtained by sub­sampling 
the basic clock. The computation of the parameters of 
this basic clock is straightforward, see [3] for details. 
Here is a simple example: 

when sample(0, 2) then
  <expr1>;

end when;
when sample(0, 3) then
  <expr2>;

end when;
The periods involved in this case are 2 and 3; the peri­
od of the basic clock is obtained by computing the 
greatest common divisor of 2 and 3, which is 1. The 
overall period in this case is 6, so one way the pre­
compiler could modify the code is as follows:

when sample(0, 1) then
  k = mod(pre(k) + 1, 6);

  if k == 0 then
    <expr1>;
    <expr2>;

  elseif k == 2 or k == 4 then

10 Hz sampling

Observer output

Sliding window

2 Hz

FFT computation

Fault Dection

350 msec

Controllers

Only one active

Period = 3.5
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    <expr1>;

  elseif k == 3 then
    <expr2>;

  end if;
end when;

This way of sub­sampling clocks have already been 
introduced in the Modelica specification (see for ex­
ample the fast sample, slow sample example on page 
81 of [6]).
Going back to our code now, we see that it contains a 
single  sample  keyword so it  is a synchronous code 
(assuming no when constructs are present in the rest 
of the model). The sample construct can now be ex­
panded as previously described. This construction in 
Scicos is referred to as a periodic construction. For 
example going back to the detector/controller model 
from  the   previous   section,   the   period   of   the   basic 
clock would be 0.05 (the greatest common divisor of 
0.1,   0.5   and  0.35)   and  the  periodic   solution  would 
look like the following. Note that the modulo counter 
counts from 0 to 69 because the period is 3.5 and the 
basic clock’s period is 0.05.

An alternative  procedure  consists  of   constructing   a 
vector   of   time   instants   where   events   occur   over   a 
single   period   (in   this   case   [0,2,3,4])   and   generate 
events using independent event sources corresponding 
to time instances which, modulo 6, are mapped to the 
elements of this vector. 
This construction can be more efficient for simulation 
but the periodic solution has the advantage of yielding 
a   synchronous  code.  For   the  detector/controller   ex­
ample, the non­periodic (asynchronous) construction 
looks like the following. To keep the diagram simple 

we have only drawn two of the activation links out of 
possible 7 (actually 5 in this particular case). 

Periodic solutions are also desirable for real­time code 
generation because the embedded code can be driven 
by a hardware fixed frequency clock.

6. Implications of the proposal

By admitting that the asynchronous assumption on in­
dependent event generators is the correct interpreta­
tion, if the special treatment proposed for the sample 
keyword is not used, most discrete­time models in use 
won’t   operate   properly.  The   reason   is   that,   despite 
some recommendations in the language specification, 
synchronism of   independent  sample  sources   is   as­
sumed   by   library   developers   (in   particular,   by   de­
velopers  of   the  Modelica  Standard  Libraries).  This 
practice,  mostly driven by analogy with other prac­
tices frequently encountered in Simulink­based mod­
eling,   conflicts   with   the   asynchronous   assumption 
made in our hybrid model.
To impose synchronism among various discrete­time 
models,   instead of relying on the usage of identical 
sample  keywords, synchronization signals should be 
used. This issue has been discussed in [5] where activ­
ation signals have been introduced.
Even though the use of activation signals is a power­
ful modeling mechanism that should be considered in 
future Modelica, for the special case of periodic event 
clocks, the treatment of the  sample  keyword as pro­
posed in this paper avoids the need for there usage. In­
deed, by assuming this treatment, backward compatib­
ility  for  discrete­time models  would be  guaranteed. 
The precompilation phase makes the necessary modi­
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fications   that  assure  the synchronization of  isolated 
models that are related to each other simply because 
they  include  identical  sample  keywords.  The back­
ward   compatibility   is   also   assured   in   the   case   of 
multi­rate   systems   (when   non   identical  sample 
keywords are present in the model)..

7. Conclusion

We have proposed to interpret the sample keyword in 
Modelica in a special manner in such a way as to as­
sure synchronism between these keywords yet staying 
within the asynchronous framework proposed in [1].

The implementation consists of isolating the  sample 
keywords in the flat Modelica model. If only one such 
keyword is present, then it is transformed as explained 
in the paper. If more than one sample is present in the 
model,   the   necessary   clock   computations   are   per­
formed and all the sample constructs are replaced by 
conditional statements driven by a single  sample, as 
illustrated on an example in the paper. This sample is 
then transformed as in the previous case.
Beside backward compatibility  (no Modelica model 
needs to be altered), allowing the usage of independ­
ent sample keywords to model synchronous multi­rate 
systems  provides  valuable   information   for   real­time 
code generation. However some issues remain to be 
solved with this approach, especially the way sample 
constructs are translated at the type level (they prob­
ably can not be abstracted away during type computa­
tion since the public information they carry may inter­
fere with compatibility checks of models).
Using Modelica for real­time embedded code genera­
tion has great potentials. Unlike most code generation 
environments,   in  Modelica   the   execution   semantics 
can be broken up into very fine grains and manipu­
lated symbolically. In most cases this means that real­
time code can be obtained without having to use pree­
mption. This issue will be examined in a future paper.
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Abstract 

This paper introduces a new Modelica library for 
modeling and simulation of systems with distributed 
parameters in one space dimension.  The resulting 
partial differential equations of either the parabolic 
or hyperbolic types are being converted to sets of 
ordinary differential equations using either the 
method of lines or the finite volume approach.  Some 
simple examples serve to document the utilization of 
the new library. 

Keywords: Distributed Parameter Systems, Nu-
merical PDEs, Method of Lines, Finite Volume 
Method 

1 Introduction  

1.1 History of General-purpose PDE Solvers 

Lumped parameter systems have been successfully 
modeled and simulated using general-purpose simu-
lation software for several decades.  With the advent 
of Modelica, it has become unnecessary to model 
and simulate any physical systems with lumped pa-
rameters using either general programming lan-
guages, like C++, or special-purpose simulation lan-
guages, like Adams or Spice.  Modelica is capable of 
converting any lumped parameter model of a physi-
cal system to executable code that is as efficient in 
its execution as the best manually coded spaghetti 
programs of the past.  Modelica can also successfully 
compete with special-purpose simulation codes, like 
Spice or Adams, in the simulation of electronic cir-
cuits [5] and multi-body systems [15]. 

The modeling and simulation of distributed pa-
rameter systems using general-purpose simulation 
software has not been as successful.  In the 70s and 
early 80s, a number of general-purpose simulation 
codes, like FORSIM VI [4], were developed for the 
purpose of modeling and simulating at least some 

classes of systems with distributed parameters.  
FORSIM VI, for example, was designed for simulat-
ing parabolic PDEs in one or two space dimensions.  
Hyperbolic PDEs could be simulated as well, but the 
resulting simulation code was not as efficient.  Ellip-
tic PDEs could sometimes be converted to equivalent 
parabolic problems using invariant embedding. 

Around the same time frame, another program, 
ELLPACK [11], was developed that was designed 
for solving elliptic PDEs in two or three space di-
mensions.  The ELLPACK project was very ambi-
tious, and the code grew rapidly to a size that made 
the code difficult to use and maintain.  In order to 
make ELLPACK easier to use, the designers of the 
code developed a preprocessor for translating an ab-
stract model description down to a set of Fortran 
subroutine calls.  Yet, as new algorithms were added 
constantly to the software, maintenance of the pre-
processor became soon too difficult.  Hence a com-
piler-compiler was developed that could be used to 
generate a new version of the preprocessor from an 
abstract description thereof.  Yet in spite of all of 
those efforts, the resulting simulation programs were 
highly inefficient at run time. 

Whereas one of the primary mantras of modeling 
and simulation environments is to be able to protect 
the user from having to fully understand the numeri-
cal properties of the underlying solver algorithms, 
this demand could never be fully satisfied when deal-
ing with PDEs. The run-time efficiency of the result-
ing simulation code depends too heavily on the cho-
sen discretization method, and no logic was found 
that could relieve the user from having to make hard 
choices manually. 

Sometimes codes like ELLPACK have been 
used to quickly try out different combinations of al-
gorithms and compare them with each other.  In this 
way, the user could more quickly determine, which 
combination of algorithms might work best.  How-
ever, once this decision has been reached, the final 
code nevertheless had to be hand-coded, because the 
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real problems were not limited to the PDE solvers 
themselves, but more often than not were related to 
how the code dealt with complex geometries, i.e., 
how physical boundary conditions were converted to 
boundary conditions that the PDE solver could make 
use of [14]. 

For all of these reasons, the use of general-
purpose simulation software for the simulation of 
distributed parameter systems became unfashionable 
again.  The researchers dealing with these types of 
systems simply gave up, and most of today’s simula-
tion codes are specially designed codes for very 
small classes of problems only. 

1.2 A Renaissance for General PDE Solvers 

One technique that has proven to be more robust 
than other approaches is the finite element method 
[9].  The success of this technique is based on its 
ability for dealing effectively with complex geome-
tries.  Originally developed for simulating elliptic 2D 
and 3D problems, finite element methods have 
quickly also been adapted to the discretization of 
parabolic and hyperbolic PDEs [12]. 

FEMLAB is a general-purpose numerical PDE 
solver based on the finite element method.  FEM-
LAB was developed in recent years for the simula-
tion of multi-physics applications.  The code is capa-
ble of simulating models involving multiple PDEs 
[13]. 

FEMLAB started out as a MATLAB toolbox.  
Yet, its developers learnt quickly the same truth that 
the ELLPACK developers had learnt before them: a 
general-purpose PDE solver becomes soon unman-
ageable without a preprocessor capable of interpret-
ing an abstract model definition.  They also learnt 
that they needed to offer CAD support for entering 
the device geometry. 

FEMLAB was more successful than ELLPACK, 
in part, because the computers have meanwhile be-
come faster, and in part, because they were less am-
bitious in the sense that they didn’t insist on incorpo-
rating each and every algorithm that has ever been 
developed for the numerical solution of PDEs. 

FEMLAB has recently changed its name to 
COMSOL.  This software represents currently the 
gold standard of general-purpose numerical PDE 
solvers for multi-physics applications. 

1.3 A Role for Modelica? 

Modelica has become the de facto standard for mod-
eling and simulation of physical systems with 

lumped parameters.  Does it have a role to play in 
numerical PDEs also? 

Modelica, or rather its implementations, such as 
Dymola, offer not much that is unique or special 
w.r.t. their simulation engine.  The only feature 
worth mentioning in this respect is a fairly robust 
root solver (discontinuity handler).  The true power 
of Modelica lies in its ability to deal with differential 
and algebraic equations (DAEs) in a very flexible 
and truly object-oriented manner. 

Today’s numerical PDE solvers, including 
COMSOL, offer numerically advanced algorithms, 
but are very primitive w.r.t. their user interface.  The 
complexity and elaboration of the user interface is at 
approximately the same level that the Continuous 
System Simulation Languages (CSSLs) were prior to 
the advent of the CSSL standard [2]. 

Would a language like Modelica have made a 
big impact in the 1960s, had it been available?  The 
answer to this question is no.  The computers of 
those times were far too small and too slow to ade-
quately host a language like Modelica.  The re-
searchers of those days dealt with much simpler 
models, models that could be handled by the tools 
available to them, not because they lacked a better 
understanding of physics, but simply, because their 
computers couldn’t handle more complex models. 

Are distributed parameter problems structurally 
simpler than lumped parameter problems?  The an-
swer to that question is also no.  Physics in general 
deals with 3D fields, and lumped parameter models 
are simply abstractions of distributed parameter 
problems. 

If we wish to bend a pipe, we first heat up the 
area where the pipe is to be bent.  If we were to 
simulate the physics of bending a pipe, we would 
have to solve a 3D distributed parameter problem 
with one PDE describing the heat diffusion problem 
and another PDE describing the mechanical stresses 
and strains within the material.  These PDEs would 
furthermore have to be solved in a geometry that 
changes over time as a function of the numerical so-
lution of the two PDEs. 

Researchers aren’t currently simulating such 
processes, they aren’t dealing with partial differential 
and algebraic equations (PDAEs) yet, because the 
computers of today are too small and too slow to 
adequately handle such problems. 

Yet, it is not too early to ponder about the lan-
guage constructs and numerical algorithms that will 
be needed in support of such endeavors, once the 
computers shall have advanced to a level, where they 
can deal with such models effectively and efficiently. 
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2 PDELib for 1D Numerical PDEs 

Since the Standard Modelica Library doesn’t offer 
any support yet for modeling distributed parameter 
systems, we decided to take a first, and very modest, 
step towards the much larger and more grandiose 
aim outlined in the introduction. 

To this end, we revisited some of the programs 
of the past, in particular FORSIM VI, and decided to 
re-implement some of the algorithms and capabilities 
offered by FORSIM VI in a Modelica experimental 
library.  The results of that effort are being presented 
in this paper. 

In order to keep things simple, we decided to 
limit the tool to the numerical solution of parabolic 
and/or hyperbolic PDEs in a single space dimension, 
the class of 1D numerical PDEs. 

Since 1D PDEs are solved on a straight line be-
tween point A and point B, the geometry plays no 
role yet in these problems.  The spatial discretization 
is straightforward; finite elements aren’t needed or 
even useful yet for the spatial discretization; and the 
resulting simulation code can still be simulated fairly 
efficiently and rapidly using almost any half-way 
suitable numerical algorithm. 

The aim of the project was to create an experi-
mental tool that can be used to study some properties 
of numerical PDEs that haven’t received much cov-
erage yet in the open literature. 

One of the numerical problems to be studied is 
the propagation of discontinuities through a 1D hy-
perbolic PDE.  Such discontinuities cause a new 
class of numerical problems.  Once the discontinuity 
has reached the boundary condition of the PDE, it 
can no longer be isolated in time.  At any moment in 
time, the discontinuity exists somewhere within the 
spatial domain covered by the PDE.  Thus, tradi-
tional event handling cannot be used to deal with this 
type of discontinuities. 

A structural problem to be studied concerns the 
numerical solution of 1D PDAEs.  Can Modelica 
help in translating a 1D PDAE into a simulation code 
that can be simulated effectively and efficiently? 

Two algorithms were implemented in the first 
official release of PDELib: the method of lines [6], 
and a dialect of the finite volumes approach [10]. 

 
 

3 Method of Lines 

Given the 1D diffusion equation: 

 
The method of lines discretizes the spatial deriva-
tives, while keeping the temporal derivatives con-
tinuous.  In a first approximation, we may write: 

 
Plugging Eq.(2) into Eq.(1), we find: 

 
In this way, we have converted a PDE into a stiff set 
of ODEs that can now be simulated using any off-
the-shelf stiff ODE solver, such as DASSL. 

The method of lines is fairly easy to implement. 
The chosen approximation is third order accurate.  If 
the user wishes to use a more accurate approximation 
formula, this can be done easily. 

Care must be taken in a correct implementation 
of the boundary conditions.  As the discretization 
approaches the boundary, biased discretization for-
mulae in place of central formulae must be used in 
order not to make use of grid points outside the 
simulated domain. 

The approach works fairly well, especially in the 
case of parabolic PDEs such as the diffusion equa-
tion.  The spatial discretization of a parabolic PDE 
by means of the method of lines leads invariably to a 
stiff set of ODEs, but modern numerical ODE 
solvers are good at dealing with those. 

This is the approach that FORSIM VI took.  In 
order to relieve the user of having to remember dif-
ferent discretization formulae, FORSIM VI offered a 
set of Fortran subroutines for computing spatial de-
rivatives both in the bulk and in the vicinity of the 
domain boundaries. 

PDELib also hides the details of the discretiza-
tion formulae from the user, but does so using a 
Graphical User Interface (GUI) as shown in Fig.1. 
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Figure 1:  Model of 1D diffusion equation in PDELib 

 
PDELib offers a method-of-lines (MOL) integra-

tor block.  This is a vector integrator block that inte-
grates  the  vector  of  temporal  derivatives,  dui /dt 
(marked as “R” on the integrator block), into the vec-
tor of states, u (marked as “Var”), while considering 
the vector of initial conditions (IC) as well as the left 
and right boundary conditions (BCL and BCR). 

The blue box computes the spatial derivatives.  
In its parameter window, the user can select the ap-
proximation order to be used.  Biased formulae of 
suitable approximation accuracy automatically re-
place the central formulae in the vicinity of the two 
domain boundaries. 

The WorldModel box is used to provide general 
information, such as the grid width of the spatial dis-
cretization. 

Since the diffusion equation with the chosen ini-
tial and boundary conditions has an analytical solu-
tion, that solution is also computed in the block DAN 
for comparison. 

Simulation results are shown in Fig.2. 

 
Figure 2:  Diffusion equation simulation results 

 

Since Dymola hasn’t been designed for simulating 
PDEs, there is currently no support for 3D graphics 
in Dymola.  The graph shows the temperature, u, at 
different space locations as a function of time. 

The analytical results were superposed with the 
simulation results.  In the simulation, the space was 
discretized into 40 segments of equal size.  With 40 
segments, the simulation results are still noticeably 
different from the analytical results. 

 
The MOL approach is less well suited for deal-

ing with hyperbolic PDEs, because their discretiza-
tion leads to marginally stable ODE systems, rather 
than stiff ODE systems.  Unfortunately, the numeri-
cal ODE solvers provided with Dymola and most 
other ODE simulators are not geared to accurately 
integrate marginally stable systems of ODEs. 

The numerical condition of the model can some-
times be improved by using upwind discretization 
schemes [3].  In these schemes, the spatial deriva-
tives are on purpose computed using biased formulae 
also in the bulk.  FORSIM VI and PDELib offer op-
tional upwind discretization schemes. 

4 Finite Volume Method 

Another discretization technique that has been suc-
cessfully applied to numerically simulating hyper-
bolic PDEs is the Finite Volume Method (FVM).  
Just like the MOL technique, also the FVM approach 
comes in many different variants.  Hence it may be 
useful to provide a toolkit that enables a user to 
compose a FVM from a set of component models. 

In one space dimension, the FVM consists in 
subdividing the spatial domain into intervals, also 
called cells or finite volumes.  The integral of the 
unknown function, u, is approximated over each of 
these cells at each time step.  Let us denote the ith 
cell by: 

 
The average value of the function u over this cell 

is then: 

 
How can we estimate the value of Ui?  Consider-

ing the mass conservation law, we note that the aver-
age within the cell can only change due to fluxes at 
the boundaries, assuming that neither source nor sink 
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is present in the cell.  Mass conservation can be ex-
pressed mathematically in the following form: 

 
where f denotes the flux function.  The change of 
total mass inside the cell equals the flux entering the 
cell minus the flux leaving it. 

Let us integrate Eq.(6) over time from t to t+Δt 
and divide the equation by Δt and Δx.  We obtain: 

 
Plugging Eq.(5) into Eq.(7), we obtain: 

 
where: 

 
is the average flux over one time step. 

We can reinterpret Eq.(8) as a discrete approxi-
mation of a differential equation: 

 
Using this simple trick, we have reduced also the 

FVM to a Continuous-Time/Discrete-Space (CTDS) 
method. 

How do we approximate the average flux?  Dif-
ferent approximations have been proposed.  A simple 
approximation is the upwind flux: 

 
i.e., the average flux across a border between cells 
during one integration step is proportional to the av-
erage value of u in the upwind cell. 

5 Examples 

In the following section of the paper, some of the 
models currently available as examples in PDELib 
are shown. 

5.1 Linear Advection Equation 

The advection equation is one of the simplest PDEs 
to be found.  Given a constant speed, c, the linear 
advection equation can be written as: 

 
This problem was encoded using the MOL approach 
with the initial condition: 

 
and with the boundary condition: 

 
applied at the left boundary of the domain.  The 
MOL model is shown in Fig.3. 

 
Figure 3:  MOL model of linear advection equation 

 
Some simulation results are shown in Fig.4. 

 
Figure 4:  MOL simulation of linear advection equation 
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The same problem was also solved using the FVM 
technique with upwind flux computation.  The model 
is shown in Fig.5. 

 
Figure 5:  FVM model of linear advection equation 

 
This model generates the simulation results shown in 
Fig.6: 

 
Figure 6:  FVM simulation of linear advection equation 

 
The index of the FVM solution is off by two seg-
ments due to the ghost cells used in this approach for 
computing the solution in the vicinity of the domain 
boundary [8]. 

5.2 Burger’s Equation 

The inviscid Burger´s equation is the non-linear PDE 

 
If we choose as initial condition: 

 
and as boundary conditions: 

 
the problem has the analytical solution: 

 

The MOL implementation of Burger´s equation 
is shown in Fig.7. 

 
Figure 7:  MOL model of Burger’s equation 

 
Some simulation results are shown in Fig.8. 

 
Figure 8:  MOL simulation of Burger’s equation 
 
The results look excellent, but they are deceiv-

ing.  The simulation here used 20 segments.  Using 
10 segments, the numerical results start deviating 
from the analytical results after only 0.2 seconds of 
simulated time.  With 20 segments, the simulation 
results are more accurate, but the numerical simula-
tion turns unstable after roughly 0.6 seconds.  The 
more segments are being used, the faster the simula-
tion becomes numerically unstable. 

An FVM implementation of Burger´s equation is 
shown in Fig.9. 

 
Figure 9:  FVM model of Burger’s equation 
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In this example, the FVM implementation uses a 
Lax-Friedrichs flux together with Local Double 
Logarithmic Reconstruction (LDLR) [1,7,10]. 

Some simulation results are shown in Fig.10. 

 
Figure 10:  FVM simulation of Burger’s equation 

 
The FVM simulation remains numerically stable 

independent of the number of cells in use.  Unfortu-
nately, the results obtained are less accurate than us-
ing the MOL approach.  The indices are again off by 
two because of the ghost cells. 

6 Conclusions 

What have we accomplished?  We have been able to 
create an experimental library that enables experi-
enced analysts to quickly try out different combina-
tions of algorithms that can be used for the simula-
tion of 1D parabolic and hyperbolic PDEs.  Yet, we 
have failed in our aim to protect the user from having 
to understand the numerical properties of PDE 
solvers. 

We chose a mathematical rather than a physical 
interface to our library, because it makes the tool 
more flexible and more general in its applicability.  
However, it was precisely that decision that made us 
fail in our endeavor of delivering a tool to the end 
user that can be applied blindly and reliably.  This 
simply cannot be done at a mathematical level. 

Yet, this is not a major problem.  Modelica, due 
to its object-oriented philosophy, is good at informa-
tion hiding.  In the future, we shall be able to place a 
physical layer on top of the mathematical layer that 
offers solutions to particular subsets of PDEs, just as 
COMSOL does.  Each physical module then decom-
poses its models internally into a combination of 
modules programmed at the mathematical layer. 

We chose a blocks philosophy for our library.  
Each mathematical model is composed as a block 
diagram.  In the long run, this decision will prove to 
have been a mistake.  We shall need to learn to trust 
Modelica to make the right causality decisions for 

us.  Otherwise, we shall never be able to solve 
PDAEs. 

We had made the same mistake initially in the 
design of MultiBondLib [15], our multi-bond graph 
library.  Initially, we formulated holonomic con-
straints between bodies using blocks from the Blocks 
library.  If we use an adder: 

 
Figure 11:  Adder of the Blocks library 

 
from the Blocks library, we force Modelica to com-
pute y = u1 – u2, but maybe the correct causality 
ought to be u2 = u1 – y.  By using blocks from the 
Blocks library, we are tying Modelica’s hands un-
necessarily, which may lead to situations, where 
Modelica can no longer find a solution to the prob-
lem. 

Yet for the time being, the decision to program 
PDELib using blocks rather than models helped us 
restrict the sources of errors.  During the initial phase 
of the research, the phase of determining the most 
suitable numerical algorithms, the use of blocks may 
be a good thing. 

Finally, Dymola doesn’t offer any support yet 
for 3D graphics.  Although it is possible to export 
simulation results to MATLAB and produce 3D 
graphics using that software, this is a hassle.  Dyna-
sim should develop a 3D graphics package that can 
be used to plot vectors of variables against time.  The 
package should furthermore be tied to the 3D View 
Control window to give the users an opportunity to 
look at their 3D graphs from different angles. 
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Abstract

An extension for cryogenic systems to the AirCondi-
tioning Library by Modelon was used to analyze the 
cool  down  of  a  cryogenic  transfer  system  where 
Linde Kryotechnologie in Pfungen, Switzerland was 
the main contractor. Simulation was used early in the 
design process to make sure that the system was well 
designed for a number of cool-down scenarios. Early 
detection of problematic parts of the system for some 
cool-down sequences lead to changes in the piping 
design. Simulation was also used to assess the maxi-
mum thermal stresses during cool down and deter-
mine suitable mass  flow rates. Proper cool-down se-
quences were established iteratively with the help of 
a  combined  simulation of the cryogenic  two-phase 
flow, the heat conduction in solid structures and the 
resulting thermal stresses. The two main problems to 
avoid  during  cool  down are  (1)  excessive  thermal 
stresses in thick-walled components, and (2) bowing 
of pipes with liquid cryogen in the lower part of a 
long,  horizontal  pipe with  gaseous cryogen  above. 
Two similar systems where considered, one for liq-
uid hydrogen, the other for liquid oxygen. Dymola 
and Modelica were choosen for the project due to the 
good  multi-domain  and  multi-physics  capabilities, 
and the availability of model libraries that covered a 
large part of the problem.
Keywords:  Cryogenics,  two-phase  flow,  transient  
thermal stress simulation

1 Introduction

The Indian Space Research Organization,  ISRO, is 
building and commissioning a new cryogenic engine 
test rig in their Liquid Propulsion Test Centre in Ma-
hendragiri, Tamil Nadu. The system under investiga-
tion is  the  cryogenic  transfer  system for  the  cryo-
genic fluids hydrogen and oxygen, used to transfer 
cryogen  from tankers  into  the  run-tanks  and  from 
both tankers and run tanks to the test  objects.  The 

system is designed for a wide range of pressures and 
flow rates which leads to a rather complex overall 
structure  of  pipes,  valves  and  measurement  equip-
ment. Simulations of the system cool down was used 
early in the design process to validate the design – 
here the main issue is to avoid bowing of dead-end 
pipes – and to find improvement potential from an 
operational point of view. Simulation was also used 
later  on to  establish  suitable  cool-down flow rates 
and valve sequences that fulfill the two main require-
ments: use as little cryogen as possible for cool down 
while not exceeding the maximum allowed thermal 
stresses.   
Obtaining the desired mass flow rates in a transient 
two-phase flow system throughout the system is very 
difficult because of the enormous change in densities 
between gaseous and liquid cryogen: the density ra-
tio can be up to 1:1000. During the filling of the sys-
tem with liquid, deviations between local mass flow 
rates and controlled rates at a valve with one-phase 
inlet conditions can be large. In the situations when 
the control valve is inside the two-phase region, ac-
tual mass flow rates can not be controlled at all.

2 Modeling  of  thermal  stress  in 
cylindrical bodies

The model for thermal stress is based on a radial dis-
cretization of cylindrical  geometries both for  pipes 
and valves. For the bowing phenomenon, also a tan-
gential discretization and, if necessary an axial one 
are added. The energy balance of a cylindrical slice 
of the pipe is based on the Fourier equation with a 
central difference approximation of the temperature 
gradient and takes the temperature dependence of the 
heat capacity and thermal conductivity into account. 
Stresses are computed separately for the stress intro-
duced  through  temperature  gradients  and  the  me-
chanical  stress due to the pressure inside the pipe. 
The stress  vectors  are  summed  to  compute  a  total 
equivalent stress.  The equivalent stress  reaches its 
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maximum value either on the inside of the cylinder 
or  on the  outside of  the cylinder.  The ratio of  the 
maximum equivalent stress and the yield stress is the 
stress ratio. 

The Fourier equation is given by [7],

i

 i

∂T i

∂ t
Cpi

∂Cpi

∂ t
T i

= Ai⋅T i−1Bi⋅T iC i⋅T i1

(1)

Where  i  = 2,  3..  Nr-1 and  Nr is  the discretization 
number of the material in radial direction. The two 
remaining elements are given by the boundary condi-
tions. 

The calculation of the Fourier coefficients, A,  B and 
C for a radial discretization is shown in equation (2). 

Ai=
rir i−1

r i r i−ri−1ri1−r i−1

Bi=
ri1r i

r i r i1−r iri1−r i−1

C i=−Ai−Bi

(2) 

The axial heat conduction in the material is assumed 
to be negligible. 

To obtain the thermal stress distribution, three stress 
components in tangential (Ө), radial (r) and axial (z) 
directions  are  calculated.  The  general  stress  equa-
tions are given by  
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1−r 2⋅

[r 2r i
2

r o
2r i

2∫ri

ro

T r  r dr∫ri

r
T r  r dr−T  r ⋅r 2]

r = E⋅
1− r2⋅

[ r 2−r i
2

r o
2r i

2∫ri

ro T r  r dr−∫ri

r
T r  r dr]
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⋅[2
r o

2r i
2∫ri

ro T r  r dr−T r ]
(3)

where  E is the Young modulus,  α the linear expan-
sion coefficient and υ the Poisson ratio.

By only calculating the thermal  stress  at  the  inner 
and outer points of the wall (the maximum stress of a 
pipe is always at one of these points) the equations 
can be simplified as:


i=

E1⋅1

1−1
⋅[Tm−T  r i]


o=

EN r⋅N r

1−N r 
⋅[Tm−T r o]

 z
i=

E1⋅1

1−1
⋅[Tm−T  r i]

 z
o=

EN r⋅N r

1−N r 
⋅[Tm−T r o]

r
i=0,  r

o=0

(4)

Where  Tm is the mean temperature of the material 
and 1 and Nr refer to the innermost and outermost ra-
dial discretizations respectively.

The effective stress according to Von-Mises theory 
results in (from [7]):

eff =
2 z

2 r
2− ⋅ r ⋅ zr⋅ z

(5)

The stress-ratio is  defined as the  ratio of  effective 
stress to yield stress of the material:

ratio=
 eff

Y
(6)

The two different problems analyzed later in the pa-
per need different discretizations.

1. The thermal stress analysis from cool-down 
requires a two-dimensional model with radi-
al and axial discretizations to capture the lo-
cal thermal stresses along the pipe.

2. The bowing problem requires axial and tan-
gential  discretizations to capture the differ-
ent deformations on the top and bottom of a 
pipe where the bottom is filled with boiling 
liquid and the top is filled with saturated gas. 

Both cases were captured with a single model with 
all  3  discretizations,  where  the  ones  that  were  not 
needed were set to one element.
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3 Flow modeling

For the two-phase flow in the pipes, a standard finite 
volume method assuming homogeneous equilibrium 
flow was used as described in [2] and [3]. Due to the 
partially  violent  transients,  a  dynamic  momentum 
balance has been used for some of the simulations. 
Heat  transfer  needs  to  take  into  account  the  „sub-
cooled boiling” regime, which is important towards 
the  end of  the  cool  down and is  present  during a 
large fraction of the overall cooldown time. Pressure 
drop models are from the standard literature like [4]. 
Properties for  oxygen were implemented according 
to [1], hydrogen properties according to [8], and the 
results  were compared  to  RefProp by NIST which 
contains the same property models.

The main trade-off that has to be taken into account 
is between minimal cryogen consumption for cool-
down and a minimal cool down time. The mass flow 
is restricted by an upper limit, usually determined by 
the maximum allowable thermal stress, and a lower 

limit. The lower limit is defined by the „non-strati-
fied flow” condition. A stable phase separation with 
liquid flow on the bottom of the pipe and gaseous 
flow above it results in differences in the heat trans-
fer rate of about one order of magnitude. They may 
lead to faster cooldown on the bottom of the pipe, 
which may lead to bowing. The limit  for stratified 
flow conditions for cryogens has been investigated in 
[9].  
It could be argued that a homogeneous equilibrium 
model does not capture the physics of the cool down 
flow sufficiently accurate. For the main focus of the 
study, the thermal stress in the thick-walled compo-
nents, it is not necessary to predict the flow and the 
flow-regime exactly (appart from avoiding stratified 
flow conditions),  and  therefore  we  do  not  believe 
that  a  non-homogeneous  flow  would  improve  the 
quality of the results in a way that would justify the 
much higher model complexity.  

4 Low temperature properties

Both the thermal conductivity and the heat capacity 
of metal pipes go to 0 at 0 degrees Kelvin. This has a 

number of surprising effects when the temperatures 
are approaching the lower limits (ca. 20 K for liquid 
hydrogen and ca. 80 K for liquid oxygen): the cold 
parts of metal pipes and valves almost  insulate the 
remaining warmer parts from the cryogen, effective-
ly slowing down the last part of the cool down. 
Fortunately  detailed  data  for  metals  used  in  cryo-
genic  transfer  systems  is  publicly  available  from 
NIST (National Institute for Standards and Technol-
ogy) via their web-based database, see [8]. 

Figure  1: Flow rate which predicts  non-strati-
fied flow conditions for pipeline fluid qualities  
below95% (liquid and gas phase assumed saturated 
at boiling point), from [9]. 

Figure  2: Thermal conductivity  for steel  316L 
as a function of temperature.
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5 Thermal stress results

For the evaluation of thermal stresses, a 10 m long 
pipe with ca 150 mm diameter (DN 150) and ca 8 
mm wall  thickness, material stainless steel  316 for 
oxygen and 304 for hydrogen, directly downstream 
of an open-close  valve that  opens completely in  2 
seconds is investigated. The results for pipes give a 
good understanding for the situation of the complete 
system  as  they  demonstrate  well  the  differences 
caused by the different cryogen properties The up-
stream properties are: 

1. Liquid oxygen of 0.5 MPa at 91 K.
2. Liquid hydrogen of 0.5 MPa at 21 K. 

In both cases, the highest stress is not directly down

3. stream of the valve but a short distance into the pipe, 
at  a  location  where  the  combination  of  high  heat 
transfer coefficient and large ∆T results in the com-
bination with the highest heat flow. The longitudinal 
discretization is  20 segments,  the  radial  discretiza-
tion 10 segments for pipes. 
Different  phases  of  cool down can  be  clearly  dis-
tinguished from the temperature trajectories. The dif-
ference between hydrogen and oxygen cool down is 
also striking,  but  becomes understandable once the 
influences of the different thermophysical properties 
of the fluids and the metals are taken into considera-
tion.  Some of the results  are not  entirely intuitive, 
e.g. that the first part of the pipe has initially lower 
temperature than the downstream parts, but is the last 
part to be cooled down entirely. 

This is explainable from the change of the heat trans-
fer coefficients over time/temperature: obviously the 
first part of the pipe is cooled down faster at the be-
ginning, but the combination of a cold wall  (metal 
conductivity decreases with temperature) and a low 
heat transfer coefficient (the beginning of the pipe is 
exposed  to  single  phase  liquid  flow  at  very  low 
Reynolds numbers). This fact, combined with further 
results omitted here, leads to the result that the cool 
down time is independent of the pipe length for pipe 
lengths less than 50 m. The differences between oxy-
gen  and  hydrogen  cool  down  become  clear  when 
looking in more detail at the required energy for the 
metal cool down and the available specific enthalpy 
differences for cooling in different phases, tabulated 
in Table 1. It is obvious that a much larger part of the 
cooldown is between gas phase and metal for hydro-
gen,  both due to the larger energy content and the 
larger  temperature  difference.  The  gas  phase  cool 
down  has  a  lower  heat  transfer  coefficient  which 

Figure  3: Specific heat capacity for steel 316L 
as a function of temperature.

Figure  5: Temperature over time with different  
phases for a 10m low-pressure pipe during cool  
down with a hydrogen mass flow of 0.25 kg/s at  
control valve.

Figure  4: Temperature over time with different  
phases  for  a  10m  high-pressure  pipe  during 
cool down with an oxygen mass flow of 1.7 kg/s  
at control valve.
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leads to lower stress peaks in the material. Secondly, 
the  rapid  cool-down  with  two-phase  flow  mostly 
happens  after  efficient  pre-cooling  with  cold  gas. 
Overall and against first intuition, cooling down with 
oxygen poses higher risks in spite of the lower tem-
perature  difference.  Note  also  the  temperature 
„bounce-back” of the metal layer in contact with the 
hydrogen  after  the  hydrogen  in  the  pipe  changes 
from two-phase to liquid. This effect is caused by the 
drastic drop in heat transfer  coefficent in the pres-
ence of much warmer outer layers in the pipe metal. 

Material / 
phase

Energy content for complete 
cooldown (from 318 K  to 80 K for 
O2, 20K for H2)

Steel 304 101.5 kJ/kg

Steel 316 94.6 kJ/kg

Total ∆h  H2 4158 kJ/kg

Total ∆h  O2 391.2 kJ/kg

∆h  H2 evap 373 kJ/kg

∆h  H2 gas 3785 kJ/kg

∆h  O2 evap 191.2 kJ/kg

∆h  O2 gas 200 kJ/kg

Table 1: Integrated energy content comparison
The largest source of uncertainty in the evaluation of 
the stress ratio is the occurrence of the „boiling cri-
sis” in two-phase heat transfer at very high heat flow 
rates. Under such conditions, a thin layer of gas at 
the metal wall separates the boiling liquid from the 
metal by an insulating layer, thus drastically reduc-
ing the heat flow and the resulting thermal stresses. 
Correlations for the occurrence of the boiling crisis 
for cryogenic fluids are not very reliable, data only 
exists for non-cryogenic fluids. In addition, the boil-
ing crisis condition for cryogenic cooling occurs at 
(almost) constant temperature of the hot side, which 
is  different  form the  usual  experiments  with  rapid 
heating and rising temperature on the hot side. 

While this means that the exact heat transfer in 
the vicinity of the boiling crisis is difficult, the 
existing correlations can nonetheless be used to 
estimate the highest reasonable heat transfer co-
efficient and thus the worst case scenario for the 
thermal stresses in the metal wall. The results in 
Figure 6 for a high pressure pipe show that the 
combination  of  worst  case  assumptions  (first 
segments  of  pipe  that  is  subject  to  two-phase 
heat transfer from the start and high coefficinent 
of heat transfer) lead to stress ratios close to the 
permissible limit. The stress ratio plot in Figure 
6 also shows that locations further downstream 
are  subject  to  lower  stress  due  to  pre-cooling 
with cold gas. The stress peaks widen and the 
level  decreases  as  the  two-phase  zone  widens 
further  downstream.  A  sensitivity  study  was 
conducted with repect to the most important pa-
rameters for the stress calculation, among others, 
the heat transfer coefficient, and the result was 
that the maximum heat transfer coefficient had a 
negligible effect on the stress ratio. For valves, 
due to the much thicker metal walls, the stress 
ratio  exceeds  1.0  locally  and  for  brief  times. 
Cryogenic  valves  survive these conditions,  but 
the high thermal stress leads to local deforma-
tions and „cold hardening”, but is far from val-
ues that would cause complete material failure. 
While it is not possible to avoid these conditions 
everywhere in the system, the operation of the 
plant can be adapted to minimize the number of 
times and locations  that  are  subject  to  the ex-
treme  conditions.  It  was,  however,  possible  to 
avoid  the  severe  thermal  stress  conditions  for 
valves in the high pressure part of the system. 

Figure  6:  Stress  ration  along oxygen  pipe  di-
rectly after valve without any pre-cooling.  
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6 Pipe Bowing

The calculation of the pipe bending due to the tem-
perature difference at the top and bottom of the pipe, 
when filling with cold liquid, is done with the fol-
lowing assumptions:

• Pipes are considered straight,

• The pipes are fixed at the lower end points 
with a gliding support at one end to compen-
sate for longitudinal length change,

• Both radial and circumferential heat transfer 
is taken into consideration in the wall, axial 
heat transfer is neglected due to axial sym-
metry.

The liquid cross section area in the pipe is calculated 
according to (1):

Aliq=acos 1−
Lliq

r pipe
r pipe

2 Lliq−r pipe

⋅2⋅r pipe⋅Lliq−L liq
2 (1)

The liquid volume is computed from the mass flow 
into the horizontal pipe, assumed to end at a closed 
valve. The mass flow into the pipe is taken from  a 
prior cooldown simulation, at the position of the hor-
izontally connected pipe. 

Simulations  use two heat  transfer  coefficients,  one 
for the part of the wall that is in contact with liquid 
and the other for the part that is in contact with the 
gas. The gas temperature has very little influence on 
the overall result because of the low heat transfer co-
efficient between gas and pipe wall. Due to the boil-
ing liquid underneath it will within short time after 
liquid cryogen is at the bottom reach the saturation 
temperature. 

To calculate the heat transfer to the wall the actual 
liquid level is used to find the length of a discretiza-
tion that is covered by liquid (if any)  and the heat 
transfer is proportional to this value:

Q̇=k liq∗T wall−T liq⋅AHT⋅
Lliq−LDbottom

LDtop−LDbottom

k gas⋅T wall−T gas ⋅AHT⋅1−
Lliq−LDbottom

LDtop−LDbottom


where  AHT is  the  heat  transfer  area,  LDbottom is  the 
length  from  the  bottom  of  the  pipe  to  the  lower 
boundary of a discretization, LDtop is the length from 
the bottom of the pipe to the top boundary of a dis-
cretization, kliq is the heat transfer coefficient when in 
contact with liquid and kgas is the heat transfer coeffi-
cient  when in  contact  with  the  gas.  Note  that  the 
weighted heat transfer area is a linearization of the 
inner pipe area fraction around the middle of a cir-
cumferential section and should thus only be used for 
relatively  high  discretization  (16  were  considered 
sufficient).

When calculating the pipe bending only the length 
change at the top (element 4 and 5 in Figure 5) and 
bottom (1 and 8 in Figure 5) of the pipe is taken into 
consideration.  The  length  change  is  calculated 
through:

 L=L⋅ T wall (4)

where  is the linear expansion coefficient of the 
material.

Lift=r−h                                      (5) 

r= L/2
sin  and sin = z

d (6)

Figure 5: Circumferential discretization of the wall  
(defined by user)
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h= L/2
tan  (7)

(5), (6) and (7) yields,

Lift= L
2
 d

z
− 1

tan
 (8)

If  the lift  would reach high values of  several  cen-
timeters,  the influence of the lift  on the local level 
and  heat  transfer  would  have  to  be  taken into ac-
count, but such values are outside of the permissible 
range anyways.

The  worst  case  encountered  in  the  final  modified 
version of the plant diagram was for a dead end of 
slighly less than 4 m length and a filling time form 
empty to full of about 11 minutes. The worst lift was 
2.8 cm, a tolerable amount, and the worst case stress 
ratio using an equivalent stress from the full three-di-
mensional stress tensor was around 0.45. The length 
of the pipe has the worst effect on bowing as it ef-
fects both the geometry and the exposure time, and 
dead end pipes longer than 4 m would quickly cause 
inacceptable bowing.  

7 Computational effort

For cooldown scenarios of the larger plant segments, 
the computational effort was very high: for the most 
complex segments of the plant cooldown, CPU-times 
of 3-4 days were necessary for each simulation case, 
and most  of the work is spent during the first  few 
seconds of simulation time.  Dymola's version of the 
dassl solver only managed to survive the initial time 
without  error  when  the  option  „equidistant  output 
grid”  was switched off.  This in  turn lead to result 
files  of  around 1GB that  could not  be  handled by 
Dymola  and  made  postprocessing  very  tedious. 
Overall, for system simulations of the level of com-
plexity  encountered  during  the  cool  down simula-
tions,  We  see  the  following  tool  requirements  for 
large scale system simulations with short periods of 
very sharp gradients:

1. A fine grained control over how many  vari-
ables  are  stored  and  how  often  they  are 
stored that  does not  influence the step-size 
control algorithm.  Dymola's  Dassl is  a  bad 
example of a solver that takes the storage in-
terval into account in a way that lets simula-
tions fail for a small step size to storage in-
terval ratio.

2. Means to influence step size control during 
extreme gradients under short time, or set a 
minimum step size and get warnings in the 

log  when  the  requested  accuracy  was  not 
achieved. 

3. Improved  numerical  debugging  facilities. 
Dymola's current debugging facilities for nu-
merical problems in large models are insuffi-
cient.   

8 Conclusions

Modelica is not primarily known for its strength for 
modeling partial differential equations, but due to its 
suitability for system level simulations, there are sit-
uations in which Modelica and Dymola are an excel-
lent tool even for models that require a full 3-dimen-
sional  PDE  discretization,  under  the  contraint  that 
this only works for simple geometries. In particular 
the heat conduction equation with its simple struc-
ture can be combined with 1-dimensional two phase 
flow for thermal stress calculations.  The key advan-
tage is that it is possible to capture the most critical 
thermal stress situation within a complex plant with-
out the need to resort to co-simulation, or difficult to 
assess assumptions. 
This simulation study regarding cool down of a cryo-
genic transfer system was able to achieve a number 
of goals, in part because simulation was used already 
early in the design process:

1. It was possible to establish design guidelines 
regarding dead pipe ends at closed branches 
of  the  network  to  avoid  pipe bowing.  The 
guidelines  were  incorporated  in  later  revi-
sions of the design.

2. Flow rates  were  optimized  with  respect  to 
the contradictory goals of minimum cryogen 
consumption  and  avoidance  of  stratified 
flow conditions.

3. Simulation  results  allowed  to  devise  cool 
down sequences that substantially decreased 
the thermal  stress for  all  parts  in the plant 
except the parts closest to the tanker used for 
filling.  

There are situations in which there is no possibility 
to  validate  simulations  against  measurements.  In 
spite of that shortcoming, simulation gives important 
insight into system behaviour and even allows to im-
prove  both  system  design  and  system  operation. 
Even quantitative analysis is possible to a certain de-
gree when important parameters are well understood 
and a careful sensitivity analysis  is conducted with 
respect to such parameters.  
Cryogenic plant simulations, even under the violent 
transients  that  occur  during  cool  down of  transfer 
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lines, can be modeled easily with the cryogenic op-
tion of the AirConditioning Library.   
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Andreas Joos∗ Gerhard Schmitz† Wilson Casas
Hamburg University of Technology

Institute of Thermo-Fluid Dynamics‡, Applied Thermodynamics
21071 Hamburg, Germany

Abstract

This paper presents a MODELICA model for a desic-
cant wheel. Desiccant wheels are used in new con-
cepts for air conditioning systems, which can save pri-
mary energy in contrast to conventional systems. This
model is based on a model, which was presented at
the MODELICA Conference 2005 [2], however in this
study the model is improved with a new modeling ap-
proach to represent the wheels rotation. This struc-
tural change made the model faster and able to pro-
duce continuous output in contrast to the one ofCasas
et al., [1, 2]. This was an essential step to enhance
long term simulations of desiccant systems and con-
trol strategies. These simulations are necessary to op-
timize such systems and to evaluate their primary en-
ergy consumption.
Keywords: Modelica; Simulation; Desiccant Wheel;
Air Conditioning; Sorption

1 Introduction

In desiccant air conditioning systems, moist air is de-
humidified by means of a desiccant wheel, see figure 1.
Water vapor is absorbed by desiccant material as hu-
mid air passes through the wheel. Using this tech-
nology, considerable energy savings can be obtained
compared to conventional air conditioning systems. In
[1] a model library has been developed to evaluate the
performance of the desiccant assisted air condition-
ing process, so that different configurations and sys-
tem concepts can be easily realized. Because it is nec-
essary to simulate a period of a year to evaluate an
air-conditioning concept, fast, dynamic models with a
good accuracy are required. All these requirements ar-
gue for MODELICA as modeling language. The main
and most complex component of this library is the

∗email: andreas.joos@tu-harburg.de, Tel:+49 40 42878 3079
†email: schmitz@tu-harburg.de, Tel:+49 40 42878 3144
‡www.tt.tu-harburg.de

Figure 1: Example of an air-conditioning using a des-
iccant wheel

Figure 2: Schema of the old modeling approach [2]

model of the desiccant wheel.
Early approaches for numerical models can be found
in [3, 7, 8]. These model formulations have the disad-
vantage in that they can not handle desiccant materi-
als with discontinuities in their sorption isotherm (e.g.
lithium chloride, LiCl). In [2] a MODELICA model is
introduced to overcome those limitations, see figure 2
for an overview.
This model is discretized in such a way, that a sys-
tem of ordinary differential and algebraic equations is
generated, which can be easily re-configured for dif-
ferent set-up’s. Also new relations for further sorption
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isotherms can be provided without much effort. But
due to the modeling approach of the rotation move-
ment of the desiccant wheel through the two airflows,
every half revolution time a state event in the numer-
ical solver is caused. Thereby the maximal step size
of the solver is restricted. This approach is also only
valid, if the change of the boundary conditions of the
desiccant wheel is insignificant in half a revolution cy-
cle. Considering the field of application, this is a rather
academic aspect. Although the user should be aware
of this fact. Another disadvantage is that the model
produces discrete output variables from a continuous
process. To overcome these handicaps a new model
approach of the coated wheel’s movement through the
airflow was developed, implemented and tested. This
approach was developed during the work on [4].

2 MODELICA Model of Casas et al.

The model ofCasas et al.is described in detail in [2].
This section will only give a short overview of the
model and highlight the structural criteria that were
changed in this work. As shown in figure 2 the im-
plementation in MODELICA is based on control vol-
umes for air (AirCV) and for the desiccant material
(wall_A/B), which can exchange heat and moisture.
MODELICA can only handle ordinary differential
equations with respect to time. Therefore the basic
idea of the first approach was a variable transforma-
tion to express the position of the rotating wheel with
respect to the airflows in terms of time instead of an-
gular position. Among the assumptions made in [2],
three are elementary in this approach:

1. The states are not a function of the wheel’s radius:
ϑ ,x 6= f(R).

2. The variation of boundary conditions during half

a rotation is negligible:∂BC
∂ t

∣∣∣
T
2

≈ 0.

3. The angular velocity of the wheelω is constant

during half a period:∂ω
∂ t

∣∣∣
T
2

≈ 0.

Equation (1a) gives the average outlet temperature of
one airstream. To calculate the integral, the tangential
outlet temperature distribution must be known. This
leads to a tangential discretization of the wheel and
a modeling of the the motion of the discrete pieces
through one airflow into the other. To display this
movement the variable transformation from the angle

Air flow I

Air flow II

Wheel Part I

Wheel Part II

t = ti

t = ti + 1
2T

Airflow I connected to
Wheel Part I and

Airflow II connected to
Wheel Part II

Computingϑ̄(t) =
∫ t
ti

ϑ dt

t−ti

ϑOUT = ϑ̄(ti+ 1
2T),

Airflow I connected to
Wheel Part II and

Airflow II connected to
Wheel Part I

Figure 3: Function principle of the model fromCasas
et al.

φ to the timet is introduced, which leads to equa-
tion (1b).

ϑ̄Air,out =
1
π

π∫

0

ϑ(φ ,t,BC(t)) dφ (1a)

with

t =
φ
ω

=
φ ·T
2π

anddt = dφ

leads to

ϑ̄Air,out =
2
T

t0+ T
2∫

t0

ϑ(t,BC(t)) dt (1b)

The advantage of this formulation is, that the wheel
has only to be split in two halves; one for each air flow.
At the end of half a rotation period, the boundary con-
ditions of the two pieces are switched; the wheel has
performed half a revolution. Figure 3 illustrate this be-
havior.
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Another more process engineering oriented point of
view is that the continuous process of the turning
wheel is represented by batch processes, which each
last half a revolution period.
Among the application restrictions mentioned, this
model has two other drawbacks. First it produces dis-
crete output variables from continuous input values in
contrast to the physical process. And second, as will
be pointed out in section 4.2 the models computing
time is quite large, because it causes everyT

2 a state
event.

3 Structure of the new MODELICA

Model

Based on the restriction of applicability and the large
computing times mentioned in section 2, a new mod-
eling structure has been developed. The basic idea in
this approach is not to perform the variable transfor-
mation, but to use equation (1a). To reach this aim, an-
other way to describe the motion of the wheel through
the air flows had to be introduced.
The construct of the air and desiccant material con-
trol volumes is no longer virtually moved through the
air flow by switching the air connectors every half
rotation period. Instead the control volume are lo-
cally fixed and adesiccant fluidwas introduced, which
flows through thedesiccant CV’s in cross flow to air
flow direction.
Therefore the existing control volumes for air and the
desiccant material were used to build a wheel model
with a discretization in axial and tangential direction.
This modeling approach is sketched in figure 4(a). The
black lines on the wheel should hint to the discretiza-
tion. In contrast to figure 3 the air connectors of theAir
CV are attached to the in- and outlet connectors of the
wheel model. Also the desiccant material models are
connected in series to model the rotation by keeping
thedesiccant fluidin a continuously circulating flow.
Figure 4(b) illustrates how theair and thedesiccant
CV’s interact by exchanging heat and moisture for
modeling the (de-)humidifying the air by the sorbens.
These flows are sketched by the double headed arrows
between the two CV’s. Air flows along the cylinder
axis while the solid passes its CV’s in tangential direc-
tion. These two streams are indicated in figure 4(b) by
the arrows near the two CV’s.
For these purposes adesiccant fluidflow had to be in-
troduced in thedesiccant CVand set in relation to the
revolution speed. This mass flow is computed by equa-
tion (2d), which results of the wheel’s mean circumfer-

ential velocity (2a), the conservation of mass (2b) and
the radial passage area (2c). The area is obtained by
dividing the longitudinal half sectionR·L by the axial
discretizationn.

vDF =
R
2
·ω (2a)

with

ṁ= A ·ρ ·v (2b)

and

A =
L ·R

n
(2c)

leads to

ṁDF,i =
L ·R2 ·ω ·ρDF

2·n (2d)

The densityρDF represents the mass of the carrier ma-
terial for the sorbent divided by the volume of the
wheel, thus including its porosity. This definition was
chosen, because the phase equilibrium calculation uses
the loading of the carrier material with the sorbens and
the loading of the sorbens with water.
As mentioned before, the new wheel model was con-
structed by control volumes for air and desiccant mate-
rial. Casas et al.used for their modelAir CV’s with an
axial discretizationn in flow direction. To include as
much of the existing code as possiblemof theair CV’s
are put side by side to get a control volume, which is
discretized in two dimensions. Each stream tube in
this construct can not directly interact with its neigh-
bors. Listing 1 gives some code snippets to illustrate
the implementation in MODELICA.
There arem instances of the modelAirCV, which
are n times discretizedAir CV. EachAirCV has an
HeatConnector and HumidityConnector in
order to couple it with theDesiccant CV. These con-
nectors are united in the two modelsHeat1Dto2D
andHumidity1Dto2D. The function of these two
models is to provide an×mmatrix of heat and humid-
ity flows respectively, so that an Air2D model can eas-
ily be connected to a two dimensional desiccant ma-
terial model to form half a desiccant wheel. Figure 5
shows the twoAir CV’s connected to twoDesiccant
CV’s, which form a closed loop with a circular flow of
thedesiccant fluid.
The Desiccant CV is constructed using an analog
method. Its model name in the library isSMCV_2D.
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Air flow I

Air flow II

Des. flow

(a) Complete Wheel

Air CV

Desiccant CV

Heat FlowMoisture Flow

Air flow

Desiccant flow
(b) Detail scheme of one element from the
wheel in fig. 4(a)

Figure 4: Scheme of the new modeling approach

It hasn stream tubes, which are discretizedm times.
The mass flow of the virtual fluid is computed in both
SMCV_2D models by equation (2d). The connectors
between theDesiccant CVonly contain the tempera-
ture and the water loading of thedesiccant fluid. The
reason for this is to avoid initialization problems with
a circular incompressible flow. The disadvantage of
this approach is, that the wheel’s rotation direction is
fixed. But this restriction is also true for the real desic-
cant wheel, which was used for the experimental part.
Another simplification of this model is that the entrain-
ment of air from one air flow to the other is not mod-
eled. So the simulation of fast rotating wheels will lead
to errors. But in their application the wheel’s circum-
ferential speed is small in comparison to the velocity
of the air flows.

Listing 1: Excerpt from the Air CV 2D Matrix model

model Air2D
parameter Integer n = 1 "Axial

Discretization";
parameter Integer m = 1 "Tangential

Discretization";
...

AirCV[m] Air(
each n=n,

...
);
MeanValues Mean(m=m);
Heat1Dto2D HeatMatrix(n=n,m=m);
Humidity1Dto2D HumidityMatrix(n=n,m=m

);
AirSplit Split(m=m);

equation
for j in 1:m loop

connect(Split.Outlet[j], Air[j]
.Inlet);

connect(Air[j].Outlet, Mittel.Inlet
[j]);

connect(Air[j].HeatConnector,
HeatMatrix.Heat1D[j]);

connect(Air[j].HumidityConnector,
HumidityMatrix.Hum1D[j]);

end for;
...

end Air2D;

Air CV

Air CV

Desiccant CV

Desiccant CV

Figure 5: Dymola representation of the new modeling
approach

4 Comparison of the two Models

4.1 Results

The model ofCasas et al.contains sorption isotherms
in the medium model for LiCl, which where validated
with measured values. The steady state results of the
whole wheel were checked against the manufacturer’s
data and the transient simulations against the model of
Rau et al.[5]. These isotherms were also implemented
in the desiccant material CVof the new model. To
validate the implementation the test model shown in
figure 6 was used. This model consists of adesiccant
material CVwhich is connected to anAir CV. The des-
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Air CV

Des. CV

Figure 6: Test model for the comparison with the
isotherm data ofRau et al.
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Figure 7: Comparison of a single element of the model
from Casas et al.and the new one

iccant fluid flow is set to zero in this model, so that the
results can be compared to the single blow simulations
done byRau et al.[5] andCasas et al.[1, 2]. Figure 7
shows the results of the three models. It is obvious
that the sorption isotherms implementation in the new
model is equivalent to the model ofCasas et al.. In this
aspect it is adequate, because the mathematical imple-
mentation of those isotherms was already adapted to
the use in MODELICA.

For all results, which are discussed below, models
were used, which contain an instance of a whole des-
iccant wheel model and sources and sinks for the air
flows. One of those test configurations is presented in
figure 8, in this case with the new model.

The accuracy of the new model depends on the tan-
gential discretizationm. The behavior of thedesic-
cant material CVapproaches that of the real wheel as
the computational grid is refined, viz. the more dis-

Figure 8: Test model for comparisons of the whole
wheel model, here with the model form this work
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Figure 9: Influence of the tangential discretization to
the accuracy

crete control volumes are instantiated in flow direc-
tion of thedesiccant fluid. Figure 9 shows standard-
ized outlet temperaturesΘ and water contentsX of the
two air flow through the desiccant wheel model. They
are plotted against the tangential discretizationm. The
reference value is the corresponding simulation result
from a calculation withm= 50. The values were com-
puted from the steady state results from a step response
after 5000 s. It can be seen, that atm = 8 the rela-
tive error is smaller±2%. Later the consequences on
the CPU time will be discussed, but it can be seem
from table 1, that depending on the required accuracy
mshould be chosen as 5 or 8.
Figure 10 shows a detail view on the step response of
an outlet temperature of three test models, one with
the desiccant wheel formCasas et al.and two with
wheel models from this work with different numbers
of tangential CV’s. The complete simulation time was
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Figure 10: Comparison of complete the model from
Casas et al.and the new one

5000 s. The new model produces continuous output
variables in respect to the solver step-size in contrast to
the discrete output of the old one. The model with the
tangential discretization ofm= 8 has a slightly larger
deviation from the one withm= 50 than the model of
Casas et al.. But as will be shown in the next section,
it has a remarkable advantage concerning computing
times. And compared with measurement errors, the
accuracy is sufficient.

4.2 Computing Time

The computing times discussed in this section corre-
spond to calculations on one core of an Genuine In-
tel(R) CPU T2300 @ 1.66 GHz on a laptop with 1 GB
RAM.
Figure 11 shows a comparison in computing time be-
tween the previous approach and the new model. The
old model has no tangential discretization, but has
to modify theconnect statement between the air
flows an the wheel’s control volumes every half period.
Whereas the new one needs to be divided in at least
five to eight parts (m in fig. 11) per control volume to
produce good output values. This leads to the behavior
presented in the plot. The old model produces at every
half revolution time an event while switching the sides,
which wastes computing time while reinitialization of
the equation system. This leads to the nearly linear
characteristic consisting of numerous small steps. The
new model contains a multiple (∼ m times) of equa-
tions compared the the old one, so the computing time
for one step is much higher, but due to the model struc-
ture time steps larger than half the revolution time are
possible. In highly dynamic regions, like the begin-
ning of the plot in figure 11, the computational effort
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Figure 11: Impact of tangential discretizationm on
computing time, compared with the model from [2]

is high, but due to the large time steps in regions with
small gradients, the overall computing time is lower
for the new model with a tangential discretization of
m = 5,8 and 10 for simulation times larger than 300
seconds in this example.
This behavior is expected to lead to a large decrease in
computing time, especially at long time simulations of
air-conditioning systems.
Table 1 gives an overview of the equations, which are
created by the different test models, so the number of
equations is a little larger than in the stand alone wheel
model. The table also shows the computational time of
the test model for a simulation time of 5000 s. Due to
the above mentioned effect of the state events during
the simulations ofCasas et al.’s model, the new model
with m = 5 is nearly 20 times faster even though it
consists of about 10 times the number of equations. In
this case with the old wheel’s test model 4166 state
events occurred during simulation time.

5 Summary and Outlook

Because of the enhancement of the desiccant wheel
model fromCasas et al.a MODELICA model could
be created, which combines good accuracy with ac-
ceptable computing times. It was successfully used in
further work ofApplied Thermodynamics, like [4, 6],
as the heart of a library for desiccant systems. Sev-
eral simulation of complete climate periods were per-
formed as well as studies concerning different con-
trol strategies of those systems. For the analysis of
control strategies the models were exported to Mat-
lab/Simulink to find and optimize control parameters.
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Table 1: Number of equations and CPU time of the
test model against the tangential discretizationm

m No. of equations CPU timea in s

1 1681 ∼ 1
2 3043 ∼ 4
5 7129 20
8 11215 48

10 13939 78
15 20749 186
20 27559 289
30 41179 810
50 68419 2154

Casas et al. 1184 827

aFor a simulation time of 5000 s in Dymola using Dassl

Especially for this part it was very helpful, that the new
model no longer produces discrete output. It was also
possible to adapt the model parameters in such a way
that data from existing air conditioning systems could
be recomputed.

Nomenclature

Latin Symbols

A Area
L Length
m Tangential discretization
ṁ Mass flow
n Axial discretization
R Radius
t Time
T Period
v Velocity
x Water content
X Standardized water content

Greek Symbols

ϑ Temperature
Θ Standardized temperature
ρ Density
φ Angle
ω Angular Velocity

Abbreviations and Subscripts

BC Boundary condition
CV Control Volume
DF Index fordesiccant fluid
i Index for i-th element
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Abstract

This  paper  describes  a  newly  developed  Modelica 
and Dymola based solution for hardware-in-the-loop 
(HWIL) simulation in the food processing industry. 
The solution has been evaluated for potential larger 
scale  deployment  into the  operational  processes  of 
Tetra Pak Processing Systems. The solution consists 
of a real-time enabled model library for liquid food 
processing,  which  is  compiled  into  a  process 
simulator  using  Dymola,  and  custom  developed 
software  for  communication  between  the  process 
simulator and a production PLC control system using 
industry standard OPC protocols.

Keywords: physical modeling and simulation; 
hardware-in-the-loop; liquid food processing; 
process simulation; real-time simulation

1 Introduction

Dynamic simulation of liquid food process lines, e.g. 
pasteurization  lines  in  dairies,  see  Figure  1,  has 
already been practiced in a systematic way by means 
of  the  FoodProcessing  library  (FP),  see  Figure  2. 
This Modelica  [1] and Dymola [2] based dynamic 
model  library  developed  for  in-house  use  has 
previously been reported in [3] (Skoglund, 2003), [4] 
(Skoglund  and  Dejmek,  2006)  and  [5]  (Skoglund, 
2007).  Besides  the  fundamental  laws  of 
conservation, e.g. mass and energy, the model library 

addressed  particular  characteristics  of  liquid  food 
process lines. For example dynamic propagation of 
fluid properties was considered due to the need of 
simulating  start-up  and  shut-down  with  fluid 
changes,  which  are  occurring  frequently  in  the 
addressed applications.
Within  the  operations  of  Tetra  Pak  Processing 
Systems,  the  FoodProcessing  library  was  used  to 
simulate many processes with their control system as 
a tool for development or improvement. Simulation 
was also used as a means for trouble shooting.

Figure  1.  A  typical  dairy  process-line  for 
pasteurization.

In the regular delivery process of Tetra Pak’s order 
handling,  food  processing  units  are  functionally 
tested by running them with water  before they are 
shipped  to  the  customers.  This  is  carried  out  to 
secure high quality of the equipment. The test cannot 
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be carried out before the machine is manufactured, 
which leads to the need of extra time before delivery. 
The test  itself  also requires costly  test  places with 
water,  steam,  electricity,  compressed  air  and  drain 
available.  Also,  water  has  different  properties 
compared to the liquid food that will eventually be 
processed by the unit which means that the test result 
may deviate from real plant performance.
To  enable  shorter  delivery  time  at  a  lower  cost, 
alternatives to this functional test were investigated. 
One of the alternatives is to run real-time hardware-
in-the-loop (HWIL) simulation where the real PLC 
(Programmable Logic Controller) control system is 
connected and run with the process model. Since the 
process  model  enables  simulation  with  not  just 
water,  but  real  fluid  models  the  HWIL simulation 
may  also,  in  some  cases,  be  more  realistic. 
Furthermore,  often  the  normal  water  test  does  not 
include special equipment (centrifugal separators or 
equipment  upstream/downstream)  due  to  practical 
problems.  For  simulation,  this  limitation  does 
seldom  exist.  In  simulation  it  is  also  possible  to 
monitor virtually any dynamic variable in the system 
without the need for sensors, which may be of great 
help to quickly understand and resolve issues.
Furthermore HWIL simulation enables other possi-
bilities, e.g. as a test, validation, and verification tool 
in PLC software development, and operator training 
[6]  (De Prada et  al.,  2003)  and [7]  (Bäckman and 
Edwall, 2005). 
This article describes:

• How the model library  was adapted for real-
time simulation

• How  a  communication  program  was 
developed as a link between the PLC and the 
simulator.

The work was carried out as a project with Tetra Pak 
Processing Systems and Modelon.

2 The “FoodProcessing” library

Since  the  start  of  the  development  of  the 
“FoodProcessing” (FP) library [3] (Skoglund, 2003) 
much more work was spent to address characteristics 
of  liquid food process  lines.  Thus Skoglund et  al. 
(2006) [8] described a way to handle fluid transitions 
in heat exchangers that leads to thermal transients. A 
model  for  axial-dispersed  plug  flow  (ADPF)  was 
also described [9] (Skoglund and Dejmek, 2007) and 
extended to model first-order reaction kinetics [10] 
(Skoglund and Dejmek, 2007). Figure 2 shows the 
FoodProcessing library in the Modelica tool Dymola.

The library has since been used to configure many 
process lines and to investigate various performance 
issues, e.g. product losses. Thus the development of 
a mixing zone was simulated for product filling and 
emptying  in  a  commercial  UHT  line  for  milk 
sterilization  [11] (Skoglund & Dejmek, 2007). The 
result was compared with measured data. 

Figure 2. The FoodProcessing library

The library was also used for trouble shooting and 
testing  new design  ideas,  both  concerning  process 
design and control algorithm. 

3 Real-Time Aspects

The  original  FoodProcessing  library  was  designed 
for  high-fidelity  desktop  simulation  with  variable-
step high-order solvers and many models were not 
suited  for  real-time  simulation.  It  was  decided  to 
translate and adapt the library into a real-time Food-
Processing library (FPRT). The models in FPRT are 
made  to  simulate  robustly  with  fixed-step  solvers 
with a computational  load that  avoids computation 
over-runs  when executed  in  real  time  on  standard 
PC:s.
One major difficulty is the nonlinear equation sys-
tems that appear from the pressure dynamics for pipe 
networks with incompressible fluids. A related diffi-
culty  is  the  effective  structural  change  that  valve 
closing and opening implies on the equation systems. 
The overall system contains stiff modes and requires 
implicit methods for numerically stable integration. 
The inline integration feature of Dymola is used to 
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take advantage of the symbolic reduction and trans-
formation.  To reduce the sizes of the resulting equa-
tion systems an explicit integration routine was intro-
duced by inlining Modelica code in some compon-
ents in the library. (The mixed implicit/explicit inline 
integration in  Dymola does  not  handle  the  present 
type of models.)
Several  numerical  tweaks  were  introduced  to  in-
crease  robustness  [12].  Several  models  have  also 
been  simplified  and  discretization  grids  have  been 
made  smaller.  The  number  of  dynamic  states  has 
been reduced.

4 HWIL Setup

HWIL simulation  is  often  performed on  dedicated 
computers with real-time operating systems and ex-
tensive I/O possibilities.  In  the  present  application 
the solution should be able to run on a standard PC 
with Microsoft Windows operating system with Eth-
ernet  or  automation-bus  communication  with  the 
PLC hardware. This means that hard real-time can-
not be ensured. The sampling rate of feedback con-
trol-loops in the food processing applications are in 
the range of 100 ms or longer,  and sufficient  per-
formance can be met with soft real-time. 

SimLink

OPC

SndRcv

DDE

SndRcv

SAPI

SndRcv

DDE

SndRcv· · ·

PLC OPC/DDE Server dymosim
Executable

dsmodel
DLL

OPC DDE DDE SAPI

alt.

clients

PLC
H/W

PLC
S/W

alt.

Dymola

compilation

Figure 3. Overview of HWIL setup with SimLink 
signal  routing  application,  PLC  communication 
server, PLC hardware or emulated controller, and 
dymosim  executable  or  dsmodel  DLL  process 
simulator.
The HWIL setup consists of a PLC system with con-
trol algorithms and programs, the process simulator, 

and a software to route signals between the PLC and 
the simulator. See Figure 3.

4.1 PLC System

PLC systems are  digital  computers  for  automation 
with extensive support for I/O arrangements and bus 
communication.  The  PLC  computers  host  control 
programs  for  sequence  control  and  sampled  data 
feedback  control  typically  expressed  with  IEC 
61131-3 languages such as ladder diagrams or func-
tion block diagrams.
Tetra Pak work with several suppliers of PLC sys-
tems,  such as Rockwell  Automation,  see  Figure 4, 
and Siemens, and the HWIL solution must support 
them all. Most major systems support the DDE (Dy-
namic Data Exchange) and OPC (OLE for process 
control) technologies for interoperability [13,14]. 

Figure 4. Allen Bradley PLC Controller from Rock-
well Automation.

DDE  is  an  old  technology  for  communication 
between multiple applications under Microsoft Win-
dows.  OPC  is  a  standard  protocol  for  open  con-
nectivity in industrial automation. DDE suffers from 
scalability  and performance issues,  and is  more or 
less being superseded by newer technology. There-
fore, the communication between the simulator and 
the PLC was decided to build mainly on OPC with 
DDE as fallback.
OPC is originally designed for communication with 
HMI  (Human-Machine  Interface)  units,  operator 
panels, and enterprise systems with moderate to low 
requirements  on data  bandwidth.  The standard has 
then evolved to cover a wider class of communica-
tion  tasks  in  industrial  automation.  OPC  supports 
synchronous and asynchronous communication and 
is highly flexible and scalable. OPC is not primarily 
intended for feedback control or communication with 
high-bandwidth hard real-time requirements. With a 
soft real-time performance of about 400 items at a 
rate of about 20-30 ms, or 2000 items at about 100 
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ms it is still deemed sufficient for the present HWIL 
application.
In HWIL simulation the I/O signals in the PLC are 
re-routed from the physical I/O card to memory ad-
dresses associated with OPC items. This means that 
the PLC programs must be extended with a simula-
tion mode to support simulated I/O. 
Some vendors,  such as Rockwell Automation, also 
offer emulators for their PLC computers. This makes 
it possible to also work with SWIL (software-in-the-
loop) with the same setup. 

4.2 Process Simulator

Dymola  supports,  via  the  dymosim  executable, 
stand-alone real-time simulation with DDE commu-
nication. All variables in the model are then avail-
able  as  DDE items for  subscription.  The perform-
ance and scalability issues with DDE mean that al-
ternative solutions have also been investigated. 
One attractive solution is to use a model DLL (Dy-
namically Linked Library) similar to that used in the 
DymolaBlock  that  enables  Dymola  models  to  be 
used in MATLAB/Simulink. This means that an ex-
ternal integration routine is used and the model de-
rivatives and outputs are returned by direct function 
calls.  An  SAPI  (Simulation  Application  Program-
ming Interface) for calling the simulation model as a 
function was therefore developed together with build 
scripts to produce the model DLL. For real-time sim-
ulation the integration routine is a fixed-step explicit 
Euler  with event  management.  The direct  function 
calls  means  that  virtually  all  communication  over-
head is eliminated.

4.3 Signal Routing with SimLink

The number of signals in a HWIL setup may be in 
the range of a few ten for small process modules, to 
several hundred for large processes. The signals rep-
resent  all  sensor  and actuator  values  that  logically 
connects the process with the PLC, but may also in-
clude  values  from  “virtual  sensors”  that  are  not 
available on the real process. The signals may also 
represent alarms and warnings from the model com-
ponents,  for example to alert  the user of operating 
points outside the range of validity.
A core component in the HWIL setup is the organiz-
ation and synchronization of the signal routing. The 
SimLink software described in the following was de-
veloped for this purpose. 
SimLink can be viewed as a coupling panel where 
input  and  output  signals  from different  clients  are 
connected or  linked via  a  graphical  user  interface. 

SimLink is a Windows application and builds on the 
Microsoft  .NET Framework  and  is  based  on  OPC 
Core Components and OPC .NET API 2.0. SimLink 
is configured by specifying a set of clients, defining 
their signals, and then connect the signals by introdu-
cing links, see Figures 5 and 6. The configuration of 
clients, signals and links can be saved to a configura-
tion file, that later can be loaded into the application. 
This makes it easy to maintain different configura-
tion  setups.  The  configuration  file  contains  all  in-
formation  of  the  setup,  and  is  stored  in  a  human 
readable XML format. 

Figure 5. The Links view displays details on signal 
links and offers a convenient user interface for con-
necting clients.

Figure 6. The Clients view gives an overview of con-
figured clients and signals. Signals can be monitored 
and manipulated in run mode.

 

When the setup is finished, the next step is to con-
nect to the clients. The application then makes sure 
that  it  has valid connections to all  clients and that 
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they are ready to send and receive signals. After con-
necting, the application is ready to go into run mode, 
and this is done by clicking the  play-button. In run 
mode, SimLink is listening to all signals sent to the 
clients  from  external  applications  and  internally 
routes them through the links to clients connected to 
the  receiving  applications.  Run  mode  is  ended  by 
clicking the stop-button.
SimLink currently supports the client types listed in 
Table 1. Figures 7 – 9 shows the properties dialogs 
for the DDE, OPC, and SAPI client types.

Table 1. SimLink client types.
Client type Description
DDE Connects  to  programs  that  support 

Windows DDE.
OPC Connects to programs with an OPC 

server
SAPI DLL The  simulation  model  resides  in  a 

DLL that  is  loaded  into  the  client. 
The client contains the simulation al-
gorithms and communicates with the 
model through a direct function API 
(SAPI).

Internal Signal sink for testing purposes.
Trigger Signal  source  that  generates  output 

signals at a specific rate.

Figure 7. Properties for DDE client.

Figure  8.  Properties  for  OPC 
client.

Figure  9.  Properties  for  SAPI 
client.

The SimLink OPC client is to date verified to sup-
port  PLC systems  from Rockwell  Automation  and 
Siemens.

5 Process Examples

The process line that was chosen for the evaluation 
of  the  real-time  HWIL  simulation  was  a  custom 
designed  commercial  processing  module  for  dairy 
pasteurization1,  see also Figure 1. Figure 10 shows 
the  top-level  model  diagram  (flow  chart)  as 
configured by using the library FPRT. 
The process consists of a balance tank, a plate heat 
exchanger for pre-heating and pasteurization, a de-
aerator, a homogenizer, holding cell, steam-powered 
hot-water unit, and pumps, valves, and sensors being 
monitored and controlled by the PLC system. The 
process supports a number of operating modes, e.g., 
start-up,  production,  cleaning,  and  hibernation, 
which have different flow configurations.

1 Tetra Therm Lacta, designed and manufactured by Tetra 
Pak Processing Systems.
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Figure 10. Flow diagram of the process line used to 
evaluate  real-time  HWIL  simulation.  The  model  is 
built  in a hierarchy. The figure shows the top level 
view.

Figures 11 and 12 show the PLC operator panel that 
is used to control and monitor the process. 

Figure 11. An overview picture of the PLC operator 
panel.

6 Results

The  described  HWIL  solution  is  being  evaluated 
both  from  a  business  perspective  and  a  technical 
perspective.  Technically,  the  presented  solution 
seems to  fulfil  all  given  requirements.  There  have 
been  a  number  of  minor  issues  that  have  been 
resolved,  but  the  core  solution  design  and 
architecture  has  shown to  be  sound,  scalable,  and 
extensible. 

Figure 12. PLC operator panel showing the perform-
ance of a PID controller regulating a simulated pro-
cess.

A  HWIL  simulation  setup  was  prepared  for  the 
process  module  described  in  Section  5  with  its 
production PLC system from Rockwell Automation 
(hardware  and software).  A number  of  evaluations 
were  arranged  where  the  HWIL  testing  procedure 
was  compared  with  the  traditional  water  testing 
described in Section 1. The tests were built on cases 
from  water  testing  of  actual  units  delivered  to 
customers and now in production. The models and 
PLC programs were rigged with a set of faults from a 
database  and  testing  personnel  then  performed  an 
HWIL  testing  to  see  if  these  faults  would  be 
identified.  The  protocols  from  this  HWIL  testing 
reported all  or  most  problems also found in  water 
testing, and then some additional that was not found 
in  water  testing.  The  results  so  far  indicate  that 
HWIL simulation may indeed replace water testing 
and also result in better test coverage. 
One  comment  from  the  de-briefing  of  the  test 
personnel was that the simulated process was lacking 
the  noises,  sounds,  vibrations,  and  other  sensory 
information that is used by humans to monitor  the 
process  and  detect  deviations.  Still,  the  overall 
impression  was  that  the  simulator  had  advantages 
over  water  testing.  The  SimLink  software  was 
extended  with  alarm/alert  functionality  to  support 
emulated  sensory  information  from  the  simulation 
model.  A  component  can,  for  example,  trigger  a 
boolean  signal  to  indicate  that  the  fluid  media  is 
boiling.  On the  real  process  this  might  have  been 
detected by noise. In SimLink this triggers an alarm 
that alerts the user of the abnormal situation.
The HWIL setup was also in parallel used for testing, 
validation,  and verification in  development of  new 
PLC control software. The HWIL setup has proven 
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to be very useful to find and identify issues and bugs 
at an early stage. 
There have been some problems with robustness of 
the simulation at complex mode switches. Possibly, 
this will lead to some re-design of the fundamental 
models  of  the  fluid  dynamics.  For  example,  the 
current models are designed for uni-directional flow, 
even though back-flow may occur in transients and 
mode switches.

7 Conclusions

Experiences from the presented solution indicate that 
the Modelica based HWIL technology may contrib-
ute significantly and in a wide range of operations in 
a  business  organization  like  Tetra  Pak  Processing 
Systems. Parts of a larger evaluation effort have been 
performed and indicate that expensive and time-con-
suming water testing may be replaced by simulation. 
Application of the HWIL solution for software de-
bugging has also been done successfully.
Large parts of the FP library have been adapted for 
real-time simulation with the evaluated process mod-
ule. Remaining parts will be adapted as HWIL simu-
lation is introduced for other process modules. 
The SimLink program was designed and developed 
for general HWIL simulation with PLC systems in 
the  process  industry.  It  has  been  continuously im-
proved during the work described in this paper and 
has now become a stable and feature complete core 
component in the HWIL simulation environment.
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Abstract 

Virtual product development allows us to recognize 
and evaluate the characteristics of a new product on 
the basis of simulation at an early stage without hav-
ing to build a physical model. Currently the most, 
widely spread commercial CAE systems do not offer 
direct support to external dynamic simulation appli-
cations. Conversely, dynamic simulation of a de-
tailed model is required to maintain good correlation 
between the behaviour of the real product and its 
virtual counterpart. In this paper it will be presented, 
that using a partially automated workflow a conven-
ient Modelica model translation can be achieved 
from the output of a mechanical CAD system, allow-
ing the final model to be extended independently 
with new elements from other simulation domains, 
considering Dymola-based multi-domain simulation. 
A .NET-based integrated tool for mechatronic model 
editing and online / offline visualization support us-
ing advanced 3D (and stereo) techniques will also be 
emphasized in this article. 

 

Keywords: Pro/Engineer, Mechatronics, Collision, 
Modelica, Dymola Simulation, Stereo, 3D Visualiza-
tion 

1 Introduction 

Virtual engineering offers a completely new aspect 
of product development, as thereby all sections of 
the product life cycle can be independently analyzed 
and in parallel continuously optimized in the virtual 
world. Simulation makes the practical verification of 
the desired behaviour possible in early development 
stages. 

It is very cumbersome to manually create a paramet-
ric simulation model representing a complex product 
that has been designed in a CAD system. Addition-
ally it is often the case that in machine production a 
family of component parts with varying parameters 
has to be designed repeatedly. Nevertheless the 
product planning is usually an iterative practice: 

some internal model parameters must be fine-tuned, 
according to model assessment or verification proc-
esses. This implies that an automated model conver-
sion is highly demanded in order to accomplish a 
good workflow. The designing engineer can inspect 
the behaviour of the given virtual product by utiliz-
ing a dynamic simulation of that. For a convenient 
iterative workflow a solution have to be provided to 
automate the conversion between the standard output 
format of the source CAD system and the input for-
mat of the target simulator. 

In this article it will be presented that using Robot-

Max, our .NET-based mechatronic model authoring 
and visualization application mechanical CAD data 
from the widely-spread Pro/Engineer CAD environ-
ment can be imported, new mechatronic components 
can be added, thus multi-domain Modelica models 
can be generated and the results of the Dymola-based 
multi-domain simulation can be visualized in a con-
venient way, even in 3D stereo using various 3D 
technologies, for example by exploiting autostereo 
monitors, polarizer- or liquid crystal shutter glasses. 

 

2 Translation from CAD data to 

Modelica models 
 

We have interposed an own developed tool into the 
design workflow to achieve automated conversion to 
Modelica models from a Pro/E CAD model assem-
bly (e.g. for mechanics: geometry, mass / inertia pa-
rameters, joints). 

Similar work has been done in [1], but using the 
AutoCAD Mechanical Desktop system, and a differ-
ent, shallower structure of Modelica models. Our 
approach allows a 3rd party to extend the mechanical 
model with additional elements from other engineer-
ing domains in such a way that a designer can still 
change / fine tune parameters in the CAD environ-
ment (and re-export the mechanical model), without 
sacrificing the extra work that another expert might 
have already done within the other model domains, 
where there might be connections to the previous 
mechanical model. 
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2.1 Basic steps of the translation process 
 

There is a large amount of commercial and non-
commercial applications (e.g.: “3D_Evolution” or 
“TransMagic”) available on the market offering na-
tive conversion between common standard (STEP, 
IGES) and other well-known (AutoCAD, CATIA, 
Inventor, Pro/Engineer, SolidWorks, Unigraphics, 
etc.) CAD data formats. Thus without subsequent 
restrictions it is assumed our source data is available 
in the format that our CAD system (Pro/Engineer) is 
able to import. 

The translation from a CAD source file to Modelica 
description needs the following basic steps: 

- Assuming the CAD model has already been im-
ported into Pro/Engineer, you can export the hier-
archy and geometry information of the actual 
model to VRML files simply through a click over 
the File menu “Save as…” command. Note that in a 
general case you get a main hierarchy file and the 
geometries of the subsequent parts in separate 
.WRL files. Geometry information is essential if 
you want to model collision between the parts dur-
ing the simulation (see section 3.1 for further in-
formation). 

- SimMechanics is a single-domain extension of the 
Simulink environment developed by MathWorks, 
and can be used for modelling and simulation of 
mechanical systems. Under Pro/Engineer environ-
ment the freely available Pro/E-to-SimMechanics 
plug-in [2] lets you export the given CAD assembly 
to a single (so called “Physical Modeling XML”) 
descriptor file, which is invented to ease the gen-
eration of SimMechanics models out of Pro/E data 
in an automated way. The result XML file contains 
global hierarchy-, constraint- and physical parame-
ter information (inertia-tensors, masses, etc.), but 
no geometries at all. 

- We developed an application (it is called Robot-

Max) the core logic of which processes the afore-
mentioned XML descriptor file matching with 
VRML hierarchy/geometry files, thus generating an 
internal multibody model out of the CAD informa-
tion. In RobotMax the internal (original) model can 
be extended interactively with various electrome-
chanical elements (e.g.: with parametrical motors 
from a model library: see section 4.1) to form a 
more complex mechatronic (multi-domain) model. 
Finally, our tool is able to export its final mecha-
tronic model to Modelica models using the built-in 
conversion module, and on demand by the same 
time it propagates the geometry to DXF format 
mesh files, in order to use those as visualizing 
shapes in Dymola environment. 

2.2 Building a draft hierarchy out of XML in-

formation 

 

A single “Physical Modelling XML” file enumerates 
all parts (= XML bodies) in the original root CAD 
assembly (= XML subsystem) from which it was 
created. The special RootGround part represents a 
fixed point in the environment. Each normal XML 
rigid body entry contains information about the 
physical parameters (mass, inertia, surface area, vol-
ume, etc.) of the given Pro/E part and has at least 
two coordinate frames in World space: the one that 
defines the location of the centre of gravity (CG) of 
the rigid body, the other that shows the origin trans-
formation of the body’s geometry (CS1). XML bod-
ies can carry any number of additional frames (CS2, 

CS3 …), which all have a unique integer ID: these 
unique numbers are used by us to find the corre-
sponding parts between joints. 

As it was mentioned before, the XML file also con-
tains information about joints, which represent the 
constraints of the original CAD assembly. Each 
XML joint (Ji) has two integer IDs that are uniquely 
referencing two different frames (these are named 
“Base” and “Follower” in a SimMechanics model). 

The special weld joints are used to mount two rigid 
parts together with no degrees of freedom left be-
tween those. There can also be a series of primitive 
joints between two frames, representing various de-
grees of rotational / translational freedom between 
those parts. In the hierarchy this always implies the 
following sequence: “Follower” � “J1” � … � 
“JN” � “Base”, where “a � b” shows that “a” is the 
child of “b” in the hierarchy (i.e. it inherits all trans-
formation from that). Using the XML Joints’ frame 
references you could build a skeleton (a draft hierar-
chy) of XML bodies. Unfortunately this does not 
imply automatically that the final hierarchical model 
is also ready: the geometries of the possibly colliding 
(but point-sized so far) bodies are still missing at this 
point. 

In CAD systems it is quite often the case that more 
parts in an assembly share the same name (you can 
imagine a “template” part that has been used many 
times as a building element). On the contrary, in case 
of the target language Modelica, the variable names 
must be unique inside each model. Via translating 
the mechanical CAD information, a single, pure me-
chanic Modelica model has to be generated first. 
This initial model contains only the parametrical 
bodies and the mechanical joints, which are con-
nected by “connect” Modelica clauses. All exported 
bodies and joints must have an individual, unique 
instance name. 
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As the auto-generation of VRML and XML files are 
independently done, the partially auto-generated 
names inside the result files (e.g.: “Obj01”, “Obj02” 
vs. “Obj”, “Obj-1”) will neither be globally unique 
nor match each other. In order to find the corre-
sponding entities both in VRML and in XML do-
mains, you have to follow a sophisticated procedure. 
This is in the most cases inevitable, because there are 
usually less XML bodies than actual VRML geome-
tries. You must know which geometries form to-
gether a single rigid body, if you want to have a con-
sistent collision handling during the simulation. 

 

2.3 Matching hierarchies in XML and VRML 

domains 
 

All VRML geometry nodes have a homogenous 
transformation matrix (which can arise derived from 
their respective parents, recursively), from which 
you can derive their global pose (position and orien-
tation) in the 3D world. This derived 4x4 matrix is 
also used to transform the local vertices of a given 
VRML shape into the global (World) coordinate sys-
tem during rendering, for example. Fortunately the 
same pose information is also included in XML file 
with CS1 frame of the XML bodies. 

First you have to search for matching the position of 
all CS1 frames (extracted from XML) with an origin 
frame location from VRML geometries being just 
imported. If there are more bodies having the same 
CS1 frame position, you continue filtering the “can-
didates” by differences in CS1 frame orientation. 
Assuming there are still more than one parts with the 
same global pose in CS1 (which is blissfully a rare 
case), you can compare the names of the XML bod-
ies and VRML shapes (namely just their prefixes: 
e.g.: “Obj01” will match with “Obj” or “Obj-1”) to 
find the highly demanded single positive match. It is 
hardly imaginable that there are more parts in the 
CAD assembly with exactly the same pose and 
name. This should indicate that there is an error in 
the source CAD plan. 

It is often the case, that there are subsequent levels in 
the VRML geometry hierarchy: in this case these 
child shapes are to be merged into the same higher 
level geometry. 

After assigning the VRML geometry to the corre-
sponding XML bodies, the final, pure mechanic mul-
tibody model can be finally generated. For this sake, 
the necessary physical parameters (masses, locations 
of CG frames, inertia tensors) have to be substituted 
into the final Modelica actors’ parameters. 

 

3 Expanding the standard Modelica 

library 
 

The Modelica Standard Library is a standardized and 
free package that is developed together with the 
Modelica language by the international Modelica 
Association [8]. The Mechanics Multibody Library 
(MML) is a package in the main library providing 3-
dimensional mechanical components to model me-
chanical systems in a convenient way. 

The MML does not include support for rigid body 
collision handling. Handling contacts between me-
chanical objects can be very important in many dis-
ciplines of mechatronic simulation (e.g.: robot ma-
nipulating tasks). 

 

3.1 Collision Handling 

 

We extended the MML library with support for colli-
sion handling using a spring and damper material 
model, suggested by the article [3], but based on 
more robust Bullet collision library in our recent im-
plementation. We discussed the details of our im-
plementation in [4]. In this section it will be pre-
sented what sort of new Modelica components have 
been developed for this purpose. 

The basic World model in MML represents a global 
coordinate system fixed in 3D space origin. The be-
haviour of the basic World model has been extended 
via inheritance: from the original base model a Colli-

sion Manager (CM) subclass has been inherited that 
is responsible for collision handling in simulation of 
multibody systems. 

The standard Modelica implementation of rigid bod-
ies (see BodyShape component in MML) needed also 
to be extended to handle collision (via communica-
tion with the CM). Our Actor class encapsulates the 
physical kinematic- (pose, velocity and acceleration), 
dynamic- (mass, location of centre of gravity and 
inertia tensor) and material- (stiffness and restitution) 
parameters (also initial values of those) of a rigid 
body. Note that actors don’t have any geometry in-
formation. 

The Shape class extends the Mode-

lica.Mechanics.MultiBody.Visualizers.Advanced.Sha

pe class, offering 3D visualization possibilities in 
Modelica environment. Each Shape instance must 
connect to a single actor with a respective 4x4 trans-
form of local origin of the geometry. These objects 
represent the geometry of the rigid body they con-
nect to. The Collider class is the subclass of Shape, 
which can serve the collision geometry of that part. 
In order to ease the export to Modelica, these classi-
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fications of new shape classes make handling of ge-
ometry orbicular from both the aspect of Modelica 
and RobotMax, our CAD translator application. 

For online, real time visualization support (see sec-
tion 5.3) each Shape instance has a 7 component 
pose vector (3D position + a quaternion orientation) 
simply assigned by their local origin frame’s pose. 
There is a pre- allocated P pose matrix (dimensions: 
7 by N) reserved for the N shape objects, stored in a 
shared memory. The shared memory is implemented 
in a C++ class, is compiled to a DLL and it offers C 
interfaces to Modelica. The columns of P are up-
dated every simulation step by the respective shapes’ 
poses using the external C function invocation set-

Pose( ) from the Shape instances’ Modelica source. 

The singleton Collision Manager instance stores in-
formation about the positions, orientations, angular- 
and linear velocities of all Colliders existing in the 
global collision set. At the initial phase of the simu-
lation each Collider instance reports the CM its ge-
ometry, which cannot change during the simulation. 
The CM updates the external collision forces on each 
colliding shape in each simulation step. These shape 
instances propagate the external collision force 
through their connectors to the respective actor in-
stances. 

Unfortunately the Modelica language specification 
being used at the development time (it was version 
2.2.1) did not allow having a collection containing 
polymorphic references to the instances of a user 
defined class (i.e. abstract models) themselves: our 
Modelica arrays can contain only basic data types. 
This introduces a little performance loss: the CM has 
to store duplicated information in separate arrays 
about the positions, orientations, angular- and linear 
velocities of all shapes existing in the global colli-
sion set. 

Some shapes can be individually excluded from col-
lision handling via disabling their collision flags (for 
example in draft motion tests). On the other hand, 
sometimes it is desired (usually for simplified mod-
els) to allow also pairs of bodies to constantly inter-
penetrate each other during the simulation, without 
any internal tension or force between them. For this 
purpose the user of the extended library can assign a 
matrix to the CM containing the IDs of unwanted 
collider pairs. 

There is a permanent bidirectional communication 
between the colliders and the collision manager. The 
external collision response forces and -torques that 
are calculated and responded by the CM, act together 
on the given actors automatically as it was told be-
fore. This is due to the behaviour of bidirectional 
Modelica “connect” equations. 

The Modelica standard has a well-designed interface 
to external software modules [5] (e.g.: Fortan or 
ANSI C: sometimes allowing more powerful algo-
rithm implementation). Accordingly, we were not 
confined to implement the whole collision manager 
class in pure Modelica. For the algorithmic core 
functionality of collision detection and -response 
calculation the C interface could be used: 

For each supported collider shape type a C++ class 
had to be implemented, having parameters similar to 
their Modelica counterparts. These classes are in-
stantiated at the initial phase of simulation: as soon 
as a Modelica Collider is initiated, the corresponding 
C++ constructor is invoked from Modelica code, 
through our C interface wrapper. 

In each simulation step the C++ part of the CM up-
dates the pose of all C++ shapes via their Modelica 
counterparts’ pose, and invokes the main method to 
query the actual collision forces and -torques for all 
active geometry in the scene. In the background the 
free Bullet library [7] is being used to query collision 
information among our rigid bodies (these are being 
treated as independent ones, no joint-constraints are 
introduced here). The penetration checking function-
ality of Bullet is done the following way: 

For each pair of shape types, a certain collision algo-
rithm is assigned, by using an internal dispatcher. 
The collision detection library part of Bullet can re-
trieve contact points between any triangular geome-
try types (for some concave-convex case the primi-
tive geometry types – such as sphere or cylinder – 
need to be tessellated to triangles). The used algo-
rithms are a modified version of the GJK algorithm 
[6] with the EPA - Expanding Polythope Algorithm 
for convex-convex cases, and GIMPACT for the 
cases involving concave geometry. 

Our pair-wise collision response calculation method 
(spring and damper technique: dependent on penetra-
tion velocity, relative motion of colliding parts, ma-
terial stiffness- and restitution parameters) is dis-
cussed in [4]. A single invoke on the external C++ 
library can solve the collision response for the whole 
system at once, thus the external forces on the Mode-
lica colliders can be updated in each simulation step. 

 

3.2 Abstract joint models allowing domain inde-

pendency  
 

Our purpose is to simulate articulated multibody 
mechatronic systems having multiple rigid bodies 
connected by joints. The original test CAD models, 
which we seized to test our conversion process, have 
either no motor information, or this information is 
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not accessible from the outside (i.e. cannot be ex-
ported from) the CAD system. This implies that in 
RobotMax all XML joints will be converted first to 
abstract ones by default (prismatic, revolute and 
spherical joints, or serial combination of those are 
supported in the entire system). Note that spherical 
joints (allowing 3 rotational degrees of freedom in 
their coupling centre point) are always passive: they 
cannot be actuated in the original manner. 

We implemented abstract joint models in Modelica 
for prismatic and revolute joints, which are exactly 
the pure mechanical constraints, representing the 
allowed single degree of translational or rotational 
freedom between their 3D frame connectors. These 
abstract joint models have a one dimensional ‘Drive’ 
flange, as you can see on Figure 1: 

 
Figure 1: Abstract model of a revolute joint 

 

If the ‘Drive’ flange connector is not connected from 
the outside in the container Modelica model, an ab-
stract joint will be equivalent to an ideal, free joint. 
On the contrary, connecting a motor’s drive part to 
the drive flange of these joints makes actuated joints 
in the final mechatronic model. For the details please 
refer to section 4.2. 

Using this abstraction we could decouple the pure 
mechanical model from other electromechanical 
components: these can be exported to a separate top-
level Modelica model. 

 

4 Adding electromechanical compo-

nents to the internal model in Ro-

botMax 
 

Our goal is to support the simulation of the dynamic 
behaviour of the product being designed in the 
source CAD system. Assuming you have a CAD 
model of an industrial robot having a few joints that 
should be actuated by motors, you could easily ask 
what kind of motors should be applied in order to 
achieve a pre-defined speed along the desired path of 
the tool centre point, or to stay below the maximal 
allowed positioning error. 

Unfortunately, we can’t seize so far any description 
of the possibly occurring electromechanical compo-
nents from the Pro/E CAD system, which we could 
embed automatically into the final mechatronic 
model at the end of the conversion process. 

You can say that the requirement of having motors in 
an articulated multibody system is more than desir-
able. Without such elements you could not simulate / 
verify the active dynamic behaviour of a moving 
virtual structure. 

 

4.1 The Motor Library in RobotMax 

 

We developed an XML-based extensible Object Li-
brary that can contain parametric components of any 
modelling domain. The special modelling domain of 
electromechanical components (motors) will be em-
phasized in this section. For example the Motor Da-
tabase inside the Object Library contains motor 
classes (e.g.: DC motors or induction machines) as 
entries. 

Every class in the library has an absolute path refer-
ence to the Modelica implementation of the model 
represented by it. These classes enumerate their pa-
rameters, which all must have a unique name (refer-
ring to their respective variables in the Modelica 
model). Each parameter must also have a type (Float, 
Integer, String, etc.) and a Boolean flag indicating 
whether its actual value is editable by the user. For 
example changing the gear ratio parameter in a final 
motor instance is still allowed. A general parameter 
can also have a physical unit (like ‘Ohm’ or ‘kg·m2’: 
one should use SI standard units, unless it is not 
specified here differently), minimum / maximum 
limits and a descriptive comment optionally. 

 
Figure 2: An example entry in our motor library 

 

Figure 2 shows a screenshot of our library’s browser 
dialog displaying the parameters of our DC perma-
nent magnet motor class. The user can also edit here 
the highlighted gear ratio, before it will be inserted to 
the internal model in RobotMax. 
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The instances of a class are enumerated in the library 
after each class declaration, defining the actual / ini-
tial values for each parameter in all occurring in-
stances. The instances must have a global unique ID 
(a primary key along that column), which is always 
required in a relational database (e.g.: during search-
ing). 

 

4.2 Our actuated joint models in Modelica 

 

For the most mechatronic simulation purposes one 
has to set continuous reference values of the active 
joints in the system (defining position, velocity or 
acceleration parameters of those) in order to make 
the parts follow a pre-defined trajectory. A well-
designed controller should be introduced that mini-
mizes the error between the actual and the reference 
values of each joint in every single moment. 

We implemented 1-1 parametrical, translation- and 
rotation based drive model in Modelica (for pris-
matic- and revolute joints, respectively), which con-
tain a separated control- and actuator part, and is de-
coupled from the given joints’ mechanical part. 
Figure 3 shows our general model for an actuated 
joint: 

 
Figure 3: The schema of our joint drive subsystem 

 

The general “jointDrive” actuator model has a re-
placeable motor and gear component. If a component 
is declared replaceable in Modelica it means that one 
can transparently exchange the implementation of 
this part with another model, unless the given exter-
nal connector interfaces are kept intact. 

As it was told before, the pure mechanical model 
was exported to a separate Modelica text file. As 
long as the names of the joint entries are not chang-
ing, we will find the way to connect the respective 
‘Drive’ connectors in both models. Thus the user can 
experiment with fine-tuning the motor parameters 
and simulate the new model without the need to redo 
the CAD / XML conversion process from the begin-
ning again. 

 

5 Simulation and visualization 
 

The workflow presented so far had been finally ex-
tended with a motion planning task, which can be 
carried out right before the Modelica export step, in 
order to define a continuous-time function in a con-
venient way for each joint’s path. 

 

5.1 Defining motions and simulating the model 
 

RobotMax – our .NET-based CAD translator / envi-
ronment editor application – offers keyframe-based 
motion planning and has built-in support for inverse 
kinematics that was used in the following example to 
model a palette manipulating motion with an indus-
trial robot model. The user can also fine-tune the 
motion by interactively adjusting the values of the 
selected servos. 

The following image sequence shows the three basic 
steps of the CAD to SIM process (in Pro/E � Ro-
botMax � Dymola order), presented so far: 

 
Figure 4: The Dymola simulation of an industrial 
robot-arm designed in Pro/Engineer and converted 

by RobotMax using the presented workflow 
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5.2 Creating test scenarios in RobotMax 
 

The Scene Editor in RobotMax can be used to create 
various static / dynamic scenarios, allowing testing 
the interaction between the actual virtual product 
(that is being designed in CAD) and its environment, 
which is usually modelled separately or is sometimes 
simply neglected. For example a bumpy road can be 
added to the 3D world in case of testing a new car 
suspension assembly. VRML geometry can be im-
ported, or the user can create new static / dynamic 
objects from primitives with the interactive tools in 
RobotMax. The parameters (materials, dimensions, 
positions, etc.) are interactively changeable (in case 
better precision is needed, can be set also manually) 
and the modifications can be undone, thus allowing 
an iterative approach of testing with various scenar-
ios. Multiple viewports and various alignment tools 
are helping you to make the test setup as precise (and 
as informative) as possible. 

 

5.3 Problem of online visualization 

 

The Dymola simulator [9] being used in our project 
has a 3D viewer (animation) support for multibody 
models containing 3D geometry, but has a limited 
functionality and is not user friendly enough. 

If you want to visualize the simulation results from a 
3rd party application while Dymola is running in the 
background, the poses of the various geometries 
have to be gathered and transmitted to the viewer 
application online. Although Dymola stores the out-
put of a simulation in a file (in Matlab® format), this 
file is exclusively locked: thus no other application 
can read from that file until the simulation finishes. 
Another solution had to be found to access pose in-
formation during the simulation. 

 

5.4 Visualization in RobotMax 

 

Our idea to transfer data to a viewer was to query it 
from the shared memory containing the P matrix of 
actual shape-poses (see section 3.1). On a viewer 
side there is usually no need to update the pose of the 
objects after each solver step (e.g.: a step size of 1 
ms would lead to 1000 frames/second required re-
fresh rate). The problem can be turned around: you 
can retrieve (poll) the actual pose of any shape from 
the shared memory at a desired, smaller frequency 
(e.g.: 50 Hz). 

The RobotMax has all functionalities a modern 3D 
viewer application requires, with multiple orthogonal 
or perspective viewports, interactive camera setup 

and built-in support for advanced 3D visualization 
techniques – including real 3D methods such as auto-
stereo (for monitors with lenticular lens layer), time-
interleaved (for liquid crystal shutter goggles), spec-
tral-interleaved (for red-cyan anaglyph spectacles) or 
dual output (for two projectors and polarizer glasses) 
– representing the actual internal model in 3D. For a 
broader overview of these techniques please refer to 
the article [10]. 

If the user switches RobotMax to online visualization 
mode, it polls the pose information for each shape 
continuously and updates the viewports with the pre-
set frequency only. 

In order to be able to inspect the simulation results 
multiple times, there is a support for offline visuali-
zation, of course. A simulation output file can be 
parsed by an external application only after it has 
been completely written and released by Dymola. In 
offline visualization mode RobotMax invokes Dy-
mola with the generated Modelica models (according 
to the process described in Section 2) and waits for 
the lock of the result file to be released. 

The sequences of samples of each simulation signal 
are stored in this file, including input / output vari-
ables, state variables and their derivatives. In Ro-

botMax after parsing all the exported signals into 
memory, the signals belonging to the world trans-
formation matrices are used to setup a keyframe 
animation, which can be sought and played back 
from a desired position at the desired speed. 

 

 
Figure 5: anaglyph mode 3D visualization, screenshot 

 

On Figure 5 a screenshot can be seen that was taken 
in RobotMax showing the red-cyan spectral-
separated anaglyph stereo image of the previous in-
dustrial robot-arm example at initial pose at the very 
beginning of the simulation. 
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6 Conclusion and future work 
 

A highly automated, convenient conversion work-
flow from Pro/Engineer CAD data to multi-domain 
Modelica simulation models has been presented in 
this paper. The relevant online / offline visualization 
methods – with advanced 3D techniques within the 
same integrated tool used for model translation – 
were also discussed here. For a schematic overview 
of the presented workflow see Figure 6. 
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Figure 6: schematic process overview 

 

In our future implementation we will use the 
Pro/ToolKit API to directly access data of other, 
newly added components in Pro/Engineer WildFire 
3, such as springs, dampers and motors, and translate 
these elements also into the final Modelica models. 
Using this interface the functionality of the Pro/E-to-
SimMechanics plug-in can be completely replaced 
later by our implementation. 

There is a free Modelica library – called BondLib, 
available at [11] – for bond-graph represented analog 
electronic circuits, including a full implementation of 
Spice models. The presented CAD conversion proc-
ess can be generalized to introduce complex models 
of electrics / electronics domain, to be converted to 
Modelica. We will investigate the possibilities to 
introduce OrCAD layout plans and P-Spice models 
into our virtual mechatronic workflow. 

In the next version of our RobotMax tool we will 
implement a 2D Plot functionality to be able to in-
spect simulation signals as 2D curves in a given 
viewport. Our collision response calculation in tan-
gential space (which is currently very simplified) has 
to be improved to achieve more realistic friction 
forces and –torques between contacting bodies. 
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Abstract

In the present paper analysis and simulation are per-
formed for a simplest model of a skateboard. We sup-
pose that the rider control is absent during the motion.
Equations of motion of the model are presented and
their stability analysed in brief.
Modelica implementation of the skateboard dynamics
is described as well. Its main featured outlined, and
the verification procedures explained. It is pointed out
the skateboard can behave in dynamical sense likewise
the known example of the rattleback.
Keywords: skateboard; nonholonomic constraints;
normal form; contact models, dynamical verification

1 Introduction

Nowadays the skateboarding, the art of riding on a
skateboard, is one of the most popular sports. Nev-
ertheless serious researches concerning dynamics and
stability of a skateboard are almost absent. At the
late 70th – early 80th of the last century Mont Hub-
bard [1, 2] proposed two mathematical models de-
scribing the motion of a skateboard with the rider. To
derive equations of motion of the models he used the
principal theorems of dynamics. In our paper we give
the further development of the models proposed by
Hubbard to have an additional possibility to verify the
engineering solutions for this type of a vehicle.
Simultaneously to give the further move in field of
the sportswear appliances development we created and
verified a dynamical model of the skateboard. The
model was developed on Modelica, and it is easy to
improve it in different directions to be able to inves-
tigate the regular riding technique or the interesting
tricks performed by the experts while the skateboard-
ing shows.
The skateboard typically consists of a board, two
trucks and four wheels, see Figure 1. The modern

Figure 1: The Skateboard Side View

boards are usually from 78 to 83 cm long, 17 to 21 cm
wide and 1 to 2 cm thick. The most essential elements
of a skateboard are the trucks, connecting the axles to
the board. Angular motion of both the front and rear
axles is constrained to be about their respective non-
horizontal pivot axes, thus causing a steering angle of
the wheels whenever the axles are not parallel to the
plane of the board, see Figure 2. The vehicle is steered
by making use of this kinematic relationship between
steering angles and tilt of the board. In addition, there
is a torsional spring, which exerts a restoring torque
between the wheelset and the board proportional to the
tilt of the board with respect to the wheelset, Figure 3.
We denote the stiffness of this spring byk1.

Figure 2: The Skateboard Top View
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Figure 3: The Skateboard Front/Rear View

2 The Problem Formulation.
Equations of Motion.

We assume that the rider, modeled as a rigid body, re-
mains perpendicular with respect to the board. There-
fore, when the board tilts throughγ, the rider tilts
through the same angle relative to the vertical. Let us
introduce an inertial coordinate systemOXYZ in the
ground plane. LetFR= a is a distance between two
axle centersF andR of a skateboard. The position of
a lineFR with respect to theOXYZ-system is defined
by X andY coordinates of its center and by the angle
θ between this line and theOX-axis, see Figure 4.

Figure 4: The Basic Coordinate Systems.

The tilt of the board causes the rotation of front wheels
clockwise throughδ f and the rotation of rear wheels
anticlockwise throughδr , Figures 2, 4. The wheels of
a skateboard are assumed to roll without lateral slid-
ing. This condition is modeled by constraints, which
may be shown to be nonholonomic

Ẏcos(θ−δ f )−Ẋ sin(θ−δ f )+
1
2

aθ̇cosδ f = 0,

Ẏcos(θ+δr)−Ẋ sin(θ+δr)−
1
2

aθ̇cosδr = 0.
(1)

Under these conditions velocities of a pointsF andR

will be directed horizontally and perpendicularly to the
axles of wheels and there is a pointP on the lineFR
which has zero lateral velocity. Its forward velocity we
denote byu. It may be shown, that (see e. g. [1] – [6])

u =−aθ̇cosδ f cosδr

sin(δ f +δr)
,

FP =
asinδ f cosδr

sin(δ f +δr)
, θ̇ =−usin(δ f +δr)

acosδ f cosδr
. (2)

Using results obtained in [5, 6] we conclude that the
steering anglesδ f andδr are related to the tilt of the
board by the following equations

tanδ f = tanλ f sinγ, tanδ f = tanλ f sinγ, (3)

whereλ f andλr are the fixed angles which the front
and rear axes make with the horizontal, Figure 1. Us-
ing constraints (3) we can rewrite equations (1) as fol-
lows

Ẋ=ucosθ+
(tanλ f − tanλr)

2
usinγsinθ,

Ẏ=usinθ− (tanλ f − tanλr)
2

usinγcosθ.
(4)

Expressions (2) become

FP=
atanλ f

tanλ f +tanλr
, θ̇=−(tanλ f +tanλr)

a
usinγ.

(5)
Suppose that the board of the skateboard is located on
the distanceh above the lineFR. The length of the
board is also equal toa. The board center of mass is
located in its center. As to the rider we suppose that
the rider center of mass is not located above the board
center of mass, but it is located over the central line
of the board on a distanced from the front truck. Let
l be the height of the rider center of mass above the
point P. Other parameters for the problem are:mb is
the mass of the board,mr is the mass of the rider;Ibx,
Iby, Ibz are the principal central moments of inertia of
the board;Irx, Iry, Irz are the principal central moments
of inertia of the rider. We introduce also the following
parameters:

Ix = Ibx+ Irx, Iy = Iby+ Iry, Iz = Ibz+ Irz.

It can be proved, see [5], that the variablesu and γ
satisfy the following differential equations

(
A+(C−2D)sin2 γ+K sin4 γ

)
u̇+(

C−3D+3K sin2 γ
)

uγ̇sinγcosγ+
B

(
γ̈cosγ− γ̇2sinγ

)
sinγ = 0,

Eγ̈+
(
D−K sin2 γ

)
u2sinγcosγ+

k1γ− (mbh+mr l)gsinγ+
B(u̇sinγ+uγ̇cosγ)cosγ = 0.

(6)
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Here A, . . ., E, K are functions of the parameters,
namely

A = mb +mr ,
E = Ix +mbh2 +mr l2,

B =
mbh

2
(tanλ f − tanλr)+

mr l
a

((a−d) tanλ f −d tanλr) ,

C =
mb

4
(tanλ f − tanλr)

2+

Iz
a2 (tanλ f + tanλr)

2+
mr

a2 ((a−d) tanλ f −d tanλr)
2 ,

D =
(tanλ f + tanλr)

a
(mbh+mr l) ,

K =
(tanλ f + tanλr)

2

a2

(
Iy +mbh2 +mr l

2− Iz
)
.

Thus, equations (4–6) form the closed DAE system for
the skateboard motion.

3 Stability of the Skateboard
Straight-Line Motion

Equations(6) have a particular solution

u = u0 = const, γ = 0, (7)

which corresponds to a uniform straight-line motion of
the skateboard. The stability conditions of this partic-
ular solution have the following form [1]-[6]:

Bu0 > 0, Du2
0 +k1− (mbh+mr l)g > 0. (8)

From the first condition of (8) we can conclude that
the stability of motion (7) depends on its direction. If
one direction of motion is stable the opposite direc-
tion is necessary unstable. Such a behavior is peculiar
to many nonholonomic systems. First of all, we can
mention here the classical problem the rattleback mo-
tion (aka wobblestone or celtic stone, see e. g. [7]-[9]).
In this problem the stability of permanent rotations of
a rattleback also depends on the direction of rotation.
Suppose that the coefficientB is positive,B > 0. Then
for u0 > 0 the skateboard moves in “stable” direction,
and foru0 < 0 it moves in “unstable” direction. When
u0 = 0 the skateboard is in equilibrium position on the
plane. The necessary and sufficient condition for sta-
bility of this equilibrium have a form [1]-[6]:

k1− (mbh+mr l)g > 0. (9)

Assuming that condition (9) holds, let us consider the
behavior of the system near the equilibrium position.
Solving equations (6) with respect to ˙u and γ̈ and as-
suming thatu, γ and γ̇ are small, we can write equa-
tions of perturbed motion taking into account the terms
which are quadratic inu, γ andγ̇ as follows

u̇ =
BΩ2

A
γ2, γ̈+Ω2γ =−Buγ̇

E
, (10)

where we introduce the following notation

Ω2 =
k1− (mbh+mr l)g

E
.

Note, that the linear terms in the second equation of
the system (10) have a form which corresponds to
a normal oscillations. For investigation of nonlin-
ear system (10) we reduce it to a normal form [10].
To obtain the normal form of the system (10) first of
all we make a change of variables and introduce two
complex-conjugate variablesz1 andz2 such that

γ =
z1−z2

2i
, γ̇ =

z1 +z2

2
Ω, u = z3.

In variableszk, k = 1,2,3 the linear part of the system
(10) has a diagonal form and the derivation of its nor-
mal form reduces to separating of resonant terms from
the nonlinearities in the right-hand sides of the trans-
formed system (10). Finally, the normal form of the
system (10) may be written as follows

ż1 = iΩz1−
B

2E
z1z3,

ż2 = −iΩz2−
B

2E
z2z3,

ż3 =
BΩ2

2A
z1z2.

Introducing real polar coordinates according to the for-
mulae

z1 = ρ1(cosσ+ i sinσ) ,
z2 = ρ1(cosσ− i sinσ) ,
z3 = ρ2

we obtain from the system (10) the normalized system
of equations of perturbed motion which is then split
into two independent subsystems:

ρ̇1 =− B
2E

ρ1ρ2, ρ̇2 =
BΩ2

2A
ρ2

1, (11)

σ̇ = Ω. (12)

Terms of order higher than the second in (11) and those
higher than the first inρk, k = 1,2 in (12) have been
omitted here.
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In theε-neighborhood of the equilibrium position the
right-hand sides of equations (11) and (12) differ from
the respective right-hand sides of the exact equations
of perturbed motion by quantities of orderε3 andε2

respectively. The solutions of the exact equations are
approximated by the solutions of system (11–12) with
an error ofε2 for ρ1, ρ2 and of orderε for σ over time
interval of order 1/ε. Restricting the calculations to
this accuracy, we will consider the approximate system
(11–12) instead of the complete equations of perturbed
motion.
Equation (12) is immediately integrable, and we obtain

σ = Ωt +σ0.

System (11) describes the evolution of the amplitude
ρ1 of the board oscillations and also the evolution of
the velocityρ2 of a the skateboard straight-line mo-
tion. One can see that this system has the first integral

Eρ2
1 +

A
Ω2 ρ2

2 = An2
1, (13)

wheren1 is a constant, specified by initial conditions.
We will use this integral for solving of the system (11)
and for finding the variablesρ1 andρ2 as functions of
time: ρ1 = ρ1(t), ρ2 = ρ2(t). Expressingρ2

1 from the
integral (13) and substitute it to the second equation of
the system (11) we get

ρ̇2 =
B

2E

(
Ω2n2

1−ρ2
2

)
. (14)

The general solution of equation (14) has the following
form:

ρ2(t) =
Ωn1

(
1−n2exp

(
−BΩn1

E t
))

(
1+n2exp

(
−BΩn1

E t
)) , (15)

wheren2 is a nonnegative arbitrary constant. Now, us-
ing the integral (13), we can find the explicit form of
the functionρ1(t) in the following way

ρ1(t) = 2n1

√
An2

E

exp
(
−BΩn1

2E t
)

1+n2exp
(
−BΩn1

E t
) . (16)

Let us consider the properties of the solutions (15),
(16) of system (11) and their relations to the properties
of the skateboard motion. System (11) has an equilib-
rium position

ρ1 = 0, ρ2 = Ωn1. (17)

These particular solutions can be obtained from gen-
eral functions (15–16) if we suppose in that functions

n2 = 0. An arbitrary constantn1 can be both positive
and negative. The positive values of this constant cor-
respond to the skateboard straight-line motions with
small velocity in “stable” direction and the negative
ones do in “unstable” direction. Indeed, if we linearize
equations (11) near the equilibrium position (17) we
get

ρ̇1 =− B
2E

Ωn1ρ1, ρ̇2 = 0.

Thus, forn1 > 0 the equilibrium position (17) is stable
and forn1 < 0 it is unstable.
Evolution of the functionsρ1 and ρ2 gives the com-
plete description of behavior of a skateboard with
small velocities. Let us suppose, that at initial in-
stant the system is near the stable equilibrium position
(n1 > 0) and ρ2(0) ≥ 0, i. e. n2 ≤ 1. The case of
n1 > 0, n2 > 1 is similar to the case ofn1 < 0, n2 < 1,
which will be investigated below. These initial con-
ditions correspond to the situation correspond to the
skateboard to take the small velocity

ρ2(0) = Ωn1
1−n2

1+n2

in the “stable” direction at initial instant. Then in the
course of time the “amplitude”ρ1 of the board oscilla-
tions decreases monotonically from its initial value

ρ1(0) =
2n1

1+n2

√
An2

E

to zero, while the velocity of a skateboardρ2 increases
in absolute value. In the limit the skateboard moves
in stable direction with a constant velocityΩn1, see
Figure 5–6.

Figure 5: Evolution of the Amplitudeρ1 of the Board
Oscillations in Time for the Casen1 > 0, n2 ≤ 1.

Suppose now that at initial instant the system is near
the unstable equilibrium positionn1 < 0. Suppose
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Figure 6: Evolution of the "Velocity"ρ2 of the Skate-
board in Time for the Casen1 > 0, n2 ≤ 1.

again, that at initial instantn2 < 1, i. e. ρ2(0) < 0.
The casen1 < 0, n2 > 1 is similar to the casen1 > 0,
n2 < 1 which was considered above. These initial con-
ditions correspond to the situation if at initial instant
the skateboard takes the small velocity

ρ2(0) = Ωn1
1−n2

1+n2

in “unstable” direction. In this case the limit of the
system motions is the same as forρ2(0) ≥ 0 but the
evolution of the motion is entirely different. For

0 < t < t∗ =
E ln(n2)
BΩn1

the absolute value of the oscillation “amplitude”ρ1

increases monotonically and the skateboard moves in
unstable direction with decreasing velocity. At the in-
stantt = t∗ the velocity vanishes and the oscillation
“amplitude” ρ1 reaches its maximum absolute value

ρ1(t∗) = n1

√
A
E

.

When t > t∗ the skateboard already moves in stable
direction with an increasing absolute value of its ve-
locity and the oscillation amplitude decreases mono-
tonically. Thus whenρ2(0) < 0 during the time of
evolution of the motion a change in the direction of
motion of the skateboard occurs, see Figure 7–8. The
similar nonlinear effects, like the change of the mo-
tion direction, were observed earlier in other problems
of nonholonomic mechanics, for example in a clas-
sical problem of dynamics of the rattleback [7]-[9]).
Thus, we describe here the basic features of the sim-
plest skateboard model dynamics, proposed in [1, 2]
and developed by us.

Figure 7: Evolution of the Amplitudeρ1 of the Board
Oscillations in Time for the Casen1 < 0, n2 ≤ 1.

Figure 8: Evolution of the "Velocity"ρ2 of the Skate-
board in Time for the Casen1 < 0, n2 ≤ 1.

4 Implementation and Experimental
Validation

Evidently an analytic modeling and a numeric simula-
tion may be useful to predict the dynamical properties
of the sports equipment, the skateboard in our case. To
verify a possibility of the behavior described above,
i. e. an asymmetry property of stability depending on
the rider relocation on the board, an attempt was un-
dertaken to create the model of this device, see Fig-
ure 9.
To achieve the goal announced we used an approach
and components applied earlier to the one else sports
appliance: the snakeboard [11]. However, we have a
serious differences with the snakeboard model now.
First, we used a spheroids of different shapes instead
of ideal disks. That seems more natural and allows
to consider as a wheels more plausible models of the
elastic bodies rolling in future. The main current dif-
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Figure 9: The Skateboard Model Animation

ference is that we applied the Hertz model and its
volumetric modification for the contact of the wheel
and the floor [12]. This made it possible to avoid en-
tirely an application of the compliances artificially in-
troduced to the snakeboard model in [11].
The wheelset model, see in Figure 10 its visual model,
thus equipped by the objects of a simple revolute
joint classFixedJoint instead of the joint model
SpringJoint with elastic compliance along its axis.
The joint connects the wheel with the shaft of the
wheelset axis.

Figure 10: The Wheelset Visual Model

We saw above that in difference with the snakeboard
an axis of the joint connection of the board and the

wheelset is not vertical and allows the rider an effec-
tive possibility to maneuver along the road. Besides to
ensure the stable riding the manufacturers frequently
equip their skateboards by an elastic connections the
wheelset axle and the board. Such a construct includes
two springs of a high stiffness. An example of the
so-called "Seismic" truck invented by D. Gesmer and
M. Haug [13] see in Figure 11. The whole skateboard
visual model including the spring elements is shown
in Figure 12.

Figure 11: The Truck with Springs

Figure 12: The Skateboard Visual Model

The visual model of the spring connection see in Fig-
ure 13. Here tne sideA of a particular spring ele-
ments,Spring1 andSpring2 , is connected with the
wheelset axle model, while theB-sides of these objects
merge to one point producing one total effort. Further
the modelSpring is a usual spatial spring element re-
sisting both the compression and the stretch. Its Mod-
elica code has the following easy to read form:
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model Spring
extends Constraint;
//undeformed spring length
parameter SI.Length l;
//spring stiffness
parameter Real c;
//fixed point on Body A
parameter SI.Position[3] rA ;
//fixed point on Body B
parameter SI.Position[3] rB;
//fixed point on Body A in abs. syst.
SI.Position[3] RA;
//fixed point on Body B in abs. syst.
SI.Position[3] RB;
SI.Length[3] RAB;
SI.Length deltal;

equation
RA = InPortA.r + InPortA.T*rA;
RB = InPortB.r + InPortB.T*rB;
OutPortA.P = RA;
OutPortB.P = RB;
RAB = RB - RA;
deltal = sqrt ((RAB -

l*RAB/ sqrt (RAB*RAB))*
(RAB - l*RAB/ sqrt (RAB*RAB)));

OutPortB.F = -c*deltal*RAB/
sqrt (RAB*RAB);

OutPortB.M = zeros (3);
end Spring;

Figure 13: The Spring Connection Visual Model

Let us continue a description of the skateboard visual
model in Figure 12. It is quite natural for the rider to
be included into the vehicle dynamics. In our case the
rider reduced simply to the cylinder standing perpen-
dicular to the board top surface and being connected

to it rigidly, by the constraint of the classRigid .
A various numeric experiments performed with the
skateboard model under consideration. In particular,
to verify the dynamic effect of the stability of mo-
tion asymmetry, being similar to the stability asym-
metry of the rattleback rotation, the cylinder playing
a role of the rider motionlessly standing on the board
was shifted to the right away from the board masscen-
ter. In this case according to results outlined above if
one pushes the whole skateboard to the right then the
skateboard will keep this motion all the time of simu-
lation. Otherwise, if one directs an initial skateboard
velocity to the left then soon the skateboard would
stop its translatory motion and then will start it to the
right direction thus demonstrating instability of the left
translatory motions, see the board masscenter velocity
x-coordinate depending on the time in Figure 14 and
the corresponding 2D-plot of the board masscenterx-
coordinate itself in Figure 15.

Figure 14: The Skateboard Velocity

Figure 15: The Skateboard Position

Remark that the skateboard model built up turned out
to be quite effective dynamic “toy” allowing to sim-
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ulate the skateboard roll overs, tumbling, jumps, and
bouncing over the road. It is clear to simulate a con-
trol of such motion the rider model has to be far more
complicated.

5 Conclusions

An analytic analysis and numeric experimentation per-
formed on the skateboard dynamics allow us to have
simultaneously several conclusions:

• The analytic analysis results showing acceptable
consistence with the numeric simulations of the
models created using the physical oriented ap-
proach still remains an effective tool to investi-
gate the skateboard dynamics.

• On the other hand the model itself can be veri-
fied reliably enough using the proper constructed
analytical tools.

• Modelica turned out to be useful instrument in
field of sporting and more wider in field of biome-
chanical applications.

And finally the nearest plans for the future work are
about to investigate the complicated types of the skate-
board motion including in particular the jumps.
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Abstract 

Simulation models of complex technical systems 
need beside the description of their physical behav-
iors also a representation of their 3-dimensional ge-
ometry and topology. Up to now, the Modelica lan-
guage specification [1] includes only rules for 2D-
primitives in form of specialized annotations. Start-
ing from this point, this paper illustrates the design 
and validation of an advanced annotation-concept for 
embedded 3D-geometries in physical models. The 
basic idea consists in the combination of specialized 
3D-annotions for classes and objects with a standard-
ized description of 3D-geometries and topologies. 
Therefore the X3D-standard [2] is used by the au-
thors. Based on the founded similarities and parallel-
isms in the object-oriented concept of Modelica and 
the node concept of X3D an annotation concept for 
the embedding of the 3D-geometries was designed. 
Further an extension for the Modelica-simulator 
MOSILAB [3] in form of a 3D-editor plug-in was 
developed for the generation of X3D/Modelica-
scenes and the validation of the new annotation con-
cept. Finally the annotation-concept was evaluated in 
a simulation use case, where the physical model of a 
simplified Pool-Billiard game [4] was combined with 
its 3D-geometry description. 
Keywords: 3D-annotation concept; X3D; 3D-
representation of physical models; 4D-animation  

1 Introduction 

Up to now the Modelica language specification does 
not comprise means of expressions for code inte-
grated description of 3D-geometries. The first fun-
damental analysis and conceptual work in this direc-
tion was done by [5]. Two alternative ways were 
discussed by the author for the integration of 3D ob-
ject information in Modelica:  

1. Definition of a basic set of “graphical classes”, 
which make a representation of primitive 3D ob-
jects (e.g. Triangle, Sphere) and position opera-
tions with this objects (e.g. Translation, Rota-
tion) in user defined physical models possible.  

2. Direct integration of the 3D object information 
as “graphical annotations” into the physical 
models self.  

Further the embedding of external graphical formats 
like STL, VRML or DXF in Modelica models as 
annotations information was shortly discussed in this 
paper. 
The Modelica-simulator Dymola [6] supports with 
an additional software component the visualization 
of 3D-objects, mainly for the MultiBody-Library. 
For this, external definitions of 3D-shapes via dxf-
files are utilized. 
In our approach for a model integrated representation 
of 3D objects, we have introduced Extensible 3D 
Graphics (X3D) - an open international standard for 
3D on the Web and the official successor of VRML -
into the Modelica language as a new annotation-type. 
We think this approach offers a number of important 
advantages: 
• X3D represents a sophisticated (and international 

accepted) concept for complex and hierarchical 
structured 3D-scenes, which fits well to the ob-
ject-oriented Modelica language concept.  

• The prototype-concept of X3D allows an effi-
cient integration in the object-oriented concept 
of Modelica. 

• The annotation concept of Modelica supports the 
X3D integration by adding the 3D-geometrical 
information as X3D-strings on class level or ob-
ject level. Modelica-tools, which don’t under-
stand those X3D-annotations, are not bothered.    

• The use of X3D in Modelica classes enables a 
simple export of the 3D representation of a 
physical model as a X3D-scene. 
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2 Annotation concept for 3D-object 
representation in Modelica 

For the integration and validation of X3D in the 
Modelica language we have done following three 
steps: 
1. Design of an annotation concept for the repre-

sentation of 3D-geometries in Modelica  
This comprises  
• the definition of the language subset of X3D, 

which is necessary for the representation of 
3D-objects in Modelica, 

• the definition of the annotation syntax for 
X3D information,   

• the Modelica class definition of a set of 3D-
primitives as a base for complex 3D-scenes,  

• the rules to instantiate this 3D-classes in 
physical models and  

• a syntax for the coupling between the X3D 
object attributes and the Modelica variables 
for 3D-animated simulation experiments. 

2. Development of a 3D-editor for the generation 
and validation of Modelica models, which 
contain 3D-objects, described in X3D 
This comprises  
• the definition of a set of 3D-base objects and 

their attributes, which shall be supported by 
the editor,  

• the design and the implementation of the 
construction interface for 3D-scenes and 

• the integration of the 3D-editor in the MOSI-
LAB-IDE [3] as a plug-in. 

3. Evaluation of the annotation-concept with the 
help of a use case 
The analyzed system model and its graphical 
representation 
• have to have a nontrivial recursive hierarchi-

cal structured geometry and 
• have to include static and animated sub-

components. 

2.1 Graphical representation in X3D 

The X3D specification uses a hierarchical node con-
cept by the use of the XML-Syntax. A single node is 
described by its node type and a number of fields 
(node attributes). Each field has to be declared with 
one of the 26 X3D data types. The following simple 
X3D-scene, composed of a blue and a red ball, ex-
plains the main features of X3D for our use in the 
context with Modelica. In a first step, a reusable pro-

totype Ball is defined with the ProtoDeclare node. 
The first subnode, named ProtoInterface, contains 
the field declarations, for which values can be set 
during the instantiation of the prototype:  
<X3D profile="Immersive"> 
 <Scene> 
  <ProtoDeclare name="Ball"> 
   <ProtoInterface> 
    <field accessType="initializeOnly"  
    name="radius" type="SFFloat" value="1.0"/> 
    <field accessType="initializeOnly"  
    name="diffuseColor" type="SFColor"  
    value="0.8 0.8 0.8"/> 
    <field accessType="initializeOnly"   
    name="translation" type="SFVec3f"  
    value="0.0 0.0 0.0"/> 
    ... 
   </ProtoInterface> 
 

The second subnode, named ProtoBody, defines the 
functionality of the prototype. The three-dimensional 
geometry of the ball is described by the node for the 
X3D-primitive Sphere and its optical appearance 
(diffuseColor, transparency …) by the Material-
node. The ball position and orientation is defined by 
the Transform-node with the fields translation and 
rotation. Further, the code snippet shows some con-
nections between a nodeField of a subnode within 
the ProtoBody-node and a declared protoField of the 
ProtoInterface-node. This concept makes the access 
to these quantities possible during the instantiation of 
the prototype: 
 
   <ProtoBody> 
    <Transform> 
     <IS> 
      <connect nodeField="translation"  
      protoField="translation"/> 
      ... 
     </IS> 
     <Shape> 
      <Sphere> 
       <connect nodeField="radius"  
       protoField="radius"/> 
      </Sphere> 
      <Appearance> 
       <Material> 
        <connect nodeField="diffuseColor"  
        protoField="diffuseColor"/> 
        ... 
       </Material> 
      </Appearance> 
     </Shape> 
    </Transform> 
   </ProtoBody> 
  </ProtoDeclare> 

 
In the second step, the both objects ballBlue and 
ballRed with the prototype Ball are instantiated, 
whereas the radius value is set on the typical size for 
a billiard ball (2.65 cm) and the diffuseColor value is 
set on the RGB-values for blue and red. The red ball 
is displaced from the origin at 25 cm by setting the 
value of the transform field: 
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  <ProtoInstance name="Ball"> 
   <MetadataString name="ballBlue"/> 
   <fieldValue name="diffuseColor"  
   value="0.0 0.0 1.0"/> 
   <fieldValue name="radius" value="0.0265"/> 
  </ProtoInstance> 
   
  <ProtoInstance name="Ball"> 
    <MetadataString name="ballRed"/> 
    <fieldValue name="diffuseColor"  
    value="1.0 0.0 0.0"/> 
    <fieldValue name="radius" value="0.0265"/> 
    <fieldValue name="translation"  
    value="0.25 0.0 0.0"/> 
   </ProtoInstance> 
 </Scene> 
</X3D> 
 

Figure 1 shows the visualization of this short X3D-
scene. As the example illustrates, X3D has not a real 
object-oriented concept, but the ProtoDeclare-node 
with its ProtoInterface and ProtoBody subnodes has 
strong parallelism to the object composition in Mod-
elica.  

 
Figure 1: Simple X3D-scene with two balls 

2.2 Physical behavior in Modelica 

The Modelica model of the ball describes its physical 
behavior with simplified equations of motion of a 
concentrated mass. Up to now, the model has not a 
representation of its three-dimensional geometry:  
import Modelica.SIunits; 
... 
model Ball 
  parameter SIunits.Mass m = 0.2; 
  parameter Real f_r = 0.05 “friction coeffient”; 
  SIunits.Length x, y; 
  SIunits.Velocity v_x, v_y;  
equation 
  m * der(v_x) = - v_x * f_r; der(x) = v_x; 
  m * der(v_y) = - v_y * f_r; der(y) = v_y; 
end Ball; 

2.3 Integration of X3D in Modelica 

Annotations in Modelica can be used as containers 
for additional information, which have no influence 
on the modeled physical behavior of a model class. 
Well known examples are the definitions of graphi-
cal 2D-objects for the model icons or the model 
documentation in form of embedded html-Code. 
In our concept we have defined a new type of anno-
tations, which contains parts of X3D-scenes as 
strings and give a Modelica-model a representation 
of its 3D-geometry. These annotations are labeled by 
a new element, named Object3D and can be used for 
classes and objects: 
Use in the class context: 
model ClassName  
  annotation(Object3D(x3d="X3D-String”)) 

  ... 

end ClassName; 

 

Use in the object context: 
model ClassName 
  ... 
  ClassType objectname  
    annotation(Object3D(x3d="X3D-String”)); 
  ... 
end ClassName;  
 
At first, based on this syntax, we have defined a set 
of Modelica basic types for the 3D-modeling in the 
package BasicBodies:  
• Sphere3D,  
• Cone3D,  
• Box3D,  
• Cylinder3D,  
• Point3D,  
• PolyLine3D.  
As an example, the following code shows the im-
plementation of the basic type Sphere 3D:  
package BasicBodies 
  model Sphere3D annotation(Object3D(x3d = " 
    <ProtoDeclare name=\" Sphere3D\"> 
     <ProtoInterface> 
      <field accessType=\" initializeOnly\"   
      name=\" radius\" type=\" SFFloat\"    
      value=\" 1.0\"/> 
      <field accessType=\" initializeOnly\"  
      name=\" transparency\" type=\" SFFloat\"   
      value=\" 0.0\"/> 
      <field accessType=\" initializeOnly\"  
      name=\" diffuseColor\" type=\" SFColor\"  
      value=\" 0.8 0.8 0.8\"/> 
      <field accessType=\" initializeOnly\"   
      name=\" translation\" type=\" SFVec3f\"  
      value=\" 0.0 0.0 0.0\"/> 
      <field accessType=\" initializeOnly\"  
      name=\" rotation\" type=\" SFRotation\"  
      value=\" 0.0 0.0 1.0 1.0\"/> 
     </ProtoInterface> 
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     <ProtoBody> 
      <Transform> 
       <IS> 
        <connect nodeField=\" translation\"  
        protoField=\" translation\"/> 
        <connect nodeField=\" rotation\"  
        protoField=\" rotation\"/> 
       </IS> 
       <Shape> 
        <Sphere> 
   <connect nodeField=\" radius\"  
          protoField=\" radius\"/> 
  </Sphere> 
  <Appearance> 
   <Material> 
    <connect nodeField=\" diffuseColor\"  
           protoField=\" diffuseColor\"/> 
    <connect nodeField=\" transparency\"  
           protoField=\" transparency\"/> 
   </Material> 
  </Appearance> 
       </Shape> 
      </Transform> 
     </ProtoBody> 
    </ProtoDeclare>")); 
  end Sphere3D; 
end BasicBodies; 

 
The other basic 3D-types are described in a similar 
manner. Starting from these basic types, the configu-
ration of complex 3D-models in Modelica can take 
place. 

2.4 Coupling of the physical and geometrical 
model description 

The decisive connection between the variables of the 
physical model and field-values of its X3D-
representation is realized by the introduction of the 
annotation-element coupling. The syntax is defined 
as follows: 
 
model ClassName  
  annotation(Object3D(x3d="X3D-String”,  
  coupling(protoFieldName1={v1,v2,0.0}, 
           protoFieldName2={v3}, ...))) 
  ... 
end ClassName; 

 
At this, protoFieldName stands for the field in the 
3D-representation, which shall be updated dynami-
cally during the simulation (e.g. the object position 
or its size or color) and v1, v2, v3 the corresponding 
Modelica variables. Thus, a physical model can have 
a number of coupled protoFields. 
The next code piece shall illustrate this coupling 
concept with the help of the ball example in para-
graphs 2.2 and 2.3. For this purpose, the ProtoInter-
face definition of the X3D description is integrated 
as an annotation on the class level, because this in-
formation concerns only the class interface. The Pro-
toDeclare node is omitted, because this information 
is implicit contained in the Modelica class-name it-
self: 

 
... 
import BasicBodies3D; 
... 
model Ball annotation(Object3D(x3d=" 
  <ProtoInterface> 
   <field accessType=\" initializeOnly\"  
   name=\" radius\" type=\" SFFloat\"  
   value=\" 0.0265\"/> 
   ... 
   <field accessType="initializeOnly"   
   name=\" translation\" type=\" SFVec3f\"  
   value=\" 0.0 0.0 0.0\"/> 
  </ProtoInterface>"), 
  coupling(translation={x,y,0.0}); 
 

The representation of the 3D-geometry of the class 
Ball takes place by the instantiation of the basic 3D-
type Sphere3D as an object within the class: 
 
  BasicBodies3D.Sphere3D ball  
  annotation(Object3D(x3d=" 
    <ProtoBody> 
     <ProtoInstance  
      name=\" BasicBodies3D.Sphere3D\"> 
      <MetadataString name=\" ball\"/> 
      <connect nodeField=\" radius\"  
      protoField=\" radius\"/> 
      ... 
      <connect nodeField=\" translation\"  
      protoField=\" translation\"/> 
     </ProtoInstance> 
    </ProtoBody>"))); 
  parameter SIunits.Mass m = 0.2; 
  parameter Real f_r = 0.05 “friction coeffient”; 
  SIunits.Length x, y; 
  SIunits.Velocity v_x, v_y;  
equation 
  m * der(v_x) = - v_x * f_r; der(x) = v_x; 
  m * der(v_y) = - v_y * f_r; der(y) = v_y; 
end Ball; 

3 Use case Pool-Billard game for 
validating the annotation concept 

In the use case, which shall validate our annotation 
concept for embedded 3D-geometry representations, 
we have used a model of a simplified Pool-Billiard 
game with three balls and one hole [4]. This simula-
tion model suits well to the problem, because its ge-
ometry is hierarchical structured and includes static 
(table) and dynamic sub-components (billiard balls). 

3.1 Modeling process 

In the first step, a leg model (class TableLeg) from 
the billiard table shall be configured from the three 
submodels bottom (type Cylinder3D), adapter (type 
Cone3D) and shaft (type Cylinder3D):  
import BasicBodies.* 
... 
model TableLeg annotation(Object3D(x3d=" 
  <ProtoInterface> 
   <field accessType=\" initializeOnly\"  
   name=\" bottom.height\" type=\" SFFloat\"   
   value=\" 0.025\"/> 
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   <field accessType=\" initializeOnly\"  
   name=\" bottom.radius\" type=\" SFFloat\"  
   value=\" 0.125\"/> 
   ... 
   <field accessType=\" initializeOnly\"  
   name=\" translation\" type=\" SFVec3f\"  
   value=\" 0.0 0.0 0.0\"/> 
   <field accessType=\" initializeOnly\"  
   name=\" rotation\" type=\" SFRotation\"  
   value=\" 0.0 0.0 1.0 0.0\"/> 
  </ProtoInterface>")); 
   
Cylinder3D bottom annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Cylinder3D\"> 
    <MetadataString name=\" bottom\"/> 
    <connect nodeField=\" radius\"  
    protoField=\" bottom.radius\"/> 
    <connect nodeField=\" height\"  
    protoField=\" bottom.height\"/> 
    ... 
    <IS> 
     <fieldValue name=\" translation\"  
     value=\" 0.0 -0.4 0.0\"/> 
    </IS>                                       
   </ProtoInstance>"));   
 
Cone3D adapter annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Cone3D\"> 
    ... 
   </ProtoInstance>")); 
 
  Cylinder3D shaft annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Cylinder3D\"> 
    ... 
   </ProtoInstance>"));   
end TableLeg; 
 

Figure 2 shows the visualization of the previous de-
fined 3D-representation of the TableLeg model class. 

 
Figure 2: 3D-representation of the TableLeg model 
 
On the next hierarchy level the submodels for the 
billiard table model are instantiated from two prede-
fined model classes (TableLeg, Border) and from 
two 3D basic types classes (Box3D, Cylinder3D). 
The model class BillardTable includes the submod-
els for the plate, the borders, the legs and the hole. 
Figure 3 shows the visualization of this table model. 

model BillardTable annotation(Object3D(x3d=" 
  <ProtoInterface> 
   <field accessType=\" initializeOnly\"  
   name=\" hole.height\" type=\" SFFloat\"  
   value=\" 0.081\"/> 
   <field accessType=\" initializeOnly\"  
   name=\" hole.radius\" type=\" SFFloat\"  
   value=\" 0.15\"/> 
   ... 
  </ProtoInterface>")); 
  parameter SIunits.Length width,length; 
   
  Box3D plate annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Box3D\"> 
    <MetadataString name=\" plate\"/> 
    <fieldValue name=\" size\"  
    value=\" 2.54 0.08 1.27\"/> 
    <fieldValue name=\" diffuseColor\"  
    value=\" 0.0 1.0 0.0\"/> 
    <fieldValue name=\" translation\"  
    value=\" 0.0 0.0 0.0\"/> 
   </ProtoInstance>")); 
 
  Border borderUp annotation(Object3D(…)); 
  Border borderDown annotation(Object3D(…)); 
  Border borderLeft annotation(Object3D(…)); 
  Border borderRight annotation(Object3D(…)); 
   
  Cylinder3D hole annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Cylinder3D\"> 
    ... 
    <connect nodeField=\" height\"  
    protoField=\" hole.height\"/> 
    <connect nodeField=\" radius\"  
    protoField=\" hole.radius\"/>     
    <IS><fieldValue name=\" translation\"  
    value=\" 1.26 0.0 -0.635\"/></IS> 
   </ProtoInstance>")); 
               
  TableLeg legDownLeft annotation(Object3D(x3d=" 
   <ProtoInstance name=\" TableLeg\"> 
    <MetadataString name=\" legDownLeft\"/> 
    <fieldValue name=\" translation\"  
    value=\" -1.06 -0.375 0.5\"/> 
   </ProtoInstance>")); 
 
  TableLeg legDownRight annotation(Object3D(…)); 
  TableLeg legUpLeft annotation(Object3D(…));                
  TableLeg legUpRight annotation(Object3D(…)); 
end BillardTable; 

 

 
Figure 3: 3D-representation of the BillardTable model 
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The class SystemModel integrates the static table 
model and the three physical ball models. The physi-
cal model of the simplified Pool-Billiard game shall 
be drafted only roughly in this paper. A detailed de-
scription is given in [4]. The implementation of this 
example was realized with the language extension 
for Modelica for model structural dynamics from the 
GENSIM project [7, 8]. The different events of a 
billiard game (reflections, collisions) and a varying 
number of balls can be efficiently described with the 
concept of object-oriented statecharts and object dy-
namics:    
 
... 
model SystemModel 
  annotation(Object3D(...)); 
  parameter Integer n_balls = 3; 
  parameter Real v_x, v_y; 
  parameter Real d_balls = 0.0572;  
  parameter Real d_holes = 0.15;  
  Point p[n_balls]; 
     
  dynamic Ball bw annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Ball\"> 
    <MetadataString name=\" bw\"/> 
    <fieldValue name=\" diffuseColor\"  
    value=\" 1.0 1.0 1.0\"/> 
    <fieldValue name=\" translation\"  
    value=\" 0.8 0.066 -0.2\"/> 
   </ProtoInstance>")); 
                       
  dynamic Ball bb annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Ball\"> 
    <MetadataString name=\" bb\"/> 
    <fieldValue name=\" diffuseColor\"  
    value=\" 0.0 0.0 0.0\"/> 
    <fieldValue name=\" translation\"  
    value=\" 0.6 0.066 -0.2\"/> 
  </ProtoInstance>")); 
                       
  dynamic Ball bc annotation(Object3D(x3d=" 
   <ProtoInstance name=\" Ball\"> 
    <MetadataString name=\" bc\"/> 
    <fieldValue name=\" diffuseColor\"  
    value=\" 0.0 0.0 1.0\"/> 
    <fieldValue name=\" translation\"  
    value=\" 0.4 0.066 -0.2\"/> 
   </ProtoInstance>")); 
                       
  BillardTable t(width = 1.27, length = 2.54)    
   annotation(Object3D(x3d=" 
   <ProtoInstance name=\" BillardTable\"> 
    <MetadataString name=\" t\"/> 
   </ProtoInstance>")); 
 
  event Boolean disappear_bw(start = false); 
  event Boolean collision_bw_bb(start = false); 
  ...  
equation 
  disappear_bw = 
    if((p[1].x-0.0)^2+(p[1].y-0.0)^2)^0.5<d_holes  
    then true else false;  
  collision_bw_bb =  
    if((p[2].x-p[1].x)^2+(p[2].y-p[1].y)^2)^0.5 
       <d_balls then true else false; 
  ... 
statechart 
  state SystemSC extends State; 
    State startState(isInitial=true); 
    State Playing, GameOver; 
 

  transition Playing->Playing  
    event disappear_bw action 
    disconnect(bw.p,p[1]); remove(bw); 
    bw:=new Ball(d=d_balls, width=t.width, 
                 length = t.length,   
                 x(start = 1.27/2.0), 
                 y(start = 0.6)); 
    connect(bw.p,p[1]); 
  end transition; 
 
  transition Playing->Playing  
    event collision_bw_bb action 
    v_x := bw.v_x; v_y := bw.v_y; 
        bw.v_x := bb.v_x; bw.v_y := bb.v_y; 
        bb.v_x := v_x; bb.v_y := v_y;             
      end transition;    
    end SystemSC; 
  end SystemModel; 

 
Figure 4 illustrates the complete system model with 
the static and dynamic model parts. 
 

 
Figure 4: 3D-representation of the SystemModel  

3.2 Simulation experiment 

 
Figure 5: Simulation experiment for the Pool-Billiard 
game over 4 seconds.  
Figure 5 shows the positions of the white and the 
black ball during a simulation period of 4 seconds. 
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After 0.2 seconds, the white ball collides with the 
black ball. After 1.0 second, the black ball is re-
flected twice in a short time period on the top side on 
the billiard-table and both balls collide again be-
tween its reflections. After 2.3 and 2.5 seconds the 
balls reflect on the left border. At 2.95 seconds the 
white ball drops into the hole. At the end, the white 
ball is set again on its starting position. 
Figure 6 to Figure 9 show the 4D-animation of the 
same simulation experiment. Because the calculated 
x- and y-coordinates of both ball models are con-
nected with their 3D-representations by the annota-
tion-element coupling (compare with paragraph 2.4), 
a 4D-animation (3 space coordinates plus the time) 
of the experiment can be automatically generated.  

 
Figure 6: Simulation experiment at time=0 seconds 

 
Figure 7: Simulation experiment at time=0.2 seconds 

 
Figure 8: Simulation experiment at time=2.3 seconds 

 
Figure 9:Simulation experiment at time=2.95 seconds 

4 Development of a 3D-Model editor  

For the validation of the previous described annota-
tion concept for 3D-geometries in Modelica, a 3D-
model editor is being developed by the authors. This 
editor supports the definition of 3D-scenes and gen-
erates the Modelica-code with the embedded X3D-
description. Because the editor is implemented as a 
plug-in for the graphical user interface of the simula-
tion tool MOSILAB [3], the 3D-modeling works 
close together with the other modeling features of the 
MOSILAB-IDE (compare with Figure 10).  

 
Figure 10: 3D-model editor as plug-in for the simula-
tion tool MOSILAB . 

5 Conclusions 

The new designed annotation-concept for the 
representation of 3D-geometries in Modelica, based 
on the X3D-standard, offers a number of advantages 
and new perspectives: 
• An integrated description of the equation based 

physical behavior and a corresponding represen-
tation of the 3D geometry in a unitary Modelica-
model is an excellent precondition for an effi-
cient communication between the physical and 
the geometrical model aspects.  

• The use of X3D and its ProtoDeclare-concept 
fits well to the object-oriented concept of Mode-
lica.  

• 3D-objects, based on Modelica standard types, 
can be added directly to the physical models and 
could be connected by the coupling-annotation 
element. 

• The modeling process of complex 3D-scenes can 
take place recursively on a multitude of hierar-
chical layers, because each Modelica/X3D-class 
can be reused on the next hierarchy-level (see 
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the modeling process of the billiard table in 
chapter 3.1).  

• The use of the standard X3D-format for the 
modeling of the 3D-geometries within the Mode-
lica language enables the import and export of 
3D-scenes from/to X3D. 

• Future works will focus on a closer integration 
of the 3D-editor in the simulation tool MOSI-
LAB. 
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