
2008

Proceedings of the
6th International Modelica Conference

March 3rd − 4th, 2008

University of Applied Sciences Bielefeld,

Bielefeld, Germany

Bernhard Bachmann (editor)

Volume 2

organized by
The Modelica Association and

University of Applied Sciences Bielefeld

All papers of this conference can be downloaded from
http://www.Modelica.org/events/modelica2008/

Proceedings of Modelica’ 2008
University of Applied Sciences Bielefeld,
Bielefeld, Germany, March 2008
Editor:
Prof. Dr. B. Bachmann
Published by:
The Modelica Association (http://www.Modelica.org) and
University of Applied Sciences Bielefeld (http://www.fh-bielefeld.de)
Printed by:
Printmedien Elbracht

The Modelica Association Modelica 2008, March 3rd − 4th, 2008

Preface

The first International Modelica Conference took place in October 2000 in Lund, Sweden. Since
then, Modelica has increasingly become the preferred language tool for physical modelling of complex
systems. This is indicated by the high number of registrations from industry and science at the 6th

International Modelica Conference held between 3rd and 4th March 2008 at the University of Applied
Sciences, Bielefeld, Germany. It is also indicated by the number of excellent papers submitted to the
program committee which made the task of selecting papers for oral and poster presentation very
difficult and, last but not least, by the exhibition during the conference at which several companies
will be represented. This volume contains the papers of the 68 oral presentations and 14 poster
presentations at the conference. The ability of Modelica as a multi domain simulation language is
demonstrated impressively by the various fields the papers are covering.

Due to the special features of the Modelica language, such as object-oriented modelling and the
ability to reuse and exchange models, Modelica strongly supports an integrated engineering design
process. Thus in various fields Modelica has become the standard tool for model exchange between
suppliers and OEM’s. A key issue for the success of Modelica is the continuous development of the
Modelica language as well as the Modelica Standard Library under strict observance of compatibility
to previous versions by the Modelica Association. The broad base of private and institutional mem-
bers of the Modelica Association as a non-profit organization ensures language stability and security
in software investments.

The 6th International Modelica conference was organized by the Modelica Association and by the
University of Applied Sciences, Bielefeld, Germany. I would like to thank the local organizing commit-
tee, the technical program committee and the reviewers for offering their time and expertise throughout
the organization of the conference. Together with the entire team of the local organizing committee I
would like to wish all participants an excellent and fruitful conference.

Bielefeld, March 1st, 2008

Bernhard Bachmann

The Modelica Association I Modelica 2008, March 3rd − 4th, 2008

Program Chair

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Bielefeld, Germany

Program Board

• Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany

• Prof. Peter Fritzson, Linköping University, Sweden

• Dr. Hilding Elmqvist, Dynasim AB, Lund, Sweden

• Dr. Michael Tiller, Emmeskay Inc., Michigan, USA

Program Committee

• Prof. Karl-Erik Årzén, Lund University, Lund, Sweden

• Dr. John Batteh, Emmeskay Inc., Michigan, USA

• Dr. Ingrid Bausch-Gall, Bausch-Gall GmbH, Munich, Germany

• Daniel Bouskela, EDF, Paris, France

• Prof. Felix Breitenecker, University of Technology, Vienna, Austria

• Dr. Thomas Christ, BMW, Michigan, USA

• Prof. Francesco Casella, Politecnico di Milano, Milano, Italy

• Prof. François E. Cellier, ETH Zürich, Zürich, Switzerland

• Mike Dempsey, Claytex Services Limited, Leamington, U.K.

• Denis Fargeton, LMS Imagine, Roanne, France

• Dr. Rüdiger Franke, ABB, Heidelberg, Germany

• Rui Gao, Dassault Systèmes K.K., Nagoya, Japan

• Anton Haumer, Technical Consulting, Vienna, Austria

• Dr. Christian Kral, arsenal research, Vienna, Austria

• Gerard Lecina, Dassault Systèmes, Paris, France

• Dirk Limperich, Daimler AG, Sindelfingen, Germany

• Kilian Link, Siemens AG, Erlangen, Germany

• Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany

• Dr. Ramine Nikoukhah, INRIA, Rocquencourt, France

The Modelica Association II Modelica 2008, March 3rd − 4th, 2008

• Franz Pirker, arsenal research, Vienna, Austria

• Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany

• Peter Schneider, Fraunhofer IIS/EAS, Dresden, Germany

• Dr. Edward D. Tate, General Motors, Michigan, USA

• Dr. Wilhelm Tegethoff, TLK-Thermo GmbH, Braunschweig, Germany

• Dr. Hubertus Tummescheit, Modelon AB, Lund, Sweden

• Dr. Andreas Uhlig, ITI GmbH, Dresden, Germany

Local Organizing Committee

• Prof. Bernhard Bachmann

• Dr. Elke Koppenrade

• Jens Schönbohm

• Ralf Derdau

• Eveni, Konferenz-Management-Software, www.eveni.com

• Bielefeld Marketing GmbH, www.bielefeld-marketing.de

The Modelica Association III Modelica 2008, March 3rd − 4th, 2008

The Modelica Association IV Modelica 2008, March 3rd − 4th, 2008

Contents

Volume 1 1

Session 1a
Language, Tools and Algorithms 1
D. Broman, P. Aronsson, P. Fritzson: Design Considerations for Dimensional Inference

and Unit Consistency Checking in Modelica . 3
S. E. Mattsson, H. Elmqvist: Unit Checking and Quantity Conservation 13
H. Olsson, M. Otter, S. E. Mattsson, H. Elmqvist: Balanced Models in Modelica 3.0

for Increased Model Quality . 21

Session 1b
Language, Tools and Algorithms 35
M. Najafi, R. Nikoukhah: Initialization of Modelica Models in Scicos 37
D. Zimmer: Introducing Sol: A General Methodology for Equation-Based Modeling of

Variable-Structure Systems . 47
J. Åkesson : Optimica—An Extension of Modelica Supporting Dynamic Optimization . . 57

Session 1c
Automotive Applications 67
J. Batteh, C. Newman: Detailed Simulation of Turbocharged Engines with Modelica . . 69
H. Oberguggenberger, D. Simic: Thermal Modelling of an Automotive Nickel Metall

Hydrid Battery in Modelica using Dymola . 77
M. Corno, F. Casella, S. M. Savaresi, R. Scattolini: Object Oriented Modeling of a

Gasoline Direct Injection System . 83

Session 1d
Electric Systems & Applications 93
M. Kuhn, M. Otter, L. Raulin: A Multi Level Approach for Aircraft Electrical Systems

Design . 95
C. Schallert : Incorporation of Reliability Analysis Methods with Modelica 103
F. Wagner, L. Liu, G. Frey: Simulation of Distributed Automation Systems in Modelica 113

Session 2a
Language, Tools and Algorithms 123
A. Jardin, W. Marquis-Favre, D. Thomasset, F. Guillemard, F. Lorenz: Study of

a Sizing Methodology and a Modelica Code Generator for the Bond Graph Tool MS1 125
T. Johnson, C. Paredis, R. Burkhart: Integrating Models and Simualtions of Continuous

Dynamics into SysML . 135

The Modelica Association V Modelica 2008, March 3rd − 4th, 2008

Contents

A. Leva, F. Donida, M. Bonvini, L. Ravelli: Modelica Library for Logic Control
Systems written in the FBD Language . 147

Session 2b
Thermodynamic Systems & Applications 155
F. Casella, C. Richter : ExternalMedia: A Library for Easy Re-Use of External Fluid

Property Code in Modelica . 157
F. Cellier, J. Greifeneder: ThermoBondLib - A New Modelica Library for Modeling

Convective Flows . 163
T. Vahlenkamp, S. Wischhusen: FluidDissipation - A Centralised Library for Modelling

of Heat Transfer and Pressure Loss . 173

Session 2c
Mechanical Systems & Applications 179
G. Verzichelli : Development of an Aircraft and Landing Gears Model with Steering System

in Modelica-Dymola . 181
G. Looye : The New DLR Flight Dynamics Library . 193
I. Kosenko, E. Alexandrov: Implementation of the Hertz Contact Model and Its Volu-

metric Modification on Modelica . 203

Session 2d
Electric Systems & Applications 213
D. Winkler, C. Gühmann: Modelling of Electric Drives using freeFOClib 215
T. Bödrich : Electromagnetic Actuator Modelling with the Extended Modelica Magnetic

Library . 221
A. Haumer, C. Kral, J. V. Gragger, H. Kapeller: Quasi-Stationary Modeling and

Simulation of Electrical Circuits using Complex Phasors 229

Session 3a
Language, Tools and Algorithms 237
T. Pulecchi, F. Casella: HyAuLib: Modelling Hybrid Automata in Modelica 239
G. Fish, M. Dempsey : Application of Neural Networks to model Catamaran Type

Powerboats . 247
M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter: Mode-

Graph - A Modelica Library for Embedded Control Based on Mode-Automata 255
U. Donath, J. Haufe, T. Blochwitz, T. Neidhold: A new Approach for Modeling and

Verification of Discrete Control Components within a Modelica Environment 269

Session 3b
Thermodynamic Systems & Applications 277
R. Franke, B.S. Babij, M. Antoine, A. Isaksson: Model-Based Online Applications in

the ABB Dynamic Optimization Framework . 279
J. I. Videla, B. Lie: Using Modelica/Matlab for Parameter Estimation in a Bioethanol

Fermentation Model . 287
L. Imsland, P. Kittilsen, T. Steinar Schei: Model-Based Optimizing Control and Esti-

mation using Modelica Models . 301
F. Casella, F. Donida, B. Bachmann, P. Aronsson: Overdetermined Steady-State

Initialization Problems in Object-Oriented Fluid System Models 311

The Modelica Association VI Modelica 2008, March 3rd − 4th, 2008

Contents

Session 3c
Automotive Applications 319
W. Chen, G. Qin, L. Li, Y. Zhang, L. Chen: Modelling of Conventional Vehicle in

Modelica . 321
J. Andreasson, M. Jonasson: Vehicle Model for Limit Handling: Implementation and

Validation . 327
H. Isernhagen, C. Gühmann: Modelling of a Double Clutch Transmission with an Ap-

propriate Controller for the Simulation of Shifting Processes 333
A. Junghanns, J. Mauss, M. Tatar: TestWeaver - A Tool for Simulation-Based Test of

Mechatronic Designs . 341

Session 3d
Electric Systems & Applications 349
C. Kral, A. Haumer: Simulation of Electrical Rotor Asymmetries in Squirrel Cage Induc-

tion Machines with the ExtendedMachines Library . 351
H. Kapeller, A. Haumer, C. Kral, G. Pascoli, F. Pirker: Modeling and Simulation

of a Large Chipper Drive . 361
H. Giuliani, C. J. Fenz, A. Haumer, H. Kapeller: Simulation and Validation of Power

Losses in the Buck-Converter Model included in the SmartElectricDrives Library . . . 369
A. Ebner, M. Ganchev, H. Oberguggenberger, F. Pirker: Real-Time Modelica Sim-

ulation on a Suse Linux Enterprise Real Time PC . 375

Volume 2 381

Session 4a
Language, Tools and Algorithms 381
A. Abel, T. Nähring: Frequency-Domain Analysis Methods for Modelica Models 383
F. Cellier : World3 in Modelica: Creating System Dynamics Models in the Modelica Frame-

work . 393
F. Donida, A. Leva: Modelica as a Host Language for Process/Control Co-Simulation and

Co-Design . 401
A. Pop, K. Stav̊aker, P. Fritzson: Exception Handling for Modelica 409

Session 4b
Thermodynamic Systems & Applications 419
J. Fahlke, S. Püschel, F. Hannemann, B. Meyer: Modelling of the Gasification Island

with Modelica . 421
M. Bockholt, W. Tegethoff, N. Lemke, N.-C. Strupp, C. Richter: Transient Mod-

elling of a Controllable Low Pressure Accumulator in CO2 Refrigeration Cycles 429
C. Junior, C. Richter, W. Tegethoff, N. Lemke, J. Köhler: Modeling and Simulation

of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL . 437

P. Li, Y. Li, J. Seem: Dynamic Modeling and Self-Optimizing Control of Air-Side Econ-
omizers . 447

Session 4c
Automotive Applications 465

The Modelica Association VII Modelica 2008, March 3rd − 4th, 2008

Contents

M. Najafi, Z. Benjelloun-Dabaghi: Using Modelica for Modeling and Simulation of
Spark Ignited Engine and Drilling Station in IFP . 467

S. Karim, H. Tummescheit: Controller Development for an Automotive Ac-system using
R744 as Refrigerant . 477

H. Wigermo, J. von Grundherr, T. Christ: Implementation of a Modelica Online
Optimization for an Operating Strategy of a Hybrid Powertrain 487

E. Tate, M. Sasena, J. Gohl, M. Tiller: Model Embedded Control: A Method to
Rapidly Synthesize Controllers in a Modeling Environment 493

Session 4d
Mechanical Systems & Applications 503

F. Casella, M. Lovera: High-Accuracy Orbital Dynamics Simulation through Keplerian
and Equinoctial Parameters . 505

J. Andreasson, M. Gäfvert: Rotational3D - Efficient Modelling of 3D Effects in Rota-
tional Mechanics . 515

S. Wolf, J. Haase, C. Clauß, M. Jöckel, J. Lösch: Methods of Sensitivity Calculation
Applied to a Multi-Axial Test Rig for Elastomer Bushings 521

M. Pfennig, F. Thielecke: Implementation of a Modelica Library for Simulation of High-
Lift Drive Systems . 531

Session 5
Poster Session 541

T. Hirsch, M. Eck: 4-Dimensional Table Interpolation with Modelica 543
M. Höbinger, M. Otter : PlanarMultiBody - A Modelica Library for Planar Multi-Body

Systems . 549
D. Simic, T. Bäuml: Implementation of Hybrid Electric Vehicles using the VehicleInter-

faces and the SmartElectricDrives Libraries . 557
P. Machanick, A. Liebman, P. Fritzson: Modeling of CO2 Reduction Impacts on Energy

Prices with Modelica . 565
M. Schicktanz : Modelling of an Adsorption Chiller with Modelica 573
T. Blochwitz, G. Kurzbach, T. Neidhold : An External Model Interface for Modelica 579
B. El Hefni, B. Bride, B. Pechine: Two Steady State CHP Models with Modelica :

Mirafiori overall Model and Multi-configuration Biomass Model 585
J. V. Gragger, A. Haumer, C. Kral, F. Pirker: Efficient Analysis of Harmonic Losses

in PWM Voltage Source Induction Machine Drives with Modelica 593
J. Haase, S. Wolf, C. Clauß: Monte Carlo Simulation with Modelica 601
O. Enge-Rosenblatt, C. Clauß, P. Schwarz, F. Breitenecker, C. Nytsch-Geusen:

Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks 605
O. Enge-Rosenblatt, P. Schneider: Modelica Wind Turbine Models with Structural

Changes Related to Different Operating Modes . 611
K. Tuszynski : ExcelInterface - A Tool for Interfacing Dymola through Excel 621
K. Dietl, J. Vasel, G. Schmitz, W. Casas, C. Mehrkens: Modeling of Cold Plates for

Power Electronic Cooling . 627
N. Philipson, J. Andreasson, M. Gäfvert, A. Woodruff: Heavy Vehicle Modeling

with VehicleDynamics Library . 629

The Modelica Association VIII Modelica 2008, March 3rd − 4th, 2008

Contents

Session 6a
Language, Tools and Algorithms 635
K. Stav̊aker, A. Pop, P. Fritzson: Compiling and Using Pattern Matching in Modelica 637
M. Tiller : Patterns and Anti-Patterns in Modelica . 647
P. Fritzson, A. Pop, K. Norling, M. Blom: Comment- and Indentation Preserving

Refactoring and Unparsing for Modelica . 657

Session 6b
Language, Tools and Algorithms 667
A. Elsheikh, S. Noack, W. Wiechert: Sensitivity Analysis of Modelica Applications via

Automatic Differentiation . 669
R. Nikoukhah, S. Furic : Synchronous and Asynchronous Events in Modelica: Proposal

for an Improved Hybrid Model . 677
F. Dshabarow, F. Cellier, D. Zimmer: Support for Dymola in the Modeling and Simu-

lation of Physical Systems with Distributed Parameters 683

Session 6c
Thermodynamic Systems & Applications 691
H. Tummescheit, K. Tuszynski, P. Arnold: Simulation of Peak Stresses and Bowing

Phenomena during the Cool Down of a Cryogenic Transfer System 693
A. Joos, G. Schmitz, W. Casas: Enhancement of a Modelica Model of a Desiccant Wheel701
M. Gäfvert, T. Skoglund, H. Tummescheit, J. Windahl, H. Wikander, P. Reuterswärd:

Real-Time HWIL Simulation of Liquid Food Process Lines 709

Session 6d
Mechanical Systems & Applications 717
T. Juhász, U. Schmucker: Automatic Model Conversion to Modelica for Dymola-based

Mechatronic Simulation . 719
I. I. Kosenko, A. S. Kuleshov : Modelica Implementation of the Skateboard Dynamics 727
T. Hoeft, C. Nytsch-Geusen: Design and Validation of an Annotation-Concept for the

Representation of 3D-Geometries in Modelica . 735

The Modelica Association IX Modelica 2008, March 3rd − 4th, 2008

The Modelica Association X Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Åkesson, Johan: Lund University, Lund, Sweden
Optimica—An Extension of Modelica Supporting Dynamic Optimization . 57

Abel, Andreas: ITI GmbH, Dresden, Germany
Frequency-Domain Analysis Methods for Modelica Models . 383

Alexandrov, Evgeniy: Moscow State University of Tourism and Service, Moscow, Russian Federation
Implementation of the Hertz Contact Model and Its Volumetric Modification on Modelica . . . 203

Andreasson, Johan: Modelon AB, Lund, Sweden
Heavy Vehicle Modeling with VehicleDynamics Library . 629
Rotational3D - Efficient Modelling of 3D Effects in Rotational Mechanics 515
Vehicle Model for Limit Handling: Implementation and Validation . 327

Antoine, Marc: ABB Power Technology Systems, Mannheim, Germany
Model-Based Online Applications in the ABB Dynamic Optimization Framework 279

Arnold, Philip: Linde Kryotechik AG, Pfungen, Switzerland
Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic

Transfer System . 693
Aronsson, Peter: Mathcore Engeneering, Linköping, Sweden

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica . . 3
Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System

Models . 311

Bäuml, Thomas: Arsenal Research, Vienna, Austria
Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the

SmartElectricDrives Libraries . 557
Bödrich, Thomas: Dresden University of Technology, Dresden, Germany

Electromagnetic Actuator Modelling with the Extended Modelica Magnetic Library 221
Babji B.S.: ABB Corporate Research, Bangalore, India

Model-Based Online Applications in the ABB Dynamic Optimization Framework 279
Bachmann, Bernhard: Bielefeld University of Applied Sciences, Bielefeld, Germany

Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System
Models . 311

Batteh, John: Ford Motor Company, Dearborn, U.S.A.
Detailed Simulation of Turbocharged Engines with Modelica . 69

Benjelloun-Dabaghi, Zakia: INRIA, Rocquencourt, France
Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station

in IFP. 467
Blochwitz, Torsten: ITI GmbH, Dresden, Germany

The Modelica Association XI Modelica 2008, March 3rd − 4th, 2008

Index of Authors

A new Approach for Modeling and Verification of Discrete Control Components within
a Modelica Environment . 269

An External Model Interface for Modelica . 579
Blom, Mikael: Linköping University, Linköping, Sweden

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica 657
Bockholt, Marcos: Braunschweig University of Technology, Braunschweig, Germany

Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration
Cycles . 429

Bonvini, Marco: Politecnico di Milano, Milano, Italy
Modelica Library for Logic Control Systems written in the FBD Language 147

Breitenecker, Felix: Vienna University of Technology, Vienna, Austria
Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks 605

Bride, Benôıt: EDF R&D, Chatou, France
Two Steady State CHP Models with Modelica: Mirafiori overall Model and

Multi-configuration Biomass Model . 585
Broman, David: Linköping University, Linköping, Sweden

Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica . . 3
Burghart, Roger: Hamburg University of Technology, Hamburg, Germany

Integrating Models and Simualtions of Continuous Dynamics into SysML 135

Casas, Wilson: Hamburg University of Technology, Hamburg, Germany
Enhancement of a Modelica Model of a Desiccant Wheel . 701

Casas, Wilson: Hamburg-Harburg University of Technology, Hamburg, Germany
Modeling of Cold Plates for Power Electronic Cooling . 627

Casella, Francesco: Politecnico di Milano, Milano, Italy
ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica. . . .157
High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters 505
HyAuLib: Modelling Hybrid Automata in Modelica . 239
Object Oriented Modeling of a Gasoline Direct Injection System . 83
Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System

Models . 311
Cellier, François: ETH Zürich, Zürich, Switzerland

Support for Dymola in the Modeling and Simulation of Physical Systems with
Distributed Parameters . 683

ThermoBondLib - A New Modelica Library for Modeling Convective Flows 163
World3 in Modelica: Creating System Dynamics Models in the Modelica Framework 393

Chen, Liping: Huazhong University of Science and Technology, Wuhan, China
Modelling of Conventional Vehicle in Modelica . 321

Chen, Wei: Huazhong University of Science and Technology, Wuhan, China
Modelling of Conventional Vehicle in Modelica . 321

Christ, Thomas: BMW Hybrid Cooperation, Troy, U.S.A.
Implementation of a Modelica Online Optimization for an Operating Strategy of a Hybrid

Powertrain . 487
Clauß, Christoph: Fraunhofer Institut, Dresden, Germany

Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks 605
Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer

Bushings . 521

The Modelica Association XII Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Monte Carlo Simulation with Modelica. .601
Corno, Matteo: Politecnico di Milano, Milano, Italy

Object Oriented Modeling of a Gasoline Direct Injection System . 83

Dempsey, Mike: Claytex Services Ltd, Leamington Spa, United Kingdom
Application of Neural Networks to model Catamaran Type Powerboats . 247

Dietl, Karin: Hamburg-Harburg University of Technology, Hamburg, Germany
Modeling of Cold Plates for Power Electronic Cooling . 627

Donath, Ulrich: Fraunhofer Institut, Dresden, Germany
A new Approach for Modeling and Verification of Discrete Control Components within

a Modelica Environment . 269
Donida, Filippo: Politecnico di Milano, Milano, Italy

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design 401
Modelica Library for Logic Control Systems written in the FBD Language 147
Overdetermined Steady-State Initialization Problems in Object-Oriented Fluid System

Models . 311
Dshabarow, Farid: ABB Turbo Systems AG, Baden, Switzerland

Support for Dymola in the Modeling and Simulation of Physical Systems with
Distributed Parameters . 683

Ebner, Arno: Arsenal Research, Vienna, Austria
Real-Time Modelica Simulation on a Suse Linux Enterprise Real Time PC 375

Eck, Markus: German Aerospace Center, Oberpfaffenhofen, Germany
4-Dimensional Table Interpolation with Modelica . 543

El Hefni, Baligh: EDF R&D, Chatou, France
Two Steady State CHP Models with Modelica: Mirafiori overall Model and

Multi-configuration Biomass Model . 585
Elmqvist, Hilding: Dynasim AB, Lund, Sweden

Balanced Models in Modelica 3.0 for Increased Model Quality . 21
ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata.255
Unit Checking and Quantity Conservation . 13

Elsheikh, Atya: Siegen University, Siegen, Germany
Sensitivity Analysis of Modelica Applications via Automatic Differentiation 669

Enge-Rosenblatt, Olaf: Fraunhofer Institut, Dresden, Germany
Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks 605
Modelica Wind Turbine Models with Structural Changes Related to Different Operating

Modes . 611

Fahlke, Julia: Freiberg University of Technology, Freiberg, Germany
Modelling of the Gasification Island with Modelica . 421

Fenz, Claus J. : Arsenal Research, Vienna, Austria
Simulation and Validation of Power Losses in the Buck-Converter Model included in the

SmartElectricDrives Library . 369
Fish, Garron: Claytex Services Ltd, Leamington Spa, United Kingdom

Application of Neural Networks to model Catamaran Type Powerboats . 247
Franke, Ruediger: ABB Power Technology Systems, Mannheim, Germany

Model-Based Online Applications in the ABB Dynamic Optimization Framework 279
Frey, Georg: Kaiserslautern University of Technology, Kaiserslautern, Germany

The Modelica Association XIII Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Simulation of Distributed Automation Systems in Modelica . 113
Fritzson, Peter: Linköping University, Linköping, Sweden

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica 657
Compiling and Using Pattern Matching in Modelica. .637
Design Considerations for Dimensional Inference and Unit Consistency Checking in Modelica . . 3
Exception Handling for Modelica . 409
Modeling of CO2 Reduction Impacts on Energy Prices with Modelica . 565

Furic, Sébastien: LMS-Imagine, Roanne, France
Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid

Model . 677

Gäfvert, Magnus: Modelon AB, Lund, Sweden
Heavy Vehicle Modeling with VehicleDynamics Library . 629
Real-Time HWIL Simulation of Liquid Food Process Lines . 709
Rotational3D - Efficient Modelling of 3D Effects in Rotational Mechanics 515

Gühmann, Clemens: Technische Universität Berlin, Berlin, Germany
Modelling of a Double Clutch Transmission with an Appropriate Controller for the

Simulation of Shifting Processes . 333
Modelling of Electric Drives using freeFOClib . 215

Ganchev, Martin: Arsenal Research, Vienna, Austria
Real-Time Modelica Simulation on a Suse Linux Enterprise Real Time PC 375

Giuliani, Harald: Arsenal Research, Vienna, Austria
Simulation and Validation of Power Losses in the Buck-Converter Model included in the

SmartElectricDrives Library . 369
Gohl, Jesse: Emmeskay, Inc., Plymouth, U.S.A.

Model Embedded Control: A Methode to Rapidly Synthesize Controllers in a Modeling
Environment . 493

Gragger, Johannes V.: Arsenal Research, Vienna, Austria
Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives

with Modelica . 593
Quasi-Stationary Modeling and Simulation of Electrical Circuits using Complex Phasors 229

Greifeneder, Jürgen: Kaiserslautern University of Technology, Kaiserslautern, Germany
ThermoBondLib - A New Modelica Library for Modeling Convective Flows 163

Guillemard, Franck: PSA Peugeot Citroën, Vèlizy-Villacoublay Cedex, France
Study of a Sizing Methodology and a Modelica Code Generator for the Bond Graph Tool MS1125

Höbinger, Mathias: Vienna University of Technology, Vienna, Austria
PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems . 549

Haase, Joachim: Fraunhofer Institut, Dresden, Germany
Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer

Bushings . 521
Monte Carlo Simulation with Modelica. .601

Hannemann, Frank: Siemens Fuel Gasification Technologie, Freiberg, Germany
Modelling of the Gasification Island with Modelica . 421

Haufe, Jürgen: Fraunhofer Institut, Dresden, Germany
A new Approach for Modeling and Verification of Discrete Control Components within

a Modelica Environment . 269
Haumer, Anton: Arsenal Research, Vienna, Austria

The Modelica Association XIV Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives
with Modelica . 593

Modeling and Simulation of a Large Chipper Drive . 361
Quasi-Stationary Modeling and Simulation of Electrical Circuits using Complex Phasors 229
Simulation and Validation of Power Losses in the Buck-Converter Model included in the

SmartElectricDrives Library . 369
Simulation of Electrical Rotor Asymmetries in Squirrel Cage Induction Machines with the

ExtendedMachines Library . 351
Henriksson, Dan: Dynasim AB, Lund, Sweden

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata.255
Hirsch, Tobias: German Aerospace Center, Oberpfaffenhofen, Germany

4-Dimensional Table Interpolation with Modelica . 543
Hoeft, Thomas: Fraunhofer Institut, Berlin, Germany

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in
Modelica . 735

Imsland, Lars: Cybernetica AS, Trondheim, Norway
Model-Based Optimizing Control and Estimation using Modelica Models . 301

Isaksson, Alf: ABB Corporate Research, Bangalore, India
Model-Based Online Applications in the ABB Dynamic Optimization Framework 279

Isernhagen, Henrik: Technische Universität Berlin, Berlin, Germany
Modelling of a Double Clutch Transmission with an Appropriate Controller for the

Simulation of Shifting Processes . 333

Jöckel, Michael: Fraunhofer Institut, Darmstadt, Germany
Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer

Bushings . 521
Jardin, Audrey: INSA-Lyon AMPERE, Villeurbanne Cedex, France

Study of a Sizing Methodology and a Modelica Code Generator for the Bond Graph Tool MS1125
Johnson, Thomas: Georgia Institute of Technology, Atlanta, U.S.A.

Integrating Models and Simualtions of Continuous Dynamics into SysML 135
Jonasson, Mats: Volvo Car Corporation, Göteborg, Sweden

Vehicle Model for Limit Handling: Implementation and Validation . 327
Joos, Andreas: Hamburg University of Technology, Hamburg, Germany

Enhancement of a Modelica Model of a Desiccant Wheel . 701
Juhász, Tamás: Fraunhofer Institut, Magdeburg, Germany

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation 719
Junghanns, Andreas: QTronic GmbH, Berlin, Germany

TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs . 341
Junior, Christine: Braunschweig University of Technology, Braunschweig, Germany

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL . 437

Köhler, Jürgen: Braunschweig University of Technology, Braunschweig, Germany
Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented

Library TIL . 437
Kapeller, Hansjörg: Arsenal Research, Vienna, Austria

Modeling and Simulation of a Large Chipper Drive . 361

The Modelica Association XV Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Quasi-Stationary Modeling and Simulation of Electrical Circuits using Complex Phasors 229
Simulation and Validation of Power Losses in the Buck-Converter Model included in the

SmartElectricDrives Library . 369
Karim, Sanaz: Modelon AB, Lund, Sweden

Controller Development for an Automotive Ac-system using R744 as Refrigerant 477
Kittilsen, P̊al: Cybernetica AS, Trondheim, Norway

Model-Based Optimizing Control and Estimation using Modelica Models . 301
Kosenko, Ivan I.: Moscow State University of Tourism and Service, Moscow, Russian Federation

Implementation of the Hertz Contact Model and Its Volumetric Modification on Modelica . . . 203
Modelica Implementation of the Skateboard Dynamics . 727

Kral, Christian: Arsenal Research, Vienna, Austria
Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives

with Modelica . 593
Modeling and Simulation of a Large Chipper Drive . 361
Quasi-Stationary Modeling and Simulation of Electrical Circuits using Complex Phasors 229
Simulation of Electrical Rotor Asymmetries in Squirrel Cage Induction Machines with the

ExtendedMachines Library . 351
Kuhn, Martin: German Aerospace Center, Oberpfaffenhofen, Germany

A Multi Level Approach for Aircraft Electrical Systems Design . 95
Kuleshov, Alexander S.: Lomonosov Moscow State University, Moscow, Russian Federation

Modelica Implementation of the Skateboard Dynamics . 727
Kurzbach, Gerd: ITI GmbH, Dresden, Germany

An External Model Interface for Modelica . 579

Lösch, Jürgen: Fraunhofer Institut, Darmstadt, Germany
Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer

Bushings . 521
Lemke, Nicholas: Braunschweig University of Technology, Braunschweig, Germany

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL . 437

Lemke, Nicholas: TLK-Thermo GmbH, Braunschweig, Germany
Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration

Cycles . 429
Leva, Alberto: Politecnico di Milano, Milano, Italy

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design 401
Modelica Library for Logic Control Systems written in the FBD Language 147

Li, Lingyang: Huazhong University of Science and Technology, Wuhan, China
Modelling of Conventional Vehicle in Modelica . 321

Li, Pengfei: University of Wisconsin, Milwaukee, U.S.A.
Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers . 447

Li, Yaoyu: University of Wisconsin, Milwaukee, U.S.A.
Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers . 447

Lie, Bernt: Telemark University College, Porsgrunn, Norway
Using Modelica/Matlab for Parameter Estimation in a Bioethanol Fermentation Model 287

Liebman, Ariel: University of Queensland, Brisbane, Australia
Modeling of CO2 Reduction Impacts on Energy Prices with Modelica . 565

Liu, Liu: Kaiserslautern University of Technology, Kaiserslautern, Germany

The Modelica Association XVI Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Simulation of Distributed Automation Systems in Modelica . 113
Looye, Gertjan: German Aerospace Center, Oberpfaffenhofen, Germany

The New DLR Flight Dynamics Library . 193
Lorenz, Francis: LorSim, Liège, France

Study of a Sizing Methodology and a Modelica Code Generator for the Bond Graph Tool MS1125
Lovera, Marco: Politecnico di Milano, Milano, Italy

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters 505

Machanick, Philip: University of Queensland, Brisbane, Australia
Modeling of CO2 Reduction Impacts on Energy Prices with Modelica . 565

Malmheden, Martin: Dynasim AB, Lund, Sweden
ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata.255

Marquis-Favre, Wilfrid: INSA-Lyon AMPERE, Villeurbanne Cedex, France
Study of a Sizing Methodology and a Modelica Code Generator for the Bond Graph Tool MS1125

Mattsson, Sven Erik: Dynasim AB, Lund, Sweden
Balanced Models in Modelica 3.0 for Increased Model Quality . 21
ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata.255
Unit Checking and Quantity Conservation . 13

Mauss, Jakob: QTronic GmbH, Berlin, Germany
TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs . 341

Mehrkens, Christian: Hamburg-Harburg University of Technology, Hamburg, Germany
Modeling of Cold Plates for Power Electronic Cooling . 627

Meyer, Bernd: Freiberg University of Technology, Freiberg, Germany
Modelling of the Gasification Island with Modelica . 421

Nähring, Tobias: ITI GmbH, Dresden, Germany
Frequency-Domain Analysis Methods for Modelica Models . 383

Najafi, Masoud: INRIA, Rocquencourt, France
Initialization of Modelica Models in Scicos . 37
Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station

in IFP. 467
Neidhold, Thomas: ITI GmbH, Dresden, Germany

A new Approach for Modeling and Verification of Discrete Control Components within
a Modelica Environment . 269

An External Model Interface for Modelica . 579
Newman, Charles: Ford Motor Company, Dearborn, U.S.A.

Detailed Simulation of Turbocharged Engines with Modelica . 69
Nikoukhah, Ramine: INRIA, Rocquencourt, France

Initialization of Modelica Models in Scicos . 37
Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid

Model . 677
Noack, Stephan: Research Center Jülich GmbH, Jülich, Germany

Sensitivity Analysis of Modelica Applications via Automatic Differentiation 669
Norling, Kristoffer: Linköping University, Linköping, Sweden

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica 657
Nytsch-Geusen, Christoph: Fraunhofer Institut, Berlin, Germany

Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks 605

The Modelica Association XVII Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in
Modelica . 735

Oberguggenberger, Helmut: Arsenal Research, Vienna, Austria
Real-Time Modelica Simulation on a Suse Linux Enterprise Real Time PC 375
Thermal Modelling of an Automotive Nickel Metall Hydrid Battery in Modelica using

Dymola. .77
Olsson, Hans: Dynasim AB, Lund, Sweden

Balanced Models in Modelica 3.0 for Increased Model Quality . 21
Otter, Martin: German Aerospace Center, Oberpfaffenhofen, Germany

A Multi Level Approach for Aircraft Electrical Systems Design . 95
Balanced Models in Modelica 3.0 for Increased Model Quality . 21
ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata.255
PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems . 549

Püschel, Stephan: Freiberg University of Technology, Freiberg, Germany
Modelling of the Gasification Island with Modelica . 421

Paredis, Chris: Georgia Institute of Technology, Atlanta, U.S.A.
Integrating Models and Simualtions of Continuous Dynamics into SysML 135

Pascoli, Gert: Arsenal Research, Vienna, Austria
Modeling and Simulation of a Large Chipper Drive . 361

Pechine, Bruno: EDF R&D, Chatou, France
Two Steady State CHP Models with Modelica: Mirafiori overall Model and

Multi-configuration Biomass Model . 585
Pfennig, Malte: Hamburg University of Technology, Hamburg, Germany

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems 531
Philipson, Niklas: Modelon AB, Lund, Sweden

Heavy Vehicle Modeling with VehicleDynamics Library . 629
Pirker, Franz: Arsenal Research, Vienna, Austria

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives
with Modelica . 593

Modeling and Simulation of a Large Chipper Drive . 361
Real-Time Modelica Simulation on a Suse Linux Enterprise Real Time PC 375

Pop, Adrian: Linköping University, Linköping, Sweden
Comment- and Indentation Preserving Refactoring and Unparsing for Modelica 657
Compiling and Using Pattern Matching in Modelica. .637
Exception Handling for Modelica . 409

Pulecchi, Tiziano: Politecnico di Milano, Milano, Italy
HyAuLib: Modelling Hybrid Automata in Modelica . 239

Qin, Gang: Huazhong University of Science and Technology, Wuhan, China
Modelling of Conventional Vehicle in Modelica . 321

Raulin, Loic: Airbus, Toulouse, France
A Multi Level Approach for Aircraft Electrical Systems Design . 95

Ravelli, Lorenzo: Politecnico di Milano, Milano, Italy
Modelica Library for Logic Control Systems written in the FBD Language 147

Reuterswärd, Philip: Modelon AB, Lund, Sweden

The Modelica Association XVIII Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Real-Time HWIL Simulation of Liquid Food Process Lines . 709
Richter, Christoph: Braunschweig University of Technology, Braunschweig, Germany

ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica. . . .157
Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented

Library TIL . 437
Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration

Cycles . 429

Sasena, Michael: Emmeskay, Inc., Plymouth, U.S.A.
Model Embedded Control: A Methode to Rapidly Synthesize Controllers in a Modeling

Environment . 493
Savaresi, Sergio M.: Politecnico di Milano, Milano, Italy

Object Oriented Modeling of a Gasoline Direct Injection System . 83
Scattolini, Riccardo: Politecnico di Milano, Milano, Italy

Object Oriented Modeling of a Gasoline Direct Injection System . 83
Schallert, Christian: German Aerospace Center, Oberpfaffenhofen, Germany

Incorporation of Reliability Analysis Methods with Modelica . 103
Schei, Tor Steinar: Cybernetica AS, Trondheim, Norway

Model-Based Optimizing Control and Estimation using Modelica Models . 301
Schicktanz, Matthias: Fraunhofer Institut, Freiburg, Germany

Modelling of an Adsorption Chiller with Modelica. .573
Schmitz, Gerhard: Hamburg University of Technology, Hamburg, Germany

Enhancement of a Modelica Model of a Desiccant Wheel . 701
Schmitz, Gerhard: Hamburg-Harburg University of Technology, Hamburg, Germany

Modeling of Cold Plates for Power Electronic Cooling . 627
Schmucker, Ulrich: Fraunhofer Institut, Magdeburg, Germany

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation 719
Schneider, Peter: Fraunhofer Institut, Dresden, Germany

Modelica Wind Turbine Models with Structural Changes Related to Different Operating
Modes . 611

Schwarz, Peter: Fraunhofer Institut, Dresden, Germany
Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks 605

Seem, John: Building Efficiency Research Group, Milwaukee, U.S.A.
Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers . 447

Simic, Dragan: Arsenal Research, Vienna, Austria
Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the

SmartElectricDrives Libraries . 557
Thermal Modelling of an Automotive Nickel Metall Hydrid Battery in Modelica using

Dymola. .77
Skoglund, Tomas: Tetra Pak Procesing Systems, Lund, Sweden

Real-Time HWIL Simulation of Liquid Food Process Lines . 709
Stav̊aker, Kristian: Linköping University, Linköping, Sweden

Compiling and Using Pattern Matching in Modelica. .637
Exception Handling for Modelica . 409

Strupp, Nils-Christian: Braunschweig University of Technology, Braunschweig, Germany
Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration

Cycles . 429

The Modelica Association XIX Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Tatar, Mugur: QTronic GmbH, Berlin, Germany
TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs . 341

Tate, Edward: General Motors, Michigan, U.S.A.
Model Embedded Control: A Methode to Rapidly Synthesize Controllers in a Modeling

Environment . 493
Tegethoff, Wilhelm: Braunschweig University of Technology, Braunschweig, Germany

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL . 437

Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration
Cycles . 429

Thielecke, Frank: Hamburg University of Technology, Hamburg, Germany
Implementation of a Modelica Library for Simulation of High-Lift Drive Systems 531

Thomasset, Daniel: INSA-Lyon AMPERE, Villeurbanne Cedex, France
Study of a Sizing Methodology and a Modelica Code Generator for the Bond Graph Tool MS1125

Tiller, Michael: Emmeskay, Inc., Plymouth, U.S.A.
Model Embedded Control: A Methode to Rapidly Synthesize Controllers in a Modeling

Environment . 493
Patterns and Anti-Patterns in Modelica . 647

Tummescheit, Hubertus: Modelon AB, Lund, Sweden
Controller Development for an Automotive Ac-system using R744 as Refrigerant 477
Real-Time HWIL Simulation of Liquid Food Process Lines . 709
Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic

Transfer System . 693
Tuszynski, Kristian: Modelon AB, Lund, Sweden

ExcelInterface - A Tool for Interfacing Dymola through Excel . 621
Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic

Transfer System . 693

Vahlenkamp, Thorben: XRG Simulation GmbH, Hamburg, Germany
FluidDissipation - A Centralised Library for Modelling of Heat Transfer and Pressure Loss . . 173

Vasel, Jens: Hamburg-Harburg University of Technology, Hamburg, Germany
Modeling of Cold Plates for Power Electronic Cooling . 627

Verzichelli, Gianluca: Airbus, Filton, United Kingdom
Development of an Aircraft and Landing Gears Model with Steering System in

Modelica-Dymola . 181
Videla, Juan Ignacio: Telemark University College, Porsgrunn, Norway

Using Modelica/Matlab for Parameter Estimation in a Bioethanol Fermentation Model 287
von Grundherr, Johannes: BMW Group, Munic, Germany

Implementation of a Modelica Online Optimization for an Operating Strategy of a Hybrid
Powertrain . 487

Wagner, Florian: Kaiserslautern University of Technology, Kaiserslautern, Germany
Simulation of Distributed Automation Systems in Modelica . 113

Wiechert, Wolfgang: Siegen University, Siegen, Germany
Sensitivity Analysis of Modelica Applications via Automatic Differentiation 669

Wigermo, Henrik: BMW Group, Munic, Germany
Implementation of a Modelica Online Optimization for an Operating Strategy of a Hybrid

Powertrain . 487

The Modelica Association XX Modelica 2008, March 3rd − 4th, 2008

Index of Authors

Wikander, Hans: Avensia Innovation AB, Lund, Sweden
Real-Time HWIL Simulation of Liquid Food Process Lines . 709

Windahl, Johan: Modelon AB, Lund, Sweden
Real-Time HWIL Simulation of Liquid Food Process Lines . 709

Winkler, Dietmar: Technische Universität Berlin, Berlin, Germany
Modelling of Electric Drives using freeFOClib . 215

Wischhusen, Stefan: XRG Simulation GmbH, Hamburg, Germany
FluidDissipation - A Centralised Library for Modelling of Heat Transfer and Pressure Loss . . 173

Wolf, Susann: Fraunhofer Institut, Dresden, Germany
Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer

Bushings . 521
Monte Carlo Simulation with Modelica. .601

Woodruff, Andrew: Modelon AB, Lund, Sweden
Heavy Vehicle Modeling with VehicleDynamics Library . 629

Zhang, Yunqing: Huazhong University of Science and Technology, Wuhan, China
Modelling of Conventional Vehicle in Modelica . 321

Zimmer, Dirk: ETH Zürich, Zürich, Switzerland
Introducing Sol: A General Methodology for Equation-Based Modeling of

Variable-Structure Systems . 47
Support for Dymola in the Modeling and Simulation of Physical Systems with

Distributed Parameters . 683

The Modelica Association XXI Modelica 2008, March 3rd − 4th, 2008

The Modelica Association XXII Modelica 2008, March 3rd − 4th, 2008

Session 4a

Language, Tools and Algorithms

The Modelica Association 381 Modelica 2008, March 3-4, 2008

The Modelica Association 382 Modelica 2008, March 3rd − 4th, 2008

Frequency-Domain Analysis Methods for Modelica Models
Andreas Abel Tobias Nähring

ITI GmbH

Webergasse 1
01067 Dresden, Germany

{andreas.abel,tobias.naehring}@iti.de

Abstract

In addition to time-domain simulation methods, en-
gineers from different application fields require fur-
ther types of analysis to be performed on their sys-
tems. In particular results from frequency domain
analysis play an important role – this includes the
calculation of natural frequencies and vibration
modes, but also the computation of transfer functions
or the simulation of steady-state behaviour.
If the system equations are formulated using the
Modelica language, there is the potential to use one
and the same model for time-domain as well as fre-
quency-domain computations.
In this paper we will show, how the different meth-
ods can be applied to a Modelica model, what kind
of prerequisites and adjustments are required in order
to perform the different types of analysis and how
these methods can be seamlessly integrated into a
Modelica simulation environment.

Keywords: Modelica, Steady State Simulation,
Transfer Function Analysis, Natural Frequency
Analysis

1 Introduction

In many engineering disciplines frequency-domain
methods play an important role. Powertrain engi-
neers for instance not only exploit transient simula-
tions, but to a large extend assess the behaviour of
their systems based on the natural frequencies, the
resulting vibration models, and also in terms of
steady state results, which show vibrations under
stationary conditions resulting from the uneven and
multi-order excitation of the driveline by the engine.
Other engineering domains and tasks also require
frequency-domain approaches.

However, all these tasks would typically be assigned
to different software tools, which is not really neces-
sary.
Modelica forms the ideal base also for frequency-
domain analyses, since it provides complete system
descriptions in an analytic form. However, so far
Modelica is used almost exclusively for transient
time-domain simulation.
In this paper we will show, how Modelica models
are used in order to compute frequency-domain re-
sults and how these processes are integrated into the
Modelica simulation environment SimulationX.
The paper will treat the following topics:

• Nonlinear periodic steady-state simulation
and generation of spectral results based on
harmonic balance

• Natural frequencies, vibration modes and
energy distributions based on models lin-
earized in an operating point

• Computation of transfer functions based on
models linearized in an operating point

We focus on the periodic steady-state simulation
since this is the most recent innovation in
SimulationX.

2 Periodic Steady-State Simulation

2.1 Application to Modelica Models

The main area of application for the nonlinear peri-
odic steady-state simulation in SimulationX is the
vibration analysis of powertrains.
The example Modelica model in Fig. 1 is an adaption
from [4] p. 246 with some added damping and cylin-
ders including oscillating masses and driven by some
typical combustion engine cylinder pressure.

Frequency-Domain Analysis Methods for Modelica Models

The Modelica Association 383 Modelica 2008, March 3rd − 4th, 2008

The steady-state for a range of mean rotational
speeds of the engine has to be computed. The oscilla-
tion time period is determined by the engine speed
and the periodicity of the excitation over the crank
angle.

Engine Damper

4-Cylinder Engine

Fly Wheel

Gear Box and Shaft

Differential Gear, Side Shaft

Tyre, and Car Load Torque

tau
Fig. 1: Example of a Modelica model of a powertrain
analyzed with the periodic steady-state simulation
But the method is also applicable to driven systems
in other physical domains. For non-linear electronic
amplifiers and filters most often the frequency or
amplitude of the driving generator is swept and the
period is measured at its phase. Therefore, a general
approach is needed. In SimulationX the following
procedure has been implemented: The user chooses
the varying reference quantity (e.g. mean engine
speed or generator frequency) and the period vari-
able (e.g. crank angle or generator phase) from Mod-
elica model trees containing all variables and pa-
rameters. For powertrains (or more general whenever
the reference quantity is not a parameter but the
mean value of a variable) the user also distinguishes
some model parameter as compensation parameter -
such as the load torque of the powertrain. The algo-
rithm adjusts the compensation parameter for the
steady-state, i.e. the mean engine torque and the load
torque are balanced out by the algorithm. No special
preparation of the Modelica model is needed to en-
able the steady-state simulation. The same model
may be used for a simulation in time-domain too.
During the simulation the computed spectra of the
Modelica variables are written to special steady-state
protocols. Those results can be visualized in several
different representations (amplitudes, phases, fluc-
tuations, spectral powers and so on). For the power-
train example from Fig. 1 some of the amplitudes of

the calculated harmonic torque components in the
mass-damper spring are shown in Fig. 2.
In SimulationX the initial conditions corresponding
to the results of the periodic steady-state simulation
can be calculated and used to initialize a successive
transient simulation.

Fig. 2: Spectral results for the torque of the spring in
the engine damper; the sum curve and the amplitudes
of the first harmonic components are shown, the larg-
est amplitudes are labelled with the oscillation orders
In this way the periodic solution can be recalculated
with a transient simulation and the steady-state re-
sults can easily be checked. Fig. 3 shows a very good
match of the steady-state simulation result with the
transient simulation result.

0 120 240 360 480 600 720
−200

−150

−100

−50

0

50

100

150

200

Crank Shaft Angle/degree

To
rq

ue
 o

f E
ng

in
e

D
am

pe
r/N

m

Fig. 3: Torque in the spring of the engine damper (full
line: steady-state simulation, dashed line: transient
simulation); the results are almost identical

A. Abel, T. Nähring

The Modelica Association 384 Modelica 2008, March 3rd − 4th, 2008

2.2 Computational Background

In this subsection we give some insight in the com-
putational background specific to the periodic
steady-state simulation. If the reader is only inter-
ested in applications he may safely skip to subsec-
tion 2.3.
For the periodic steady-state simulation the harmonic
balance method is employed. This method gives a
high spectral precision of the results and prepares the
numerical base for behavioural modelling in the fre-
quency domain.

2.2.1 System Equations
The symbolic analysis compiles from the Modelica
model a system of equations for the stationary simu-
lation. If the simulation time appears explicitly in the
model equations (for instance in a driven system) it
is replaced by a state timex with 1/ =dtdxtime which
leaves us with an autonomous algebraic differential
equation system

() 0),(),(=Cxtxtxf & (1)

where x is the nR -valued state vector with corre-
sponding time-derivative x& , and R∈Cx is the com-
pensation parameter (see section 2.1). It is conven-
ient to represent oscillations not over time but over
the phase angle tωϕ =: for which the period length
keeps constant at π2 independent of the period du-
ration (ω is the phase velocity of the oscillation).
Substituting the derivative w.r.t. time through the
derivative w.r.t. phase)(')(ϕω xtx =& in eq. (1)
gives
() 0),('),(=Cxxxf ϕωϕ . (2)

Throughout the remainder of this section we repre-
sent x in dependence of the phase angle.
The system is assumed to be freely displaceable in
one direction of the state space. Therefore, we chose
a combination of a π2 -periodic function x~ and a
component linearly dependent on the phase angle as
a solution ansatz

() ()ϕ
π
ϕϕ xxx ~

2
+= P (3)

for the system equation (2) with a constant vector
nx R∈P , called period vector in the sequel.

This setup is rather general. It includes freely rotat-
ing powertrains and periodically driven systems.
Solving (2) can now be divided into the two tasks

• computation of the period vector Px

• computation of the periodic function x~
which will be described in the following two sec-
tions.

2.2.2 Period Vector Computation
The user selects one model variable as the period
variable (cf. section 2.1). We denote the index of that
variable as Pi . For this variable the user specifies
the period length p . The model equations (2) are
then solved for the static case (i.e. 0=ω) once with

0=ϕ and once with πϕ 2= . Because of the π2 -
periodicity of x~ the difference of these two solu-
tions just gives the period vector

() ()02 xxx −= πP . (4)

At 0=ϕ the displacement of the system (e.g. the
rotational position of a powertrain) is determined by
the additional condition () 00 =Pix . This together
with (2) and (3) results in the overall system

()() () 00;0,0,0 == PC ixxxf (5)

for the case 0=ϕ which consists of 1+n equations
for the 1+n unknowns composed of the n
states)0(x and the compensation quantity Cx (e.g.
the load torque of a powertrain).
For πϕ 2= we use the user-defined periodicity of
the state vector component Pi and solve

()() () pxxxf i == ππ 2;0,0,2 PC . (6)

The condition that Cx is the same in (5) and (6) of-
fers a possibility to check the computed solutions.
For driven systems the equations in (5), (6) may not
be simultaneously solvable. In that case in each of
these systems the static equation
() ;0,0, =Cxxf

is replaced by the condition

() min;0,,
2
→= vxvxf C

where
2

v denotes the Euclidian norm of v .

In practice it has proven sufficient to solve the result-
ing restricted minimization problems by a modified
Gauss-Newton algorithm.

2.2.3 Harmonic Balance
For the computation of the periodical part x~ in the
ansatz (3) equation (2) is reformulated as the varia-
tional equation

Frequency-Domain Analysis Methods for Modelica Models

The Modelica Association 385 Modelica 2008, March 3rd − 4th, 2008

() ()∫ =⋅
π

ϕϕϕψ
π

2

0
0

2
1 dy (7)

with ψ varying over all continuous nR -valued
functions fulfilling the condition () ()πψψ 20 = and
with

() () () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++= C

PP

2
xx

x
x

x
fy ,'~,~

2
: ϕ

π
ωϕ

π
ϕ

ϕ . (8)

For a fixed phase velocity ω the solution x~ is only
determined up to a multiple of Px and a correspond-
ing phase shift (e.g. for a powertrain the arbitrary
initial angular position). To formally fix the initial
disposition, additionally the mean value of the period
variable is balanced to zero:

()∫ =
2

π
ϕϕ

π
2

0
0~1 dxiP . (9)

In some cases the user does not want to prescribe the
phase velocity ω directly (e.g. for powertrains it is
usual to prescribe the mean rotational speed of the
engine instead). For that reason the user-chosen ref-
erence quantity was introduced in section 2.1. Let
Ri be the index of the reference quantity and r the

wanted mean value for that variable. Then instead of
a direct assignment to ω the equation

()∫ =
2

π
ϕϕ

π
2

0
~1 rdxiR (10)

is added to the variational system.
Following Galerkin for the numerical treatment
of (7,8) the function space for ψ and x~ is restricted
to the finite-dimensional space spanned by the har-
monic orthogonal system of base functions

()ϕψ kk jexp:][= with NNk ,,K−= . (11)

In the following we keep using lower indexes for the
state vector components but we use Modelica index
notation to organize the frequency components (as
we have already done so by defining][kψ above).
Using the base (11) for the periodical part x~ in (3)
the ansatz becomes

() ()∑
−=

=
N

Nk

kxkx][ˆjexp~ ϕϕ (12)

where][ˆ kx is the k -th frequency component of the

state space vector (we use a hat x̂ or ()^x to denote
complex amplitudes). Since x~ is real][ˆ kx is the
complex conjugate of][ˆ kx − . Thus, the values of x̂
are determined by ()12 +Nn real numbers. With ψ
replaced by][kψ for NNk ,,K−= the resulting

12 +N left-hand sides of (7) become the
first 12 +N Fourier coefficients ()][,,ˆˆ kxxf cω of
the left-hand side of (2), i.e. Fourier coefficients of
the time-domain residuals. Equations (7,8,9,10) to-
gether then give the harmonic balance equation sys-
tem

()

rx
x

xxf

i

i

=
=
=

]0[ˆ
0]0[ˆ
0,,ˆˆ

R

P

Cω
 (13)

of () 212 ++Nn scalar equations for the
()12 +Nn unknowns in x̂ and the additional two

unknowns Cx,ω . The fast Fourier transformation
(FFT) is used to approximate the Fourier-coeffi-
cients of y . Because of the nonlinearities in f the
spectrum of y is wider than that one of x and some
oversampling is needed for the FFT to keep the alias-
ing error low.
For solving system (13) Newton's algorithm is ap-
plied. Deriving the Newton corrector equation in
time-domain and then transforming it into frequency-
domain gives good insight into the structure of the
resulting system of equations. A first order Taylor
approximation of (2) in the current numerical ap-
proximation of ()Cxx ,,~ ω yields the equation

()
0

''
3

21

=⋅∂+
++⋅∂+⋅∂+

Cxf
xxfxff
δ
δωωδδ (14)

which determines with (3) the Newton correc-
tion ()Cxx δδωδ ,,~ (note: (i) here fk∂ stands for
the derivative of f w.r.t. the k th argument, and
(ii) for clarity we have omitted the arguments
()Cxxx ,',ω of f , (iii) xxx ~,, δδ are functions
of ϕ). The time-domain products in (14) correspond
to frequency-domain convolutions. E.g., the FFT
transforms xf δ⋅∂1 into

()() ()][ˆ][][ˆ* ^
1

^
1 lxlkfkxf

N

Nl

δδ ∑
−=

−∂=∂ . (15)

With ()][ˆ:][ˆ: kxkkxII = the spectrum of the de-

rivative x& can be written as () xIx ˆj' ^ = . So, after
shifting f to the right-hand side (14) is transformed
by the FFT into the equation

()() () ()()
() () fxfxf

xIfxf
ˆ'

ˆ*jˆ*
^

3
^

2

^
2

^
1

−=∂+⋅∂+
+∂+∂

Cδδω
δωδ

 (16)

A. Abel, T. Nähring

The Modelica Association 386 Modelica 2008, March 3rd − 4th, 2008

for the unknown Newton correction ()Cxx δδωδ ,,ˆ
in the frequency domain. Together with (9) and (10)
written as

0]0[ˆ;0]0[ˆ == RP ii xx δδ (17)

this system formally determines the Newton correc-
tion in the frequency domain completely.
With the number of () 212 ++Nn real unknowns
the system is rather large and the convolution opera-
tor in (16) causes large fill-in of the system matrix
making direct solving infeasible in real-world appli-
cations. Therefore, the iterative GMRES algorithm is
used instead (see e.g. [5]). This method only requires
the evaluation of the left-hand side of (16) for
known ()Cxx δδωδ ,,ˆ . This also makes it possible
to replace the frequency-domain convolutions in (16)
by the cheaper corresponding time-domain products
in (14) (together with the therefore needed FFT-
operations). GMRES only works well with an appro-
priate pre-conditioner. Thus, one must be able to
roughly solve systems with the left-hand side of (16)
fast. For this end the block-diagonal preconditioner
is used (see e.g. [6]). This approximates the convolu-
tions by only retaining the mean value component
of ()^fk∂ :

()() ()
()() ()][ˆ]0[][)ˆ(*

][ˆ]0[][ˆ*
^

2
^

2

^
1

^
1

kxkfkxIf
kxfkxf

δδ
δδ
⋅∂≈∂
⋅∂≈∂

 (18)

The so approximated system (16) can be solved fre-
quency-component wise.
If the dynamical system is linear then the Jacobi-
ans ff 21 ,∂∂ are constant in time and the corre-
sponding higher spectral components in the convolu-
tions (e.g. ()][^

1 lkf −∂ with 0≠− lk in (15)) are
zero. In this case `≈ ´ in (18) can be replaced by `=´
and the approximations are exact. For increasing
nonlinearities the higher spectral components of

ff 21 ,∂∂ omitted in the preconditioner gain influ-
ence, the approximations become more coarse. In
general one can say that with stronger nonlinearities
the number of GMRES iterations per Newton step
and the number of Newton-iterations increase.
If the local Newton method does not converge fast
enough then the Newton-algorithm with backward-
error minimization via backtracking (see [1] and [7])
is applied. For a better numerical condition the states
are automatically scaled during the computation.
In section 2.3 we will give an example of a nonlinear
system with a turning point in its frequency re-
sponse. To make the computation of such points pos-
sible a curve tracing algorithm with variable step-

size is implemented in SimulationX. A short outline
of this algorithm shall conclude this subsection.
Only at the starting value Startr and the end
value Stopr of the interval for the reference quan-

tity Rix the full system (13) is solved. At intermedi-
ate points for Rix the last equation determining the
value of the reference quantity is removed resulting
in

Fig. 4: Curve tracing algorithm (see text for details)

() 0=XF with () ()
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

]0[ˆ
,,ˆˆ

:
P

C

ix
xxfXF ω

 (19)

and with the unknowns collected in ()CxxX ,,ˆ: ω= .

Since (19) has one scalar equation less than un-
knowns it formally defines a solution curve (see also
upper branch in Fig. 4) instead of a single point.

Given the last solution point ()1−kX on the solution
curve and the tangent direction ()1|| −kXδ of the solu-
tion curve in that point a prediction

() () ()1|| −+= kkk XsXX δP

for the new solution point is computed. Thereby, the
step size s is chosen in dependence of the estimated
curvature of the solution path, the estimated distance
of ()kX P to the solution path, and the local conver-
gence behaviour of Newton's algorithm (for details
see [2]). In the predicted point a new estima-
tion ()kX ⊥δ for the tangent vector is computed as
the solution of the system

()()
()() () .1

,0D
1||

)(

=⋅
=

⊥−

⊥

kTk

kk

XX
XXF

δδ
δP

This is not the tangent direction to the solution curve
but to the curve defined by () ()()kXFXF P= (see
Fig. 4). Nevertheless, these curves and their tangents
are supposed to be close to each other. The Newton
correction for the computation of the next solu-
tion ()kX of (19) is then carried out in the affine
plane with ()kX P as origin and ()kX ⊥δ as normal

)1(−kX

X 0)(=XF

())()(kXFXF P=
)(kX P ()kX

()1|| −kXδ

()kX ⊥δ

Startr Stopr
Rix

Frequency-Domain Analysis Methods for Modelica Models

The Modelica Association 387 Modelica 2008, March 3rd − 4th, 2008

direction. The point () ()kk XX P=:0, is used as an
initial guess and the Newton corrections ()ikX ,δ as
well as the iterated solution approximations ()ikX ,
()K,1,0=i are defined by the system

()() () ()()
()() ()

() () ().
,0

,

,,1,

,

,,,

ikikik

ikTk

ikikik

XXX
XX

XFXXDF

δ
δδ
δ

+=
=⋅
−=⋅

+

⊥ (20)

As Fig. 4 suggests ()kX ⊥ is a better approximation
of the tangent to the solution curve at the new solu-
tion point ()kX than ()1|| −kX . Using ()kX ⊥ lets the
Newton iterations run on nearly the shortest path to
the solution curve, gives (20) a better numerical con-
dition, and avoids jumping between different solu-
tion branches at sharp turning points of the solution
path.

2.3 Example: Nonlinear Spring-Mass-System
with Turning-Point in Frequency Response

Unlike linear systems nonlinear systems may exhibit
turning points in the frequency characteristic. The
curve tracing algorithm implemented in SimulationX
makes the computation of such kind of frequency
characteristics possible.
The simple mechanical system of Fig. 5 is a torque
excited spring-mass-oscillator. The frequency of the
sinusoidal torque source is chosen as the reference
quantity and swept between Hz2.0 and Hz7.0 .
Since this reference quantity is a parameter and not a
variable SimulationX chooses it automatically as
compensation parameter as well. The phase of the
sine oscillator is the period variable with period π2 .
The quadratic term added to the spring characteristic
makes the system nonlinear in such a way that it
shows a turning point in the frequency characteristic
(see Fig. 6).

torque1

tau

torque2

p

angleSensor1

d=0.1

SD1=8inertia1

J=1

fix
ed

1=
0

sqrsqr

sineOsc

amplitude=1
Fig. 5: Nonlinear Spring-Mass-system
In the interval from Hz397.0 to Hz426.0 the fre-
quency characteristic is multi-valued. That corre-
sponds to multiple periodic limit cycles at those exci-
tation frequencies.

Fig. 6: Frequency response with turning-point for the
angular speed of inertia1 in the nonlinear spring-mass-
system; the sum curve and the first three harmonic
components are distinguishable in this diagram
As an example in Fig. 7 the limit cycles from the two
stable branches (lowest and highest) of the frequency
characteristic at Hz405.0 are shown.

0 60 120 180 240 300 360

−10

−5

0

5

10

Phase of Oscillation / degree

Sp
ee

d
of

 In
er

tia
 ra

d/
s

Fig. 7: Angular speed curves for the two possible stable
limit cycles of the nonlinear spring-mass-system at
excitation frequency Hz405.0 represented over
phase.
We kept this example simple to demonstrate that
even very basic nonlinear systems may have fre-
quency responses with turning-points. More compli-
cated examples can be found in [8], and [9].

2.4 Example: Active Electronic Filter

The periodic steady state simulation is not restricted
to mechanical systems. As an example the periodic
steady state simulation is applied to a Modelica
model for an active electronic pass-band filter (see
Fig. 8). The reference and compensation quantity in
this example is the frequency of the sinusoidal
source vin and its phase is the phase variable.

A. Abel, T. Nähring

The Modelica Association 388 Modelica 2008, March 3rd − 4th, 2008

vin

R=2.5e3

rin

ground1

C=6.4e-9

c1
C

=6
.4

e-
9

c2

R
=2

50
e3

rb
1

q1
q2

R=20e3

rc1

R
=1

e3

re
2

ground2ground3

po
w

er
… +

-

ground4

V

vc1

Fig. 8: Modelica model of the active electronical filter
At resonance frequency the transistor amplifier of
the pass-band filter is overdriven which causes
nonlinear harmonic distortions. The nonlinear fre-
quency response of the collector voltage of transis-
tor q1 is shown in Fig. 9.

Fig. 9: Frequency response of the collector voltage of
q1 in the active electronic filter; top: sum signal and
first harmonic, bottom: zoomed view of the other har-
monics in the resonance region where the amplifier is
overdriven; the harmonics are decreasing with order,
only the 2nd and 3rd harmonic are labelled
In Fig. 10 the periodic steady state result and the
time domain result of this voltage over phase angle
for an excitation frequency of kHz15.1 are com-
pared. At about °75 the base-emitter diode of q2
blocks and the voltage amplification of q1 grows
which causes the spike in the collector voltage of q1.

0 60 120 180 240 300 360
0

1

2

3

4

5

6

Phase of Oscillation / degree

C
ol

le
ct

or
 V

ol
ta

ge
 o

f q
1/

V

Fig. 10: Collector voltage of q1 in the active electronic
filter at excitation frequency kHz15.1 represented over
phase; full line: periodic steady state simulation,
dashed line: transient simulation;
The results are in good accordance. Nevertheless, a
slight difference of the results from the periodic
steady state simulation and the transient simulation is
visible at about °75 . The steep slopes of the spike
are somewhat smoothened by the limited number of
equidistant sample-points for the steady state simula-
tion (256 sample points per period were used).

3 Transfer Function Analysis and
Natural Frequencies

3.1 Linear System Analysis

Beside the nonlinear algorithm for the steady-state
simulation also linear frequency-domain analysis
methods are applicable to Modelica models and are
implemented in SimulationX. Those are based on the
linear system which results from the linearization of
the nonlinear system equations for the Modelica-
model in the current operating point. The operating
point may be determined by a previous transient
simulation or an equilibrium computation (in elec-
tronics also called DC-analysis). Some of the algo-
rithms may be applied to any Modelica model with-
out changes by the user. This includes the computa-
tion of the eigensystems, the Campell diagram, and
methods for the animation of the eigenmodes.
Other frequency-domain results such as the devia-
tions in mechanical quantities (vibration modes) and
the distribution of vibration energies and losses re-
quire special internal blocks that can be included into
the Modelica-model. The following Modelica source
code shows how the inertia from the standard Mode-
lica library can be supplemented with an internal

Frequency-Domain Analysis Methods for Modelica Models

The Modelica Association 389 Modelica 2008, March 3rd − 4th, 2008

energy calculation block which SimulationX uses in
order to compute the energy distribution.

model RotInertiaEnergyBlock
 import M=Modelica.Mechanics;
 extends M.Rotational.Inertia;
 Mechanics.Rotation.CalcEnergyBlock eb;
 equation
 eb.dom = w;
 eb.T = J*a;
end RotInertiaEnergyBlock;

The modification of the Type SpringDamper is
similar. For a demonstration the (rotational and
translational) masses and spring-dampers in the
powertrain from Fig. 1 have been substituted by the
modified types. The distribution of energy calculated
by SimulationX for the eigenmode at Hz66641. is
shown in Fig. 12. In practical applications such rep-
resentations show the engineer which masses,
springs, and dampers dominate the behaviour in cer-
tain eigenmodes of the system, so he can take sys-
tematic countermeasures to avoid unwanted oscilla-
tions.
Up to now these blocks are not documented and only
used for the internal element libraries of Simula-
tionX. But this may change in future.

Fig. 11: Distribution of energy for the powertrain ex-
ample from Fig. 1

3.2 Input-Output Analysis

For the analysis of the input-output-behaviour the
user must select the input and the output of the lin-

earized system. Any result variable of the model may
be used as the system output. SimulationX has a spe-
cial class of signal inputs that may be open even for
the top-level model. Those inputs may be used for
the input-output-analysis. In Fig. 11 a cut-out of the
powertrain from Fig. 1 is shown where a torque
source with such an input has been added. The input-
output behaviour is described by the frequency re-
sponse function and the pole-zero diagram of the
system.

Fig. 12: Element linSysAnaOpenInput in the example
from Fig. 1 with open input for the input-output-
analysis
Fig. 13 and Fig. 14 show the pole-zero plot and the
frequency characteristic, resp., for the powertrain
from Fig. 1 with the torque at the first cylinder as
input (Fig. 12) and the torque in the engine damper
as output.

Fig. 13: Pole-zero plot of the system in Fig. 1; crosses:
poles, circles: zeros
For further analysis in external tools the linearized
system matrices may be exported in Modelica or
MATLAB syntax.

4 Conclusions and Outlook

Periodic steady state simulation proves useful for the
vibration analysis of nonlinear systems. SimulationX
allows its application to Modelica models, in particu-
lar to powertrains, without the decomposition into
nonlinear exciter and linear drivetrain. Furthermore,
the method is applicable to driven systems of other

A. Abel, T. Nähring

The Modelica Association 390 Modelica 2008, March 3rd − 4th, 2008

physical domains since it is purely equation-based.
Only very little knowledge of the system is required
from the user. Two mechanical examples and one
from electronics were given in the paper.

Fig. 14: Frequency response of the system in Fig. 1;
top: amplitude, bottom: phase
Furthermore, we discussed methods for the small-
signal analysis in the current operating point (result-
ing from a transient or equilibrium computation).
Beside pole-zero plots and frequency response func-
tions also some remarks about the deviation- and
energy distribution analysis for oscillation modes
were given. They are especially useful for the me-
chanical engineer to detect the powertrain elements
which participate in selected oscillation modes.
• Behaviour Description In Frequency Domain:
In future it is planned to include a behavioural de-
scription in frequency domain (e.g., for modeling of
dynamic stiffness) for the periodic steady state simu-
lation as well as for the frequency response computa-
tion, which was one main argument for the harmonic
balance method to be preferred over the shooting
method (see e.g. [11] for a short introduction and
further references). One major reason for the fre-
quency domain description not yet being imple-
mented in SimulationX is that Modelica currently
still lacks a standardized way for computations with
complex numbers (even if some steps in this direc-
tion have already been taken, see e.g. [10]).
• Event Iterations: Event iterations are already em-
bedded into the harmonic balance algorithm. But
there remains still some work for the treatment of
time-discrete variables in special cases.
• Improved Convergence for Strongly Nonlinear
Systems: As long-term objective the convergence
speed of the harmonic balance for strongly nonlinear
systems can be improved by time domain precondi-
tioners (see [6]).

• Autonomous Systems: The ansatz used for the
harmonic balance also bears the potential for the
simulation of autonomous systems. The required
randomization of the start values for the harmonic
balance could be implemented.
• Detection of Stable/Unstable Limit Cycles: Up to
now there is no automatic discrimination of the sta-
ble and unstable branches in the nonlinear frequency
response computed via harmonic balance. This can
be implemented by an eigenvalue analysis of the
monodromy matrix of the computed limit cycles.

References

[1] J. E. Jr. Dennis and Robert B. Schnabel:
Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. SIAM
1996.

[2] E. L. Allgower and K. Georg: Numerical
Continuation Methods: An Introduction.
Springer-Verlag, 1990.

[3] http://www.simulationx.com
[4] H. Dresig and F. Holzweißig: Maschinendy-

namik. 5th ed., Springer-Verlag Berlin, 2004.
[5] A. Meister: Numerik linearer Gleichungssys-

teme. Vieweg-Verlag, Wiesbaden, 2005.
[6] Ognen J. Nastov: Methods for Circuit Analy-

sis. PHD-theses, Massachusetts Institute of
Technology, 1999.

[7] U. Feldmann, U. A. Wever, Q. Zheng, R.
Schultz, and H. Wriedt: Algorithms for Mod-
ern Circuit Simulation. AEÜ, Vol. 46 (1992),
No. 4.

[8] A. Al-shyyab and A. Kahraman: Non-linear
dynamic analysis of a multi-mesh gear train
using multi-term harmonic balance method:
period-one motions. Journal of Sound and
Vibration, 284 (2005) 151-172.

[9] Wen-I Liao, Tsung-Jen Teng, and Chau-
Shioung Yeh: A method for the response of
an elastic half-space to moving sub-Rayleigh
point loads. Journal of Sound and Vibration
284 (2005) 173-188.

[10] Peter Aronsson at al.: Meta Programming
and Function Overloading in OpenModelica.
Modelica 2003, November 3-4, 2003.

[11] Kenneth S. Kundert: Introduction to RF
Simulation and Its Application. IEEE Journal
of Solid-State Circuits, Vol. 34, No. 9, Sep-
tember 1999.

Frequency-Domain Analysis Methods for Modelica Models

The Modelica Association 391 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 392 Modelica 2008, March 3rd − 4th, 2008

World3 in Modelica: Creating System Dynamics Models
in the Modelica Framework

François E. Cellier

ETH Zürich
Switzerland

FCellier@Inf.ETHZ.CH

Abstract

This paper introduces a new release of the System-
Dynamics library of Modelica and shows how it is
being used by discussing a fairly large application
code: Meadows’ World3 model. The newest version
of that model has been made available in the library.

Keywords: System Dynamics, World Dynamics,
Soft Science Modeling

1 Introduction

System Dynamics represents a fairly low-level mod-
eling paradigm. Its implementation does not place
heavy demands on the modeling software. Hence
Modelica may in fact be a bit of an overkill for deal-
ing with System Dynamics models. However, it is
considerably better suited than the state-of-the-art
software for this type of modeling, i.e., Stella [11],
the code that most System Dynamics modelers use
today.

A first version of a System Dynamics library for
Modelica was released in 2002 [3]. In the present
paper, a new release, SystemDynamics 2.0, is being
discussed. SystemDynamics 2.0 is not an upgrade of
SystemDynamics 1.0, but rather a re-implementation
of the methodology. Inherited from SystemDynam-
ics 1.0 were only two application codes, a small in-
troductory model concerning lynxes eating hares,
and a considerably more complex model borrowed
from Forrester’s Industrial Dynamics book [4].

As already mentioned above, the basic models
implementing the System Dynamics methodology,
levels and rates, are so simple that their implementa-
tion in Modelica requires very little time and effort.
The value of the library is not in its basic models, but
rather in its application codes.

Among other applications, SystemDynamics 2.0
offers two full World models, namely Forrester’s
World2 model [5], and Meadows’ World3 model
[7,8].

Whereas Forrester described his model in full in
his World Dynamics book [5], Meadows’ only talked
in Limits to Growth about the results obtained with
the model [8]. The model itself, originally coded in
Dynamo [10], was described in a separate book [7].

Meadows’ World3 model has seen two major
upgrades since its original inception, one in 1992, i.e.
after 20 years, and the second in 2002, i.e., after 30
years. The World3 application code contained in
SystemDynamics 2.0 implements the 2002 version
of the World3 model. In the code, we offer not only
the basic model, but also all 10 scenarios that Mead-
ows and co-workers are talking about in Limits to
Growth: The 30-Year Update [8].

Although the work of Forrester and Meadows
caused quite a stir in the early 70s when their books
first appeared, world modeling became unfashion-
able fairly quickly, because essentially all sources of
funding dried out for political reasons.

Only very recently, in the context of the looming
Peak Oil event and because of the ongoing discus-
sions concerning Global Warming, has world model-
ing become respectable again.

It turned out that Forrester and Meadows were
essentially correct in their assessments, in spite of
the fact that their models were very crude in com-
parison with real world dynamics.

With this paper, I wish to open up world model-
ing to the community of Modelica users.

World3 in Modelica: Creating System Dynamics Models in the Modelica Framework

The Modelica Association 393 Modelica 2008, March 3rd − 4th, 2008

2 Short History of System Dynamics

The System Dynamics approach to modeling dy-
namic systems was developed in the 1960s by Jay
Forrester with the aim of creating a modeling and
simulation tool that economists would be able to
handle.

Instead of talking about differential equations, he
talked about “levels,” the values of which were
changed by “rates.” Level variables are variables
that can accumulate. For example, population might
be used as a level variable. It is controlled by two
rate variables, the birth rate and the death rate.

Forrester would draw this relationship in a dia-
gram similar to the one shown in Fig.1.

Figure 1: Population with birth and death rates

The blue square box represents a level. It requires an
initial value. The blue icons to the left and right of
the level represent rates. Both the birth and the death
rate are proportional to the population. The two
clouds represent sources and sinks of material. They
are used for documentation purposes only. There are
no equations associated with these models. The lilac
lines represent material flows, whereas the blue lines
represent information flows.

Of course, Forrester didn’t have a computer
available with a graphical user interface. He drew
his diagrams only by hand and then translated them
manually (and quite mechanically) down to a set of
equations that he then encoded in Dynamo [10], a
simulation “language” that had been outdated al-
ready at the time of its creation.

Forrester explained to his disciples that every
modeling exercise should always start with ponder-
ing, which are the most important accumulator vari-
ables that ought to be captured in the model. These
variables should be declared as level variables. Sub-
sequently, it needs to be decided, what other vari-
ables can be viewed as inflows and outflows to and
from these levels. The inflows and outflows would
then become the rate variables. Fig.2 shows a typi-
cal set of levels and their rates.

Figure 2: Typical level and rate variables

The modeler would then need to decide, which

other variables the rates depend on, and write these
down in a so-called “laundry list.” A possible laun-
dry list for the birth rate is offered in Fig.3.

Figure 3: Birth rate laundry list

So far so good, but now comes the most daring

assumption, the “quantum leap” of System Dynam-
ics.

The functional relationship represented by such a
laundry list can be assumed to be a static non-linear
function in multiple variables, e.g.:

Yet, since such a function may be too difficult to
identify, Forrester chose to ignore the mutual rela-
tionship among the different input variables, and
postulate the following model instead:

The birth rate is essentially computed as the average
birth rate, BRN, multiplied by the population. All
other dependencies are expressed as small signal de-
viations from the norm. The single-valued functions
can most of the time be easily approximated using
information from the open literature, e.g. from statis-
tical yearbooks.

Forrester was wildly successful with his ap-
proach to modeling. Whereas engineers and physi-
cists mostly ignored him, if they didn’t even sneer at
his “methodology,” researchers from the soft sci-
ences loved it. Already by the early 1980s, several
thousands of papers making use of System Dynamics
for a variety of modeling projects had been published
[6].

F. Cellier

The Modelica Association 394 Modelica 2008, March 3rd − 4th, 2008

By 1984, the Macintosh became available, and
with it, programmers were for the first time offered
an easily programmable graphical user interface.
Within a short time, a graphical modeling environ-
ment for System Dynamics modeling, Stella [11],
became available that quickly replaced Dynamo [10]
as the tool of choice for System Dynamics modeling.

Today, more than 20 years later, Stella is still the
most widely used tool for System Dynamics model-
ing. The language has seen a few improvements
over the years, but by and large, it is still the same
software that had been created in the mid 1980s.

A Stella model of population and its two rate
variables is shown in Fig.4.

Figure 4: Stella model of population growth

3 The WORLD3 Model

World Dynamics became quickly one of the most
prominent endeavors of System Dynamics modelers.
Among the earliest world models created for the
Club of Rome were Forrester’s WORLD2 and
Meadows’ WORLD3 models. Both of these models
are made available as part of the new SystemDynam-
ics library.

Which are the most important drivers (accumul-
tors) behind any world model? The list of levels
ought to include at least:

 population
 pollution
 resource utilization
 invested capital
 work force
 food

Different world models vary in the degree of so-
phistication, with which they consider these sectors.
In this paper, we shall primarily focus on the
WORLD3 model, as this model has been upgraded
several times, and therefore is still up-to-date.

3.1 Population Dynamics

The population dynamics model of WORLD3 is
shown in Fig.5.

Figure 5: Population dynamics in WORLD3

The model is quite easy to read. The population is
subdivided into four separate levels, representing:

1. children (until age 14)
2. young adults (until age 44)
3. older adults (until age 64)
4. seniors

This division makes sense, as the work force is com-
prised of groups #2 and #3 only, and people of re-
productive age are those in group #2. The rates be-
tween the levels compute the maturation from one
group into the next. Beside from the births and the
final deaths, there are also people dying prematurely
out of each of the four groups.

The birth rate depends on the fertility, which is
computed by another module. The death rates in the
four groups are modeled as tabular functions of the
life expectancy, which is also computed elsewhere.

The model exports the total population and the
labor force, as these variables are used by other
modules.

Notice that WORLD3 is a global model. All
variables are averaged over the entire globe. The
model does not distinguish between Europe and Af-
rica, for example. This limits the types of questions
that may be answered by it.

3.2 Pollution Dynamics

The pollution dynamics model of WORLD3 is de-
picted in Fig.6.

The pollution model contained originally a sin-
gle state variable: the accumulated pollution. New
pollution is being generated in proportion to the total
resource utilization and in proportion to the arable
land used for agriculture. Pollution is being assimi-
lated again in proportion to the accumulated pollu-
tion by the self-regulating mechanisms of this planet.

World3 in Modelica: Creating System Dynamics Models in the Modelica Framework

The Modelica Association 395 Modelica 2008, March 3rd − 4th, 2008

Figure 6: Pollution dynamics in WORLD3

Of a more recent vintage is the second state vari-

able that denotes the capital invested in pollution
avoidance technology. Meadows and coworkers rec-
ognized at some point in time that the amount of pol-
lution generated may be partly mitigated by invest-
ing in pollution avoidance technology. The inflow
rate associated with this second state variable is an
unrestricted rate that can also assume negative val-
ues, thereby turning the inflow rate into an outflow
rate.

Notice that this is not a greenhouse gas emission
model. The model attempts to estimate total pollu-
tion of various kinds. The measurement units asso-
ciated with pollution in the model are somewhat ob-
scure.

This would, however, be the place where a
global greenhouse gas emission model could (and
probably should) be added at some point in time.

3.3 Resource Utilization Dynamics

The resource utilization dynamics model of
WORLD3 is depicted in Fig.7.

Figure 7: Resource utilization dynamics in WORLD3

The model is similar in structure to the pollution
dynamics model. Originally, there was only a single
state variable describing the non-recoverable natural
resources that are being depleted. Resource deple-
tion occurs approximately proportional to the total
industrial output. The resources get consumed in the
process of producing goods. As the resources get
depleted, production inevitably slows down.

A second state variable was introduced in a later
version of the model describing the effects of recy-
cling. As resources get recycled rather than dis-
carded, resource utilization for the same amount of
produced goods slows down. The same technologi-
cal advances that enable recycling also reduce the
generation of pollution.

In WORLD3, the production sector is subdivided
into three sub-areas concerning the production of
consumer goods, the production of food, and the pro-
duction of services.

Resource depletion is an important factor in the
model as it negatively influences all three production
sectors.

Notice that the resources, as computed by the
model represent primarily minerals, not fossil fuels.
WORLD3 does not model fossil fuel utilization di-
rectly.

Fossil fuels could (and probably should) be in-
cluded as a separate state variable within the re-
sources sector of the model.

3.4 The Overall Model

The overall WORLD3 model is depicted in Fig.8.

Figure 8: Overall WORLD3 model

I subdivided the WORLD3 model into 13 differ-

ent sectors, capturing the dynamics of population,
pollution, arable land development, food production,
the service sector, human fertility, industrial invest-

F. Cellier

The Modelica Association 396 Modelica 2008, March 3rd − 4th, 2008

ments, the work force, land fertility, the human eco-
logical footprint, the human welfare index, life ex-
pectancy, and last but not least the utilization of non-
recoverable natural resources. Three of those were
presented in the previous sections of this paper. The
overall model invokes one of each of the 13 sector
models and connects the terminal variables of those
sector models among each other.

We are now ready to simulate the model. The
compiled model contains 41 state variables and 265
algebraic variables. A few simulation results are
shown in Figs.9 and 10.

Figure 9: Population as a function of time

Figure 10: Natural resources as a function of time

The simulation results are identical to those

shown in the book Limits to Growth [8]. The popu-
lation grows until roughly 2030. At that time, the
non-recoverable resources have been depleted to an
extent where production can no longer proceed as
before. In particular, less food gets produced, which
leads to a decline in the population.

Can we trust these results? To answer this ques-
tion, it may be useful to look at scenario #2. In this
scenario, Meadows and his co-workers postulated
that the amount of the remaining non-recoverable
natural resources had been massively underesti-
mated. The amount sill available in 1900 is thus
doubled. Furthermore, it is proposed that, in 2002,
money is being invested in producing the remaining
resources more efficiently.

Some simulation results of this scenario are
shown in Figs. 11 and 12. The results from scenario
#1 are superposed for comparison. We would expect
that, since resource depletion won’t occur as quickly,

the population can continue to grow for some time
after 2030.

Figure 11: Population as a function of time (scenario #2)

Figure 12: Resources as a function of time (scenario #2)

In this scenario, the population is indeed able to
grow for a little while longer, but now it starts
shrinking at 2045, although the resources aren’t get-
ting depleted until 2080. This time around, the cause
of the die-off is the pollution. Pollution is allowed to
continue to increase unabated, which eventually
hampers our ability to grow food.

Whereas scenario #1 suffers (in a general sense)
the effects of Peak Oil, scenario #2 is plagued by
Global Warming. Similar results were shown in ear-
lier editions of Limits to Growth [8]. The main dif-
ference between the models is the year, in which cor-
rective action is being taken in the different scenar-
ios. In the first edition of the book, corrective ac-
tions were taken in 1972. However, we already
know that this didn’t happen. Hence, the 3rd edition
proposes corrective actions to take place in 2002
only. By postponing the intervention, the window of
opportunity for still influencing the simulation re-
sults in a significant way shrinks.

Why do I believe these results? It is, because
they aren’t very sensitive to the scenario chosen.
Whatever we do, if it is not one factor that brings us
to the limits of growth, it is another … and irrespec-
tive of what we do, it always happens in the 21st cen-
tury. It may happen a few years earlier or a few
years later, but the general picture doesn’t change at
all.

Also the (much simpler) WORLD2 model that
features a different set of state variables and different

World3 in Modelica: Creating System Dynamics Models in the Modelica Framework

The Modelica Association 397 Modelica 2008, March 3rd − 4th, 2008

interactions between them essentially paints the same
picture.

Since the 1980s, we are consuming more re-
sources per time unit than the planet is able to re-
grow [1,12]. We are living beyond our means. This
is not sustainable. It cannot continue indefinitely.

So, will the decline take place? Maybe it won’t.
Maybe the moon is made out of Swiss cheese.

3.5 Analysis of Simulation Results

Meadows and co-workers found two scenarios that
look a bit more hopeful. These are scenarios #6 and
#9. Let me analyze these two scenarios in more de-
tail. To this end, we shall continue the simulation all
the way until 2500.

In scenario #6, a whole palette of interventions
was enacted in 2002. These include the interven-
tions of scenario #2. In addition, money was in-
vested in improved pollution control technology
(scenario #3), in enhanced land yield (scenario #4),
in increased land erosion control (scenario #5), and
in augmented resource utilization efficiency (sce-
nario #6).

Some simulation results are depicted in Fig.13.

Figure 13: Simulation results of scenario #6

This scenario is indeed sustainable. The world

population hovers at approximately 10 billion peo-
ple. The remaining natural resources get no longer
consumed.

Yet, humanity is paying a heavy price for insist-
ing on maintaining such a large population. It
spends all of its resources in producing food, and
does so with the most primitive of means. The in-
dustrial output, and also the service sector output get
reduced to almost zero. This is also why the remain-
ing natural resources are no longer being consumed.
Worst of all, the life expectancy is back at a value as
it was experienced prior to the industrial age. The

average human dies before age 30 due to huge infant
mortality.

Let us now look at scenario #9. In that scenario,
additional interventions are chosen. The scenario
starts out with scenario #6, but in addition enforces
strict population control (scenario #7), and products
are being built that last 25% longer on average (sce-
narios #8 and #9).

Some simulation results are depicted in Fig.14.

Figure 14: Simulation results of scenario #9

By enforcing strict population control, the world

population is kept at a maximum value of 8 billion
people. The scenario promises a golden age that will
last for 400 years. Unfortunately, the scenario is not
fully sustainable, as the natural resources continue to
be used up, and by the year 2400, the industrial out-
put, and with it also the population and life expec-
tancy start declining again.

4 Dymola vs. Stella

What have we gained by offering a System Dynam-
ics modeling capability in Dymola and by porting the
WORLD3 model to that new environment?

Stella, contrary to Modelica, is not truly object-
oriented. Large models are handled in Stella by sup-
porting the concept of a virtual canvas. The physical
screen can be scrolled over the virtual canvas, ena-
bling the user to look at parts of the model sepa-
rately. However, there is no feature available that
would help a user find a particular spot, such as the
population dynamics model, on the canvas.

Stella furthermore does not offer an icon editor.
Stella only supports three types of icons that are all
displayed in Fig.4. The square boxes represent lev-
els (or “stocks,” as they are being called in Stella);
the circles with the tap on top denote the rates (or
“flows,” as they are being named in Stella), and the
circles without a tap are everything else (linear and

F. Cellier

The Modelica Association 398 Modelica 2008, March 3rd − 4th, 2008

non-linear functions, tabular functions). For this rea-
son, Stella diagrams don’t offer mnemonic hints.
They look all the same, irrespective of what they
represent (just like a bond graph [2]).

The numerical ODE solvers offered by Stella are
rather poor. Also, Stella computes internally with an
accuracy of 2 digits after the comma only (triggered
by the fact that Stella is frequently used by econo-
mists who think in terms of dollars and cents).

On the other hand, Stella offers better support in
dealing with tabular functions. Each 1D table is im-
mediately plotted in the parameter window, and the
user can tweak the curve by moving supporting val-
ues around using the mouse.

Furthermore, Dymola forces the user to create a
separate block for each non-linear function and pro-
gram the non-linear relationship either graphically in
its diagram window or alphanumerically in its equa-
tion window. In contrast, Stella offers a generic non-
linear function block that enables the user to create
the non-linear relationship interactively in the pa-
rameter window of that generic block. The user
doesn’t even need to retype the names of the input
variables. The parameter window of that generic
function offers a scroll-down list of the names of all
input variables, and the user can simply click on any
of those in order to get them included in the expres-
sion.

Finally, Modelica has been designed by engi-
neers for engineers. It is based heavily on SI units.
Whereas the user can declare types based on these
units, he cannot declare new units. Whereas this
works well for most engineering endeavors, it causes
problems when dealing with soft science models.

Sometimes, new derived units are needed. For
example, time in System Dynamics models is often
measured in years rather than seconds. Whereas
Dymola offers the possibility to declare new display
units, the user cannot change the units used in com-
putations. This is inconvenient. Of course, the types
encoded in the SIunits library are based on SI units.
Thus, if a user wishes to declare his own units, he
will have to declare his own types based on these
units also.

Even worse, however, are those units that cannot
be expressed at all in terms of SI units. For example,
many System Dynamics models operate on units of
money. Dollars cannot be expressed in terms of SI
units at all.

The most important advantage of Dymola is the
fact that the entire System Dynamics knowledge is
encoded at the level of Modelica. The interface can
therefore be easily modified and enhanced by the

user. In contrast, Stella’s user interface is com-
pletely hard-wired. The user cannot modify the syn-
tax or semantics of Stella in any way, and therefore,
new ideas cannot be incorporated into the code ex-
cept by talking the designers of the tool into includ-
ing them with their next software release.

5 Conclusions

In this paper, a new release, or rather re-
implementation, of the System Dynamics library of
Modelica was presented.

The System Dynamics methodology is very easy
to use, and consequently, does not really require
much of an introduction. The most important value
of a System Dynamics library is the knowledge en-
coded in its application examples. Currently, the by
far most valuable part of the new library are its world
models.

What future additions are in the works? In to-
day’s world of dwindling fossil fuel reserves, it be-
comes important to track how much energy we are
actually using. Whereas classical System Dynamics
is designed to track material flows, it does not track
energy flows. This is a major drawback of the meth-
odology.

For this reason, a second version of the System
Dynamics library has also been released as a sub-
library of BondLib [2], our bond graph library. In
that version, all material flows are represented inter-
nally by bond graphs. A bond graph naturally tracks
energy flows. Each energy flow, in that version of
the library, is represented as the product of a specific
enthalpy and a mass flow. Hence we can track mate-
rial flows and energy flows simultaneously.

When I drive my car from home to work, I am
not only spending energy in the form of the gas that
my car consumes. Some energy was also spent in
producing the car, and more energy will be spent in
discarding it at the end of its lifecycle and in recover-
ing those materials from it that can be recycled.

The accumulated energy that accounts for all of
those indirect uses of energy is called emergy [9].
The specific enthalpy can be used to encode in the
model the specific emergy, i.e., the emergy per unit
of mass.

I plan on porting examples of emergy modeling,
as described in the publications by Howard Odum,
over to the bond graph implementation of the System
Dynamics library, but this work has not yet been
completed.

World3 in Modelica: Creating System Dynamics Models in the Modelica Framework

The Modelica Association 399 Modelica 2008, March 3rd − 4th, 2008

Acknowledgments

I wish to express my gratitude to Dennis Meadows
and Jørgen Randers. Without their generous help
and support, I would have been unable to port the
WORLD3 model and all of its 10 scenarios over
from Stella to Dymola (Modelica).

References

[1] Cellier, F.E.: Ecological Footprint, Energy Con-
sumption, and the Looming Collapse. The Oil
Drum, May 16, 2007

[2] Cellier, F.E., Nebot, A.: The Modelica Bond

Graph Library. In: Proceedings of the 4th Interna-
tional Modelica Conference, Hamburg-Harburg,
Germany (2005) Vol. 1, 57-65

[3] Fabricius, S.M.O.: SystemDynamics Modelica

Library; Brief Feature and Example Documenta-
tion. Modelica Website, 2002

[4] Forrester, J.W.: Industrial Dynamics. M.I.T.

Press, 1961

[5] Forrester, J.W.: World Dynamics. Pegasus Com-
munications, 1971

[6] Lebel, J.D.: System Dynamics. In: Progress in

Modelling and Simulation (F.E. Cellier, ed.),
Academic Press, London (1982) 119-158

[7] Meadows, D.L., Behrens III, W.W., Meadows,

D.H., Naill, R.F., Randers, J., Zah, E.K.O.:
Dynamics of Growth in a Finite World. Wright-
Allen Press, 1974

[8] Meadows, D.H., Randers, J., Meadows, D.L.:

Limits to Growth: The 30-Year Update. Chelsea
Green, 2004

[9] Odum, H.T.: Environmental Accounting: Emergy

and Environmental Decision Making. John
Wiley, 1995

[10] Richardson, G.P., Pugh III, A.L.: Introduction to

System Dynamics Modeling with DYNAMO.
M.I.T. Press, 1981

[11] Richmond, B., Peterson, S., Vescuso P.: An Aca-

demic User's Guide to STELLA. High Perform-
ance Systems, Inc., Lyme, N.H., 1987

[12] Wackernagel, M., Rees, W.: Our Ecological

Footprint. Green Teacher, 45 (1995) 5-14

François E. Cellier received his
BS degree in electrical engineering
in 1972, his MS degree in auto-
matic control in 1973, and his PhD
degree in technical sciences in
1979, all from the Swiss Federal
Institute of Technology (ETH) Zu-

rich. Dr. Cellier worked at the University of Arizona
as professor of Electrical and Computer Engineering
from 1984 until 2005. He recently returned to his
home country of Switzerland. Dr. Cellier's main sci-
entific interests concern modeling and simulation
methodologies, and the design of advanced software
systems for simulation, computer aided modeling,
and computer-aided design. Dr. Cellier has authored
or co-authored more than 200 technical publications,
and he has edited several books. He published a text-
book on Continuous System Modeling in 1991 and a
second textbook on Continuous System Simulation
in 2006, both with Springer-Verlag, New York.

F. Cellier

The Modelica Association 400 Modelica 2008, March 3rd − 4th, 2008

Modelica as a host language
for process/control co­simulation and co­design

Filippo Donida, Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio, 34/5 – 20133 Milano, Italy
{donida,leva}@elet,polimi.it

Abstract
The manuscript describes a project, currently under development at the Politecnico di Milano,
the aim of which is to create an integrated environment for the modelling and simulation of
process control systems, where the plant(s) are described according to the Modelica object­
oriented paradigm, while the control systems are specified in an IEC 61131.3­compliant
language, and automatically translated into algorithmic Modelica. Preliminary results will be
reported, given the vast scope of the project, but even at the present stage, interesting
discussions are possible on the potentialities and pitfalls of Modelica (and even of object­
oriented modelling at large) when it comes to describe control algorithms of realistic
complexity and size.

1. Introduction
A significant experience is nowadays available on
the use of Modelica to model, simulate and assess
control systems in the process domain [15, 16, 12,
13]. As witnessed by many references (samples
will be given in the final manuscript, including
some directly related to the authors' experience)
there is a correspondingly vast corpus of
libraries, models, and system studies [7, 6, 15, 16,
14, 4].
Based on that experience, a critical point when
dealing with applications of realistic size is
invariantly the “correct” representation of the
control system. The object­oriented paradigm can
be suitably exploited to allow for various,
interchangeable control representations of
different, scalable complexity, and such a
possibility is definitely a plus of Modelica.
However, when it comes the time to describe the

control system in full detail, the most effective
way to do so is not only algorithmic, but
compliant with the industrial standard accepted in
that domain, the IEC 61131­3 being the most
important one [8, 18, 17, 9, 5, 2, 11]. Adhering to
an industry standard is beneficial not only in
terms of acceptability of the developed simulators
on the part of people who know much more about
their processes than about simulation (a problem
worth addressing in any case, however) but also
in terms of reduced ambiguity in the realisation
of controller models [3, 4].
After several years of experience on the matter,
the authors are strongly convinced that Modelica
is very well suited as a host language for the
representation of realistic­scale process controls,
but that to do so it is highly desirable to allow for
the specification of such controls in IEC­
compliant languages.

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

The Modelica Association 401 Modelica 2008, March 3rd − 4th, 2008

Based on the above idea, the AutoEdit (the name
may change in the future) project was started.
The aim of the project is to set up a tool
composed of

● a graphical Modelica editor, aimed at
writing the “plant model”,

● an editor for IEC 61131.3 languages (at
present the Ladder Diagram, Sequential
Functional Chart and the Functional
Block Diagram are being considered),
aimed at writing the “control model”,

● a “compiler” capable of translating both
the “plant” and “control” model in a
single Modelica file, to be fed to any
Modelica translator for simulation (the
term “compiler” being used here for
analogy and compatibility with the IEC
terminology, albeit the Modelica jargon
would most likely advise something like
“pre­translator”),

● and a simulation output browser.
To the best of the authors' knowledge, such a tool
is the only one allowing to couple Modelica
process modelling with IEC (i.e., industry
standard) control system representation, greatly
facilitating the creation of simulators of process
control systems.
AutoEdit is fully written in java (hence cross­
platform), uses the XML language as internal
data format for maximum openness and
transparency, and is entirely free software,
released under the terms of the GPL license. It is
the authors' intention to allow AutoEdit to operate
with any Modelica translator, so as to maximise
its use and to have the maximum amount of
feedback for improvement. At present, the
AutoEdit site is hosted at the URL
http://home.dei.polimi.it/donida/projects.php?proj
ect=AutoEdit

The paper organised as follows. First a minimal
review of the background. Then, a discussion is
carried out on the opportunity of generating
event­driven Modelica code with an ad hoc tool,
instead of describing control system components,
as already attempted, with Modelica (continuous
time based) models. The outcome of such
discussion, as can be guessed, is that the “best”
approach depends on the size of the considered
application, direct generation of algorithmic code
being preferable in the case of large (control)
systems. The AutoEdit project is then described,
illustrating its goals, structure, organisation,
present state, and future developments.

2. Background
Recent advances in object­oriented modelling
allow to tackle the simulation and the computer­
aided control system design of industrial plants in
a unified framework. Traditionally, however, the
plant study and design, the following design
assessment simulations, the control system
design, the overall system validation, and the
operator training, are not developed in a
coordinate way within a single environment. By
vastly acknowledged opinion, doing so is a waste
of time and resources, not to say a possible source
of errors, because the involved environments are
frequently not compatible each other, requiring
manual intervention to transfer information from
one tool to another..
The Modelica multi­physics approach allows per
se to perform a first integration of two of the
involved frameworks: the plant model and its
control are defined with an equation section for
the plant and an algorithm section for the control
code, and then the two sections are unified in a
single model and simulated simultaneously.
In the present software engineering arena,
translators and cross­compilers are well diffused,

F. Donida, A. Leva

The Modelica Association 402 Modelica 2008, March 3rd − 4th, 2008

but basically such tools are available for the
software development only. To the best of the
authors' knowledge there are no similar examples
in simulation for control area, except for some
ad hoc solutions pertaining to the micro­
controller real­time applications.
The AutoEdit is an attempt to fill the gap
sketched above. It is in the first place an
integrated IEC61131.3 compliant environment for
the graphical development of the control
programs, having (algorithmic) Modelica as the
target language. Moreover, it proposes new
standard for the Ladder Diagram (LD) and
Sequential Function Chart (SFC) file
representations, using the XML language and
DTD validation. AutoEdit also encompasses a
converter from the SFC XML to LD XML
format, managing different level of variables'
scope, as required to be compatible with the way
IEC­compliant projects are organised. In one
word, AutoEdit is an attempt to allow developing
the model of a complete control application
(process and control system) in a single
environment, and having as final output a
complete simulator of the overall application.

3. Modelling control code in Modelica
Consider the way a control application is
typically developed in an IEC­compliant
environment. The application is composed of
programs, written in one or more of the
supported languages, and linked together by the
development tool. The programs of an application
are organised into sub­applications, that in turn
are deployed to one or more CPUs and arranged
into threads, each one composed of programs that
share the cycle time. i.e., the temporal cadence
for the update of inputs and outputs.
The goal of AutoEdit is to take as inputs

● a model of the plant written in standard
Modelica

● and some description of the control
application (the term “application” being
intended in the IEC sense summarised
above,

producing as output a single Modelica model, to
be fed to any Modelica translator for subsequent
simulation.
The question, then, is how to describe the control
application.
Basically, one can follow two strategies. One is to
describe the IEC languages' elements as
Modelica models: this is somehow tempting
especially if one considers the graphical IEC
languages (FBD, LD, and SFC). Doing so allows
to take profit from the manipulation capabilities
of the adopted translator, to the apparent
advantage of simulation efficiency.
The other strategy is to translate the IEC
programs into Modelica algorithms, to be
assembled conveniently in blocks, and connected
to the plant model in the usual way.
AutoEdit takes the second way, for the reasons
summarised in the following. First, especially
large can easily lead symbolic manipulator to
deal with thousands and thousands of variables:
many of them are managed trivially, but the
overhead remains. Then, many problems in IEC­
specified control systems reside in the incorrect
synchronisation of control threads and
applications, and therefore – for a credible
validation of the control system – representing
that timing (e.g., and typically, with when
clauses) is very important; if this is done, given
the limitations of when­equations, describing the
code as algorithms starts looking advisable. In
addition, the organisation of the code in threads
and sub­applications is typically functional, thus
better reflected in algorithms than in equations.

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

The Modelica Association 403 Modelica 2008, March 3rd − 4th, 2008

Finally, and in some sense as a by­product, if a
tool like AutoEdit generates algorithmic
Modelica code starting from an IEC source, then
the same tool can easily be extended to generate –
from the same source – code in virtually any
procedural programming languages. Exploiting
that possibility is in the future plans of the
AutoEdit project, and will lead to a single tool for
the simulation of a complete system (avoiding the
“how­to­close­the­loop” problem of IEC
development environments) and also for the
generation of the control code to be actually
deployed to the system's CPU(s).

4. An example
A very simple example is now reported to better
illustrate the ideas of section 3. In this example, a
home irrigation plant is introduced. The plant has
an accumulating tank, a pump, two level sensors,
and three valves, each one connected to an
irrigation line. A schematic figure of the plant is
reported as figure 1.

Figure 1: the example plant.

The pump starts pumping water in the tank when
the level of the water is lesser than a OK_LEVEL
(boolean sensor that returns true if covered by
water) level since the water reaches the level
FULL_LEVEL (similar boolean sensor).
Everyday, say at 20:00 (event launched by a

START_CYCLE variable, assumed here to be
managed by some clock external to the program),
each of the valves (V1 to V3) has to be opened.
Each valve, one for each zone, remains opened
for 10 minutes and then is closed. There is also a
ON/OFF command: if ON is true then the plant
works as described below, otherwise all the
valves are opened, and the pump is stopped.
Figure 2 shows the overall control program,
written in the SFC language, as is appears in the
AutoEdit window. It is possible to recognise the
various elements of the (very simple) control
logic, and to appreciate the similarity of the user
interface to that of the typical IEC­compliant
environments (to the advantage of acceptability
on the part of control system developers). We do
not report simulations here since the plant and
control operation in this example are very simple,
and would not contribute to the purpose of this
paper.

Figure 2: the example plant control in SFC.

In the example the translation was very simple
but, when considering industrial applications of
realistic size, the number and length of the lines

F. Donida, A. Leva

The Modelica Association 404 Modelica 2008, March 3rd − 4th, 2008

of control code would increase dramatically, and
automatic generation of the algorithmic code
would prove necessary. In addition to this if we
consider the possibility to have heterogeneous
IEC­compliant programs a mixture of ST, LD and
SFC implementation, the complexity further
increases.
Thanks to the AutoEdit conversion utility, it is
possible to translate the SFC programs into LD
and then, automatically, to Modelica algorithm­
based models. The translation of an

heterogeneous IEC control program is perfectly
transparent to the AutoEdit user.

4. The AutoEdit project
The project started in the 2004 with the intent to
realise a Java graphical application to support
graphical programming for the LD, SFC and
Structured Text (ST) languages.
From 2004 to 2006 a graphical application was
therefore developed to graphically support the
SFC and LD programming.

Figure 3: The AutoEdit main window.

Starting from 2006, the target was widened as
illustrated in section 3, so as to integrate the
AutoEdit environment with a Modelica editor,
and then (starting in 2007) to create a converter
from SFC, LD XML and Modelica algorithmic­
based .mo files. This is – more or less – the
present state of the project. Notice that a high
development effort is being spent on AutoEdit, so
that the mentioned state is continuously
changing. The reader is referred to the project site

for up­to­date information.

Here, just some samples of the AutoEdit
operation are given. Space limitations prevent
from reporting here any technical detail, that can
anyway be figured out from the site, and will also
be available in the system documentation.

Figure 3 shows the main window of AutoEdit
with a Modelica model open for editing. It is

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

The Modelica Association 405 Modelica 2008, March 3rd − 4th, 2008

possible to see the multiple subwindows scheme,
allowing simultaneous editing of multiple
(process and/or control) models. The AutoEdit
text editor, thanks to the integration of the JEdit
software, offers many functionalities, among
which syntax highlighting, bracket highlighting,
text folding (also for annotations), word auto­
completion, auto­indentation and many others
utilities. of multiple models.

Figure 4, on the other hand, shows the conversion
from SFC to LD, namely of the pump control
program in the example introduced above. It is
possible to appreciate the usefulness of having
simultaneous views of the same code with
different representations, a facility offered by
several IEC­compliant environments, and of high
usefulness according to the opinions of the
industrial community.

Figure 4: the pump control program converted from SFC to LD by AutoEdit.

5. Future developments
Many interesting “future works” arise for the
AutoEdit project from the scenario synthetically
described above. Among those possible
developments, those that seem more promising,
and are therefore scheduled as work to be done in
the near future, are

● the development of a 3d viewer for the
simulation data,

● the addition of other advanced editing

functionalities,
● the exploitation of interaction/integration

possibilities with other IEC­compliant
tools,

● the output of ad hoc real­time code in
several languages, the C languages being
for obvious reasons the first to be
considered,

● the addition of multitasking support.
6. Conclusions
A Java­based integrated environment for the

F. Donida, A. Leva

The Modelica Association 406 Modelica 2008, March 3rd − 4th, 2008

development of complete object­oriented
simulation models of controlled plants, namely
the AutoEdit project, was presented.
The goal of AutoEdit is to allow the user to create
both the plant model, using the power of the
Modelica language, and an algorithmic model of
the control program, adhering to the IEC61131.3
industry standard,
As such, AutoEdit not only proposes a software
solution, but also tries to suggest new standards
and ideas for unifying two of the most important
activities of the computer­aided engineering
tasks: model and control co­simulation.

References

[1] T. Sato, E. Yoshida, Y. Kakebayashi, J.
Asakura, N. Komoda, Application of
IEC61131­3 For Semiconductor Processing
Equipment, Emerging Technologies and
Factory Automation. Proceedings. 2001 8th
IEEE International Conference on, 2001.

[2] J. Huang, Y. Li, W. Luo, X. Liu, K. Nan, The
Design of New­Type PLC based on
IEC61131­3, Proceeding of the Second
International Conference on Machine
Learning and Cybernetics, Xi, 2­5,
November 2003.

[3] A. Leva, A. M. Colombo, Method for
optimising set­point weights in ISA­PID
autotuners, IEE Proc­Control The09
Appl., Vol. 146, No. 2, March 1999 .

[4] H. Takada, H. Nakata, S. Horiike, A
Reusable Object Model for Integrating
Design Phases of Plant Systems
Engineering, Proceedings of the Fourth
International Conference on Computer and
Information Technology (CIT’04).

[5] H. Taruishil, S. Kajiharal, J. Kawamotol, M.
Ono, H. Ohtani, Development of Industrial

Control Programming Environment
Enhanced by Extensible Graphic Symbols,
SICE­ICASE International Joint Conference
2006 in Bexco, Busan, Korea, Oct. 18­2 1,
2006.

[6] Y. Qiliang, X. Jianchun, W. Ping, Water
Level Control of Boiler Drum Using One
IEC61131­3­Based DCS, Proceedings of the
26th Chinese Control Conference,
Zhangjiajie, Hunan, China, July 26­31,
2007.

[7] M. Bonfe', C. Fantuzzi, L. Poretti, PLC
Object­oriented programming using
IEC61131­3 norm languages: an application
to manufacture machinery, in Proc. of
IEEE/ASME Int. Conf. on Advanced
Intelligent Mechatronics, vol. 2, pp. 787­792,
2001.

[8] [Online]. Available http://www.plcopen.org.
[9] J. Roger Folch, J. Pérez, M. Pineda, R.

Puche, Graphical Development of Software
for Programmable Logic Controllers, 12th
International Power Electronics and Motion
Control Conference.

[10] [Misc]. DeltaV: Monitor and control
software.

[11] [Misc]. Labview:
http://www.ni.com/labview.

[12] [Online]. Dymola: http://www.dynasim.se
[13] [Online]. Openmodelica:

http://www.ida.liu.se/labs/pelab/modelica/O
penModelica.html

[14] A. Nobuo, I. Kenichi, Y. Eiji, Application
portfolios for stardom, 12th International
Power Electronics and Motion Control
Conference.

[15] M. Otter, K. E. Årzén, I. Dressler,
StateGraph­A Modelica Library for
Hierarchical State Machines, 4th
International Modelica Conference, March
7­8, 2005.

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

The Modelica Association 407 Modelica 2008, March 3rd − 4th, 2008

[16] O. Johansson, A. Pop, P. Fritzson,
Engineering Design Tool Standards and
Interfacing Possibilities to Modelica
Simulation Tools, 5th International Modelica
Conference, September 4­5, 2006.

[17] E. Tisserant, L. Bessard, M. de Sousa, An
Open Source IEC 61131­3 Integrated

Development Environment, Industrial
Informatics, 5th IEEE International
Conference on, 2007.

[18] [Online]. ISaGRAF:
http://www.icpdas.com/products/PAC/i­
8000/isagraf.htm

F. Donida, A. Leva

The Modelica Association 408 Modelica 2008, March 3rd − 4th, 2008

 - 1 -

Exception Handling for Modelica
Adrian Pop, Kristian Stavåker, Peter Fritzson

PELAB – Programming Environment Lab, Dept. Computer Science
Linköping University, SE-581 83 Linköping, Sweden

{adrpo, krsta, petfr}@ida.liu.se

Abstract
Any mature modeling and simulation language should
provide support for error recovery. Errors might always
appear in the runtime of such languages and the devel-
oper should be able to specify alternatives when fail-
ures happen. In this paper we present the design and
implementation of exception handling in Modelica. To
our knowledge this is the first approach of integrating
equation-based object-oriented languages (EOO) with
exception handling.

Keywords: Exception handling, Modelica.

1 Introduction
According to the terminology defined in IEEE Standard
100 [9], we define an error to be something that is
made by humans. Caused by an error, a fault (also bug
or defect) exists in an artifact, e.g. a model. If a fault is
executed, this results in a failure, making it possible to
detect that something has gone wrong.

Approaches to statically prevent and localize faults
in equation-based object-oriented modeling languages
are presented in [16] and [17]. However, in this paper
we focus on language mechanisms for dynamically
handling certain classes of faults and exceptional condi-
tions within the application itself. This is known as ex-
ception handling. An exception is a condition that
changes the normal flow of control in a program.

Language features for exception handling are avail-
able for most modern programming languages, e.g.
object oriented languages such as Java [15], C++ [14],
and functional languages such as Haskell [3], OCaml
[12], and Standard ML [13].

However, exception handling is currently missing
from Object-Oriented Equation-Based (EOO) Lan-
guages like Modelica [2][6], VHDL-AMS [10],
gPROMS [11].

A short sketch of the syntax of exception handling
for Modelica was presented in a paper on Modelica
Metaprogramming extensions [5], but the design was

incomplete, not implemented, and no further work was
done at that time.

The design of exception handling capabilities in
Modelica is currently work in progress. The following
constructs are being proposed:

• A try...catch statement or expression.
• A throw (...) call for raising exceptions.

We have tried to keep the design of syntax and seman-
tics of exception handling in Modelica as close as pos-
sible to existing language constructs from C++ and
Java, while being consistent with Modelica syntax
style.

2 Applications of Exceptions
In this section we provide examples of exception han-
dling usefulness. There are three contexts in which ex-
ceptions can be thrown and caught: expression level,
algorithm level and equation level.
import Modelica.Exceptions=Exn;

function log
 input Real x;
 output Real y;
algorithm
 y :=
 if x <= 0
 then
 throw (Exn.InvalidArgumentException(
 message="Logarithm is undefined
 for ..."))
 else
 Modelica.Math.log(x);
end log;

Function log defined above will throw an exception if
it is provided with an invalid argument. This is not only
useful for mathematical functions, but also for func-
tions (i.e. like the ones in Modelica.Utilities
package) that deal with errors due to the operating sys-
tem. A common for all tools standard hierarchy of ex-
ceptions could be defined in the Modelica Standard
Library for all the exceptions categories needed. De-
pending on the simulation runtime implementation (i.e.
language of choice) of the Modelica tool exceptions

Exception Handling for Modelica

The Modelica Association 409 Modelica 2008, March 3rd − 4th, 2008

 - 2 -

could be translated from Modelica to the runtime and
back.

A model that uses the try-catch construct in the ex-
pression and equation contexts is presented below:

model Test
 // try to read a value from file
 // and if it fails just give it
 // a default value.
 parameter Real p=
 try
 readRealParameter("file.txt","p")
 catch(Exn.IOException e)
 0
 end try;
 Real x;
 Real y;
equation
 try
 y = log(x);
 catch(Exn.InvalidArgumentException e)
 // terminate the simulation with
 // a message on what went wrong
 terminate(e.message);
 end try;
end Test;

In this model exception handling in expressions and
equations are shown. In the case of exception handling
in equations the example just terminates the simulation
with an exception.

As one may have noticed the exceptions can be
thrown during:

• Compilation time for expressions or functions that
are evaluated at compile time

• Simulation time, due to exceptions raised into the
solver, functions, expressions or equations.

All the exceptions raised during compile time are re-
ported to the user. The exceptions which are caught are
reported as warnings and the un-caught ones are re-
ported as errors.

3 Exception Handling
In this section we present the design of the exception
handling constructs. The grammar of the try-catch con-
structs is given below. The grammar follows the style
from the Modelica Specification [6] and uses constructs
defined there. Different try clauses for each of the ex-
pression, statements and equations contexts are defined.

exception_declaration:
 type_specifier IDENT
 ["(" exception_arguments ")"]

exception_arguments:
 expression
 ["," exception_arguments]
 | named_arguments

named_arguments:
 named_argument ["," named_arguments]

named_argument:
 IDENT "=" expression

name:
 IDENT ["." name]

throw_clause:
 throw ["(" name
 ["(" exception_arguments ")"] ")"]

try_clause_expression:
 try
 expression
 (else_catch_clause_expression
 | catch_clause_expression
 { catch_clause_expresion }
 [else_catch_clause_expression])
 end try

catch_clause_expression:
 catch "(" exception declaration ")"
 expression

else_catch_clause_expression:
 elsecatch
 expression

try_clause_algorithm:
 try
 { statement ";" }
 (else_catch_clause_algorithm
 | catch_clause_algorithm
 { catch_clause_algorithm }
 [else_catch_clause_algorithm])
 end try

catch_clause_algorithm:
 catch "(" exception declaration ")"
 { statement ";" }

else_catch_clause_algorithm
 elsecatch
 { statement ";" }

try_clause_equation
 try
 { equation ";" }
 (else_catch_clause_equation
 | catch_clause_equation
 { catch_clause_equation }
 [else_catch_clause_equation])
 end try

catch_clause_equation:
 catch "(" exception_declaration ")"
 { equation ";" }

else_catch_clause_expression:
 elsecatch
 { equation ";" }

Throwing via throw; without any parameter can only
appear inside the catch clause and will throw the cur-
rently caught exception. This constraint is not specified

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 410 Modelica 2008, March 3rd − 4th, 2008

 - 3 -

in the above grammar to keep it simple. Of course, it
could be also checked by the semantics phase.

The try-catch clauses shown here are part of the
various contexts rules in Modelica grammar: expres-
sions, algorithm and equation.

3.1 Exception Handling for Statements

The statement variant has approximately the following
syntax:
try
 <statements1>
catch(<exception_declaration>)
 <statements2>
end try;

The semantics of a try-catch for statements is as fol-
lows: An exception generated from a failure during the
execution of statements1 will lead to the execution
of statements2 if the exception matches the catch
clause.

3.2 Exception Handling for Expressions

The syntax of the expression variant is as follows:
try
 <expression1>
catch(<exception_declaration>)
 <expression2>
end try;

The semantics of a try-catch for expressions is as fol-
lows: An exception generated from a failure while exe-
cuting expression1 will lead to the execution of ex-
pression2 if the exception matches the catch clause.

3.3 Exception Handling for EOO

What does it mean to have exception handling for equa-
tion-based models? For example, if an uncaught excep-
tion, e.g. division by zero, occurs in any of the expres-
sions or statements executed during the solution of the
equation-system generated from the model, the catch
could handle this, e.g. by simulating an alternative
model (providing alternate equations), or stopping the
simulation in a graceful way, e.g. by an error-message
to the user. The number of equations within the try con-
struct must be the same as the number of equations in
the catch part. This restriction is needed because mod-
els must be balanced. Of course, the restriction does
not apply for the catch parts that only terminates the
simulation and reports an error.

The syntax of the equation variant is as follows:
try
 <equations1>
catch(<exception_declaration>)
 <equations2> | <terminate(...)>
end try;

The semantics of a try-catch for equations is as follows:
If a failure generating an exception occurs during the
solution of the equations in the set of equations denoted
equations1, then if the catch matches the raised ex-
ception, then instead the equations2 set is solved.

The source of the exception can be in the expres-
sions and functions called in equations1, which are
evaluated during the solving process. Certain excep-
tions might originate from the solver. In that case, a
few selected solver exceptions need to be standardized
and predefined.

The semantics of try-catch for equations is similar
to the one for if-equations, with the difference that the
event triggering the catch block is when an exception is
thrown.

There could be several semantics for try-catch in
equation section and they are discussed in Section 8.

3.4 Exception Handling and external functions

The compiler should be able to check the exceptions in
order to:

• Report an error if the catch part tries to catch an ex-
ception that will never be thrown.

• Report exceptions that are not caught anywhere
• Generate efficient code for exceptions

The compiler can find automatically at compilation
time what exceptions are thrown from models and
functions defined in Modelica. However, the compiler
must be provided with additional help when it comes to
external functions. Therefore, when declaring external
functions, the exceptions that might be thrown by them
have to be declared too.

We could model this additional information in two
ways: directly in the grammar or as annotations.

Directly in the grammar as part of the ele-
ment_list (check the Modelica grammar for the ele-
ment list specification) of the function or model:

throws_declaration:
 throws name { "," name } ";"

Is not really needed to specify in the grammar the pos-
sible exceptions to be thrown, we could use annotations
instead:
annotation(throws={name1, name2, ... };

Names used above are constructed according to name
grammar rule specified in the beginning of this section.

In the literature this feature of the compiler (or the
language) is called Checked exceptions [18].

Exception Handling for Modelica

The Modelica Association 411 Modelica 2008, March 3rd − 4th, 2008

 - 4 -

4 Transforming matchcontinue Fail
Semantics

The current MetaModelica language extension has a
simple fail semantics: fail exceptions can be thrown
explicitly (via a fail() call) or implicitly (e.g., via a
failure due to no patterns matching in a called func-
tion), and be caught/handled within the subsequent
case(s) in the matchcontinue construct matching the
same pattern.

The matchcontinue construct can be transformed
into a match-expression that does not have the continue
semantics after a failure, however requiring that the fail
exception is caught in the same case branch.

Example:

matchcontinue x local ...
case Plus(a,b) equation // raise
 ...generateFailureException...
case Plus(a,b) equation // Catch
 handleFailure(a,b)
case _ handle_All_Inclusive_case();
end matchcontinue

can be transformed into the following:

match x local ...
case Plus(a,b) equation
 try
 ...generateFailureException...
 catch(Fail fail)
 handleFailure(a,b)
 end try;
case _ handle_All_Inclusive_case();
end match;

This transformation will be supported by a refactoring
tool to transform existing code based on matchcon-
tinue constructs into faster and clenrer code based on
the match construct combined with exception han-
dling. Such transformation will speed up the Open-
Modelica compiler, by removing many uses of match-
continue with repeated matching due to overlapping
patterns.

5 Exception Values
In this section we discuss different ways of represent-
ing exception values in Modelica. In general exceptions
are values of a user defined type. Certain exceptions,
such as DivisionByZero or ArrayIndexOutOf-
Bounds are predefined. The user should be able to de-
fine exceptions hierarchically (i.e. packages of excep-
tions) and use inheritance to add extra information
(components) to existing exceptions, thus creating spe-
cialized exceptions.

5.1 Exceptions as Types
We can model exceptions as a built-in Modelica type
Exception. A pseudo-class declaration of such a type
and its usage would look like:
type Exception
 // the value of the exception is
 // a string, accessed directly
 StringType ’value’
end Exception;

// Defining a new exception
type E1
 extends Exception;
end E1;

// Instantiate new exception
E1 e1 = "exception E1";
// Raise new exception
throw e1;

// Adding more information to an exception
type E2
 extends E1;
 parameter String moreInfo;

 end E2;

// Instantiate the exception
 E2 e2(moreInfo="E2 add") = "exception E2";

 // Throw exception
throw(e2);

try
 ...
catch(E2 e2)
 // here you can access the
 // e2 value directly
 // but you cannot access e2.moreInfo

catch(E1 e1)
 // here you can access the
 // value of e1 directly
end try;

Because we extend a basic type, it is possible to add
more information to the exception, but this information
cannot be accessed via dot notation.

5.2 Exceptions as Records

Another way to model exceptions is as Modelica re-
cords.
record Exception
 parameter String message;
end Exception;

// defining a new exception
record E1
 extends Exception(message="E1");
 parameter String moreInfo;
end E1;

// instantiate new exception
E1 e1(moreInfo="More Info");

// raise new exception
throw(e1);

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 412 Modelica 2008, March 3rd − 4th, 2008

 - 5 -

// Try and catch
try
 ...
catch (E1 e1)
 // here you can access e.message
 // and e.moreInfo
catch (Exception e)
 // here you can access e.message
end try;

Modeling exceptions as records has many of the de-
sired properties that a user might want. The problems
we see here are that:

• Is not very intuitive to throw and catch arbitrary re-
cords.

• The hierarchical structure is partly lost during flat-
tening, which means that for the records used in the
throw/try-catch constructs this information should
be preserved.

• The inheritance hierarchy is flattened for records
and one would like to keep it intact to be able to
catch exceptions starting from very specific (at the
bottom of the inheritance hierarchy) to more general
(at the top of the inheritance hierarchy)

We think that a better approach is with a new restricted
Modelica class called exception.

5.3 New Restricted Class: exception

We believe that the best way to model exceptions in
Modelica is by extending the language with a new re-
stricted class called exception. Moreover, similar de-
sign choices have been made in Java or Standard ML,
with their predefined exception types. In Java one can
only throw objects of the java.lang.Throwable and
its superclass java.lang.Exception. The C++ lan-
guage allows throwing of values of any type. In Stan-
dard ML and OCaml exceptions values and their type
need to be defined using a special syntax.

Exceptions can be represented in Modelica as a new
restricted class in the following way:
exception E1
 parameter String message;
end E1;

E1 e1(message="More Info");
 throw(e1); // raise new exception

// defining a new exception
exception E2
 extends E1(message="E2");
 parameter String moreInfo;
end E2;

// instantiate new exception
E2 e2(moreInfo="More Info");
throw(e2); // raise new exception

try
 ...

catch(E2 e2)
 // here you can access e.message
 // and e.moreInfo
catch(E1 e1)
 // here you can access e.message
end try;

Having a specific restricted class for exceptions would
have the following advantages:

• Throwing and catching only values of restricted
class exception is more intuitive than using records.

• Both the structural hierarchy and the inheritance hi-
erarchy of the exceptions can be kept during flatten-
ing and translated to C++, Java, Standard ML or
OCaml code more easily.

• The type checking of throw and try-catch constructs
would be more specific and straightforward.

6 Typing Exceptions
Modelica features a structural type system, which
means that two structures can be in the subtype rela-
tionship even if they have no explicit inheritance speci-
fied between them.

The type checking procedure for exceptions has to
be different than for all the other constructs, namely:

• Only restricted classes of type exception can be
thrown.

• When elaborating declarations of restricted class
exception the subtype relationship applies only if
there is specific inheritance relation between excep-
tions. This is needed because the exceptions have to
be matched by name and have to be ordered so that
the most specific case (supertype) is first and the
least specific (subtype) is last in a catch clause.

• When translation declarations of restricted class ex-
ception there will be no flattening of the inheritance
hierarchy.

• When elaborating catch clauses the compiler has to:
i) match the exception by name, ii) reorder the catch
clauses in the inverse order of the inheritance rela-
tion between exceptions or give an error if the less
specific exceptions are matched before the more
specific ones.

• The compiler has to check if an exception specified
in the catch clause will actually be thrown from the
try body or not. If such exception is not thrown the
compiler can either discard the catch clause or issue
a warning/error at that specific point.

With these new rules the typing of exception declara-
tions, exception values and catch clauses can be
achieved. After the translation, the runtime system and
the language in which was implemented (C++, Java,

Exception Handling for Modelica

The Modelica Association 413 Modelica 2008, March 3rd − 4th, 2008

 - 6 -

Standard ML) will provide the rest of the checking for
exceptions.

7 Implementation
In this section we briefly present the OpenModelica
implementation of exception handling. When referring
to Exception Hierarchy we mean both the structural
hierarchy and the inheritance hierarchy.

Figure 1. Exception handling translation strategy.

7.1 Overview

The general translation of Modelica with exception
handling follows the path described in Error! Refer-
ence source not found.. The exception handler and the
exception hierarchy are passed through the compiler via
the intermediate representations of each phase until the
C++ code is generated (or any other language code
used in the backends of different Modelica compilers).

The specific OpenModelica translation path for
Modelica code with exception handling is presented in
Figure 2.

Exception handling in OpenModelica required the fol-
lowing extensions:

• The parser was extended with the proposed excep-
tion handling grammar.

• Each intermediate representation of the OpenMode-
lica compiler was augmented with support for ex-
ceptions.

Both the structural and the inheritance hierarchy of the
exceptions are passed through the OpenModelica com-
piler until C++ code is generated.

C++ Code and
C++ Exception handling and

C++ Exception Hierarchy

SCode

Inst

DAELow

Parse

CodeGen

SimCodeGen

Absyn

SCode

DAE Functions DAE Eq/Alg

DAELowC++ Functions

C++ Simulation Code

Modelica Code
with Exceptions

Figure 2. OpenModelica implementation.

7.2 Translation of Exception values

The translation from the internal representation to C++
code is straightforward: a Modelica exception maps to
a C++ class. For example, the following Modelica code
with exceptions:
exception E
 parameter String message;
end E;

exception E1
 extends E(message="E1");
 parameter Integer id = 1;
end E1;

is translated into the following C++ code:
class E
{
 public:
 modelica_string message;
 E(modelica_string message_modification)
 {
 message = message_modification;
 }
 E()
 { message = ""; }
}

Modelica Code
with Exception handling and

Exception Hierarchy

FlatModelica Code
with Exception handling and

the Exception Hierarchy

DAE with Exception handling
and the Exception Hierarchy

C++ Code and
C++ Exception handling and

C++ Exception Hierarchy

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 414 Modelica 2008, March 3rd − 4th, 2008

 - 7 -

class E1 : public E
{
 public:
 modelica_integer id;
 E1(modelica_string message_modification,
 modelica_integer id_modification)
 {
 message = message_modification;
 id = id_modification;
 }
 E1()
 {
 message = "E1";
 id = 1;
 }
}

The following Modelica code for exception instantia-
tion and exception throwing:

E e; throw(e);
E1 e1; throw(e1);

E1 e2(message="E2", id=2);
throw(e2);

E1 e3(message="E3");
throw(e3);

is translated to the following C++ code:
E *e = new E(); throw e;
E1 *e1 = new E1(); throw e1;

E1 *e2 = new E1("E2", 2);
throw e2;

E1 *e3 = new E1();
e3->message = "E3”;
throw e3;

Is also possible to represent exception values in C++ as
objects allocated on the stack, i.e.: E1 e2("E2", 2);.

7.3 Translation of Exception handling

The C++ exception handling code follows the Modelica
code. The table below defines the translation procedure
for Modelica including the MetaModelica extensions.

Modelica
Expressions

C++

x :=
try
 exp1
catch(E e)
 exp2
end try;

modelica_type temp;

try
{
 temp = exp1;
}
catch(E *e)
{
 temp = exp2;
}
x = temp;

Modelica
Statements

C++

try
 <statements>

catch(E e)
 <statements>

end try;

try
{
// Modelica
// corresponding
// C++ statements

}
catch(E *e)
{
// Modelica
// corresponding

 // C++ statements
}

Modelica
Equations

C++

try
 <eqnsA>

catch (Ex1 e1)
 <eqnsB>

end try;

try
 <eqnsC>

catch (Ex2 e2)
 <eqnsD>

end try;

event1=false;
event2=false;

while time < stopTime
{
try{
 call SOLVER for problem:
 if event1
 then
 eqnsB;
 else
 eqnsA
 end if;

 if event2
 eqnsD;
 else
 eqnsC;
 end if;
}
catch(Ex1 *e1)
{
 discard posible
 calculated current
 step values;
 reinit the solver
 with previous step
 values;
 event1 = true;
}
catch(Ex2 *e2)
{
 discard posible
 calculated current
 step values;
 reinit the solver
 with previous step
 values;
 event2 = true;
}
}

8 Further Discussion
During the design and implementation of exception
handling we have encountered various issues which we
will present in this section. The exception handling in

Exception Handling for Modelica

The Modelica Association 415 Modelica 2008, March 3rd − 4th, 2008

 - 8 -

expressions and algorithm sections are straightforward.
However when extending exception handling for equa-
tion sections there are several questions which influ-
ence the design choices that come to mind:

Questions: Is the exception handling necessary for
equation sections? If yes, what are the semantics that
would bring the most usefulness to the language?

Answers: We believe that exception handling is neces-
sary in the equation sections at least to give more useful
errors to the user (i.e. with terminate(message) in
the catch clause) or to provide an alternative for grace-
fully continuing the simulation. Right now in Modelica
there is no way to tell where a simulation failed. There
are assert statements that provide some kind of lower
level checking but they do not function very well in the
context of external functions. As example where alter-
native equations for simulation might be needed we can
think of the same system in different level of detail.
Where the detailed system can fail due to complexity
and numerical problem the simulation can be continued
with the less complex system.

Semantics of try-catch in equation sections

Several semantics can be employed to deal with try-
catch clauses in equation sections:
1. Terminate the simulation with a message (as we

show in application section)
2. Continue the simulation with the alternative equa-

tions from the catch clause activated and the ones
from the try-body disabled. When the exception
occurs the calculated values in that solver step are
discarded and the solver is called again with previ-
ous values and the alternative from the catch
clause.

3. Signal the user that an exception occurred and re-
start the simulation from the beginning with the
catch-clause equations activated.

4. When an exception occurs, discard the values cal-
culated in the current step and activate the alterna-
tive equations from catch-clause. However, at the
next step try again the equations from the try-body.
This will make the catch-clause equation active
only for the steps where an error might occur.

We think that the most useful design for exception
handling in equation section is the one that has both
features 1 and 2 active.

9 Conclusions
We have presented the design and the implementation
of exception handling for Modelica. We strongly be-

lieve in the need for a well designed exception handling
in Modelica. By adding exception handling constructs
to the language we get a more complete language and
provide the developer with means to better control ex-
ceptions. There are several issues that have to be con-
sidered when designing and implementing these con-
structs which we have discussed in this paper.

10 Acknowledgements
This work has been supported by Swedish Foundation
for Strategic Research (SSF), in the RISE and VISI-
MOD projects, by Vinnova in the Safe and Secure
Modeling and Simulation project.

References
[1] Peter Fritzson, Peter Aronsson, Håkan Lundvall,

Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Envi-
ronment. Simulation News Europe, 44/45, Dec
2005.
http://ww.ida.liu.se/projects/OpenModelica

[2] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., Wiley-IEEE Press, 2004. See also:
http://www.mathcore.com/drmodelica

[3] Paul Hudak. The Haskell School of Expression.
Cambridge University Press, 2000.

[4] Kenneth C. Louden: Programming Languages,
Principles and Practice. 2:nd edition, Thomson
Brooks/Cole, 2003, (ISBN 0-534-95341-7)

[5] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proceedings of the 4th International Modelica
Conference, Hamburg, Germany, March 7-8,
2005.

[6] The Modelica Association. The Modelica Lan-
guage Specification Version 3.0, September
2007. http://www.modelica.org.

[7] Mikael Pettersson. Compiling Natural Semantics.
PhD thesis, Linköping Studies in Science and
Technology, 1995.

[8] Peter van Roy and Seif Haridi. Concepts, Tech-
niques, and Models of Computer Programming.
MIT Press, 2004.

[9] IEEE Standards Information Network. IEEE 100
The Authoritative Dictionary of IEEE Standards
Terms. IEEE Press, New York, USA, 2000.

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 416 Modelica 2008, March 3rd − 4th, 2008

 - 9 -

[10] Christen E. and K. Bakalar. VHDL-AMS-a
hardware description language for analog and-
mixed-signal applications, In 36th Design Auto-
mation Conference, June 1999

[11] Oh Min and C.C. Pantelides (1996) "A Modeling
and Simulation Language for Combined Lumped
and Distributed Parameter System." Computers
& Chemical Engineering, vol 20: 6-7. pp. 611-
633 1996.

[12] Xavier Leroy et al., The Objective Caml system.
Documentation and user’s manual, 2007,
http://caml.inria.fr/pub/docs/manual-ocaml

[13] Robin Milner, Mads Tofte, Robert Harper and
David MacQueen, The Definition of Standard
ML, Revised Edition, MIT University Press, May
1997, ISBN: 0-262-63181-4

[14] Bjarne Stroustrup: The C++ Programming Lan-
guage (Special Edition). Addison Wesley. Read-
ing Mass. USA. 2000. ISBN 0-201-70073-5.
1029 pages. Hardcover.

[15] James Gosling, Bill Joy, Guy Steele, and Gilad
Bracha. The Java™ Language Specification,
Third Edition, ISBN-13: 978-0321246783, Pren-
tice Hall, June 2005.

[16] Peter Bunus. Debugging Techniques for Equa-
tion-Based Languages. Ph.D. Thesis No. 873,
Linköping University, 2004

[17] David Broman. Safety, Security, and Semantic
Aspects of Equation-Based Object-Oriented Lan-
guages and Environments. Licentiate Thesis,
Thesis No. 1337, Linköping University, Decem-
ber, 2007.

[18] Exception Handling:
http://en.wikipedia.org/wiki/Exception_handling

Exception Handling for Modelica

The Modelica Association 417 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 418 Modelica 2008, March 3rd − 4th, 2008

Session 4b

Thermodynamic Systems & Applications

The Modelica Association 419 Modelica 2008, March 3-4, 2008

The Modelica Association 420 Modelica 2008, March 3rd − 4th, 2008

Modeling of the Gasification Island with Modelica
Julia Fahlke1 Stephan Püschel1 Frank Hannemann2 Bernd Meyer1

1TU Bergakademie Freiberg, Institut für Energieverfahrenstechnik und Chemieingenieurwesen
Fuchsmühlenweg 9, Haus 1, 09596 Freiberg

2Siemens Fuel Gasification Technology GmbH
Halsbrücker Straße 34, 09599 Freiberg

Julia.Fahlke@iec.tu-freiberg.de

Abstract

For the modeling and simulation of the Gasification
Island a new Modelica library GasificationIsland
was developed. Therefore new components had to be
generated, like the gasifier or the components of the
pneumatic feeding system. The developed models
are based on the Modelica_Fluid and the Mode-
lica.Media libraries. In this paper the structure of the
most important component models and the main
modeling assumptions are illustrated.

Keywords: Gasification Island modeling; SFG

1 Introduction

Figure 1: usage of the syngas from the gasification [1]

The gasification process is of great importance for
the electrical and basic chemical industry as it con-
verts any carbon-containing material into a synthesis
gas (syngas) composed primarily of carbon monox-
ide and hydrogen. This syngas can be used as a fuel
in a combined cycle to generate electricity (Inte-
grated Gasification Combined Cycle). But it can also
be used as a basic chemical for a large number of

syntheses in the petrochemical and refining industry,
like Methanol or Fischer Tropsch Synthesis (Figure
1). The modeling of the gasification process is till
this day a great challenge.

1.1 The gasification process

Gasification means the thermo-chemical conversion
of fuels with a reactant to a combustible gas, which
is rich of the components CO, H2 and CH4. The most
proceeded reactions are partial oxidation procedures,
which take place with oxygen in free (elemental) or
bounded form (H2O, CO2). These partial oxidations
are interfered in dependence of the process and the
process parameters with pyrolysis or devolatilization
and hydrogenation processes [2].
The gasification process can be divided into different
types according to the gasification agent/heat supply
(autothermic, allothermic or hydrogenating gasifica-
tion), the gas-solid-contacting (fixed/moving bed,
fluidized bed or entrained flow gasification) or con-
cerning the process temperature (above or below ash
melting point).
This paper deals with the SFG gasification process,
which is an autothermic, entrained flow gasifier with
temperatures in the gasifier above the ash melting
point.

In the gasification process a large number of reac-
tions take place. Principle chemical reactions are
those involving carbon, carbon monoxide, carbon
dioxide, hydrogen, water (or steam) and methane [3]:

combustion reactions

COOC →+ 25.0 -111 MJ/kmol

225.0 COOCO →+ -283 MJ/kmol

OHOH 222 5.0 →+ -242 MJ/kmol

Modelling of the Gasification Island with Modelica

The Modelica Association 421 Modelica 2008, March 3rd − 4th, 2008

Boudouard reaction
COCOC 22 ↔+ +172 MJ/kmol

water gas reaction

22 HCOOHC +↔+ +131 MJ/kmol

methanation reaction

422 CHHC ↔+ -75 MJ/kmol

CO shift reaction

222 HCOOHCO +↔+ -41 MJ/kmol

steam methane reforming reaction

224 3 HCOOHCH +↔+ +206 MJ/kmol

Most fuels contain additional components beside
carbon, hydrogen and oxygen, e.g. sulfur, nitrogen or
minerals. Sulfur in the fuel is converted into H2S and
COS and the nitrogen into elemental nitrogen, NH3
or HCN.

1.2 The SFG Gasification Island

The SFG Gasification Island consists of the SFG
gasifier itself, the pneumatic feeding system and the
gas treatment system (Figure 2).

Figure 2: SFG Gasification Island [4]

The solid fuel (e.g. coal) is fed into the SFG-Reactor
through a pneumatic feeding system. In the reactor
the carbon rich fuel will be partially oxidized under
high pressure and under the addition of oxygen as

gasifying agent and steam as temperature moderator
into a raw gas. Minerals in the fuel are separated and
leave the bottom of the gasifier as an inert glass-like
slag. The raw gas is cooled down and saturated in the
quench. Afterwards it flows in the venturi wash and
in the partial condenser, where the raw gas is cooled
down and the solid particles are separated from the
raw gas.

2 GasificationIsland Library Over-
view

The GasificationIsland library is an in-house Mode-
lica library for the transient simulation of the Gasifi-
cation Island process. The library is designed in a
joint project with Siemens Fuel Gasification Tech-
nology GmbH Freiberg. The intention of the project
is to apply these models to analyze the behavior of
the different sub-processes as well as the whole
Gasification Island at load changes or disturbances
and to test new control strategies (see chapter 4).
Furthermore the library shall be utilized in the plant
shop tests prior real commissioning on site.
The developed models are based on the Mode-
lica_Fluid and the Modelica.Media libraries.
The library is divided into functional sub-packages.
In Figure 3 a screen shot of the first hierarchical
level of the library is shown.

Figure 3: screen shot of the GasificationIsland library
in the package browser

The Media package contains all the used media
models like raw gas, slag or coal. The solids are
simulated as media with constant properties, like the
ConstantPropertyLiquidWater in the Mode-
lica.Media library.
The package LockHopperSystem includes all com-
ponent models of the pneumatic feeding system, e.g.
lock hopper, storage bin or feeding vessel.

J. Fahlke, S. Püschel, F. Hannemann, B. Meyer

The Modelica Association 422 Modelica 2008, March 3rd − 4th, 2008

The packages Reactor/Quench comprise the models
of the gasification reactor and the quench.
The SlagDischarge package includes the models of
the slag hopper and the flushing tank.
The GasTreatment package contains models of the
venturi scrubber, partial condenser and drums.
The Controller package includes the sequence con-
trol of the batch processes for the pneumatic feeding
system and the slag discharge system. The control-
lers were modeled by the Modelica.StateGraph li-
brary.
The package Model comprises the different simu-
lated sub processes of the gasification island and a
model of the complete process.

In the following section the structure and the main
modeling assumptions for some selected components
will be illustrated.

3 Developed Models

3.1 Lock Hopper System

3.1.1 Storage bin

Figure 4: screen shot of the storage bin icon

The storage bin should ensure the uninterrupted ser-
vice of the gasification reactor with coal. The storage
bin works at ambient pressure.

In practice the pneumatic feeding system consists of
more then one lock hopper, so the storage bin needs
as many outlets as lock hoppers exist. For solid flow
the outlet form is conical (Figure 4). To simulate the
filling level of this geometrical form the storage bin
was divided into segments. The single segments are
connected through valves. These valves have a huge
Kv flow coefficient and ensure the mass flow be-
tween the segments. So it can be guaranteed that the
filling level in each storage bin segment is the same.
There is only one exception: if the filling level is
lower than the high of the cone no more mass trans-
fer between the segments occurs. This is realized by
setting the outlet pressure of the segment connec-
tions to a defined minimum value. Furthermore the
inlet flow is split to the segments. Figure 5 shows the

implementation of a storage bin with six outlets in
the Dymola Diagram Layer.

Figure 5: screen shot of the Implementation of a stor-
age bin with 6 outlets in the Dymola Diagram Layer

For the outlet ports the coal mass flow is defined.
The following function is used [5]:

μ
βγ

ρ
⋅⋅

⋅
⋅⋅

⋅
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅=

⋅−
5.0

36.0

5.25.01.0

,)tan(
13.0 h

dg
em APd

d

outc
P

A

&

There is the diameter of the lock hopper outflow,

 is the mean diameter of the coal particle,
Ad

Pd Pρ is
the particle density, γ is the repose angle, β is the
cone angle and h is the fill level of the coal.

3.1.2 Lock Hopper

Figure 6: screen shot of the lock hopper icon

For dosing of the pulverized coal into the reactor it is
necessary to bring it into a pressure system that op-
erates at a pressure level higher than the reactor pres-
sure. This is fulfilled by the lock hoppers. Therefore
4 sequences appear:

Modelling of the Gasification Island with Modelica

The Modelica Association 423 Modelica 2008, March 3rd − 4th, 2008

- filling of the lock hopper with coal until the
maximum level is reached

- pressurizing of the coal. Therefore a pressur-
ized inert gas is fed into the lock hopper

- discharging of the lock hopper into the feed-
ing vessel

- depressurizing of the gas

In the lock hopper are two different media: the gas
and the coal medium. For each a mass balance is
considered but only one energy balance is imple-
mented. Furthermore the wall material is regarded as
a heat storage system and convective heat transfer
between the gas and the wall is implemented.
The level of the coal is determined by the fixed bulk
density.

model LockHopper

 …
// Total quantities
m_coal = V_coal*coal.d;
m_gas = (V-V_coal)*gas.d;
U = coal.u*m_coal + gas.u*m_gas;
U_wall = m_wall*cp_wall*T_wall;
V_bulk = m_coal/rho_bulk;
Q = alpha*A*(T_wall – gas.T);

//Mass balances
der(m_coal) = in_c.m_flow + out_c.m_flow;
der(m_gas) = sum(in_g.m_flow) + sum(out_g.m_flow);

//Energy balances
der(U) = in_c.H_flow + out_c.H_flow + sum(in_g.H_flow)
+ sum(out_g.H_flow) + Q;
der(U_wall) = -Q;
…

end LockHopper;

3.1.3 Feeding Vessel

Figure 7: screen shot of the feeding vessel icon

The pulverized coal is fed from the feeding vessel
into the gasification reactor. Therefore the feeding
vessel remains a constant level of operating pressure
above the reactor pressure. This is done through

pressurizing and depressurizing of the feeding vessel
with inert gas.
In the feeding vessel exist three layers: the fluidized
bed, the bulk and the gas layer (Figure 8).

Figure 8: layers in the feeding vessel

From the fluidized bed the coal suspension is fed to
the reactor. It is assumed that the height of the fluid-
ized bed is fixed. Furthermore a functional correla-
tion among the pressure drop between the feeding
vessel and the reactor and the coal mass flow to the
reactor exists. This functional correlation can be
lodged.
In the feeding vessel only one energy balance is con-
sidered. The wall material as heat storage system is
neglected because the appeared temperature fluctua-
tions are only small.

3.2 Reactor

3.2.1 Gasification Reactor
In the gasification reactor the conversion of the coal
into a combustible raw gas occurs.

Figure 9: calculation of the gasifier DLL

J. Fahlke, S. Püschel, F. Hannemann, B. Meyer

The Modelica Association 424 Modelica 2008, March 3rd − 4th, 2008

The gasifier is implemented in a Dynamic Link Li-
brary (DLL), which was developed by the Siemens
Fuel Gasification Technology GmbH Freiberg. In the
DLL the thermodynamic equilibrium is calculated.
Therefore the equilibriums for the reversible reac-
tions mentioned in chapter 1.1 are calculated.
Figure 9 shows the in- and outputs of the gasifier
DLL.

3.2.2 Quench

Figure 10: screen shot of the quench icon

In the quench the raw gas from the reactor is cooled
down and saturated.

The quench consists of two zones the gas space and
the sump. For each zone own mass and energy bal-
ances are considered. However convective heat
transfer between the raw gas in the gas space and the
water in the sump is assumed. In the gas space the
raw gas from the reactor is saturated and therefore
cooled down. This is done by the injection of fresh
water at the top of the quench (Figure 11).

Figure 11: mass flows at the quench

In the gas space one energy balance for the media
water, slag and gas is regarded.

For the calculation of the saturated steam fraction the
following equation is used:

()
GG

sGSS
Steam Mp

MTp
⋅

⋅
= ,ϕ

Steamϕ is the mass fraction of steam, is the

saturation vapor pressure at the temperature ,
is the gas pressure and are the molar
masses of steam and the gas.

(GSS Tp ,

GT
)

Gp

GS MM ,

The vaporization flow has to be regarded in the mass
balances of the water and the gas in the gas space.
Furthermore the heat of vaporization has to be taken
into account in the energy balance of the gas space.

model quench

…
//mass balances gas space
der(m_gas) = in_g.m_flow + out_g.m_flow + m_ue;
der(mXi[s]) = in_g.mXi_flow[s] + out_g.mXi_flow[s] +
m_ue;
 0 = in_w.m_flow + out_w.m_flow – m_ue;
…
//energy balance gas space
der(U) = … - delta_hv*m_ue;
…
//calculation of the saturated steam fraction
gas.Xi[s] = p_steam*M_s/gas.p*gas.MM;
p_steam = saturationPressure(gas.T);
…

end quench;

3.3 Gas Treatment

3.3.1 Venturi Scrubber System

Figure 12: screen shot of the venture scrubber icon

The venturi scrubber system is located between the
quench and the partial condenser. It consists of a
venturi jet and a drum. The venturi jet is a pressure
drop component. There are two different types of
venturi’s: controlled and uncontrolled.

Modelling of the Gasification Island with Modelica

The Modelica Association 425 Modelica 2008, March 3rd − 4th, 2008

The raw gas, which leaves the venturi scrubber sys-
tem, is saturated. For the calculation of the saturated
gas properties the same equations as in the quench
are used.

3.3.2 Partial Condenser

Figure 13: screen shot of the partial condenser icon

The partial condenser is located between the venturi
scrubber system and the synthesis gas system. There
the raw gas is cooled down and the condensate is
separated. The raw gas leaving the partial condenser
is saturated.

For the calculation of the gas properties the same
equation as in the quench were used. Furthermore
the energy balance equation is enlarged by the heat
loss flux . This heat flux is a real input value. It
should be so adjusted that the temperature difference
between the inlet and the outlet of the partial con-
denser reaches a given value.

Q&

3.4 Slag Discharge System

3.4.1 Slag Hopper

Figure 14: screen shot of the slag hopper

The function of the slag hopper is to discharge the
slag from the pressurized system of the quench into
the atmospheric pressure environment. Therefore 5
steps appear:

- filling of the slag hopper with water
- pressurizing until the pressure of the quench

is reached
- filling of the slag hopper with slag (thus lead

to a displacement of water from the slag
hopper into the quench)

- depressurizing of the slag hopper
- drawdown of the slag hopper

As in the below explained components only one en-
ergy balance is considered.

3.5 Initialization

For every component the temperature and the filling
levels can be defined. For the components which
cover to the saturation of gas the dry gas composi-
tion and for all other components the gas composi-
tion have to be deposited.
Furthermore the user can decide for each component
if the pressure should be initialized or not.

4 Simulation Results

As mentioned in the introduction the developed
models shall be used to enhance process control.
Therefore existing control methods can be verified
and in addition tests of advanced process control
conceptions like kinds of MPC (Model Predictive
Control) and virtual sensors are allowed.
The Gasification Island contains a multitude of con-
trol systems:

- level control systems
- temperature control systems
- pressure control systems
- mass flow rate control systems

In cooperation with the Siemens Fuel Gasification
Technology GmbH Freiberg, analyses were carried
out on how far advantages appear by applying the
advanced process control strategies in comparison to
the accepted PID controllers. As an example of use
the coal mass flow control system from the feeding
vessel to the reactor was chosen due to the occurred
dead times. Furthermore this mass flow control sys-
tem is of great importance to the gasification proc-
ess, because of its impact to the quality (temperature,
composition) of the formed raw gas.
The following two figures show the results of some
simulations. Figure 15 shows the step response of the
controlled coal mass flow for an accepted PI control-
ler and a model based controller. To avoid over-
shooting both, controllers were designed for aperi-
odic transient behavior (this is an arbitrary chosen
design case and doesn’t reflect the behavior of the
implemented control system in the gasification
plant). The response of the system for a ramp like

J. Fahlke, S. Püschel, F. Hannemann, B. Meyer

The Modelica Association 426 Modelica 2008, March 3rd − 4th, 2008

change of the coal mass set point is given in Figure
16.
Both figures show that the coal mass flow can be
significantly enhanced for this control system design
case by using advanced process control concepts.
The control tests were done in Matlab. Therefore, the
developed Modelica/Dymola models were converted
into a Simulink model.

Figure 15: step response of the coal mass flow at sud-
den change of the coal mass flow set point value (arbi-
trary chosen design case: aperiodic transient behavior
of the controllers)

Figure 16: ramp like change of the coal mass flow set
point (arbitrary chosen design case: aperiodic tran-
sient behavior of the controllers)

5 Conclusion and future work

The Gasification Island was developed in the Mode-
lica language. Therefore new components were de-
signed which are based on the Modelica_Fluid and
Modelica.Media libraries. First analyses were done
to enhance the process control of the coal mass flow
from the feeding vessel to the reactor.
The further step is to enhance the gasifier model.
Therefore the reaction kinetics of the reactions listed
in 1.1 and the complex heat balance (heat radiation,
convective heat transfer …) will be implemented.

Abbreviations

SFG Siemens Fuel Gasifier

References

[1] http://www.gasification.org
[2] Klose, E.; Toufar, W.: Grundlagen der Ver-

gasung, 1. Lehrbrief. Lehrbriefe für das
Hochschulfernstudium, 1985

[3] Higman, C.; van der Burgt, M.: Gasification.
Gulf Professional Publishing, Amsterdam,
2002

[4] Hannemann, F.: Siemens Fuel Gasification
Technology at a Glance. Virtuhcon Work-
shop 2007, Freiberg, Germany

[5] Heyde, M.: Fluidisieren von Schüttungen.
[6] http://www.fossil.energy.gov
[7] Casella, F.; Otter, M.; Proells, K.; Richter,

C.; Tummescheit, H.: The Modelica Fluid
and Media Library for Modelling of Incom-
pressible and Compressible Thermo-Fluid
Pipe Networks. 5th International Modelica
Conference Proceedings, 2006

Modelling of the Gasification Island with Modelica

The Modelica Association 427 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 428 Modelica 2008, March 3rd − 4th, 2008

Transient Modelling of a Controllable
Low Pressure Accumulator in CO2 Refrigeration Cycles

Marcos Bockholt1 Wilhelm Tegethoff1 Nicholas Lemke2

Nils-Christian Strupp1 Christoph Richter1

1Technical University Braunschweig, Institute of Thermodynamics
Hans-Sommer-Str. 5, 38106 Braunschweig

Email: m.bockholt@tu-bs.de

2TLK-Thermo GmbH
Hans-Sommer-Str. 5, 38106 Braunschweig

Email: n.lemke@tlk-thermo.de

Abstract

Low pressure accumulators are usually employed in
mobile R744 HVAC units to assure reliable operating
conditions and consequently to extend equipment life.
Furthermore, the design parameters of accumulator,
e.g. the oil bleed hole, influence the coefficient of per-
formance (COP) of the refrigeration cycle. A poorly
designed accumulator may lead to inefficient refriger-
ation cycles. Thus, accumulators with a variable oil
bleed hole, also called controllable accumulators, may
be employed to bring the system to optimal operat-
ing condition assuring good performance. The aim
of this work is to implement a semi-empirical physi-
cally based transient Modelica controllable accumula-
tor model, which is part of TIL (the TLK-IfT-Library).
Transient simulations are carried out to evaluate the
impact of a controllable accumulator in an automotive
refrigeration system.
Keywords: controllable accumulator; refrigeration
cycle control; COP optimisation; fluid systems

1 Introduction

On January 2006 the EU agreed to vanish HFC-134a
from air conditioning systems of new vehicle models
from 1 January 2011. The natural refrigerant R744
is one of the promising candidates to replace R134a.
Therefore, the actual vehicle refrigeration technology
has to be optimized to reach the efficiencies using
R134a. In fixed orifice tube R744 air-conditioning sys-
tems a low pressure accumulator is usually placed at

the compressor inlet in order to store excess refriger-
ant, allowing an optimum system performance under
various ambient conditions and compensating refrig-
erant loss through leakage along the life cycle. The
refrigerant quality at the accumulator inlet is also in-
fluenced by the oil bleed hole located in the “J” tube
of the accumulator, see e.g. Fig. 3. The size of the
oil bleed whole is an optimization parameter in accu-
mulator design and should be variable to attend op-
timum performance for different operating conditions
and avoid high compressor outlet temperatures. This
variability of the oil bleed hole can be put into practice
by building a controllable accumulator.

2 TIL

TIL is a new component model library for thermody-
namic systems that was developed by the Institute for
Thermodynamics (IfT) and the TLK-Thermo-GmbH
and that allows for the steady-state and transient sim-
ulation of thermodynamic systems. The underlying
design principles as well as a detailed description of
selected component models is given by [4].
TIL provides component models for the simulation
of refrigeration, air-conditioning, and heat-pump sys-
tems. Many component models use a formulation of
the balance equations that is similar to the balance
equations for the accumulator as presented in the fol-
lowing section. TIL uses the object-based fluid prop-
erty library TILFluids for the computation of fluid
properties. This fluid property library uses a general-
ized approach to include external fluid property com-

Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration Cycles

The Modelica Association 429 Modelica 2008, March 3rd − 4th, 2008

putation codes (e.g., REFPROP) in Modelica and a
number of software tools.

3 Mathematical Modelling

Fig. 1 shows the control volume of the semi-empirical
accumulator model Vkv. The following assumptions
are made:

• The accumulator has adiabatic walls.

• The control volumes V 1
kv are constant in time.

• Changes of kinetic and potential energy are not
taken into account.

• The accumulator characteristics regarding the ac-
cumulated mass is modeled according to steady-
state characteristic curves. The characteristic di-
agram determines the outlet enthalpy depending
on the filling level.

• The accumulator outlet enthalpy may be changed
by opening the oil bleed hole.

• Oil fraction in the liquid phase is ignored.

min
. mout

.

(p,h)

Vkv

H
.
in

H
.
out

m=V . ρ
kv

Filling
level

Vkv

mout
.

H
.

out

min
.

H
.

in

mout
B.

H
.

out
B

H
.

in
Bmin

B.

T

T

T

T

1
2

IN
LE

T

O
U

TL
E

T

Oil bleed hole

Figure 1: Controlled accumulator model.

3.1 Conservative Laws

3.1.1 Mass Balance

The transient mass balance equation for the control
volume V 1

kv is stated as follows:

dm
dt

= ṁin + ṁT
out + ṁB

out (1)

Eq. 1 can be stated as:

d
dt

(ρ ·Vkv) = ṁin + ṁT
out + ṁB

out

Vkv ·
dρ
dt

= ṁin + ṁT
out + ṁB

out

Using the Bridgmann’s table the derivative dρ
dt above

can be split into:

dρ
dt

=
∣∣∣∣
dρ
dh

∣∣∣∣
p
· dh

dt
+
∣∣∣∣
dρ
d p

∣∣∣∣
h
· d p

dt

The partial derivatives
∣∣∣dρ

dh

∣∣∣
p

and
∣∣∣dρ

d p

∣∣∣
h

are modeled in

TILFluids for the one phase and two phase regions.

3.1.2 Energy Balance

The 1st. Law of Thermodynamics for an opened sys-
tem in its transient form is applied to the control vol-
ume V 1

kv resulting in the following differential equa-
tion:

dU
dt

= ṁin ·hin + ṁT
out ·hT

out + ṁB
out ·hB

out

d
dt

(
H− p ·V 1

kv
)

= Ḣin + ḢT
out + ḢB

out

d
dt

(m ·h) = Ḣin + ḢT
out + ḢB

out +V 1
kv ·

d p
dt

m
dh
dt

+h
dm
dt

= Ḣin + ḢT
out + ḢB

out +V 1
kv ·

d p
dt

(2)

Using the mass balance Eq. 1, the Eq. 2 is rewritten
into:

dh
dt

=
1
m
· [ṁin · (hin−h)+ ṁT

out · (hout
T −h)+

+ ṁB
out · (hB

out −h)+V 1
kv ·

d p
dt

] (3)

where h is the enthalpy of the in the accumulator accu-
mulated refrigerant. The system of differential equa-
tions (see Eqs. 1 and 2) is reduced from

(
dh
dt ,

d p
dt ,

dm
dt

)

to
(

dh
dt ,

d p
dt

)
using the Bridgmann’s table. This formu-

lation has been shown to be very efficient for transient
simulations (see [2, 7] for further details).

3.2 Accumulator

The semi-empirical accumulator model V 1
kv in Fig. 1 is

treated here in detail. Different from the existing TIL
accumulator model, the model extended here is able
to influence the outlet enthalpy and hereby to increase

M. Bockholt, W. Tegethoff, N. Lemke, N.-C. Strupp, C. Richter

The Modelica Association 430 Modelica 2008, March 3rd − 4th, 2008

or decrease the level of accumulated liquid refrigerant
by opening the oil bleed hole. Basically, the accumu-
lator’s physical behavior is characterized by its filling
level, a phase separation efficiency and an empirical
characteristic diagram.

3.2.1 Filling level

The filling level is defined as the liquid fraction of the
accumulated refrigerant:

δ = 1−
(

h−hliq

hvap−hliq

)
. (4)

where h is the enthalpy of the accumulated refriger-
ant. The outlet enthalpy at the accumulator top hout

depends on this variable as shown in Sec. 3.2.3.

δ =





δmin = 0 if the accumulator is empty.
δdrop if fluid droplets occur

at the accumulator outlet.
δmax = 1 if the accumulator is flooded

with saturated liquid.

A detailed investigation is described in [5] for differ-
ent accumulator geometries and operation conditions
using a transparent accumulator.

3.2.2 Separation efficiency ηS

The accumulator separation efficiency ηS describes the
ability of an accumulator in separating the refrigerant
phases. It is defined as as follows:

ηS = xout (5)

where xout is the accumulator outlet quality when the
accumulator filling level is between the droplet filling
level and the minimum filling level, δmin ≤ δ ≤ δdrop.
An ideal accumulator without an oil bleed hole would
have a separation efficiency of 100%, i.e. only refrig-
erant vapor hvap leaves the accumulator. The separa-
tion efficiency is strongly dependent on the oil bleed
hole diameter and is estimated from steady-state mea-
surement data, see [3, 5]. These data show that the
separation efficiency may range from 75% up to 98%.

3.2.3 Characteristic diagram

The accumulator characteristic diagram is divided in
four different operating conditions according to its fill-
ing level. These operating conditions are drawn as fol-
lows:

I) Accumulator is nearly empty (δ ≤ δmin): in
this operation point no liquid droplet occurs from
eventually accumulated refrigerant in the receiver
and the refrigerant phases are separated. This
means that if the refrigerant enters the accumu-
lator with quality xin = 0.7 it will leave it with
quality xout = ηS = 1. The liquid part begins to
accumulate.

II) Accumulator has a filling level with few liquid
droplets at the outlet (δmin < δ ≤ δdrop): if the
droplet filling level δdrop is not reached, a very
small amount of liquid droplets from the accu-
mulated refrigerant occurs at the outlet of the ac-
cumulator. The refrigerant phases are still sep-
arated and the accumulator outlet quality is the
separation efficiency xout = ηS. This is the most
common operating condition and will be treated
in the steady state simulation presented in a fur-
ther section.

III) Accumulator has a filling level with excess of
liquid droplets at the outlet (δdrop < δ ≤ δmax):
for this operation point, the accumulated refrig-
erant in the accumulator has reached a level in
that large amount of accumulated liquid starts to
leave the accumulator. The refrigerant phases
cannot be clearly separated. The outlet enthalpy
starts to decrease and enters the two phase area
(xliq < xout < ηs < xvap).

IV) Accumulator is full (δ > δmax): if the receiver
reached this filling level, it is then flooded and
there is no separation of the refrigerant phases.
The liquid phase dominates in the receiver and
the outlet enthalpy equals or is small than the sat-
urated liquid enthalpy, i.e. ηS = 0. This is a vary
rare operation condition and is out of the scope of
this work.

3.3 Controllable accumulator

The controllable accumulator, is shown as an exten-
sion of the ideal accumulator of TIL. A prototype of a
controllable accumulator is presented in Fig. 3. The
“J”-tube with the oil bleed hole may be modeled by
correlating the oil bleed hole in the “J”-tube with the
separation efficiency stated in Eq. 5.

3.3.1 Oil bleed hole ø

To verify the effect of changing the oil bleed hole
diameter in a standard accumulator a measurement

Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration Cycles

The Modelica Association 431 Modelica 2008, March 3rd − 4th, 2008

h out

I

II

III

IV

+ ηhh

Full

Empty

Phases
Separation

Liquid
Droplets

Filling
level

δ =0
min

δ =1
max

δdrop

δ min

δ
δdrop

max

δ

δ min

maxδ
δdrop

δ min

maxδ
δdrop

min

maxδ
δdrop

δ

Sliq liq (h - h)
vap liq

Figure 2: Accumulator characteristic diagram.

δmin

maxδ

δdrop

„J“-tube

e-valve

Ae�

Oil bleed hole

oil

1 2

Figure 3: Accumulator prototype, from [1].

configuration developed by the Institut für Thermo-
dynamik in Braunschweig, for the purpose of deter-
mining the liquid level in low-pressure accumulators
with carbon dioxide as refrigerant is used. The mea-
surements are performed varying the gas cooler out-
let temperature yielding a variation of the accumulator
outlet quality, see [5] for further details. In Fig. 4 it is
observed that the accumulator outlet quality decreases
by increasing the oil bleed hole diameter, i.e. reduc-
ing the separation efficiency. Thus, the separation effi-
ciency will be used as a variation parameter to control
the accumulator. A physical correlation between the
efficiency and oil bleed hole should be further investi-
gated in future works.

mrefr.=40 g/s

0

50

100

150

200

250

300

350

400

450

0.7 0.8 0.9 1 1.1
Quality x [-]

A
cc

um
ul

at
or

 M
as

s
[g

]

Measurement ø0.8 mm

Measurement ø1.2 mm

Figure 4: Accumulated mass dependence on the oil
bleed hole, from [5].

4 Steady-state simulation results

To investigate the impact of changing the accumula-
tor efficiency in cycle behavior, a high ambient tem-
perature and idle compressor speed condition for an
automotive air-conditioning is applied. The refrigera-
tion cycle characteristics and boundary conditions are
summarized in the Tabs. 1 and 2. As a first approxi-

Total Cycle internal Compressor
CO2 mass volume displacement

[kg] [l] [cm3]
0.5 1.5 28

Table 1: Cycle characteristics

Compressor ṁair ṁair Ambient
speed evaporator gas cooler Temperature
[rpm] [g/s] [g/s] [◦C]
780 140 600 40

Table 2: Boundary conditions for an automotive appli-
cation

mation, the compressor volumetric and isentropic effi-
ciencies as well as the heat transfer coefficients in the
heat exchangers are kept constant for the cycle. The
first step in this analysis is to find out the optimum
operation pressure for the chosen boundary conditions
and different accumulator efficiencies. Fig. 5 shows
how the optimal high pressure varies with the accumu-

M. Bockholt, W. Tegethoff, N. Lemke, N.-C. Strupp, C. Richter

The Modelica Association 432 Modelica 2008, March 3rd − 4th, 2008

lator separation efficiency. The optimal high pressure
is reached by setting the valve flow area 0.35 mm2.
The result of the COP-optimized cycles for three dif-
ferent accumulator separation efficiency are summa-
rized in Tab. 3. In Fig. 6 the COP-optimized cycle is
shown in the pressure-enthalpy diagram for the accu-
mulators with small, medium and large-sized oil bleed
hole. The increase in the compressor suction density
is observed in Fig. 6 at point 1, which is shifted to
the two phase region when decreasing the accumula-
tor separation efficiency. In order to keep the same
suction density at the compressor inlet, an enhanced
internal heat exchanger (IHX) with maximal thermo-
dynamic efficiency is used. The result is shown in the
pressure-enthalpy diagram in Fig. 7. Now, a change
on the accumulator efficiency has neither effect on the
system Coefficient of Performance (COP) nor changes
its cooling capacity. The points 4 and 5 are shifted to
the left at the same amount as the point 6. This fact
evidences a dependence between the accumulator sep-
aration efficiency and the IHX heat transfer two-phase
heat transfer effects.

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

90 110 130 150 170
Compressor outlet pressure [bar]

C
O

P
[-]

ηS=0.96
ηS=0.94
ηS=0.90
ηS=0.85
ηS=0.78
max COP

Expansion device flow area
for max COP =0.35 mm²

Large oil bleed hole

Small oil bleed hole

Figure 5: Coefficient of Performance (COP) sensitiv-
ity analysis for different accumulator separation effi-
ciencies.

Separation

efficiency ηS

State variable Unit 0.78 0.85 0.96

mCO2 cycle [kg] 0.5 0.5 0.5

mCO2 accu [kg] 0.163 0.185 0.214

xaccu out [-] 0.78 0.85 0.96

Tcomp out [°C] 91.4 94.5 100.9

ṁCO2 cycle [g/s] 37.7 35.1 31.6

pcomp out [bar] 125.8 118.2 110.0

∆Ḣair [kW] 3.38 3.34 3.26

IHX ∆Ḣre f [kW] 1.4 1.3 1.1

COP [-] 1.79 1.89 2.04

Table 3: Impact of the separation efficiency in steady-
state cycle simulation.

Small oil bleed hole

Large oil bleed hole

1

2 34

5 6

Figure 6: Pressure-enthalpy (p-h) diagram for COP-
optimized cycles with large, medium and small oil
bleed hole.

5 Transient simulation of a CO2 re-
frigeration cycle with a control-
lable accumulator

In this application, a controllable accumulator is used
to avoid that the temperature at the compressor outlet
Tcomp out exceeds the oil decomposition temperature,
e.g 160 ◦C. The cycle used previously for the steady
state simulation, see Fig. 8, is now used in a tran-
sient simulation, where the compressor speed is set
to n = 2100 rpm and the gas cooler and evaporator
air inlet temperature Tevap in are assumed to be 40◦C.
Fig. 9 shows the results of the transient simulation
for some of the state variables. At time t = 50 s the

Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration Cycles

The Modelica Association 433 Modelica 2008, March 3rd − 4th, 2008

Large oil bleed hole

Small oil bleed hole

1

2 3 4

5 6

Figure 7: Pressure-enthalpy (p-h) diagram for COP-
optimized cycles with large, medium and small oil
bleed hole and enhanced IHX, with heat exchange area
(AIHX ≈ ∞).

separation efficiency of the accumulator is decreased
from ηS=96% to ηS=78%, compare ηS = xout in Fig.
9. Some refrigerant mass in the accumulator maccu

is moved to the cycle high-side pressure. The suc-
tion density at the compressor inlet increases yielding
a higher compressor shaft power Pcomp. An increase
in Pcomp means a decrease in the system coefficient of
performance COP=∆Ḣair/Pcomp as observed in Fig. 9.
The compressor outlet temperature is decreased to a
value smaller than the maximum oil working temper-
ature. The increase in the cycle refrigerant mass flow
rate due to higher compressor suction densities causes
an insignificant increase in the cooling capacity for this
modeling assumptions. The evaporator air outlet tem-
perature Tair evap out increases slightly.

6 Conclusion

The transient model of a controllable accumulator
is presented to investigate the effects of varying the
separation efficiency in an automotive CO2 refrig-
eration. The model consists of simple models from
the new component model library for thermodynamic
systems that was developed by the Institute for Ther-
modynamics (IfT) and the TLK-Thermo-GmbH. The
mathematical formulation used in the modeling allows
an accelerated analysis of the parametric variation.

The results from the steady state simulation show a
strong dependency between the accumulator separa-
tion efficiency and the internal heat exchanger (IHX)
efficiency if the system Coefficient of Performance
(COP) is considered. In a first simulation run with
constant heat transfer coefficients in the heat ex-

controllable
accumulator

IHX

FinAndTube
gascooler

(1)

Refrig...

Gas fr
ee

gs
G

as
Si

nk

dp/dt
(1)

FinAndTube
evaporator

(2)

Refrig...

Gas

p,
 m

_d
ot

ev
ap

G
as

S.
..

free
evapG

asSi...

dp/dt
(2)

0

speed

dur...

TubeInTube
counterFlo...

(1)

(2)

(2)
Eff. v...area

p, m
_dot

gasBound...

Temper...

duration...

ramp

duratio...

SIM

Figure 8: CO2 refrigeration cycle with controllable ac-
cumulator using component models from TIL.

changers it was observed an increase in the system
COP when closing the oil bleed hole. Otherwise, if
the oil bleed hole is opened the compressor outlet
temperature decreases avoiding the oil temperature to
reach critical limits. A second simulation run showed
that using a nearly optimal IHX the oil bleed hole
variation has no effect in the cycle COP and cooling
capacity.

A transient simulation is carried out for a an automo-
tive air-conditioning boundary condition. As a first
application, it is shown that the compressor outlet
temperature may be kept under the oil critical limit
without loss of cooling capacity.

Future work will concentrate on finding an optimal
relationship between IHX efficiency and accumulator
separation efficiency as well an optimal control strat-
egy for a CO2 refrigeration cycle using this innova-
tive component. Two-phase heat transfer effects in the
IHX and in the other cycle heat exchangers should be
taken into account in order to predict the cycle behav-
ior more accurately when varying the accumulator oil
bleed hole. The isentropic and volumetric compressor
efficiencies should also be mapped more accurately so
that the cycle mass flow rate and compressor outlet
temperature can be precisely estimated.

M. Bockholt, W. Tegethoff, N. Lemke, N.-C. Strupp, C. Richter

The Modelica Association 434 Modelica 2008, March 3rd − 4th, 2008

0.2

Figure 9: Simulation results of the transient control-
lable accumulator model in a CO2 refrigeration cycle

References

[1] Hirota, H.: Refrigertion cycle, European Patent
Application EP 1607698 A2, TGK Company
Ltd., Tokyo, 2005

[2] Lemke N.: Untersuchung zweistufiger Flüs-
sigkeitskühler mit dem Kältemittel CO2, PhD
thesis, TU-Braunschweig, Intitute of Thermody-
namics, 2005.

[3] Raiser H., Heckenberger T., Tegethoff T.,
Försterling S.: Transient Behavior of R744 Vehi-
cle Refrigeration Cycles and the Influence of the
Suction Side Accumulator Design, SAE Interna-
tional, Nr. 2006-01-0162, 2006.

[4] Richter C.: Proposal of New Object-Oriented
Equation-Based Model Libraries for Thermody-
namic Systems, TU Braunschweig, PhD-thesis,
2008

[5] Strupp C., Lemke N., Tegethoff T., Köhler J.: In-
vestigation of Low Pessure Accumulators in CO2
Refrigeration Cycles, International Congress of
Refrigeration, Beijing, China, ICR07-E1-1480,
2007.

[6] Tegethoff W.: Eine objektorientierte Sim-
ulationsplattform für Kälte-, Klima- und
Wärmepumpensysteme, PhD thesis, TU-
Braunschweig, Intitute of Thermodynamics,
1999.

[7] Tegethoff W., Lemke N., Correia C., Cavalcante
P., Köhler J.: Component modelling and speci-
fication using a new approach for transient sim-
ulation, VDA Alternate Refrigerant Refrigerant
Winter Meeting- Automotive Air-Conditioning
and Heat Pump Systems, 2004

Transient Modelling of a Controllable Low Pressure Accumulator in CO2 Refrigeration Cycles

The Modelica Association 435 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 436 Modelica 2008, March 3rd − 4th, 2008

Modeling and Simulation of a Thermoelectric Heat Exchanger
using the Object-Oriented Library TIL

Christine Junior, Christoph Richter, Wilhelm Tegethoff, Nicholas Lemke, Jürgen Köhler
Institut für Thermodynamik, TU Braunschweig, Germany

c.junior@tu-bs.de ch.richter@tu-bs.de

Abstract

Thermoelectric technology allows for the direct con-
version of a temperature difference into an electric
potential and vice versa. Thermoelectric devices can
act as coolers, heaters, or power generators and ap-
plications of small capacity thermoelectric modules
are widespread. Applications of large capacity ther-
moelectric devices have been limited for decades by
their low efficiency. New environmental regulations
regarding the manufacture and release of CFCs have
revived the interest in this area. Recent investigations
on thermoelectric materials promise that their ther-
moelectric efficiency can be improved dramatically.
This would mean a breakthrough for new fields of
applications for thermoelectric modules. A new
Modelica model of a Peltier water-water heat ex-
changer was developed for transient simulations. The
new model uses component models from the object-
oriented Modelica library TIL. The new model was
used to simulate the transient behavior of a Peltier
heat exchanger during a sudden reversion of the ap-
plied voltage. The numerical results were compared
to measurement results from a prototype.
Keywords: heat exchanger; simulation; thermoelec-
trics; Peltier element

1 Introduction

Thermoelectric technology allows for the direct con-
version of a temperature difference into an electric
potential and vice versa. The French physicist Jean
Peltier discovered in 1834 that an electric current
sent through a circuit made of dissimilar conducting
materials yields heat absorption at one junction and
heat rejection at the other. Standard thermoelectric
modules utilize doped bismuth telluride as semi-

conductor and achieve moderate performance. They
can act as coolers, heaters, or power generators and
applications of small capacity thermoelectric mod-
ules are widespread. However applications of large
capacity thermoelectric devices have been limited in
the past by the low efficiency of thermoelectric
modules. Recent scientific advances regarding new
materials and assembly methods for thermoelectric
modules as well as the increasing concerns about
fuel economy, harmful emissions of particulate mat-
ter, and chemical refrigerants revived the interest in
thermoelectric technology. The inherent advantages
of thermoelectric systems such as the absence of
moving parts, quiet operation, and environmental
friendliness of the module itself have further in-
creased the interest. Several investigations for appli-
cations of large capacity thermoelectric modules in
the fields of refrigeration and air-conditioning [1],
waste heat recovering [2], or superconduction [3]
have been carried out with promising results.

This paper describes the development of a Mod-
elica model that allows the transient simulation of
thermoelectric devices to determine their perfor-
mance potential. The model for the thermoelectric
devices was developed as an add-on for the object-
oriented Modelica library TIL (TLK-IfT-Library)
described in [4] that allows for the simulation of
thermodynamic systems such as air-conditioning and
heat-pump systems.

2 Thermoelectric Refrigeration

Thermoelectric refrigeration is achieved when a di-
rect current I is passed through one or more pairs of
n-type and p-type semiconductors connected with a
metal with high conductivity such as copper as
sketched in Figure 1.

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL

The Modelica Association 437 Modelica 2008, March 3rd − 4th, 2008

If the electric current passes from the n-type to the p-
type semiconductor, electrons pass from a low ener-
gy level in the p-type material through the intercon-
necting conductor to a higher energy level in the n-
type material. Thus the temperature TC of the inter-
connecting conductor decreases and heat is absorbed
from the environment. The absorbed heat is trans-
ferred by electron transport through the semiconduc-
tors to the other end of the function. It is liberated as
the electrons return to a lower energy level in the p-
type material yielding an increased temperature TH.

This phenomenon is known as the Peltier effect
and is described by the Peltier coefficient π, defined
as the product of the Seebeck coefficient α of the
semiconductor material and the absolute tempera-
ture. The Peltier coefficient relates to a cooling effect
as the electric current passes from the n-type to the
p-type semiconductor and a heating effect as the po-
larity of the power supply is changed. Reversing the
direction of the electric current also reverses the
temperatures of the hot and cold ends.

The amount of heat absorbed at the cold end not
only depends on the product of the Peltier coefficient
and the electric current flowing through the thermoe-
lectric module but also on two other effects: Due to
the temperature difference between the cold and the
hot ends of the semiconductors, heat is conducted
through the semiconducting material from the hot to
the cold end. The amount of conducted heat depends
on the thermal conductance κ of the material as well
as on the temperature difference. The second effect
occurs when the electric current is passing through
the semiconductors. The electrical resistance R caus-
es the generation of the so-called Joule heat in equal
shares at the cold and the hot side of the thermoelec-
tric device. The Joule heat is dependent on the elec-

trical resistance and proportional to the square of the
electric current and therefore becomes eventually the
dominant factor.

The heat absorption rate at the cold side of the
thermoelectric module can be described taking into
account the three different effects mentioned above

ሶܳ ൌ ߙ ஼ܶܫ െ
1
2
ଶܴܫ െ ሺߢ ுܶ െ ஼ܶሻ

where α is the differential Seebeck coefficient some-
times referred to as α pn, R the electrical resistance of
the thermoelements in series, and κ the thermal con-
ductance of the thermoelements in parallel. The
energy efficiency of the thermoelectric device is de-
scribed by its coefficient of performance (COP) de-
fined as the net heat absorbed at the cold junction
divided by the electric power input

ܱܲܥ ൌ
ሶܳ

௘ܲ௟
ൌ
ߙ ஼ܶܫ െ

1
2 ܫ

ଶܴ െ Δܶߢ
ܫΔܶߙ ൅ ଶܴܫ

The refrigeration capability of a semiconductor
material depends on a combined effect of the See-
beck coefficient α, the electrical resistivity ρ, and the
thermal conductivity κ of the material over the op-
erational temperature range between the cold and the
hot junctions. The electrical resistivity is defined as

ߩ ൌ ܴ
ܣ
݈

where A is the cross-sectional area of the resistive
material and l its length. The three material proper-
ties are combined in the thermoelectric figure of me-
rit Z defined as

ܼ ൌ
ଶߙ

ߩߢ

The figure of merit is used by material scientists to
describe the efficiency of semiconductor materials
for thermoelectric applications.

3 Prototype Peltier Heat Exchanger

The Peltier effect can be used for heating and cool-
ing in practical applications by combining thermoe-
lectric modules with conventional heat exchangers.
The fluid flowing through the heat exchanger acts as
a heat sink at the hot side of the thermoelectric mod-
ule and as a heat source at the cold side. Figure 2
shows the assembly of the prototype Peltier heat ex-
changer used for all measurements.

Figure 1: The Peltier effect (thermoelectric cooling)
from [5].

C. Junior, C. Richter, W. Tegethoff, N. Lemke, J. Köhler

The Modelica Association 438 Modelica 2008, March 3rd − 4th, 2008

Because of the consolidated design and small size
of the prototype heat exchanger, water was chosen as
coolant at both sides. The heat exchanger consists of
rectangular aluminum channels whose endings are
covered by plates. Aluminum cores act as connecting
tubes. The prototype heat exchanger is assembled so
that both sides of the thermoelectric module are in
contact with a channel. The arrangement of the
thermoelectric modules has to be taken into account
for an efficient utilization of the Peltier effect. It is
necessary to either heat or cool the channels. A com-
bination of heating and cooling does not yield a rea-
sonable application.

To increase the flow velocity and the heat ex-
change between the fluid and the wall, three barriers
were installed in each channel. A CFD simulation
was carried out to determine the flow situation in the
channel. The simulations results proved that the fluid
meanders through the channel and showed that fluid
circulation caused by the barriers leads to a decrease
in dead storage capacity and thus to an improvement
in the heat exchange between fluid and wall. Figure
3 shows a single channel and the corresponding flow
path.

4 Heat Exchanger Model

In order to model the prototype Peltier heat exchang-
er, a model for a Peltier element had to be developed.
The new model was developed based on the compo-
nent model library TIL (TLK-IfT-Library) that con-
tains models for a steady-state and transient simula-
tion of thermodynamic systems (see [4] for more
information).

Figure 4 shows a class diagram of the new model
PeltierElement. The material properties of the semi-
conductor material are stored in a record extending
from BaseMaterial. Two heat ports derived from the
HeatPort connector defined in TIL and two electric
pins defined in the Modelica Standard Library are
the interface of the PeltierElement. Based on the eq-
uations presented in Section 2, the following set of
equations is used to describe the Peltier element

௡௘௚௔௧௜௩௘ܫ ൅ ௣௢௦௜௧௜௩௘ܫ ൌ 0
ܷ௣௢௦௜௧௜௩௘ െ ܷ௡௘௚௔௧௜௩௘ ൌ ௡௘௚௔௧௜௩௘ܫܴ

௘ܲ௟ ൅ ሶܳ஼ ൅ ሶܳு ൌ 0

ܱܲܥ ൌ
ߙ ஼ܶܫ െ 1 2⁄ – ଶܴܫ ሺߢ ுܶ െ ஼ܶሻ

ܫΔܶߙ ൅ ଶܴܫ

Figure 2: CAD drawing of the prototype Peltier wa-
ter-water heat exchanger. The Peltier elements are
the flat cuboids between two aluminum channels.
The orientation of the Peltier elements changes suc-
cessively between the rows of channels.

Figure 3: Single channel element of prototype Pel-
tier heat exchanger.

Figure 4: UML class diagram of PeltierElement.

Figure 5: PeltierCell model as defined in TIL_Add-
On_ThermoElectrics.

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL

The Modelica Association 439 Modelica 2008, March 3rd − 4th, 2008

ሶܳ ஼ ൌ െܱܲܥ · ௘ܲ௟
ሶܳ ு ൌ ሺ1 ൅ ሻܱܲܥ · ௘ܲ௟

The PeltierElement is instantiated in the PeltierCell
model along with two models for electrical insulators
as shown in Figure 5. The electrical insulators pre-
vent a short circuit between the Peltier elements and
the aluminum channels. Note that the naming of the
heat ports in Figure 5 is chosen for the default case
that is a positive electric current in the conventional
current notation. The hot side eventually becomes
the cold side and vice versa if the direction of the
current is reversed. The swapping of the correspond-
ing temperatures TC and TH is implemented using a

smooth transition function with a very short transi-
tion period.

In order to model the prototype Peltier heat ex-
changer shown in Figure 2 in a flexible way, an addi-
tional model called BaseElement is introduced that
models a single layer of the heat exchanger.

A layer consists of two aluminum channels as
sketched in Figure 3 and the Peltier element in be-
tween those two channels. The model is illustrated in
the left picture in Figure 6. A refrigerant cell and two
wall cells from TIL are combined to model a single
channel. The reason for using a RefrigerantCell in-
stead of a LiquidCell is that the new heat exchanger
model was developed to cover cases of evaporating

Figure 6: BaseElement and its usage in a Peltier water-water heat exchanger model from
TIL_AddOn_ThermoElectrics. The PeltierCell is shown in Figure 5.

Figure 7: UML class diagram of TubeAndTubePeltier heat exchanger in TIL_Add-
On_ThermoElectrics. The wall material model and all heat transfer and pressure drop models
are skipped for simplicity.

C. Junior, C. Richter, W. Tegethoff, N. Lemke, J. Köhler

The Modelica Association 440 Modelica 2008, March 3rd − 4th, 2008

and condensing fluids in both fluid paths. The two
channels are connected using a PeltierCell as shown
in Figure 5. Note that the BaseElement model in
Figure 6 can directly be used as a single cell heat
exchanger model.

The model for the Peltier heat exchanger assem-
bles instances of BaseElement and PeltierCell as
shown in the right picture in Figure 6. The prototype
heat exchanger shown in Figure 2 for example is
composed of four base elements and three Peltier
cells in between. Figure 7 shows the class diagram of
the new TubeAndTubePeltier heat exchanger model.
Note that the wall material model and all heat trans-
fer and pressure drop models are skipped for simplic-
ity. A more detailed description of the structure of
heat exchanger models in TIL is given in [4].

5 Measurements

A series of measurements was carried out with the
prototype Peltier water-water heat exchanger pre-
sented in Section 3. Figure 8 shows a schematic dia-
gram of the test stand used for all measurements.

To ensure a constant temperature at the water in-
let of the prototype, a reservoir was used in both
cycles. Water was pumped from the reservoirs into
the prototype and flowed back after running through
the heat exchanger. The reservoirs were chosen large
enough to prevent significant temperature changes
during operation. The volume flow rates were regu-
lated with appropriate throttling devices and meas-
ured by using conventional water meters.

Besides the volume flow rates characteristic pa-
rameters such as the water temperatures at the inlet
and outlet of each aluminum tube or the electric cur-
rent and voltage dropping out over every Peltier ele-
ment were taken up. The boundary conditions for the
measurements were selected in consideration of
showing the applicability of the simulation for dif-
ferent premises. Therefore a low, a medium and a
high water inlet temperature were chosen and each
condition measured by using a low and a high vo-
lume flow rate respectively. Each measurement was
carried out at a working-voltage of 10 V. A summary
of the boundary conditions for all measurements is
given in Table 1.

 Water Stream 1 Water Stream 2

V1 [l/min] T0 [°C] V2 [l/min] T8 [°C]
1 2.05 4.00 2.00 4.00
2 0.90 4.00 0.85 4.00
3 2.20 18.00 2.10 18.00
4 0.85 18.00 0.80 18.00
5 2.35 30.00 2.40 30.00
6 1.00 30.00 1.10 30.00

Table 1: Measurements with prototype Peltier water-
water heat exchanger.

All measurements were carried out in the same

way: After reaching a stationary point for the boun-
dary conditions listed in Table 1, the direction of the
electric current was changed from positive to nega-
tive in the conventional current notation. The result-
ing change in temperature was detected until the val-
ues became stationary again.

Figure 8: Schematic diagram of Peltier heat exchanger test stand.

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL

The Modelica Association 441 Modelica 2008, March 3rd − 4th, 2008

An evaluation of the quality of the measurements
was carried out by comparing the sum of the input
power and the gained cooling capacity to the
achieved heating capacity according to

௘ܲ௟ ൅ ሶܳ௖௢௢௟௜௡௚ ൌ ሶܳ௛௘௔௧௜௡௚
The cooling capacity as well as the heating capacity
was calculated from

ሶܳ ൌ ሶ݉ ܿ௣Δܶ
and the electric power from

௘ܲ௟ ൌ ܷ · ܫ
The deviation within the balance has to be zero for
the ideal case. The deviation of the two balances for
each measurement is shown in Figure 9. It can be
seen that the deviation lies between 1% and 8%, and
that the average value lies around 4%. A connection

between the direction of the electric current and the
resulting deviation can not be identified.

To exclude the existence of a statistical error and
to confirm that the deviations of the balances are ly-
ing within the measuring accuracy an error analysis
was carried out. Therefore, Gauss' error propagation
law was used according to

Δܨത ൌ ඨ൬
ܨ߲
ݔ߲

Δݔҧ൰
ଶ

൅ ൬
ܨ߲
ݕ߲

Δݕത൰
ଶ

൅ ڮ

Measurement 4 from Table 1 was selected for an
error analysis exemplarily. A variation of relevant
measurands was carried out to find out the impact of
these measurands on the total error and to identify
possible potentials for further optimization.

Figure 10 shows the impact of the error occurring
during the measurement of the temperature differ-
ence ΔΔT between the inlet and outlet of the Peltier
prototype heat exchanger and during the estimation
of the volume flow rate ΔV on the resultant heating
or cooling capacity.

Due to the fact that the measuring accuracy of a
thermocouple lies at about 0.3 K, the maximum error
for the mathematical calculation of the temperature
difference can be expected to be 0.6 K when using
temperatures measured with two independent ther-
mocouples. This error can be reduced to 0.1 K if the
temperature difference is measured using two ther-
mocouples connected in series which was done for
all measurements presented in Table 1.

In consideration of the volume flow rate, mea-
surements the deviation of the values estimated with
conventional flow meters and the actual values lies
between 4% and 9% which results in a maximum
deviation of 0.09 l/min. The concluding summation
yields - under consideration of these conditions - to

Figure 10: Error for Measurement 4 from Table 1. The corresponding units are given in the
key.

Figure 9: Deviation of electrical and thermal bal-
ances for all measurement points.

0
2
4
6
8

10
12
14
16

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

Δ
Q

 [%
]

Error

-10
-8
-6
-4
-2
0
2
4
6
8

10

1 2 3 4 5 6

D
er

iv
at

io
n

of
 B

al
an

ce
s [

%
]

Measurement

positiv current flow negativ current flow

ΔV [l/min]
ΔΔT (ΔT1) [K]
ΔΔT (ΔT2) [K]

ΔΤ1 < ΔΤ2

C. Junior, C. Richter, W. Tegethoff, N. Lemke, J. Köhler

The Modelica Association 442 Modelica 2008, March 3rd − 4th, 2008

the result that even the measurements with a devia-
tion of balances of 8% are lying within measuring
accuracy.

6 Simulation

Simulations were carried out for all measurements
listed in Table 1. Measurement values were used for
the electric current, for the two volume flow rates,
and for the water temperatures T0 and T8 at the two
heat exchanger inlets. The Peltier modules used in
the prototype Peltier heat exchanger are standard
bismuth telluride modules without any further speci-
fication from the manufacturer. Constant properties
for the Seebeck coefficient α and the thermal con-
ductance κ taken from Rowe [5, Table 9.1] were
used in the Peltier element model. The electrical re-
sistance R of the thermoelectric module was not spe-
cified by the manufacturer and had to be determined
from the measurements. The reversion of the applied
voltage was implemented using a smooth transition
function with a period of Δt = 1s. This section de-
scribes the results obtained for the simulation of
Measurement 4 from Table 1. A constant coefficient
of heat transfer α = 4,100 W/m2K was used. This
coefficient of heat transfer was determined based on
a CFD simulation of the flow through a single alu-
minum channel.

Figure 11 shows the temperature distribution in
the prototype Peltier heat exchanger before and after
the reversion of the applied voltage. The numbering

of the water streams and of the walls refers to the
numbering of the two independent water circuits as
presented in Figure 8. The water temperatures are
shown for the inlet of each channel and for the outlet
of the last channel for both water streams. The wall
temperatures are averages of the temperatures in the
center of both wall cells connected to the same refri-
gerant cell as shown in Figure 6.

Figure 11 shows that the temperature change in
the entrance channel of each water stream is smaller
than in all other subsequent channels. This is caused
by the fact that the entrance channels are insulated at
one side and connected to a Peltier element at the
other side whereas all other channels are connected
to a Peltier element at both sides. The two diagrams
shown in Figure 11 are mirror-symmetrical which
demonstrates the reversibility of the process.

Figure 12 shows a comparison of the measured
outlet temperature for each water stream with the
values obtained from the transient simulation. The
top picture shows the change in the electric current I
caused by the reversion of the applied voltage.

Figure 12 illustrates that the simulated start and
end temperatures differ from the measured tempera-
tures. The simulated system also reacts slower to the
sudden reversal of the applied voltage than the real
system. Further Measurements are required to im-
prove the model of the Peltier element that is cur-
rently based on material constants taken from the
literature and the measured electrical resistance as
explained in the beginning of this section.

Figure 11: Temperature distribution in prototype Peltier heat exchanger before and after reversion of the
applied voltage for Measurement 4 from Table 1.

0
5

10
15
20
25
30
35
40
45

0 0,25 0,5 0,75 1

T
em

pe
ra

tu
re

 [°
C

]

Dimensionless Length [-]

Water Stream 1 Water Stream 2

Wall 1 Wall 2

0
5

10
15
20
25
30
35
40
45

0 0,25 0,5 0,75 1

T
em

pe
ra

tu
re

 [°
C

]

Dimensionless Length [-]

Water Stream 1 Water Stream 2

Wall 1 Wall 2

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL

The Modelica Association 443 Modelica 2008, March 3rd − 4th, 2008

7 Conclusions and Outlook

A new model for a Peltier water-water heat exchang-
er was presented that can be used in transient system
simulations. Results from measurements with a pro-
totype heat exchanger were used to validate the new
model. Models from the new component mode li-
brary TIL [4] were used for many components of the
new Peltier heat exchanger model and the new ob-
ject-based fluid property library TILFluids was used
to compute all fluid properties. A new model for Pel-
tier cells was presented that was used to assemble the
heat exchanger. The new heat exchanger model de-
monstrates that TIL can easily be extended to cover a
wide range of thermodynamic systems. The pre-
sented model can be extended to cover other Peltier
heat exchangers. A very interesting alternative con-

cept to be analyzed in the future using simulations
and experiments is a refrigerant-air heat exchanger
with Peltier modules in between.

References

[1] J. Winkler, V. Aute, B. Yang, and R. Rader-
macher. Potential benefits of thermoelectric elements
used with air-cooled heat exchangers. In Proc. of
2006 International Refrigeration and Air Condition-
ing Conference at Purdue, volume 1, pages R091.1-
R091.8, West Lafayette, July 2006.
[2] K. Zorbas, E. Hatzikraniotis, and K. Paraskevo-
poulos. Power and Efficiency Calculation in Com-
mercial TEG and Application in Wasted Heat Re-
covery in Automobile. In Proc. of 5th European Con-
ference on Thermoelectrics, 2007.

Figure 12: Measured and simulated water temperatures at inlets and outlets of prototype Peltier
heat exchanger for Measurement 4 from Table 1.

-50
-25

0
25
50

0 10 20 30 40 50 60 70

E
le

ct
ri

ca
l

C
ur

re
nt

 [A
]

12

16

20

24

28

32

0 10 20 30 40 50 60 70

T
em

pe
ra

tu
re

 [°
C

]

T0
T7
T7_sim

12

16

20

24

28

32

0 10 20 30 40 50 60 70

T
em

pe
ra

tu
re

 [°
C

]

Time [s]

T8
T15
T15_sim

C. Junior, C. Richter, W. Tegethoff, N. Lemke, J. Köhler

The Modelica Association 444 Modelica 2008, March 3rd − 4th, 2008

[3] K. Bos, R. Huebener, and C. Tsuei. Prospects for
Peltier cooling of superconducting electronics. Cryo-
genics, 38(3):325-328, March 1998.
[4] C. Richter. Proposal of New Object-Oriented
Model Libraries for Thermodynamic Systems. Dis-
sertation, TU Braunschweig, to be published in 2008
[5] D. Rowe, editor. Thermoelectrics Handbook,
Macro to Nano. Taylor & Francis, 2006.

Modeling and Simulation of a Thermoelectric Heat Exchanger using the Object-Oriented
Library TIL

The Modelica Association 445 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 446 Modelica 2008, March 3rd − 4th, 2008

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

Pengfei Li and Yaoyu Li

Department of Mechanical Engineering
University of Wisconsin – Milwaukee

pli@uwm.edu & yyli@uwm.edu

John E. Seem

Building Efficiency Research Group
Johnson Controls, Inc.

john.seem@gmail.com

Abstract

For the heating, ventilating, and air conditioning
(HVAC) systems for commercial buildings, there has
been a greater demand for reducing energy consump-
tion. The economizers have been developed as a
class of energy saving devices that may increase the
energy efficiency by taking advantage of outdoor air
during cool or cold weather. However, in practice,
many economizers do not operate in the expected
manner and waste even more energy than before in-
stallation. Better control strategy is needed for opti-
mal and robust operation. This paper presents two
related aspects of research on dynamic modeling and
control for economizers. First, a Modelica based dy-
namic model is developed for a single-duct air-side
economizer. The model development was based on
Dymola and AirConditioning Library with some re-
vision on water medium and heat exchanger model-
ing. Such transient model will lay a more quality
foundation for control design. Second, for a three-
state operation for air-side economizers, a self-
optimizing control strategy is developed based on the
extremum seeking control (ESC). The mechanical
cooling can be minimized by optimizing the outdoor
air damper opening via extremum seeking. Such has
much less dependency on the knowledge of econo-
mizer model, and thus has more promise for practical
operation. In addition, an anti-windup ESC scheme
is proposed as an enhancement for the existing ESC
techniques. The simulation results validated the ef-
fectiveness of the dynamic model of the economizer,
demonstrated the potential of using ESC to achieve
the minimal mechanical cooling load in a self-
optimizing manner, and illustrated the possibility of
ESC malfunctioning under actuator (damper) satura-
tion and the capability of anti-windup ESC in pre-
venting such undesirable behavior.

Keywords: Modelica; transient modeling; econo-
mizer; extremum-seeking control

1 Introduction

Buildings are responsible for a large portion of elec-
tricity and natural gas demand. Significant amount of
energy consumption for buildings is due to the heat-
ing, ventilation and air conditioning (HVAC) sys-
tems. Improving the efficiency of building HVAC
system is thus critical for energy and environmental
sustainability. The economizers have been developed
as a class of energy saving devices that may increase
the energy efficiency by taking advantage of outdoor
air during cool or cold weather [1]. Figure 1 is a
schematic diagram of a typical single-duct air-
handling unit (AHU) and controller. The AHU has a
supply fan, three (outdoor air, relief air and mixed
air) dampers for controlling air flow between the
AHU and the outdoors, heating and cooling coils for
conditioning the air, a filter for removing airborne
particles, various sensors and actuators, and a con-
troller that receives sensor measurements (inputs)
and computes and transmits new control signals
(outputs). The air economizer moves the dampers to
let in 100% outdoor air when it is cool but not ex-
tremely cold outside. When it is hot outside, the
dampers are controlled to provide the minimum
amount of outdoor air required for ventilation.

C
C Fan

Filter
Cooling Coil

Controller

Outputs

Inputs

Outdoor
Air

Supply
Air

Return
Air

Relief
Air

Mixed
Air

Temperature
Sensor

Relative Humidity Sensor

Fan

Temperature
Sensor

Figure 1: Single duct air handling unit

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 447 Modelica 2008, March 3rd − 4th, 2008

The American Society of Heating, Refrigerating and
Air Conditioning Engineers (ASHRAE) recommends
using economizers based on the cooling capacity size
and weather characteristics for the building location
[2], as described in the Appendix. ASHRAE [3] de-
scribes several control strategies for transitioning
between 100% outdoor air and the minimum outdoor
air required for ventilation. The control strategies are
called “high limit shutoff control for air econo-
mizer.” Following is a list of strategies that can be
programmed in a computer control system.

• Fixed dry bulb temperature. This strategy com-
pares the outdoor temperature to a transition tem-
perature. If the outdoor air temperature is greater
than the transition temperature, then the dampers
are controlled for the minimum outdoor air re-
quired for ventilation.

• Differential dry bulb temperature. This control
strategy compares the outdoor and return air tem-
peratures. If the outdoor temperature is greater
than the return air temperature, then the dampers
are controlled for minimum outdoor air required
for ventilation.

• Fixed enthalpy. This control strategy measures the
outdoor air temperature and relative humidity
(RH). Then the outdoor air enthalpy is calculated
and compared with a transition enthalpy. If the
outdoor air enthalpy is greater than the transition
enthalpy, then the dampers are controlled for
minimum outdoor air required for ventilation.

• Differential enthalpy. This control strategy de-
termines the outdoor and return air enthalpy from
measurements of the outdoor and return air tem-
perature and relative humidity. If the outdoor air
enthalpy is greater than the return air enthalpy,
then the dampers are controlled for minimum
outdoor air required for ventilation.

However, in practice, many economizers do not op-
erate as expected and waste even more energy than
before installation [4]. Temperature and RH sensor
errors can have a large impact on the energy savings
or possible penalty of economizer strategies. The
National Building Controls Information Program
(NBCIP) [5] said, “In the case of economizers, rela-
tive humidity and temperature measurements of out-
door and return air conditions are used to calculate
the enthalpies of the two air streams. The air stream
with the least energy content is then selected to pro-
vide building cooling. If one or both of the computed
enthalpies is wrong, as can happen when humidity
transmitters are not accurate, significant energy pen-
alties can result from cooling of the incorrect air
stream.” The NBCIP [6] performed long term per-

formance tests on 20 RH sensors from six manufac-
turers. Nine of the 20 RH sensors failed during the
testing. All of the remaining sensors had many
measurements outside of specifications. The largest
mean error was 10% RH, and the largest standard
deviation of the error was 10.2%. The best perform-
ing sensor had a mean error of −2.9% RH and a
standard deviation of 1.2%. The specifications for
the best performing sensor were ±3%. Control
strategies not relying on RH measurement would
greatly enhance the reliability of economizer opera-
tion.

Modeling and optimal control of air-handling units
and economizers have been previously studied [7, 8].
However, due to the complex nature of HVAC sys-
tem operation, the obtained model may not be accu-
rate enough for the optimal operation of an econo-
mizer. Therefore, a model based optimal control ap-
proach is hardly effective in practice to seek the op-
timal outdoor air flow for minimizing the mechanical
cooling. In contrast, an on-line self-optimizing con-
trol approach appears a more suitable option.

This research investigates the application of the ex-
tremum seeking control (ESC) [9-13] to optimize the
use of outdoor air so as to minimize the energy con-
sumption. The input and output of the proposed ESC
framework are the damper opening and power con-
sumption (or equivalently, the chilled water flow
rate), respectively. This approach does not rely on
the use of relative humidity sensor and accurate
model of the economizer for optimal operation.
Therefore, it provides a more reliable control strat-
egy for economizer operation. The proposed ESC
scheme works as part of a three-state economizer
control strategy, as shown in the state diagram in
Figure 2. State 1 uses heating to maintain the supply
air temperature. In state 2, outside air is mixed with
the return air to maintain the supply air at a given
setpoint. In state 3, the extremum seeking control is
used to control the dampers to minimize the me-
chanical cooling load. Also, the dampers must be
controlled to guarantee enough outdoor air inflow to
satisfy the ventilation requirement for the rooms.
Figure 3 shows the control regions for different out-
side air conditions on a psychometric chart. The re-
turn air condition was 75 °F and 50% relative humid-
ity, the cooling coil was ideal, and the minimum
fraction of outdoor air to supply air was 0.3. The
heating region is for state 1, the free cooling region
is for state 2, and the three regions that need me-
chanical cooling are combined into state 3.

P. Li, Y. Li, J. Seem

The Modelica Association 448 Modelica 2008, March 3rd − 4th, 2008

Figure 2: State transition diagram for the proposed
control strategy.

0 20 40 60 80 100
0.0

0.01

0.02

0.03

0.04

Mech. Cooling
with 100%
Outdoor Air

Mech. Cooling with
30% Outdoor Air

Mech. Cooling with Outdoor
Air between 30% and 100%

Free Cooling
Heating

Temperature

H
um

id
ity

 R
at

io

Return Air Conditons

Figure 3: Control states for different outside air con-
ditions for an ideal coil with return conditions 75 °F

and 50% RH.

The proposed control scheme has the following ad-
vantages over existing economizer strategies:

• Energy Savings. Using ESC will lead to energy
savings because the dampers will be controlled to
minimize the mechanical cooling load. Also, the
proposed strategy will save energy because it is
not dependent on unreliable RH sensors.

• Lower installed costs because the proposed strat-
egy does not require the outside air or return air
temperature or RH sensors.

• Lower maintenance costs because the tempera-
ture and RH sensors do not need to be calibrated.

In addition to the ESC application for economizer
control, an enhancement on the ESC is proposed: an
anti-windup ESC scheme against damper (actuator)
saturation. Due to the inherent integral action incor-
porated in the ESC loop, the integral windup due to
the damper saturation would disable the ESC, as will
be shown in Section 3. The back-calculation scheme
is applied to the ESC loop to achieve the anti-windup
capability.

In order to design and simulation the proposed con-
trol strategy, a quality dynamic model of economizer
is needed. In this study, an economizer simulation
model was developed in Modelica. Dynamic model-
ing of HVAC equipment has attracted increasing
attention in recent years. A summary of previous
work in dynamic modeling of vapor compression
equipment was presented in [14, 15]. According to
[15], the modeling regimes could be mainly classi-
fied as two categories: reference models and lumped
models. The reference models are designed to best fit
the underlying physics of the system, but will often
involve partial differential equations (PDE) and high
system order. In contrast, the lumped models will
lead to lower order ordinary differential equations
(ODE) based on some simplifications and/or space
discretization. In particular, the first category of
models requires extensive dynamic information from
the heat exchanger. The finite-volume method was
studied by MacArthur [16] but with simplifications
in decoupling thermal responses from pressure re-
sponses, which may result in less accurate mass dis-
tribution predictions. This issue was latter resolved
by MacArthur and Grald [17] from combining the
mass and balance equations, where the pressure re-
sponses are involved. Nyers and Stoyan [18] mod-
eled an evaporator using the approach of finite-
difference. Williatzen et al [19] employed a profile
assumption for the variation of refrigerant state
within each phase region. Recently, Rasmussen [20]
presents an novel modeling approach with more
freedom of selecting the system states and is claimed
to be equivalent to the common method of simplify-
ing the governing PDEs to the desired ODEs. Zhou
[21] developed a so-called forward model which was
capable of solving the governing differential equa-
tions concerning energy storage and transfer in a
cooling and dehumidifying coil. The lumped models
have also been studied by several authors for simula-
tion and control purposes [22-24]. Besides the mod-
eling approaches involved, the fact that different
time scales of the system dynamics are either inter-
woven or distinctive to a large extent yet poses an-
other serious challenge to the dynamic modeling of
HVAC. However, limited study has been done so far

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 449 Modelica 2008, March 3rd − 4th, 2008

on developing effective and efficient dynamic mod-
els that are capable of handling system dynamics
with different time scales and simultaneously satisfy-
ing research purposes ranging from dynamic analysis
and control design of subsystems (e.g. AHU) to
building energy savings and comfort. As for AHU
modeling in particular, ASHRAE [15] said some of
the quickest phenomena occur in the AHUs (coils,
humidifiers, and economizers), when simulating
such subsystems, realistic dynamics have to be con-
sidered for all components involved: heat and mass
exchangers, fans, ducts and pipes, sensors and actua-
tors. Compared to the control oriented transient
analysis which features small time-scale, the energy
saving and human comfort evaluation are coped with
in a much larger time scale, but require accurate en-
ergy balances. For instance, the cooling coil usually
has the slowest transient among the four major com-
ponents in the vapor compression system, and thus
has the largest impact on transient performance. It is
necessary to consider mass distribution within the
cooling coil as a function of time and space and this
requires transient mass balances to allow for local
storage [14]. On the other hand, for an AHU, the
cooling coil is among the quickest responding com-
ponents. Their transient response may significantly
interact with closed loop controllers [15]. Thus, the
multiple-time-scale compatibility is important for the
dynamic/transient modeling of HVAC systems.

Control development for many HVAC systems, e.g.
the economizer in this study, would not be possible
without accurate and computationally efficient dy-
namic/transient models. Most simulation tools for
HVAC systems have been based on steady-state
modeling. Dynamic modeling and simulation is still
in the research phase and not mature yet. Modelica,
as an object-oriented language for physical model-
ing, has demonstrated its great capability for simulat-
ing multi-physical systems. Several Modelica based
simulation packages have been developed, e.g. the
Thermal-Fluid Library [25], the AirConditioning
Library [26], the Modelica_Fluid Library [25] and
the HITLib [27]. The AirConditioning Library is
capable of handling both steady-state and transient
simulation, however, it was mainly designed for
automotive air conditioning systems. Some compo-
nents need to be modified for modeling building
HVAC systems such as economizers. In this study, a
dynamic model of a single-duct air-side economizer
is developed using Dymola (Version 6.1) developed
by Dynasim [28], the Modelica Fluid Library (MFL)
and the AirConditioning Library (ACL) (Versions
1.4 and 1.5) developed by Modelon [26].

The remainder of this paper is organized as follows.
Section 2 describes the dynamic economizer model
design. The details of ESC design are described in
Section 3, along with the anti-windup ESC. Finally,
simulation results that demonstrate the effectiveness
of ESC and the two proposed enhancements are pre-
sented in Section 4.

2 Dynamic Economizer Model Design

The dynamic model of economizer was developed
based on the Dymola 6.1, the MFL and the ACL 1.4
and 1.5. In addition to adopting the standard compo-
nents in the commercial packages, we have made the
following development: modification of water prop-
erty calculation for the heat exchanger model, ini-
tialization with pressure-temperature pair, mixing
box, and fan. Figure 4 shows the economizer model
that we have developed in Dymola, which includes
air ducts, air mixing box, fans, cooling coil, and a
room space. The air duct model was adopted from
the MFL. It allows detailed pressure drop calculation
due to wall friction. The air mixing box model
contains two sub-components: the air-mixing plenum
and the damper module. The air-mixing plenum was
developed using the splitter model from the MFL,
while the damper module was developed by
ourselves. We have also developed a fan model
based on the similarity factors [29]. In addition, the
cooling coil was developed based on the evaporator
model from the ACL. A water medium model
CoolWater was developed based on the IAWSP-IF97
formulation [30], and compared with the water
medium model developed in the ACL. The pressure-
temperature pair was used for both initialization and
state derivation with the consideration of practical
HVAC operation. Finally, a mixing volume model
from the MFL was used to represent a room space.

Source
p

X
T

Out

room

V=1000

room

V=1000

fanSup

V=V

ductSup

airSink
p

X
T

pSup

p

staticHead

fanRet

V=V

ductRet
pRet

p

R
et

Ext

w atSou...
p

X
T

w at...p

X
T

T

tempRet

T

tempSup

heatFlow F...w at...

valve

cc

valvePosition

damperPos

flow
R

ate

outAirTemp

heatRoom

tempSup...

coolWatTe...

(1) Air Mixing Box

(2) Cooling Coil

(3) Fan

(4) Room

Figure 4: Dymola layout of the economizer model.

P. Li, Y. Li, J. Seem

The Modelica Association 450 Modelica 2008, March 3rd − 4th, 2008

2.1 Air Mixing Box

The air mixing box is a component of the AHU that
mixes the outdoor air and the return air from the
conditioned indoor space. It consists of a damper
module (outdoor, return and exhaust dampers) and
an air-mixing plenum. The fraction of the outside air
is regulated by the outdoor damper whose command
signal is interlocked with the exhaust and return air
damper. The supply air flow rate is kept as consistent
as possible to ensure proper pressure balance at the
building side. In addition, to provide adequate venti-
lation, the minimal OAD opening is limited by an
actuator. The damper model was developed based on
the work by Tan and Dexter [31]. The pressure drop
across the dampers is given by Ploss = Rdampmair

2,
where mair is the mass flow rate of the air through the
dampers and Rdamp is the resistance of the damper
given by

2

exp[(1)] 0.3333

 0.3333
3.0[(1/3) 0.0429]

open d

damp open

d

R k if
R R if

L

α α

α
α α

− ≥⎧
⎪=⎨ <⎪ − +⎩ ⎭

⎫
⎪
⎬
⎪

(1)
where α is the fractional opening of the damper (0
for fully closed and 1 for fully open), kd is a constant
depending on the type of blades used, Ropen is the
resistance of fully open dampers, and Ld is the leak-
age when the damper is fully closed. In Eq. (1), there
exists a slight discontinuity of the damper resistance
around 0.3333. It was smoothed by a third order
polynomial covering the interval of [0.2833, 0.3833].
The four coefficients of the polynomial were deter-
mined with the two functional values and two deriva-
tive values at 0.2833 and 0.3833. The air-mixing
plenum was formulated on the basis of the splitter
model from the MFL.

2.2 Fan
Two fan models are employed in this study. The first
fan model was based on the pump model from the
MFL. The only change was on the medium flowing
through, from water to the moist air. The second fan
model was developed based on the similarity factor
model in [29]. The relationship between the flow
factor and pressure factor is given by

2
1 2 3C C Cϕ ψ ψ= + + (2a)
Q

AU
ϕ = (2b)

,

total

dynam periph

P
P

ψ Δ
=
Δ

 (2c)

where A = (πD2)/4, U = (πDN)/60, (ρvvelPΔ = 2)/2,
/ exv Q A= , total stat velP P PΔ = Δ + Δ , φ is the flow

factor, ψ is the pressure factor, Q is the flow rate, A
is the reference area, Aex is the exhaust area, D is di-
ameter of the impeller, v is the velocity of the out-
flow air, N is the rotation speed in rpm, ΔPstat is the
static pressure, ΔPvel is the velocity pressure, and
ΔPdynam, periph is the peripheral dynamic pressure. C1,
C2 and C3 are coefficients of the polynomials relating
the flow and pressure factors, which are fitted to the
manufacture’s fan performance data by the least-
square estimation. A limited proportional-integral
(PI) controller is used to regulate the rotation speed
of the supply fan to maintain the static pressure of
the supply air duct at the setpoint. In addition, the
rotation speed of the return fan is synchronized by
another limited PI controller, with the reference set-
ting satisfying the steady-state equilibrium of overall
flow rate. This is a simplified treatment, and it is be-
ing improved by a more accurate treatment described
in the work by Tan and Dexter in [31] which consid-
ered the building over-pressurization and leakage
flow.

2.3 Cooling Coil
Cooling coil is the most important component be-
tween the primary plant (e.g. chiller) and the air dis-
tribution system. As mentioned earlier, the cooling
coil is among the quickest responding components in
AHU and it also responds to the quickest perturba-
tions. Therefore, the transient behavior of cooling
coil may have significant effect on closed loop con-
trol performance [15].
Since Version 1.4, the ACL has developed a group
of heat exchanger models that are capable of simulat-
ing both transient and steady-state operations. The
dynamic energy and mass balances are formulated
based on the finite-volume method. The number of
discretization at the refrigerant side is proportional to
that for the solid wall and the air side. The heat con-
duction in the solid wall is modeled as a one-
dimensional problem perpendicular to the fluid flow
direction. In particular, the simulation results of a
cross-counter flow evaporator model used in an
automotive R134a-system had been validated in an
experiment conducted by Chrysler [32]. The meas-
ured data were compared with the simulation results
of the medium properties and the steady-state heat
transfer rates, for three sets of boundary conditions
given by the mass flow rate, the inlet temperature,
the inlet enthalpy, and the relative humidity of the
ambient air. The heat transfer rates had good consis-
tency while the refrigerant-side pressure drop and the
air-side water condensing needed improvement.

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 451 Modelica 2008, March 3rd − 4th, 2008

There were some challenges to directly use the heat
exchanger model from ACL for the cooling coil
component in the economizer model. In the ACL
Version 1.5, the choices of state variable pairs in-
clude pressure-enthalpy, density-temperature, and
mass-internal energy. Such choices are suitable for
the air flow and two-phase refrigerants in the auto-
motive refrigeration systems. However, for the build-
ing HVAC systems, especially for cooling coils in
the AHU, the working medium is typically single-
phase, i.e. water. Also, the temperature range is lim-
ited to the ambient temperature variation. Therefore,
it is necessary to reformulate the existing heat ex-
changer model in the ACL to accommodate the spe-
cific needs in building HVAC systems.

2.3.1 Medium Model Design and Implementation

An accurate water medium model is critical for the
transient simulation of cooling and heating coils in
the AHU. For the water property calculation, there
are mainly two international standard formulations,
namely, IAPWS95 [33] and IAPWS-IF97 [30, 33].
The former was developed for scientific computa-
tion, while the latter was developed for industrial
applications. Prior to the release of Version 1.4, the
ACL had included a large set of medium models for
many refrigerants, but not the water medium. Since
Version 1.5, the ACL has adopted a lookup-table
(LUT) based incompressible fluid (water) medium
model for heat exchanger modeling. However, it
may have the following drawbacks. First, in the con-
trol volumes, pressure responses are decoupled with
thermal responses, which may lead to inaccurate
mass distribution predictions. Second, incompressi-
ble water model will also result in inaccurate pres-
sure drop calculations, which will in turn affect the
heat transfer property calculations.
To validate the accuracy of different formulations of
water property model, the IF-97 formulae based
model (abbreviated as “IF-97 model” later) and the
LUT based incompressible water model (abbreviated
as LUT model later) were compared with the
IAPWS-95 standard. The FLUIDCAL program de-
veloped by Wagner’s group was used to obtain the
IAPWS-95 based water properties [34]. For Dymola
6.1, the water medium in Modelica_Media follows
the IF-97 model, while the water medium of Ther-
moFluidPro in the ACL Version1.5 follows the LUT
model. The comparison was conducted in the tem-
perature range from 274.15 K to 373.15 K with an
increment of 5 K, and the pressure input was set 5
bars for all cases. Table 1 summarizes the maximum
errors of several properties based on the IF-97 and
LUT models relative to those derived from the

IAPWS-95 standard. Figures 5 through 8 compare
the relative errors of the IF-97 and LUT models in
density, specific entropy, Cp and Cv, respectively.
Note that Cp and Cv are assumed identical in the LUT
model. More discrepancies were observed for en-
tropy and Cv.

Table 1: Water Properties Based on IF-97 and LUT
Models Relative to IAPWS-95 Standard

Maximum Relative Error (%)
Water Property

IF-97 ACL1.5
Density 0.0015 0.09

Specific Entropy 0.018 28.223

Cp 0.052 0.189

Cv 0.075 11.833

280 290 300 310 320 330 340 350 360 370
0

0.02

0.04

0.06

0.08

0.1

%
 R

el
at

iv
e

Er
ro

r (
Lo

ok
up

-T
ab

le
)

280 290 300 310 320 330 340 350 360 370
0

0.5

1

1.5
x 10-3

Temperature (K)

%
 R

el
at

iv
e

Er
ro

r (
%

) (
IF

-9
7)

Figure 5: Density errors of the IF-97 and LUT mod-

els relative to the IAPWS95 standard

280 290 300 310 320 330 340 350 360 370
0

0.005

0.01

0.015

0.02

Temperature (K)

%
 R

el
at

iv
e

E
rr

or
 (I

F-
97

)

280 290 300 310 320 330 340 350 360 370
0

5

10

15

20

25

30

%
 R

el
at

iv
e

E
rr

or
 (L

oo
ku

p-
Ta

bl
e)

Figure 6: Specific entropy errors of the IF-97 and
LUT models relative to the IAPWS95 standard

P. Li, Y. Li, J. Seem

The Modelica Association 452 Modelica 2008, March 3rd − 4th, 2008

280 290 300 310 320 330 340 350 360 370
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Temperature (K)

%
 R

el
at

iv
e

E
rro

r

Lookup-Table
IF-97

Figure 7: Cp errors of the IF-97 and LUT models

relative to the IAPWS95 standard

280 290 300 310 320 330 340 350 360 370
0

5

10

15

%
 R

el
at

iv
e

E
rro

r (
Lo

ok
up

-T
ab

le
)

280 290 300 310 320 330 340 350 360 370
0

0.02

0.04

0.06

0.08

Temperature (K)

%
 R

el
at

iv
e

E
rro

r (
IF

-9
7)

Figure 8: Cv errors of the IF-97 and LUT models

relative to the IAPWS95 standard

Within the Modelica_Media Library, a group of wa-
terIF97 models have been well defined to compute
the physical properties for water in the liquid, gas
and two-phase regions based on the IF-97 formulae.
However, there are several technical issues to use
these waterIF97 medium models directly in the func-
tions of ACL. First, waterIF97 medium model con-
tains both single- and multiple-phase calculations, in
which the multiple-phase portion is not needed for
this application. In addition, earlier development in
the ACL is well compatible with the automotive air
conditioning systems whose working medium are
various kinds of refrigerants. The composition is a
critical argument contained in most functions devel-
oped in the ACL. For cooling and heating coils in the
AHU, the single-phase water is the only working
medium to deal with. The composition argument in
the existing ACL functions results in significant in-

convenience. For the single-phase water medium
used in the heating/cooling coils, it would be more
convenient to remove the composition argument.
Second, the medium property computation in the
ACL covers both single- and multiple-phase proc-
esses, which are involved not only in the balance
equations of the dynamic control volumes, but also
in the calculations of various thermodynamic states,
such as density, enthalpy and specific heats, which
are irrelevant to the dynamic states of the control
volumes. In addition, there are a lot of computations
related to multiple-phase processes. A process/device
involving only the single-phase water medium, such
as the heating/cooling coil in the AHU, is a much
simpler case. If we can remove all irrelevant compu-
tations, the resultant computational efficiency will be
greatly improved.
Thirdly, the refrigerants used by typical automotive
air conditioning systems are modeled on the basis of
the Helmholtz functions with density-temperature as
the pair of state variables. In many HVAC applica-
tions, it would be more convenient if the water prop-
erties are based on the pairs of pressure-temperature
or pressure-enthalpy. In addition, for physical prop-
erty calculations in the control volumes, the users
can access the medium functions only at hierarchi-
cally higher levels, which limits the customization or
reformulation of these functions for particular appli-
cations, especially when the user-preferred pair of
state variables is not supported in the existing pack-
age.
To address the above issues, we decided to develop a
simpler and more efficient water model, named as
CoolWater, based on Modelica_Media.Interfaces.
PartialMedium. The basic formulation of the Cool-
Water model was obtained from [35]. In particular,
all redundant and conflicting variables and options in
the original waterIF97 model were either removed or
modified, e.g. the BaseProperties code. To be consis-
tent with the coding style and physical property cal-
culations preserved in the ACL, several IF-97 based
low-level medium functions and utilities were
adopted from the Modelica_Media Library.
A heat exchanger model was developed based on the
CoolWater medium described above. Heat exchanger
modeling is generally considered the most computa-
tionally intensive entity in a refrigeration system
[36]. To properly adapt the CoolWater model to the
refrigerant side, equations in the dynamic control
volumes should be rewritten, but the change should
not degrade the overall inheritance structure and ex-
actness of the heat exchanger model. Since the up-
permost hierarchical structure of the heat exchanger
is composed of only a few lines of code, the work of

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 453 Modelica 2008, March 3rd − 4th, 2008

implementing single-phase water model should be-
gin from the most rudimentary control volumes. In
the development phase, different choices of state-
variable pairs were first compared and evaluated in
order to achieve both engineering convenience and
numerical efficiency. It was stated in [37] that the
mass-internal-energy pair could decrease the nu-
merical efficiency. The density-temperature pair was
considered by [38] a bad choice in the liquid region
for compressible fluids due to the amplification of
numerical error.
Currently, the state-variable pairs of pressure-
temperature and pressure-specific-enthalpy have
been formulated into the heat exchanger model for
comparison purpose. The techniques of state variable
transformations were performed in the dynamic bal-
ance equations for pressure-temperature and pres-
sure-specific-enthalpy, respectively [38, 39]. The
corresponding partial derivatives appeared in the
balance equations could be computed using rudimen-
tary IF-97 functions. To ensure consistent and con-
venient initialization, the pressure-temperature pair
(compared to the pressure-enthalpy pair) has been
added into the initialization options, since tempera-
ture is easier to set for HVAC operation rather than
some other variables such as enthalpy.

2.3.2 Validation of Cooling Coil Model

A cooling coil model was derived from the heat ex-
changer model described in the previous section. To
validate this model, two comparisons were con-
ducted: comparison of pressure-temperature and
pressure-enthalpy and comparison of our cooling coil
model and the cooling coil in ACL Version 1.5.
As described in [38], the advantage of using the
pressure-temperature pair is that there are many me-
dium property models which are explicit in this state
pair. The sensitivity of using this state pair needs to
be checked. It is known that using different dynamic
state variable pairs may change the numerical sensi-
tivity of the corresponding thermodynamic equations
of state (EOS). For a bad choice of state pair, even a
small error in one of variables of the state pairs may
lead to a large error to other variables calculated
from EOS. To address such concern, the pressure-
temperature and pressure-enthalpy pairs were com-
pared with an example cooling coil model.
The cooling coil adopted a flat tube louvered fin heat
exchanger model given in the ACL. It consists of
louvered fins and extruded microchannel flat tubes,
both made of aluminum. The schematic diagrams in
Figure 9 show the geometry and flow pattern for the
cooling coil model.

(a) Flow pattern of water and air

(b) Six-pass cooling coil with vertical flow of cool-

ing water and cross flow of air

(c) Geometry of the triangular louvered fin

Figure 9: Schematic diagrams for the example cool-
ing coil [40]

On both sides of the wall, several parallel flow chan-
nels are lumped into one uniform flow path. The
cooling water path through the component is treated
as one pipe flow with circular cross section and one
air element associated with each flow segment. Each
air element is further discretized along its flow direc-
tion. The total depth and height were set to be 0.06 m
and 0.21 m, respectively. The width of the cooling
coil could be then calculated from the known number
of flat tubes and dimension of the flat tubes and fins.
For the water side, as shown in Figure 9(b), there are
15 flat tubes in the 2nd and 5th flow passes, and 10
flat tubes in the each of the remaining flow passes.
The dimension of the flat tubes could be determined
through three parameters: height of one flat tube,
center to center distance of two adjoining flat tubes,
and the number of pipes in one flat tube. They were
set to be 1 mm, 10 mm and 20, respectively. The

P. Li, Y. Li, J. Seem

The Modelica Association 454 Modelica 2008, March 3rd − 4th, 2008

wall thickness and radius of each pipe were set to be
0.1 mm and 0.4 mm. At the air side, the shape of the
louvered fins was set to be triangular. The fin dimen-
sions are summarized in Table 2.

Table 2: Dimensions of the louvered fins

Fin Dimension Parameter Setting

Number of fins per 0.1 m 80

Louver length (mm) 7

Louver pitch (mm) 1.4

Louver angle (°) 28

Fin thickness (mm) 0.1

Fin radius (mm) 0.4

The difference curve

-632.336W (initial)

-1100.75W

Figure 10: Internal energy in the 3rd control volume

For the two state pairs, the inlet air conditions were
set identical. The flow rate, temperature and relative
humidity of the inlet air were set to be 0.2 kg/s,
313K and 60%, respectively. For the water side, the
chilled water flow rate was kept as 0.3 kg/s. For the
pressure-temperature state pair, the initial tempera-
ture was set to 292.146 K. To be consistent with this
setup, the inlet specific enthalpy was set to 8×104
kJ/kg for the pressure-enthalpy state pair. The total
discretization number at the air side and water side
was set to be 12 and 6, respectively. Figures 10
through 12 show the simulation results from our
cooling performance test. The difference curves
shown in the plots are the calculated numerical dif-
ferences between these twos state variable pairs. The
results indicate that the differences are noticeable
only in the region of numerical transient responses,
i.e. 0 to 0.5 seconds, which is not harmful to the
overall transient and steady-state solutions.

405.254W (initial)

1928.06W

(0.12s 580.3W)

The difference curve

Red line: P-T
Blue line: P-h

Time (sec)

Figure 11: Internal energy in the 6th control volume

0 to 0.9 second

Close View Difference Curve

0 to 0.9 second

(0.1s,-1180.67W)

(0.5s,141.43W)

(0.9s,64.35W)

Red line: P-T
Blue line: P-h

Red line: P-T
Blue line: P-h

Time (sec)
Figure 12: Total heat transferred from the heat ex-

changer
Time (sec)

A further study was then performed to benchmark
our development with the ACL Version 1.5. The heat
exchanger model from ACL Version 1.5 was
equipped with the LUT water model. In our case, the
CoolWater model was used and pressure-
temperature was selected as the state variable pair.
The geometric configuration of the cooling coils was
reinforced to be the same in the two cases. A similar
cooling performance test was conducted, the initial
air flow rate was 0.0675 kg/s and the air temperature
and RH were given by 303.15 K and 60%, respec-
tively. For the water side, the chilled water flow rate
and initial temperature was kept as 0.1 kg/s and
293.15 K respectively. As shown in figure 13, the
inlet temperatures at the water and the air sides re-
spectively experienced ramp changes in sequence: at
30 second, the inlet water temperature first ramped
to 298.15 K within 20 second, and then the inlet air
temperature ramped to 308.15 K at 75 second within
20 second as well. Again, the total numbers of dis-
cretization at the air and water sides were set as 12

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 455 Modelica 2008, March 3rd − 4th, 2008

and 6, respectively. Figures 14 through 16 compare
the simulation results of the two cases in terms of the
specific enthalpy, the internal energy and the total
heat transfer rate, respectively. The maximum rela-
tive error was found to be around 0.5%. For this sin-
gle heat exchanger model test in our study, the com-
putation time using the IF-97 model was about 50%
more than that using the LUT model in the ACL
Version 1.5.

20s

20s

Inlet Water Temperature

Inlet Air Temperature

30s 75s

Figure 13: Sequential ramp changes of inlet water

and air temperatures

0 20 40 60 80 100 120
0.9

1

1.1

1.2
x 10

5

Time (sec)

S
pe

ci
fic

 E
nt

ha
lp

y
(J

/K
g)

0 20 40 60 80 100 120
8

9

10

11
x 10

4

S
pe

ci
fic

 E
nt

ha
lp

y
(J

/K
g)

CoolWater
LUT

LUT
CoolWater

[2]

[6]

Max relative error: 0.50%

Max relative error: 0.46%

Figure 14: Specific enthalpy in the 2nd and 6th control

volumes

0 20 40 60 80 100 120
2600

2800

3000

3200

3400

In
te

rn
al

 E
ne

rg
y

(J
)

0 20 40 60 80 100 120
1800

2000

2200

2400

2600

Time (sec)

In
te

rn
al

 E
ne

rg
y

(J
)

LUT
CoolWater

CoolWater
LUT

[6]

[2]

Max relative error: 0.51%

Max relative error:0.55%

Figure 15: Internal Energy in the 2nd and 6th control
volumes

0 20 40 60 80 100 120
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
x 10

4

Time (sec)

To
ta

l H
ea

t T
ra

ns
fe

r R
at

e
(W

)

CoolWater
LUT

Max relative error: 0.011%

Time (sec)

Figure 16: Total heat transfer rate at heat exchanger

3 Extremum Seeking Control (ESC)
of Economizer Operation

3.1 Overview of ESC

The extremum seeking control deals with the on-line
optimization problem of finding an optimizing input
uopt(t) for the generally unknown and/or time-varying
cost function l(t, u), where u(t) ∈Rm is the input pa-

rameter vector, i.e.
 () arg min (,)

mopt
u

u t l t u
∈

= . (3)

Figure 17 shows the block diagram for a typical ESC
system [41]. The measurement of the cost function
l(t, u), denoted by y(t), is corrupted by noise n(t). The
transfer function FI(s) denotes the linear dynamics of
the mechanism that command the control or optimi-
zation parameter vector u(t). FO(s) denotes the trans-
fer function of the sensor dynamics that measure the

P. Li, Y. Li, J. Seem

The Modelica Association 456 Modelica 2008, March 3rd − 4th, 2008

cost function, which is often a low-pass filter for re-
moving noise from the measurement.

Fig. 17: Block diagram of extremum seeking control
The basic components of the ESC are defined as fol-
lows. The dithering and demodulating signals are
denoted by and []1 1() sin() sin()T

md t t tω ω=

[]2 1 1 1() sin() sin()T
m md t a t a t mω α ω= + +α ,

respectively, where ωi are the dithering frequencies
for each input parameter channel, and αi are the
phase angles introduced intentionally between the
dithering and demodulating signals. The signal vec-
tor d2(t) contains the perturbation or dither signals
used to extract the gradient of the cost function l(t,
u). These signals work in conjunction with the high-
pass filter FHP(s), the demodulating signal

[]1 1() sin() sin()T
md t t tω= ω and the low-pass

filter FLP(s), to produce a vector-valued signal pro-
portional to the gradient ˆ()l uu

∂ of the cost function

at the input of the multivariable integrator, where u
is the control input based on the gradient estimation.
By integrating the gradient signal, asymptotic stabil-
ity of the closed loop system will make the gradient
vanish, i.e., achieving the optimality. Adding com-
pensator K(s) may enhance the transient performance
by compensating the input/output dynamics. For a
detailed explanation of ESC, consult references [12,
13, 41].

∂
ˆ

The earliest version of ESC can be dated back to
Leblanc’s work in 1922 [42]. There was great inter-
est in this subject in 1950s and 1960’s [10, 11, 43].
The research conducted by Krstić and his coworkers
in the past decade ignited a resurgence of extremum-
seeking control [12, 13]. Krstić and Wang first pro-
vided the stability proof for general SISO nonlinear
plants based on averaging and singular perturbation
methods [12]. More design issues were addressed in
another paper by Krstić [13]. Later, the stability
proof was extended to discrete-time situation [44].
The proposed ESC framework has been applied to
various applications, such as maximizing biomass
production rate [45], maximizing pressure rise in
axial flow compressor [46], minimizing acoustic
pressure oscillation to enhance combustion stability
[47], minimizing the power demand in formation
flight [48], and minimizing limit cycling [49], among

others. The extremum seeking control was also stud-
ied along different paths. Özgüner and his coworkers
combined ESC with sliding mode control [50-52] to
study the vehicle ABS control. Based on the assump-
tion of quadratic functional form with a finite num-
ber of parameters, Banavar developed an ESC
scheme with an adaptation procedure of on-line iden-
tifying the parameters in the assumed function [53-
55].

FHP(s) −∫

3.2 ESC for Energy Efficient Operation of
Economizers

The ESC based economizer control is illustrated in
Figure 18. The economizer control can be considered
as a dual-loop structure. The inner loop is the supply
air temperature control for the cooling coil, which
has faster dynamics. The outer loop is the damper
opening tuning for minimizing the cooling coil de-
mand, which is realized with an ESC framework.
The nonlinear performance mapping is from the out-
door air damper opening to the cooling coil demand,
and the input dynamics are effectively the closed
loop dynamics for supply air temperature control. In
the three-state economizer operation scheme, as de-
scribed in Section 1, the ESC is used for state 3
where mechanical cooling is required.

(a) Detailed block diagram

 (b) Simplified block diagram

Figure 18: ESC based economizer control

3.3 Extremum Seeking Controller Design

Typical ESC design needs to determine the follow-
ing parameters: the dither amplitude α, the dither
frequency ω and phase angle φ, the high pass filter
FHP(s), the low pass filter FLP(s), and the dynamic
compensator K(s). Based on averaging analysis, the

FHP(s) −∫

Kcc(s)

d1 d2

n

CQ

uFLP(s) K(s)
û

Cooling
Coil

Cooling coil demand

Damper
command

Setpoint Supply
Air Temperature Supply Air

Temperature
−

+

+ +

+
+

Mixing
Damper

Mixed Air

FHP(s) −∫

Fcc_cL(•) (,)CQ t u

d1

n

y u

FLP(s) K(s)
û

FI(s) l(t, u)

d1 d2

n

K(s) FLP(s)
û

y u
FO(s)

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 457 Modelica 2008, March 3rd − 4th, 2008

dither frequency should be relatively large with re-
spective to the adaptation gain, but should not be too
large to trigger unmodeled dynamics and make the
system more sensitive to measurement noise. Also, if
the dither frequency is well out of the bandwidth of
the input dynamics, the roll-off in the magnitude re-
sponse will slow down the convergence [13]. There-
fore, dither frequency ωd is typically chosen to be
just a moderate value smaller than the cut-off fre-
quency of the input dynamic as long as it is enough
to separate the time scales of the dither signal and the
inner loop dynamics. Generally, the dynamic com-
pensator should be designed based on the dither sig-
nal, adaptation gain and the frequency responses of
the input dynamics. Particularly, a proper propor-
tional-derivative (PD) action can increase the phase
margin of the input dynamics and thus make the in-
ner loop more stable. However, extreme values of
the adaptation gain, especially the derivative gain,
will make the system unnecessarily affected by noise
and thus destabilize the system. Further design
guidelines are summarized as follows.
1) The dither frequency must be in the passband of

the high pass filter and the stopband of the low
pass filter, and it should be below the first cut-
off frequency of the tuning schemes FI(s).

2) The dither amplitude should choose to be suffi-
ciently small.

3) The dither phase angle should choose to satisfy

()
2 2

IF j
π π

θ ω= − < ∠ + <α and it is desirable to

design the phase angle ()
2 2

IF j
π π

θ ω= − < ∠ + <α

+

such that θ is close to zero.

3.4 Anti-windup ESC

Actuator saturation is often encountered in control
systems. To our best knowledge, the issue of actuator
saturation has not been discussed for extremum seek-
ing control. For the economizer control, the actuator
saturation will happen when it is cool or hot outside.
For instance, when the outdoor air is around 53°F,
the outdoor air damper will be positioned fully open
to allow 100% outdoor air to enter the AHU. When it
is warmer than 100 °F, the damper will be closed to
a minimum opening which only maintain the lowest
ventilation for indoor air quality [56]. In other words,
the optimal reference input is not inside the satura-
tion limit, but rather at either limit point. Transition
between the ESC operation and the non-ESC opera-
tion is affected by the saturation issue. The averaging
analysis of ESC [43] showed that, at a large time
scale, the ESC can be deemed as a linear system
regulating the gradient signal with a PI controller.

When saturation presents in the ESC loop, integrator
wind-up is unavoidable and, in consequence, leads to
the undesirable windup phenomena. Later in Section
4.3, a simulation study will show that, due to the
windup issue, the ESC action may be totally disabled
even when the air condition changes to a point de-
manding its re-activation. It is thus necessary to
modify the standard ESC structure in order to avoid
integrator windup.

There has been much work reported in the field of
anti-windup control (AWC) [57, 58]. In order to
keep the simple nature of ESC, a back-calculation
method is proposed as in Figure 19, following the
spirit of the references [58-60]. The difference be-
tween the input and output of the actuator is fed back
to the input end of the integrator through some gain
factor. Our simulation results have demonstrated that
this method works well to prevent the integrator
windup in ESC system. Future research needs to in-
vestigate the design guidelines for the proposed anti-
windup ESC. The analysis will be based on combin-
ing the existing method for back-calculation AWC
and the averaging analysis [61, 62].

Figure 19: Block diagram for the anti-windup ESC

4 Simulation Study
The proposed extremum seeking control schemes
were simulated with the Modelica based economizer
model described in Section 2. The economizer model
was used to identify the system dynamics and then
illustrate the ESC schemes presented in the Section 3.
At the point of writing this paper, the condensation
computation from ACL 1.5 has not been incorpo-
rated into the cooling coil model due to the software
licensing delay. Only the dry air can be simulated.
The simulation results in the following are presented
for illustration purpose. More rigorous treatment will
be done after the condensation computation is made
up to deal with moist air.

4.1 ESC with Standard Design

As previously stated, the control objective in this
study is to minimize the chilled water flow rate of
the cooling coil by tuning the OAD opening. The
input dynamics from the OAD opening to the chilled

FHP(s) Integrator

FI(s) l(t, u)
n

y u

FLP(s)

FO(s)
+

–

+

+
+

+
+

d1 d2

Gain

P. Li, Y. Li, J. Seem

The Modelica Association 458 Modelica 2008, March 3rd − 4th, 2008

water flow rate was approximated based on several
open-loop simulations. Fast (20 second) ramp input
was used to approximate step input in order to re-
move the output jitter due to the inner loop PI control.
Two fast-ramp responses are shown in Figure 20,
which shows the second-order system behavior
across the whole range of operating conditions.

(a) Damper opening from 100% to 70%

(b) Damper opening from 50% to 20%
Figure 20: Chilled water flow rate output under fast

ramp change of outdoor air damper position

The following second order model was assumed to
fit the fast-ramp test data:

2

2()
2

n
I

n n
F s

s s
ω

2ζω ω+
=

+
 (4)

where nω is the undamped natural frequency and ζ
is the damping ratio. The damping ratio ζ was first
approximated by the percent overshoot suggested in
[63], then the 10% to 90% rise time Tr was estimated.
The nω can then be approximated via the following
relationship with Tr and ζ [63]:

2.16 0.60
r

n
T ζ

ω
+

= (5)

which is accurate for 0.3 0.8ζ≤ ≤ .

A group of tests indicate that nω ranged from
0.0108 to 0.021 rad/sec. As a conservative approxi-
mation, nω was chosen to be 0.011 rad/sec. The
damping ratio was estimated from the percent over-
shoot and was determined as 0.6. To properly sepa-
rate the dither signal and plant dynamics, the dither
frequency ωd is selected as one tenth of the natural
frequency. Next, the following high pass filter FHP(s)
was selected:

3000 3250 3500 3750
2 . 2

2 . 4

2 . 6

2 . 8

3 . 0

3 . 2

3 . 4

3 . 6

3 . 8

4 . 0

4 . 2

Inner Loop Dynamics Fitted

 ()
0.0001

HP
sF s

s
=

+
 (6)

which has a unit gain at the ωd. The low pass filter
was designed as

2

2 2

0.0006()
2 0.6 0.0006 0.0006

LPF s
s s

=
+ ⋅ ⋅ +

 (7)

which has approximately 10dB and 20dB attenuation
at ωd and 2ωd, respectively. To be consistent
with the phase lag introduced by the input dy-
namics FI(s), the dither phase α was selected as 0.5π
(radian), which makes () 0.1IF jθ ω α= ∠ + ≈ ° . The
dither amplitude was chosen to be 10%.
The designed ESC was tested with a fixed operating
condition. To be consistent with standard econo-
mizer design conditions, the supply air temperature
is controlled at 55°F and the return air temperature is
maintained around 75°F by providing a constant heat
input to the indoor space. The system was started at
minimal OAD opening (20%) to ensure adequate
indoor air quality, and the ESC controller was turned
on at about 3000 seconds to bring the system the op-
timum. The optimal OAD opening in this study is
100% since the outdoor air was set to 286K (55°F),
which is always lower than the return air temperature
297K (75°F). Therefore, the more outdoor air intake,
the less cooling water needed to be consumed. Fig-
ure 21 shows the time histories of the optimized
chilled water flow rate and OAD opening. The ob-
tained steady-state results are very close to the opti-
mum since the assumed condition is mechanical
cooling with optimal OAD opening at 100%.

W
at

er
 F

lo
w

 R
at

e
(K

g/
s)

Time (sec)

2600 2800 3000 3200 3400 3600 3800 4000 4200 4400

4

5

6

7

8

9

10

11

12 Inner Loop Dynamics Fitted

W
at

er
 F

lo
w

 R
at

e
(K

g/
s)

Time (sec)

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 459 Modelica 2008, March 3rd − 4th, 2008

0 1000 2000 3000 4000 5000 6000 7000
- 5
0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

W
at

er
 F

lo
w

 R
at

e
(K

g/
s)

O

A
D

 O
pe

ni
ng

 (%
)

Start of ESC

Figure 21: Tuning results of ESC with standard ESC.

4.2 Anti-Windup ESC

Another simulation study was conducted to verify
the effectiveness of the proposed anti-windup ESC.
Assume that a 20% damper opening is the minimum
requirement for indoor air quality, and thus this was
set as the lower saturation limit. The upper saturation
limit was 100%. In the simulation study as shown in
Figure 21, the initial outdoor air damper opening was
set at 20%, the same as the lower saturation limit.
The initial air temperature was again set to be 286 K.
Figure 22 shows the integrator windup phenomenon
when only the general ESC scheme was applied.
Driven by the ESC, the damper opening was in-
creased from 20% to 100% which was the corre-
sponding achievable optimal setting. Then the out-
door air temperature was suddenly increased to 310
K (36.85 °C) at 6000 seconds, the new optimal open-
ing was supposed to be below the lower saturation
limit. However, the results show that the ESC was
unable to respond to such change with reducing the
damper opening. Rather the damper appeared
“stuck” at the previous position. In comparison, as
shown in Figure 23, applying the back-calculation
based anti-windup ESC starting from 3000s effec-
tively solved this problem. Therefore, the proposed
anti-windup ESC scheme is shown to be able to han-
dle the saturation windup problem.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

5

10

15

20

Fl
ow

 R
at

e
(K

g/
s)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

100

200

300

O
A

D
 O

pe
ni

ng
 (%

)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 104

280

300

320

Time (sec)

Te
m

pe
ra

tu
re

 (K
)

Return Air Temperature
Outdoor Air Temperature

Saturated Control Input
Unsaturated Control Input

Figure 22: Standard ESC under actuator saturation

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

10

20

Fl
ow

 R
at

e
(K

g/
s)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-200
0

200
400
600
800

O
A

 O
pe

ni
ng

 (%
)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

280

300

320

Time (sec)

Te
m

pe
ra

tu
re

 (K
)

Saturated Control Input
Unsaturated Control Input

Return Air Temperature
Outdoor Air Temperature

Time (sec)

Fig. 23: Anti-windup ESC under damper saturation

5 Conclusions

In this paper, a Modelica based dynamic simulation
model was developed for a single-duct air-side
economizer based on Dymola and AirConditioning
Library. In order to make the cooling coil modeling
more effective and computationally efficient, revi-
sion was made on the water medium model and the
associated heat exchanger modeling. An ESC algo-
rithm was proposed as part of a three-state econo-
mizer operation, which aims to minimize mechanical
cooling load for the economizer operation in com-
mercial buildings. The standard ESC algorithm was
enhanced by an anti-windup ESC scheme against
damper (actuator) saturation. Simulations were con-
ducted to search for the optimal outdoor air damper
opening for standard ESC and the anti-windup ESC.
The simulations results demonstrated the effective-

P. Li, Y. Li, J. Seem

The Modelica Association 460 Modelica 2008, March 3rd − 4th, 2008

ness of using ESC for tuning the outdoor air damper
position to minimize mechanical cooling load. The
proposed enhancement was also validated through
the simulation results.

References
1. EPA, Energy Cost and IAQ Performance of

Ventilation Systems and Controls. EPA Report,
2000. EPA-4-2-S-01-001.

2. ASHRAE, Energy Standard for Buildings Ex-
cept Low-Rise Residential Buildings. 2004,
American Society of Heating, Refrigerating and
Air-Conditiioning Engineers, Inc.: 1791 Tullie
Circle NE, Atlanta, GA 30329.

3. ASHRAE, 90.1 User's Manual
ANSI/ASHRAE/IESNA Standard 90.1-2004.
2004, American Society of Heating, Refrigerat-
ing and Air-Conditioning Engineers, Inc.

4. Financial Times Energy, I. Design Brief
Economizers.

5. NBCIP, Product Testing Report: Duct-Mounted
Relative Humidity Transmitters. 2004, National
Building Controls Information Program.

6. NBCIP, Product Testing Report Supplement:
Duct-Mounted Relative Humidity Transmitters.
2005, National Building Controls Information
Program.

7. Song, L. and M. Liu, Optimal outside airflow
control of an integrated air-handling unit sys-
tem for large office buildings. Journal of Solar
Energy Engineering, Transactions of the ASME,
2004. 126(1): p. 614-619.

8. Guo, C., Q. Song, and W. Cai, A neural network
assisted cascade control system for air handling
unit. IEEE Transactions on Industrial Electron-
ics, 2007. 54(1): p. 620-628.

9. Blackman, P.F., Extremum-Seeking Regulators,
in An Exposition of Adaptive Control. 1962,
Pergamon Press.

10. Sternby, J., Extremum Control Systems: An Area
for Adaptive Control?, in Preprints of the Joint
American Control Conference. 1980: San Fran-
cisco, CA.

11. Åström, K.J. and B. Wittenmark, Adaptive con-
trol. 2nd ed. 1995, Reading, Mass.: Addison-
Wesley. xvi, 574 p.

12. Krstić, M. and H.-H. Wang, Stability of extre-
mum seeking feedback for general nonlinear
dynamic systems. Automatica, 2000. 36(4): p.
595-601.

13. Krstić, M., Performance improvement and limi-
tations in extremum seeking control. Systems
and Control Letters, 2000. 39(5): p. 313-326.

14. Bendapudi, S. and J.E. Braun, A Review of Lit-
erature on Dynamic Models of Vapor Compres-
sion Equipment. 2002.

15. Bourdouxhe, J.-P., M. Grodent, and J. Lebrun,
Reference Guide for Dynamic Models of HVAC
Equipment, ed. M. Geshwiler. 1998: American
Society of Heating, Refrigerating & Air-
Conditioning Engineers.

16. MacArthur, J.W. Analytical Representation of
the Transient Energy Interactions in Vapor
Compression Heat Pumps. 1984. ASHRAE, At-
lanta, GA, USA.

17. MacArthur, J.W. and E.W. Grald, Prediction of
cyclic heat pump performance with a fully dis-
tributed model and a comparison with experi-
mental data. ASHRAE Transactions, 1987. Vol.
93, Part 2.

18. Nyers, J. and G. Stoyan, Dynamical model ade-
quate for controlling the evaporator of a heat
pump. International Journal of Refrigeration,
1994. 17(2): p. 101-108.

19. Willatzen, M., N.B.O.L. Pettit, and L. Ploug-
Sorensen, General dynamic simulation model
for evaporators and condensers in refrigeration.
Part I: Moving-boundary formulation of two-
phase flows with heat exchange. International
Journal of Refrigeration, 1998. 21(5): 398-403.

20. Rasmussen, B.P. and A.G. Alleyne, Control-
oriented modeling of transcritical vapor com-
pression systems. Journal of Dynamic Systems,
Measurement and Control, Transactions of the
ASME, 2004. 126(1): 54-64.

21. Zhou, X., Dynamic modeling of chilled water
cooling coils, in School of Mechanical Engi-
neering. 2005, Purdue University.

22. Svensson, M.C., Studies on on-line optimizing
control with application to a heat pump. 1994,
The University of Trondheim.

23. He, X., S. Liu, and H. Asada. Modeling of vapor
compression cycles for advanced controls in
HVAC systems. 1995. Seattle, WA, USA.

24. Wang, S., J. Wang, and J. Burnett, Mechanistic
model of centrifugal chillers for HVAC system
dynamics simulation. Building Services Engi-
neering Research and Technology, 2000. 21(2):
p. 73-83.

25. Modelica. 2007 [cited; Available from:
http://www.modelica.org/.

26. Modelon. 2007 [cited; Available from:
http://www.modelon.se/.

27. Videla, J.I. and B. Lie. A New Energy Building
Simulation Library. in Proceedings of Modelica
2006. 2006.

28. Dynasim. http://www.dynasim.se/dynasim.htm.

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 461 Modelica 2008, March 3rd − 4th, 2008

29. Lebrun, J., Variable Speed Fan,
http://cbs.lbl.gov/diagnostics/model_library.
2004.

30. Wagner, W., et al., The IAPWS industrial for-
mulation 1997 for the thermodynamic properties
of water and steam. Journal of Engineering for
Gas Turbines and Power, 2000. 122(1): p. 150-
180.

31. Tan, H. and A. Dexter, Estimating airflow rates
in air-handling units from actuator control sig-
nals. Building and Environment, 2006. 41(10):
p. 1291-1298.

32. Limperich, D., et al. System Simulation of
Automotive Refrigeration Cycles. in Proceed-
ings of the 4th International Modelica Confer-
ence. 2005. Hamburg.

33. Wagner, W. and A. Pruß, The IAPWS Formula-
tion 1995 for the Thermodynamic Properties of
Ordinary Water Substance for General and Sci-
entific Use. J. Phys. Chem. Ref. Data 2002. Vol-
ume 31(Issue 2): p. 387-535.

34. Wagner, D.-I.W. and D.-I.U. Overhoff, FLU-
IDCAL. 2004. Basic Package Water (IAPWS-
95) for calculating the thermodynamic proper-
ties of H2O.

35. Hilding Elmqvist, H.T.a.M.O. Object-Oriented
Modeling of Thermo-Fluid Systems. in Proceed-
ings of the 3rd International Modelica Confer-
ence. 2003. Linköping.

36. Bendapudi, S., Development and evaluation of
modeling approaches for transients in centrifu-
gal chillers. 2004, Purdue University

37. Torge Pfafferott, G.S. Implementation of a
Modelica Library for Simulation of Refrigera-
tion Systems. Proceedings of the 3rd Interna-
tional Modelica Conference. 2003. Linköping.

38. Tummescheit, H., Design and Implementation
of Object-Oriented Model Libraries using Mod-
elica, in Department of Automatic control. 2002,
Lund Institute of Technology.

39. Eborn, J., On Model Libraries for Thermo-
hydraulic Applications, Department of Auto-
matic Control. 2001. Lund Inst. of Technology.

40. Modelon AB, AirConditioning Library Users
Mannaul Version 1.5. 2007.

41. Rotea, M.A., Analysis of multivariable Extre-
mum Seeking Algorithms. Proceedings of the
American Control Conference, 2000. p. 433-437

42. Leblanc, M., Sur l’electrification des Chemins
de fer au Moyen de Courants Alternatifs de
Frequence Elevee. Revue Generale de
l’Electricite, 1922.

43. Tsien, H.S., Engineering cybernetics. 1954,
New York,: McGraw-Hill. xii, 289p.

44. Choi, J.Y., et al., Extremum seeking control for
discrete-time systems. IEEE Transactions on
Automatic Control, 2002. 47(2): p. 318-323.

45. Wang, H.H., M. Krstic, and G. Bastin, Optimiz-
ing bioreactors by extremum seeking. Interna-
tional Journal of Adaptive Control and Signal
Processing, 1999. 13(8): p. 651-669.

46. Wang, H.-H., S. Yeung, and M. Krstic, Experi-
mental application of extremum seeking on an
axial-flow compressor. IEEE Transactions on
Control Systems Technology, 2000. 8(2): p.
300-309.

47. Banaszuk, A., Y. Zhang, and C.A. Jacobson.
Adaptive control of combustion instability using
extremum-seeking. in Proceedings of the Ameri-
can Control Conference. 2000.

48. Binetti, P., et al., Control of formation flight via
extremum seeking. Proceedings of the American
Control Conference, 2002. 4: p. 2848-2853.

49. Wang, H.-H. and M. Krstić, Extremum seeking
for limit cycle minimization. IEEE Transactions
on Automatic Control, 2000. 45(12): p. 2432-
2437.

50. Drakunov, S., et al., ABS control using optimum
search via sliding modes. IEEE Transactions on
Control Systems Technology, 1995. 3(1): 79-85.

51. Yu, H. and Ü. Özgüner. Extremum-seeking con-
trol strategy for ABS system with time delay. in
Proceedings of the American Control Confer-
ence. 2002.

52. Yu, H. and Ü. Özgüner. Extremum-seeking con-
trol via sliding mode with periodic search sig-
nals. in Proceedings of the IEEE Conference on
Decision and Control. 2002.

53. Speyer, J.L., et al. Extremum seeking loops with
assumed functions. in Proceedings of the IEEE
Conference on Decision and Control. 2000.

54. Banavar, R.N., D.F. Chichka, and J.L. Speyer.
Functional feedback in an extremum seeking
loop. in Proceedings of the IEEE Conference on
Decision and Control. 2001.

55. Banavar, R.N. Extremum seeking loops with
assumed functions: Estimation and control. in
Proceedings of the American Control Confer-
ence. 2002.

56. ASHRAE, ASHRAE standard : ventilation for
acceptable indoor air quality. 2001, Atlanta,
GA: American Society of Heating, Refrigerating
and Air-Conditioning Engineers, Inc. 34 p.

57. Åström, K.J. and B. Wittenmark, Computer-
Controlled Systems: Theory and Design. 3rd ed.
Prentice Hall information and system sciences
series. 1997, Upper Saddle River, N.J.: Prentice
Hall. xiv, 557 p.

P. Li, Y. Li, J. Seem

The Modelica Association 462 Modelica 2008, March 3rd − 4th, 2008

58. Åström, K.J. and L. Rundqwist. Integrator
windup and how to avoid it. in Proceedings of
1989 American Control Conference. 1989.

59. Fertik, H.A. and C.W. Ross, Direct digital con-
trol algorithms with anti-windup feature. ISA
Transactions, 1967: p. 317-328.

60. Åström, K.J., Advanced control methods – Sur-
vey and assessment of possibilities, in Advanced
control in computer integrated manufacturing.
Proceedings of the thirteenth annual Advanced
Control Conference H.M. Morris, E.J. Kompass,
and T.J. Williams, Editors. 1987.

61. Sanders, J.A., F. Verhulst, and J.A. Murdock,
Averaging methods in nonlinear dynamical sys-
tems. 2nd ed. 2007, New York: Springer.

62. Khalil, H.K., Nonlinear systems. 3rd ed. 2002,
Upper Saddle River, N.J.: Prentice Hall.

63. Dorf, R.C. and R.H. Bishop, Modern Control
Systems (10th Edition). 2004: Prentice Hall.

64. DOD, Heating, Ventilating, Air Conditioning,
and Dehumidfying Systems. 2005, United States
Department of Defense.

65. Hydeman, M., et al., Advanced Variable Air
Volume System Design Guide. 2003, California
Energy Commission.

Appendix: Economizer Operation

The American Society of Heating, Refrigerating
and Air Conditioning Engineers (ASHRAE) recom-
mends using economizers based on the cooling ca-
pacity size and weather characteristics for the build-
ing location. ASHRAE [2] classifies climate data
based on temperature with a number from 1 to 7, and
the letters A, B, and C, which correspond to moist,
dry, and marine climates, respectively. Table 1 con-
tains climate zones for 16 cities in the United States.
The fourth column (Economizer Requirement)
shows the cooling capacity for which an economizer
is required by ASHRAE [2]. No economizer is re-
quired in weather locations 1A, 1B, 2A, 3A, and 4A.
In weather locations 3B, 3C, 4B, 4C, 5B, 5C, and
6B, an economizer is required when the cooling re-
quirement is greater than or equal to 19 kW. In all
other weather locations, an economizer is required
when the cooling requirement is greater than or equal
to 40 kW. ASHRAE [3] describes several control
strategies for transitioning between 100% outdoor air
and the minimum outdoor air required for ventila-
tion. The control strategies are called “high limit
shutoff control for air economizer.” Following is a
list of strategies that can be programmed in a com-
puter control system.

• Fixed dry bulb temperature. This strategy com-
pares the outdoor temperature to a transition tem-

perature. If the outdoor air temperature is greater
than the transition temperature, then the dampers
are controlled for the minimum outdoor air re-
quired for ventilation. ASHRAE [3] said this is the
most reliable and simple control strategy since a
simple thermostat placed in an outdoor air intake
can be used. Table 2 shows the transition tempera-
ture for different climatic zones. The U.S. De-
partment of Defense [64] recommends this strat-
egy.

• Differential dry bulb temperature. This control
strategy compares the outdoor and return air tem-
peratures. If the outdoor temperature is greater
than the return air temperature, then the dampers
are controlled for minimum outdoor air required
for ventilation. This strategy should not be used in
the following climatic zones: 1A, 2A, 3A, and
4A. Hydeman et al. [65] said, "Of all of the op-
tions, dry bulb temperature controls prove the
most robust as dry-bulb temperature sensors are
easy to calibrate and do not drift excessively over
time. Differential control is recommended
throughout California and the sensors should be
selected for a through system resolution of 0.5 °F.
Dry-bulb sensors work well in all but humid cli-
mates, which are not typical in California."

• Fixed enthalpy. This control strategy measures the
outdoor air temperature and relative humidity.
Then the outdoor air enthalpy is calculated and
compared with a transition enthalpy. If the out-
door air enthalpy is greater than the transition en-
thalpy, then the dampers are controlled for mini-
mum outdoor air required for ventilation. ASH-
RAE [2] recommends a transition enthalpy of
47kJ/kg and at locations with altitudes signifi-
cantly different than sea level, the transition en-
thalpy should be determined for 24 °C and 50%
relative humidity. This strategy should not be
used in the following climatic zones: 1B, 2B, 3B,
3C, 4B, 4C, 5B, 5C, 6B, 7, and 8, due to the prob-
lem with humidity sensors.

• Differential enthalpy. This control strategy deter-
mines the outdoor and return air enthalpy from
measurements of the outdoor and return air tem-
perature and relative humidity. If the outdoor air
enthalpy is greater than the return air enthalpy,
then the dampers are controlled for minimum out-
door air required for ventilation. In 2003, the U.S.
General Services Administration required a differ-
ential enthalpy economizer for air-handling units
with a capacity greater than 3,000 CFM (1,416
LPS) unless the air handling system design pre-
cluded the use of an air-side economizer. Regard-
ing the use of differential enthalpy controls, Hy-

Dynamic Modeling and Self-Optimizing Control of Air-Side Economizers

The Modelica Association 463 Modelica 2008, March 3rd − 4th, 2008

deman et al. [65] said, “Differential enthalpy con-
trols are theoretically the most energy efficient.
The problem with them is that the sensors are very
hard to keep calibrated and should be re-calibrated
on an annual or semi-annual basis. Contrary to
common perception, enthalpy controls do not
work in all climates. In hot dry climates they can
hunt and excessively cycle the economizer damp-

ers when the hot dry outdoor air has lower en-
thalpy than the space(s) at cooling balance point.
What happens is that the economizer opens up and
the coil is dry, which in turn dries out the space(s)
until the return enthalpy goes below the outdoor
enthalpy. As a result, the economizer damper
closes, the space humidity increases, and the cycle
repeats.”

Table A.1. Climate zones and economizer requirement for 16 US cities. (qcool: cooling capacity)

Climate Description Cities Economizer Requirement
1A Very Hot - Humid Miami, FL None
1B Very Hot - Dry --- None
2A Hot - Humid Houston, TX None
2B Hot - Dry Phoenix, AZ qcool ≥ 40 kW
3A Warm - Humid Charlotte, NC None
3B Warm - Dry Los Angeles, CA qcool ≥ 19 kW
3C Warm - Marine San Francisco, CA qcool ≥ 19 kW
4A Mixed - Humid New York, NY None
4B Mixed - Dry Albuquerque, NM qcool ≥ 19 kW
4C Mixed - Marine Seattle, WA qcool ≥ 19 kW
5A Cool - Humid Chicago, IL qcool ≥ 40 kW
5B Cool - Dry Denver, CO qcool ≥ 19 kW
5C Cool - Marine --- qcool ≥ 19 kW
6A Cold - Humid Minneapolis, MN qcool ≥ 40 kW
6B Cold - Dry Cheyenne, WY qcool ≥ 19 kW
7A Very Cold - Humid Ashland, WI qcool ≥ 40 kW
7B Very Cold - Dry Jackson, WY qcool ≥ 40 kW
8 Arctic Fairbanks, AL qcool ≥ 40 kW

Table A.2. Transition temperatures for fixed dry bulb economizer.

Climatic Zones Transition Equation

1B, 2B, 3B, 4B, 4C, 5B, 5C, 6B, 7B, 8 24OAT > C

5A, 6A, 7A 21OAT > C

1A, 2A, 3A, 4A 18OAT > C

P. Li, Y. Li, J. Seem

The Modelica Association 464 Modelica 2008, March 3rd − 4th, 2008

Session 4c

Automotive Applications

The Modelica Association 465 Modelica 2008, March 3-4, 2008

The Modelica Association 466 Modelica 2008, March 3rd − 4th, 2008

Using Modelica for modeling and simulation of spark ignited
engine and drilling station in IFP

Masoud Najafi∗ and Zakia Benjelloun-Dabaghi†

Abstract

Modeling and simulation are becoming more crucial
since engineers need to analyze very complex systems
composed of several components from different do-
mains. Current tools used in IFP (French Institute
of Petroleum) are generally weak in treating multi-
domain models because the general tools are block-
oriented and thus demand a huge amount of manual
rewriting to get the equations in explicit form. The
most popular tool used at IFP in simulation of 0D/1D
systems and control design area is Simulink. In this
paper, we present the use of the Modelica language
in modeling and simulation of two industrial applica-
tions.
Keywords: Modeling; Modelica; Scicos; SI Engine;
Drilling station

1 Introduction

Scilab1 is a free and open-source software for scien-
tific calculation and Scicos2 is a toolbox of Scilab that
provides an environment for modeling and simulation
of hybrid dynamical systems [1, 2]. They can be com-
pared with Matlab and Simulink, respectively. The un-
derlying hybrid formalism in Scicos allows modeling
and simulation of very general hybrid dynamical sys-
tems, i.e., systems including continuous, discrete-time
and event based behaviors.
Scicos supports acausal modeling or modeling physi-
cal systems with components. This has been done, in
particular, by lifting the causality constraint on Scicos
blocks and by introducing the possibility of describing
block behaviors in the Modelica language. This ex-
tension allows the user to model physical systems de-

∗Masoud Najafi, INRIA-Rocquencourt, Domaine
de Voluceau, BP 105, 78153, Le Chesnay, France

†Zakia Benjelloun-Dabaghi, French institute of Petroleum
(IFP), 1 & 4, avenue de Bois-Préau, 92852, Rueil-Malmaison,
France

1www.scilab.org
2www.scicos.org

scribed by mathematical formula. Most physical com-
ponents are more naturally modeled with components
simply because physical laws are expressed in terms
of mathematical equations [3].
Modelica is a modern object-oriented programing lan-
guage based on equations instead of assignment state-
ments. Modelica has a multi-domain modeling capa-
bility, e.g., electrical, mechanical, thermodynamic, hy-
draulic, and control systems can be described by Mod-
elica. Modelica programs are built from classes that
contain elements, the variable declarations, and equa-
tions. In order to write a complicated model easily
and efficiently, the model is decomposed into several
components. Then, by interconnecting components
the model is constructed [4].
In the following sections, we will present two indus-
trial applications: drilling station and spark ignited en-
gine. These applications have been already modeled
in Simulink which is a popular tool at IFP mostly used
for simulation of 0D/1D systems and control system
design. In this paper, we will present the way these ap-
plications have been modeled with Modelica and sim-
ulated in Scicos.

2 Modeling a drilling station

Modeling in the oil and gas industry is used in sev-
eral stages of operations, from exploration activity to
refining of the crude oil. The purpose of modeling is
to improve an understanding of the problems that are
usually difficult or expensive to deal with in the real
physical system. Drilling a well into a reservoir is an
expensive, risky, and time-consuming process. So the
problems and malfunctions should be detected as soon
as they appear. Most of problems in drilling industry
are due to lack of a complete knowledge about the en-
vironment and the process. Modeling and simulation
are inevitable to detect and control of such problems.
In previous works done at IFP a model of drilling sta-
tion has been developed [5, 6, 7]. The particularity
of this work, inspired directly from cited works, lies
in using Modelica language and formal computing to

Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station in IFP

The Modelica Association 467 Modelica 2008, March 3rd − 4th, 2008

Derrick

Casing

Drll collar BHA

Bit

Rotary table turn engine

D
ri

l s
tr

in
g

Rotary table

control
Tension

Tin
Kelly

Figure 1: A schematic diagram of a drilling well sta-
tion.

model and simulate the drilling well station model.
A drilling well station is composed of several parts.
The first visible part of a drilling well is the rig which
is a structure housing equipments used to drill into un-
derground reservoirs for water, oil, or etc. The basic
components of a rotary drilling rig are the derrick and
hoist, rotary table, kelly, drill pipe, bit, and pump as
shown in Fig. 1.
The derrick is the support structure that holds the
drilling apparatus and the drill string. The drill string
consists of rotary table, kelly, drill pipe, drill collars,
and bit. The rotary table is a circular table in the der-
rick floor which is rotated by the electrical or diesel en-
gines. The kelly is a four or six-sided pipe that passes
up through the rotary table and transfers rotary motion
of the rotary table to the drill string. When rotated by
the rotary table, the kelly is free to be raised or lowered
by a cable connected to the top of the derrick down the
kelly.
Drill Pipe is always the longest component in a drill
string. Typically thousands of meters of drill pipe are
used to drill an oil well. Drill pipe is manufactured in
segments of 10 meters lengths. The top joint of the
drill pipe is connected to the kelly. Bottom joint of
the drill pipe is directly connected to larger diameter
pipes called drill collars. One of the earliest problems

drillers encountered in rotary drilling was that of keep-
ing their boreholes straight. The deeper drillers went,
the more the boreholes deviated from vertical. Drill
collars weigh more than drill pipe and are designed
to lower the center of gravity of the drill pipe. This
helps control drilling (e.g., making a straight hole) and
prevents the pipe from kinking and breaking. Two to
twenty drill collars are often used.
The drilling bit is the end of the drill string that actu-
ally cuts up the rock. The bit screws into the bottom of
the drill collars. The most common bit is the tricone bit
which has three rotating cones. The cones have teeth
that are designed to chip and flake away the rock as the
bit is rotated.

2.1 Model of the drilling well

The drilling model is a set of differential equations de-
scribing behavior of components of the drilling station,
including the bit and the rock interactions. The model
should be as simple as possible to explain the desired
malfunctions. The diagram in Fig. 2 shows the model
composed of four main components: a rig, a drill pipe,
a drill collar, and a drilling bit. These component in-
teract with each other via four main variables:
T : the torque that a component applies on another,
F : the force that a component applies on another,
Ω: the angular velocity of a component,
V : the longitudinal velocity of a component.
A more detailed description of components’ model
will be given in the following sections.

Drill

Ωbot ,VbotΩtab,Vtab

Ftop,Ttop

Drill
bit
Drill

Ωc,Vc

pipe collars
Drill
rig

Fbit ,TbitFc,Tc

Tin

Xin

Vin

Figure 2: Connecting variables

The model is nonlinear and one-dimensional and pro-
vides several bottom/surface transfer functions which
can be used for real-time estimation of borehole vari-
ables. Furthermore, the model can be used for stability
analysis that is extremely important in controlling the
drilling process. Another important use of the model is
the simulation of transient and steady state behaviors.

2.1.1 Drilling rig

Drilling rigs may have very complex structure varying
in form and size. From the modeling point of view
the rig imposes the boundary conditions on the drill
string structure. A first approach to model the rig is to

M. Najafi, Z. Benjelloun-Dabaghi

The Modelica Association 468 Modelica 2008, March 3rd − 4th, 2008

consider its geometric structure and the elements that
constitute the rig. This may give an exact model, but
it would not be practical. Because in fact this model
would be very complex and numerically would be so
slow that it could not be used in real-time applications.
Another problem with this approach is the fact that it
cannot be used for another rig.
In [5], the model of two mass-spring-damper has been
proposed for the model of longitudinal motions of the
drilling rig, as shown in Fig. 3. Although the model
is simple, it can provide a very good low frequency
response (up to 20 Hz) which is quit enough for our
purpose. Further more, when the rig changes, unlike
the first method which needs a complete new model,
here we need just a new identification for parameters
of the model.

m1

m2

Xin

x1

x2

Vtab

u1

Ftop

Figure 3: A mechanical model for the drilling rig

The mass m1 and m2 can be interpreted as the mass of
the hook and the kelly, respectively [5]. Ftop is the nec-
essary force on the well surface to bore the drill string
down into borehole. Vtab is the kelly’s longitudinal ve-
locity.
Rotary table is modeled as a rotating mass with iner-
tial momentum. In Fig. 2, Ωtab, Tin, Ttop are the angu-
lar velocity of the rotary table, the torque applied on
the rotary table, and the torque needed to turn the drill
string, respectively.

2.1.2 Drill pipe

The drilling pipe is composed of multiple segments
which are screwed together to construct a pipe with
thousands of meters. Due its length, the drilling pipe
exhibits torsional, longitudinal, and lateral motions.
In this paper, only longitudinal and torsional motions
are considered. Precise modeling of the drilling pipe
needs complicated methods such as finite elements. In
order to simplify the model, the drilling pipe is dis-

cretized to N = 15 sections, see Fig. 4. This model-
ing approach fulfills the precision requirements with a
minimum number of variables [6].

Ωi−1
Ti−1 Ti

Ωi+1Ωi
Ti+1

Tf riction

i−1 i i+11 N
Bit

Rig
Drill Drilling
Collar

Figure 4: Discretizing the drilling pipe

Applying Newton’s laws for rotation, we can obtain
the model of each segment.

2.1.3 Drill collars

The drill collars are modeled in the same way as the
drill pipe. Since, the length of the drill collars are
smaller than that of the drill pipe, we do not discretize
the drill collars and we consider a single rigid rod. In
order to obtain the model of the drill collars, Newton’s
laws for rotation are used.

2.1.4 Drill bit

The model of the Rig, drill pipe, and drill collars are
composed of two uncoupled dynamics: a longitudi-
nal and a rotational dynamics. These two dynamics
should be coupled in the drill bit model. Thus, beside
the longitudinal and rotational dynamics in the drill
bit, a coupling dynamics is necessary. The diagram in
Fig. 5 shows these dynamics.

Vbit

(rotational) (longitudinal)
Rock/Bit contact Rock/Bit contact

longitudinal/rotational coupling

DTOB (Tbit)DVIR (Ωc) DVIZ (Vc)DWOB (Fbit)

Figure 5: Drilling bit model

In Fig. 5, DVIZ, DVIR, DWOB, DTOB represent the
downhole longitudinal velocity, the downhole angular
velocity, the downhole weight-on-bit, and the down-
hole torque-on-bit, respectively. The DTOB (Tbit)
which is the torque resistance against the rotation due
to the rock/bit contact is computed by iso-weight ta-
bles. These tables are used to compute the necessary
torque as a function of DWOB and DVIR (Ωc). The

Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station in IFP

The Modelica Association 469 Modelica 2008, March 3rd − 4th, 2008

RIG

Drill Pipe

Drill Collars

Drill Bit

0

Mux

0

Drill Pipe

Torque_inTorque_in

X_inX_in

V_inV_in

Figure 6: Model of the drilling rig in Scicos

bottom end of the drilling bit is a tricone transforming
the rotational motions into longitudinal motions. Ωc is
computed as a function of Vbit and the geometric struc-
ture of the bit. The WOB is computed as a function of
the axial speed of the tricone bit and the longitudinal
speed of the bit.

2.2 Simulation example

For each component of the drilling well, i.e., rig,
drilling pipe, drill collars, and drilling bit, we have de-
veloped a Modelica model. The model of the drilling
rig has three control inputs: the rotary table applied
torque (Tin), the longitudinal speed of the kelly (Vin),
and initial position of the kelly (Xin), see Fig. 2. Thus,
the block has three explicit inputs. Each Model-
ica model is considered as an implicit block in Scicos.
These blocks should be connected to build the model
of the drill well.
The Scicos diagram constructed by connecting devel-
oped Modelica blocks is shown in Fig. 6. This Scicos

model is composed of four implicit blocks and five
explicit blocks. , , ,
and blocks are implicit blocks (written
with the Modelica language). There are three explicit
blocks providing input variables of the block.
There is a block to visualize output variables
in the model, and a block to activate the scope
block to sample its inputs. Note that the connection
type between the implicit blocks is different from that
between explicit blocks. These connections represent
physical connection, i.e., there is no flow direction.

With the the developed model, the user is able to simu-
late the model in different situations. Unwanted vibra-
tion/oscillation is a well known recurrent phenomenon
in rotary drilling that may cause catastrophic bit fail-
ures [5, 6, 7, 8, 9]. This phenomenon is the result of
torque fluctuations due to Coulomb frictions. These
frictions are are included in our model, so it should
be possible to simulate this phenomenon which is
known as stick-slip. In order to demonstrate this phe-
nomenon, the simulation is started at steady state an-

M. Najafi, Z. Benjelloun-Dabaghi

The Modelica Association 470 Modelica 2008, March 3rd − 4th, 2008

0 30 60 90 120 150 180 210 240 270 300
2500

2750

3000

3250

3500

+

0 30 60 90 120 150 180 210 240 270 300
0.0

7.5

15.0

22.5

30.0

+

0 30 60 90 120 150 180 210 240 270 300
0

15

30

45

60

+

Figure 7: simulation of a drilling station exhibiting os-
cillations in the rotation speed

gular speed of 66 rpm. The input torque is Tin=3000
N.m., Xin=-0.03, and Vin=0. With these inputs, the sys-
tem is stable. At t=100 sec, the torque is increased to
3200 N.m. which sets off the oscillation. The simu-
lation result is given in Fig. 7. In the top subplot, the
input torque applied on the rotary table is shown. The
middle subplot shows the angular velocity of the ro-
tary table, and the bottom subplot shows the angular
velocity of the drilling bit.

3 Mean value SI engine

The model of the SI engine described in this section
is a nonlinear, low frequency model of a fuel-injected
four cylinders SI engine which is generally referred to
as a mean value model. Mean value engine models at-
tempts to capture dynamics in a time-scale spanning
over several combustion cycles. Fast events are not of
interest other than their effects on a larger scale. Most
cyclic dynamics are modeled by their average value
over a cycle. The speed and torque output of the en-
gine and the pressure in the inlet manifold are the as-
pects of most interest in mean value engine model that
we have developed. Mean value engine model gener-
ally represents a basis for the development of different
engine control strategies.
The model of the overall engine is composed of several
components. In order to develop the model of the SI
engine easier, the engine subsystems including the air
throttle, the intake manifold, exhaust gas recirculation
(EGR), the canister purge mechanism, sensor dynam-
ics, combustion chamber, and the load are modeled.
Inherent system delays in the four-stroke engine cycle
including the induction-to-power stroke delay, effects

of the air/fuel ratio or fuel richness are not modeled in
this work. The system including fundamental compo-
nents, sensors, and actuators is illustrated in Fig. 8.

Piston

Cranckshaft

N

EGR valve
Intake manifold

Purge control valve

Spark plug

AIR

Cylinder

Exhaust valve

Mload

Inlet valve

Intake runner

Throttle

Bypass valve

Figure 8: Principle sketch of SI-engine

3.1 Model of the SI engine components

In this subsection, a brief description of the engine
components and their corresponding Scicos block is
given, more details are given in [10]. These compo-
nents are shown in Fig. 9.

E

ThrottleThrottle
Intake manifoldIntake manifold

EGREGR

AirAir CanisterCanister

CrankshaftCrankshaft

CombustionCombustion
chamberchamber

Figure 9: Scicos toolbox for engine components

3.1.1 Air intake throttle

The air throttle that controls the air flow rate into the
air manifold and the combustion chamber can be mod-
eled as a flow restriction. The model of a flow restric-
tion highly depends on the pressure difference across
the restriction, if small enough, the gas density is con-
sidered equal on both sides, i.e., the gas is consid-
ered as an incompressible fluid. If, on the other hand,

Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station in IFP

The Modelica Association 471 Modelica 2008, March 3rd − 4th, 2008

large pressure differences can be expected the restric-
tion should be modeled assuming compressible fluids.
We have assumed that there is no back flow and the
temperature is unchanged across the throttle [11, 12].
When the engine is in idle mode, the necessary air for
the maintaining the minimum power of the engine is
supplied through an air passage, called air bypass pas-
sage. The bypass area is controlled by the engine con-
trol unit (ECU).
The schematic of the throttle block in Scicos is given
in Fig. 8. The air throttle component modeled with
Modelica has two implicit ports and two explicit in-
puts. In Fig. 9, the square ports are implicit and trian-
gle ones are explicit. Implicit ports represent inlet and
outlet air flows and explicit input ports represent con-
trol signals. The implicit ports are modeled with the

keyword in Modelica.

3.1.2 Exhaust gas recirculation (EGR)

In order to reduce harmful emissions resulting form
the combustion, some of the exhaust gas is diverted
back into the combustion process. In this method the
inlet and exhaust manifolds are connected with a pipe
and the recirculated gas flow rate is controlled by a
valve [12]. The EGR control valve is modeled as a
restriction [11, 12]. The schematic of the EGR block
in Scicos is given in Fig. 9. The EGR block has two
implicit ports and one explicit input port representing
the control signal of the EGR valve.

3.1.3 Canister

Most of the hydrocarbon emissions in modern cars are
from the exhaust, but a considerable part also comes
from evaporative losses in the fuel tank. Most modern
cars use an evaporative emissions management sys-
tem to reduce these emissions. The basic function of
this system is to trap and store the fuel vapors from
the fuel tank in a canister until the engine is started.
Then after the trapped fuel vapors is drawn into the
engine by intake air manifold and combusted. In order
to control the flow of vapors into the engine, a purge
control valve with no back flow is used. The canis-
ter purge valve is modeled as a restriction [11, 12].
The schematic model of the Canister block in Scicos
is given in Fig. 9.

3.1.4 Intake Manifold

The air flowing through the air throttle, the EGR, and
the canister are mixed in the intake manifold and are

send into the combustion chamber through the intake
runner. We have assumed an isothermal manifold heat
transfer, i.e., constant manifold air temperature. The
air in the intake manifold is composed of fresh air,
fuel, and burnt gas. The concentrations can be de-
scribed as functions of the partial pressures of fuel and
air in the intake manifold. Using the ideal gas law, we
can obtain the model of the intake manifold pressure.
In SI engines, the inlet manifold pressure is reduced
by the throttle in order to control the output torque.
The flow rate in the intake runner is imposed by the
pumping mechanism of the combustion chamber and
the crankshaft rotation [11, 12].
The manifold air pressure sensor (MAP sensor) re-
sponse is not as fast as the variation of pressure in the
manifold, so its dynamics cannot be ignored and a first
order filter is used to estimate the manifold pressure.
The schematic of the manifold block in Scicos is given
in Fig. 9. The block has four implicit ports and one ex-
plicit output port representing the MAP sensor output.

3.1.5 Combustion chamber

The combustion chamber is the heart of the engine.
The air/fuel mixture flows into the cylinders and re-
acts and usable energy is extracted from the heated gas
which is then expelled. In this work, the effects of the
air/fuel ratio are not modeled. The cylinder is con-
tinuously swept by a piston which is connected to the
crankshaft via a rod. The top of the cylinder houses in-
take and exhaust ports and a spark-plug in SI engines.
The cylinder and the crankshaft have two important
roles: torque generation and air pumping. When gas
burns and expands, the piston is forced down. The
downward movement is then transformed into rota-
tional movement. The applied torque on the crankshaft
depends on several parameters, such as the air/fuel
mixture ratio, spark ignition time, manifold pressure,
angular velocity of the crankshaft, etc. Since there is
no accurate and simple physical model describing the
generated torque, it is customary that a map is used.
This map gives the optimum generated torque as a
function of the manifold pressure (Pman), and the an-
gular velocity of the crankshaft (ω). Thus, the optimal
obtainable torque is defined as

τopt
gen = F(ω ,Pman).

This map gives the value of the produced torque re-
gardless of other important effects such as the effects
of spark advance. Adjusting the spark advance tim-
ing, we can optimize engine efficiency to deliver peak

M. Najafi, Z. Benjelloun-Dabaghi

The Modelica Association 472 Modelica 2008, March 3rd − 4th, 2008

combustion pressure when the piston reaches about
10◦ after top dead center angle. Incorrect spark timing
can have a significant effect on emission output and
vehicle drivability. The amount of the spark advance
needed by the engine varies as function of the number
of different operating conditions. The coolant temper-
ature, fuel quality, and engine load are just a few of
the many factors that can significantly impact ideal ig-
nition time [13, 14, 15]. The effects of the spark timing
on the produced torque is obtained by a using a exper-
imentally obtained map. The map that we have used
in our simulation gives the spark advance efficiency
or the ratio of the produced torque with respect to the
optimal torque, i.e.,

η =
τgen

τopt
gen

= H(|SA|)

where |SA| is the absolute value of the spark advance
timing. Note that H(0) = 1 and |SA| < 40◦.
The up/down movement of the cylinder creates a
pumping effect; when the piston moves downward, the
air is inhaled from the intake manifold and when the
piston moves upward, the burnt air is exhaled to the
exhaust manifold. In an internal combustion engine,
the pressure on the intake side will normally be lower
than on the exhaust side. Pumping gas from low to
high pressure costs energy and this energy is taken
from the crankshaft. The amount of the pumped air
depends on several variables such as the cylinder vol-
ume, the angular velocity of the crankshaft, pressure in
the intake manifold, pressure in the exhaust manifold,
and the air temperature. Again, since there is no accu-
rate and simple physical model describing the amount
of the pumped air, a map is used to describe the total
gas flow rate as a function of manifold pressure (Pman)
and engine speed (ω). The maps used in our model
have been obtained at IFP for a four cylinders SI en-
gine. The schematic of the combustion chamber block
in Scicos is given in Fig. 9. This block has three im-
plicit ports for the air intake runner, the exhaust outlet,
and the connection with the crankshaft. The block has
one explicit input port representing the spark advance
signal coming from the controller.

3.1.6 Crankshaft dynamics and perturbations

The crankshaft dynamics are modeled using the New-
ton’s second law for rotating masses. All perturbations
due to instabilities in combustion, differences in gen-
erated torque in cylinders, and variations in fuel injec-
tion in different cylinders are modeled with noise gen-
erator blocks (explicit Scicos blocks). This perturba-

tions represent the load applied on the engine includ-
ing controllable loads such as effects of A/C or anti-
frost systems on the engine and uncontrollable pertur-
bations modeled with a zero mean random noise. The
schematic of the crankshaft block in Scicos is given
in Fig. 9. This block is connected to the combustion
chamber block via an implicit port representing the
mechanical connection of the crankshaft to the com-
bustion chamber. The block has an explicit output port
providing the angular velocity.

3.2 Simulation example: idle speed control

In this section, the engine components are assembled
to construct the model of an SI engine, see Fig. 10. The
engine model is then used to validate start-up and idle
speed control strategies. The controller can be devel-
oped with standard (explicit) Scicos blocks. Its mod-
eling with explicit blocks in Scicos has the advantage
of using the rich control toolbox of Scilab.
In our model, the selected controller is relatively sim-
ple, i.e., a PI controller. This controller will be ac-
tive as soon as the engine speed exceeds 700 RPM.
During the start-up phase, the spark advance is set to
20◦ and the throttle bypass area is 15%. When en-
gine speed superseded the 700 RPM threshold, the
control is handed over to the PI controller that adjusts
the spark advance and the bypass area as a function
of the reference speed, i.e., 750 RPM, instantaneous
MAP sensor and the engine speed. The simulation re-
sults of an engine start-up and the idle speed control
is given in Fig .11. In this simulation, in order to test
the the idle speed controller, different loads (τl) are ap-
plied at instants t=20 sec and t=40 sec, see the bottom
plot of Fig. 11. In the top plot of Fig. 11, the engine
speed is shown. The engine speed is relatively regu-
lated around 750 RPM in spite of the loads and ran-
dom perturbations. The middle plot of Fig. 11 gives
the intake manifold pressure that decreases from atmo-
sphere pressure as engine starts up and varies as load
changes.

4 Future Works

The Modelica compiler used in Scicos has been de-
veloped in the SIMPA3 project with the participation
of INRIA, IMAGINE, EDF, IFP, and Cril Technology.
Recently, the ANR4/RNTL SIMPA2 project has been

3Simulation pour le Procédé et l’Automatique
4French National Research Agency

Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station in IFP

The Modelica Association 473 Modelica 2008, March 3rd − 4th, 2008

AlphaAlpha

Bypass air Bypass air

0
0

0

MScope

LoadLoad

3

 PID
Modelica

800

ThrottleThrottle

CanisterCanister

EGREGR
Air

Air

Air

Speed

Reference speedReference speed
Advance time

A
dv

an
ce

 ti
m

e

Figure 10: The Scicos model for a mean SI engine

launched to develop a more complete Modelica com-
piler. The main objectives of this project are to extend
the SIMPA compiler to fully support inheritance and
hybrid systems, give the possibility to solve inverse
problems by model inversion for static and dynamic
systems, and enhance initialization of Modelica mod-
els.

5 Conclusion

In this paper, we modeled a drilling station and a mean
value SI engine with Modelica in Scicos. It should
be noted that these models have been already mod-
eled and simulated in Simulink at IFP. The modeling
in Modelica was performed in order to compare two
modeling environments. Modeling in Modelica has
several advantages: Modelica is a declarative language
with which very general hybrid systems can be mod-
eled. The Modelica models are independent of the
simulation tool and can be simulated in any Model-
ica simulator. Another important advantage of using
Modelica lies in the symbolic manipulation of mod-

els. Because it gives the possibility of several simplifi-
cations such as efficient discontinuity handling, index
reduction, and generation of the analytical Jacobian.
Another advantage of Modelica models comparing to
Simulink models is the facility in model construction
and navigation in the model. For example, the model
of the drilling station in Simulink is composed of more
that 500 blocks distributed in 116 subsystems whereas
the Scicos model is just composed of 9 blocks. The
model of the SI engine in Simulink is composed of
203 blocks distributed in 30 subsystems whereas the
Scicos model is composed of 20 blocks. The reduced
number of blocks helps the user to construct and debug
the model easier and faster.

6 Acknowledgements

The authors gratefully acknowledge the helps and
comments of Isabelle Rey-Fabret5 to understand the
model of drilling station and Gilles Corde1 for provid-
ing the engine model.

5Research professor at IFP and École des Pétroles et Moteurs

M. Najafi, Z. Benjelloun-Dabaghi

The Modelica Association 474 Modelica 2008, March 3rd − 4th, 2008

0 10 20 30 40 50 60 70 80
0

100
200
300
400
500
600
700
800
900

1000
Crankshaft speed

t

R
P

M

0 10 20 30 40 50 60 70 80
30000

40000

50000

60000

70000

80000

90000
Manifold pressure

t

A
tm

0 10 20 30 40 50 60 70 80
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Applied load

t

lo
ad

Figure 11: simulation result for start-up and idle speed
control of the engine

References

[1] Campbell S. L., Chancelier J.P., Nikoukhah
R., Modeling and simulation in Scilab/Scicos,
Springer Verlag publishing, 2005.

[2] Chancelier J. P., Delebecque C. , Gomez C.,
Goursat M., Nikoukhah R., Steer S., An intro-
duction to Scilab, Springer Verlag, Le Chesnay,
France, 2002.

[3] Najafi M.,The Numerical Solver for the Simula-
tion of the Hybrid Dynamical Systems, Doctor of
Science Thesis, Paris XII University, 2005

[4] Fritzson P., Principles of Object-Oriented Mod-
eling and Simulation with Modelica 2.1, Wiley-
IEEE Press, 2004.

[5] Pavone D., and Desplans J.P., Analyse et Mod-
élisation du comportement dynamique d’un rig
de forage, IFP report No 42208, 1996.

[6] Pavone D., and Desplans J.P., Analyse, Modéli-
sation et élimination du stick-slip observé sur les
expériences de Norvège, IFP report No 41317,
1994.

[7] Rey-Fabret I., and Mabile C., and Oudin N., De-
tecting whirling behavior of the drill string from
surface measurments, Proc. SPE 72nd, annual
technical conference and exhibitions of the So-
ciety of Petroleum Engineer, San Antonio, USA,
pp 223-232, 1997.

[8] Dufeyte M.P., and Henneuse H., Detection and
monitoring of the stick-slip motion: field exper-
iments, Proc. SPE/IADC Drilling conference,
Amsterdam, Netherlands, 1991.

[9] Dawson R., and Lin Y. Q., and Spanos P.D., Drill
string oscillation, Proc. Spring. Conf. of Socienty
for experimental Mech, Houston, June, 1987.

[10] Najafi M., Modeling complex systems with
Modelica in Scicos: Application to mean value
spark engine, ESM’2007, Westin Dragonara Ho-
tel, St. Julian’s, Malta, 2007.

[11] Nakayama Y. and Boucher F., Introduction to
Fluid Mechanics, Arnold, London, Great Britain,
1999.

[12] Silverlind D., Mean Value Engine Modeling
with Modelica. M, Department of Electrical En-
gineering, Linkoping University, Master’s thesis,
2001.

[13] Heywood J.B., Internal Combustion Engine Fun-
damentals. McGraw-Hill series in mechanical
engineering, international edition, 1988.

[14] Aquino C., Transient A/F control characteristics
of the 5 liter central fuel injection engine. In So-
ciety of Automotive Engineers technical paper,
1981.

[15] Degobert P., Automobiles and Pollution. In So-
ciety of Automotive Engineers, Inc. Translation
of Automobile et pollution, 1995.

Using Modelica for Modeling and Simulation of Spark Ignited Engine and Drilling Station in IFP

The Modelica Association 475 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 476 Modelica 2008, March 3rd − 4th, 2008

Controller Development for an Automotive Ac-system using
R744 as Refrigerant

Sanaz Karim Hubertus Tummescheit
Modelon AB

Ideon Science Park, SE-22370 Lund, Sweden
Hubertus.Tummescheit@modelon.se, Sanaz.Karim@gmail.com

Abstract

Due to recent regulatory changes in Europe, CO2 or
R744 is considered a serious alternative to be the suc-
cessor of R134a for the AC-system of cars for the
European market. Research into R744 as a working
fluid for automotive AC started in the early nineties
and continues even today. There are still open is-
sues in both design and control of R744 systems, e.g.
the choice of an expansion device that satisfies both
cost and performance constraints, control in the sub-
critical region and controling transcritical transients.
In a Masters thesis project organized in cooperation
with Daimler AG in Sindelfingen, these issues were
investigated using a well validated model of an R744
prototype system modeled using the AirConditioning
Library by Modelon AB and Dymola from Dynasim
AB. The preferred choice for the expansion device
from a cost point of view is a two-stage orifice with
a pressure-activated bypass for high load conditions.
The solution with the two-stage valve is compared to a
reference system that uses an electronically controlled
valve that is controlled to the COP-optimal high side
pressure. Unfortunately, the two-stage valve can ex-
hibit both limit cycling behaviour and multiple steady
states depending on the plant operation history, both
undesirable properties. For the investigated system the
drawbacks could be eliminated by proper control de-
sign. Another problem that was investigated was the
load distribution between a front- and a back seat evap-
orator for a two-evaporator version of the same sys-
tem. Again for cost reasons, the refrigerant side of
the second evaporator is not controlled, instead flow is
split between the two evaporators using a fixed expan-
sion device for the rear evaporator.

Keywords: air conditioning; compression cycle; simu-
lation; CO2; R744; control design, COP optimization

1 Introduction

Under the Kyoto protocol agreement, by the year
2012, industrialized countries have to reduce their col-
lective emissions of greenhouse gas 5% below their
1990 levels. Since the current refrigerant used in ve-
hicles, R134a, has a GWP (Global Warming Potential)
of 1410, R744 (CO2) technology has been proposed as
a natural alternative to current R134a-based systems.
The main benefits of R744 as a refrigerant are:

• Energy-efficient

• Non-toxic

• Non-flammable

• No ozone depletion potential (ODP=0)

• Low global warming potential (GWP=1)

Apart from the environmental benefits listed above, us-
ing R744 as a refrigerant for air-conditioning (A/C)
systems can decrease the fuel consumption under
some climate conditions.
Daimler AG and some of its suppliers have developed
and validated specific component and system models
for R744-cycles based on the AirConditioning Library
by Modelon. These models were used to investigate
control strategies for both the single evaporator and the
dual evaporator system prototype for an S-class Mer-
cedes.

2 A/C Systems Optimization and
Control

The role of the HVAC-unit in the A/C system is to pro-
vide maximum cooling power in order to cool down
the air and dehumidify it before re-heating and ven-
tilation. To increase cooling power at very high am-
bient temperature, traditionally a lower COP (more

Controller Development for an Automotive Ac-system using R744 as Refrigerant

The Modelica Association 477 Modelica 2008, March 3rd − 4th, 2008

fuel consumption) is accepted. The current practice
is to control the air temperature after the evaporator to
a constant, low temperature (slightly above 0 Celsius
to avoid frost) and control the actual cabin tempera-
ture by mixing in warm outside air in the HVAC box
to obtain the desired temperature in the cabin. How-
ever, most of the operating times the optimization of
the COP is the more reasonable control target from the
point of view that fuel consumption should be mini-
mized. These two control targets can be fulfilled by
inserting two decoupled SISO control loops, one of
them controling the high pressure and the other one
controling the evaporator outlet temperature by con-
sidering the strong crosscoupling between these two
variables.

2.1 Optimum High-Pressure Control

To achieve maximum COP in R744 systems, a simple
SISO control strategy with two control loops has been
proposed by [1]. They consider the high- pressure as
the main variable that affects the COP and cooling
power. Since the heat rejection process of the R744
refrigeration cycle takes place in the supercritical re-
gion, where the pressure is independent of the temper-
ature, the system efficiency is a nonlinear function of
the working pressure and the ambient temperature.
For each ambient (gas cooler air inlet) temperature,
there is an optimum high-pressure, which results in the
maximum COP. With the increase of the ambient tem-
perature, the optimum pressure increases.
The other boundary conditions (evaporator tempera-
ture, air humidity and flow rate) have negligible effect
on the optimum high-pressure.

Figure 1: Comparison of COP and cooling power with
the change of high-pressure

A variable swash plate controller is used as low-
pressure (evaporator air outlet temperature) controller
and since any change in a angle of the swash plate
will affect the pressure ratio as well as the compressor
power; it is expected that it changes the optimum high-
pressure as well. Therefore a high-pressure regulator

which controls the refrigerant flow, based on the am-
bient temperature and compressor speed is suggested
by [1]. For the purpose of simplification the effect of
speed is neglected and the controller is reduced to a
controller which works just based on the ambient or
gas cooler temperature and is designed at a low speed,
since at higher speeds of the compressor the role of the
optimum high-pressure is less significant.
An electronic expansion valve like a PWM-valve can
be used as an actuator to change the flow rate to
achieve desired the high-pressure, but to get rid of the
costs of the high-pressure controller and gas cooler
temperature measurement device, a two-stage orifice
expansion valve has been developed whose internal
control mechanism is described in section 3.1.

2.2 Evaporator Temperature Control

Under low load conditions, it is necessary to control
the compressor power to reduce the cooling power to
the desired range for the A/C system and not let it
reach its maximum possible capacity. These condi-
tions are low cooling load and/or high engine speed.
Since the compressor of the automotive A/C unit
draws its driving force from the engine, its power is
a function of the engine speed, which is a highly fluc-
tuating variable. Control of the compressor capacity
is necessary to compensate engine speed disturbances,
to satisfy the comfort requirements and to avoid tem-
perature variations. Control is particularly important
at higher speeds, which cause an undesirable power of
the compressor and too low temperature at the evapo-
rator.
Among the various methods proposed to control the
compressor capacity, using a variable displacement
compressor is the most attractive one. The most pop-
ular variable displacement compressor for automotive
use today is the swash-plate compessor1. Changing
the inclination of the swash plate changes the displace-
ment of each of the many pistons of the compressor.
This causes a change of the pressure ratio, both high-
pressure as well as low-pressure are affected, but the
effect of the expansion valve on the high pressure is
dominant. The control of the swash plate angle and
thus the relative volume is used as a low pressure con-
troller in spite of its influence on the high pressure.
In the sub-critical region, where the heat rejection
takes place isothermally, evaporator refrigerant and air
outlet temperature are functions of the low-pressure,

1For hybrid cars with sufficient electrical power, other options
would be advantageous, because they open up the new possibility
of using a speed control of the compressor.

S. Karim, H. Tummescheit

The Modelica Association 478 Modelica 2008, March 3rd − 4th, 2008

thus the swash plate control makes it possible to con-
trol the evaporator temperature and via the temperature
also the power.
Concerning the previous section, at a constant speed,
it is acceptable to neglect the cross coupling between
the first SISO loop which tries to maximize COP by
high-pressure control and the second one which aims
to control the low-pressure (evaporator air outlet tem-
perature), but it is not satisfactory to decouple these
loops in the case of speed changes.
Assuming constant speed, control of the evaporator air
outlet temperature in the case of low cooling load can
improve the COP significantly due to a smaller pres-
sure ratio and consequently smaller power uptake of
the compressor.

3 AirConditioning Library

The AirConditioning Library and the simulation tool
Dymola, both based on the standardized, freely avail-
able modelling language Modelica, have been selected
by the German automotive OEM as the preferred tool
for model development and exchange for the A/C sys-
tem in passenger cars. The library contains a complete
range of component models and templates of typically
used and proposed A/C system architectures and all
currently used as well as new and proposed refriger-
ants for automotive applications. The modeling de-
tail is appropriate for component selection, system ar-
chitecture design, system integration for overall vehi-
cle thermal management and climate control design.
Prototype systems for future technologies often con-
tain components that differ from those needed for con-
ventional designs, but due to the open code and the
given modeling infrastructure, it is straightforward to
add unusual components to the Library. In this case a
two-stage orifice model with a pressure operated by-
pass had to be added.

3.1 Two-Stage Orifice Model

This valve has an internal mechanism to drastically
change its Kv value based on the pressure difference
between the low- and high-pressure side [6]. It con-
sists of a standard orifice and a bypass which is closed
for small pressure differences. As shown in Figure 2,
the refrigerant flows only through the orifice at pres-
sure differences below a pressure difference ∆p, in this
case set to 73 bar. The bypass starts to open at a ris-
ing pressure difference of ∆p with a very steep gra-
dient, and for higher pressures, the Kv-value rises al-

most linearly with the pressure difference. This results
in a very non-linear pressure – mass flow character-
istic which is prone to limit-cycling behaviour. The
cycle is caused by interaction between the dynamics
if the mass storage at the high- and low pressure lev-
els in combination with the differences between the
mass flow characteristics of the compressor (almost no
change for pressure difference above and below ∆p)
and the valve (almost a step function at ∆p). When
the rising pressure opens the valve for a pressure dif-
ference higher than ∆p, the opening bypass will in-
crease the mass flow from the high pressure side so
rapidly that the pressure difference falls below the by-
pass opening limit, because the compressor mass flow
does not increase in the same degree and the cycle
starts again.

Figure 2: Two stage orifice valve

The highly nonlinear behaviour of the valve’s Kv-
value can under some situations give rise to limit cy-
cling around the steep part of the characteristic where
the valve opens, and it may even lead to two steady
states with different COP’s, one at a pressure dif-
ference above the opening pressure, the other one at
a pressure difference below the opening pressure, at
identical boundary conditions.

4 Single Evaporator, Two-stage Ori-
fice Valve System Control Design

While no direct control of the high-pressure is possible
anymore when using the two-stage orifice valve, it is
still desired to keep the COP as close as possible to its
optimal value in order to reduce fuel consumption. As
previously mentioned, the first control target remains
to regulate the evaporator temperature by means of the
compressor relative volume control, the COP control
is of secondary importance. To achieve these goals, a
simplified control structure proposed by [4] was used
as a starting point for the control design. That structure
was developed for the same type of two-stage orifice
valve and used a complex feed-forward map with three

Controller Development for an Automotive Ac-system using R744 as Refrigerant

The Modelica Association 479 Modelica 2008, March 3rd − 4th, 2008

CompressorCompressor Gas CoolerGas Cooler

EvaporatorEvaporator ControllableControllable
valvevalve

Internal Heat Exchanger

+
-

Low pressure
 Sensor

Gas cooler
temperature

 sensor

Evaporator
temperature

 sensor

+

Te
m

pe
ra

tu
re

 s
et

 p
oi

nt -

High pressure
 sensor

-
+ High pressure

 controller

+
-

Low pressure
set point
corrector

High pressure
set point
corrector

Evaporator temperature control

COP control

Low
pressure

 controller

Evaporator
temperature
 controller

Figure 3: Control structure for R744 AC-cycle with electronically controllable expansion device, assuming
COP-optimal control via the valve to control the high pressure side and temperature/power control via the
compressor to control the low pressure side.

inputs (engine speed, air mass flow and inlet air tem-
perature) to mimic the optimal high pressure control
with a fully controllable valve. There are a number of
reasons why the control structure suggested in [4] uses
a high-pressure controller in place of the low-pressure
one for controlling the evaporator temperature. The
refrigerant high-pressure sensor required for control-
ling the high-pressure is already present for monitor-
ing and protection functions in todays R134a circuits,
so no additional sensors are needed and this suggestion
gets rid of the cost for a low-pressure sensor. There
are a number of reasons why the control structure pro-
posed by [4] was dropped in favour of a simpler one.
On the low pressure side the existing evaporator out-
let temperature sensor can be used due to the sim-
ple temperature-pressure relationship of the saturation
curve:

• The feed forward is not robust to changes in
the environment conditions, in particular not to
changes in humidity, which today is not measured
due to too costly sensors. The feed forward only
works well in a limited range of operating condi-
tions and actually decreases control performance
in other situations. A feed forward based design
that includes humidity measurements would most
likely avoid the robsutness drawback.

• Using the components chosen in the given pro-
totype R744 system with the two-stage orifice

valve, undesirable limit cycling behaviour occurs
at some operating points. It is not possible to re-
move the limit-cycling behaviour with the given
control structure.

• For engine speed disturbances, the feed forward
scheme for controling evaporator outlet tempera-
ture from with a feedback on the high side pres-
sure did not work reliably.

• The occurence of multiple steady states, see sec-
tion 4.3.

The current investigation was not done with a fully re-
alistic sensor model for the evaporator temperature.
If a cost-effective temperature sensor would be too
slow to control engine speed variations, a low pressure
controller would still be preferrable to the high pres-
sure one with feedforward due to the list of drawbacks
above.

4.1 Performance of the Valves

To compare the operation of the controllable valve in
an optimized cycle and a two-stage valve without con-
trol of the high pressure, all boundary conditions and
the compressor speed are kept constant and simulation
were performed for three different load cases and both
valves.

S. Karim, H. Tummescheit

The Modelica Association 480 Modelica 2008, March 3rd − 4th, 2008

+
+

-

Ai
r m

as
s

f lo
w

E n
gi

ne
 s

pe
e d

 in
l e

t a
ir

te
m

pe
ra

tu
r e

CompressorCompressor Gas CoolerGas Cooler

EvaporatorEvaporator Two-stageTwo-stage
orificeorifice
valvevalve

Internal Heat Exchanger

Temperature
controller

Evaporator
temperature

 sensor

Feed forward high pressure
set point
corrector

+

-

High-pressure
controller

High pressure
sensor

High-pressure
characteristics

curve

Te
m

pe
ra

tu
re

 s
et

 p
oi

nt

TrackingTracking signal signal

Figure 4: Proposed Control Structure by [4], simplified compared to the control structure in 3. In this case it is
also assumed that the temperature set-point for the evaporator is adapted at low load to improve the COP.

Figure 5: Alternative control structure for control of the low pressure side. The evaporator temperature set point
is used to improve COP, which means that a higher complexity is needed in the supervisory part of the HVAC
control that needs to determine the proper temperature set point.

1. Low cooling load and no control on evaporator
outlet air temperature (Fixed relative volume of
the compressor)

2. High cooling load and no control on evaporator
outlet air temperature (Fixed relative volume of
the compressor)

3. Evaporator temperature controlled (low cooling
load)

4.1.1 Case 1

The system with two-stage valve has lower COP and
higher cooling power than the optimized cycle, even

for the lower ambient temperature. At higher temper-
ature losses decrease, see Figure 6.

Figure 6: Comparison of the two valves, case 1

The high-pressure with two-stage orifice valve is kept
fixed around 110 bars, while the variable Kv valve al-

Controller Development for an Automotive Ac-system using R744 as Refrigerant

The Modelica Association 481 Modelica 2008, March 3rd − 4th, 2008

lows the pressure to change in a wider range. The rea-
sons is behind the internal mechanism of the two-stage
orifice valve which does not result in a Kv-value close
to the controlled Kv for most of this range (Figure 7).

Figure 7: Comparison of the two valves, case 1

4.1.2 Case 2

In comparison with the previous case, at higher loads,
the cycle with two-stage orifice valve has a COP near
to the optimum value but at higher ambient tempera-
tures it does not achieve equally high cooling power as
the optimized cycle.

Figure 8: Comparison of the two valves, case 2

For this cooling load, the Kv shows a smaller deviation
from the optimized one.

Figure 9: Comparison of the two valves, case 2

4.1.3 Case 3

When the low-pressure is controlled via the relative
displacement of the compressor, the COP is improved
for both cycles.

Figure 10: Comparison of the two valves, case 3

Since the pressure difference is low, at the lower am-
bient temperatures, the refrigerant passes through the
fixed orifice of the two-stage orifice valve and pro-
vides the high-pressure that is needed for better COP.
Both the valve-Kv values and correspondingly the re-
sulting high pressures are closer to one another for this
load case and control scheme than for the previous two
ones.

Figure 11: Comparison of the two valves, case 3

As has been demonstrated in this section, for lower
ambient temperatures, the COP of the cycle with two-
stage orifice is up to 40% less than ideal cycle, there-
fore it is suggested that in this range of ambient tem-
peratures, the evaporator temperature is controlled to
the highest possible value to improve the COP. Assum-
ing the evaporator temperature is controlled with the
two-stage valve cycle, the differences between the so-
lution are not as dramatic as a first look suggests. The
worst case scenario is, however, handled better with
the optimized cycle that provides the highest cooling
power at the highest load case.

4.2 Limit-Cycling Behaviour

In some operating points, which result in a higher
pressure-difference than 73 bars, as a consequence
of the rising pressure, the bypass starts to open and
decreases the high-pressure, the decrease in high-
pressure causes the closing of the bypass and this limit
cycle continues until one of the inputs alters the pres-
sure difference and mass flow rate. To observe the role
of flow rate and pressure change in the limit cycle phe-

S. Karim, H. Tummescheit

The Modelica Association 482 Modelica 2008, March 3rd − 4th, 2008

nomenon directly, all the boundary conditions are kept
constant and the relative volume of the compressor is
changed manually to provide the appropriate pressure
difference and flow rate. Figure 12 illustrates above
explanations.

Figure 12: Limit cycle

Other output parameters, which are correlated with the
high-pressure, will also show this limit cycle. The ef-
fect on the evaporator outlet air temperature is negli-
gible (less than 1oC in this case) and it is seen in Fig-
ure 13 that the low-pressure controller can remove the
fluctuations. Therefore passengers do not sense the os-
cillations of the temperature.

Figure 13: Temperature and limit cycle

But the effect on the cooling capacity and COP is
quite considerable. In the temperature interval where
this phenomenon happens, the highest deviation of the
COP is about 50% less than the expected average value
(Figure 14).

Figure 14: COP and Limit cycle

However, this limit cycle does only occur at few oper-
ating points and its characteristic differs in different
circumstances. The following observations demon-

strate this statement: Assuming a low-pressure con-
trolled cycle, the ambient temperature varies in the
range from 30oC to 45oC, and other operating con-
ditions are kept constant. Figure 15 shows the phase
portrait plot of two different cases when the limit cy-
cle takes place. One of them happens when the desired
low-pressure is 40 bar and the other one at 45 bar.

Figure 15: Portrait plot of the valve Kv against the
pressure-difference

Under normal driving conditions, boundary conditions
will rarely ever be constant for a sufficiently long time
such that these limit cycling conditions will be notice-
able, but they are nonetheless an undesired side effect
of the valve construction.

4.3 Multiple Steady-States

In the case of high-pressure control and in the vicin-
ity of 73 bar pressure-difference, when the two-stage
orifice valve changes its flow configuration, a bistabil-
ity phenomenon takes place. In this case, any distur-
bances which leads to small variance in the pressure-
difference, causes the valve to jump to the alternate
path while the high-pressure is kept constant by the
controller. Therefore the system is able to exist in ei-
ther of two steady states, while the high-pressure is
fixed. Figure 16 shows that a small disturbances of the
pressure, pushes the system to another steady state and
causes a significant change in the cooling power. Al-
though this will be compensated by the outer loop later
on, it is another situation where the high-pressure loop
in combination with the two-stage valve acts against
the main purpose of control.

5 Dual Evaporators

Today luxury cars allow passengers to control a dif-
ferent climate in up to four climate zones. This re-
quires the presence of two or even three evaporators
to generate the cooling capacity for front and rear pas-
sengers. The Electronic Control Unit (ECU) controls
the position of the different temperature blend doors

Controller Development for an Automotive Ac-system using R744 as Refrigerant

The Modelica Association 483 Modelica 2008, March 3rd − 4th, 2008

Figure 16: Bi-stable behaviour for high pressure con-
trol

to provide the passengers with their desired tempera-
ture in different zones. In the cooler unit, the high-
pressure refrigerant splits and flows from two differ-
ent expansion devices to the front and rear evaporator.
The cooling capacity is divided accordingly between
both evaporators. But the amount of the division de-
pends on the operating conditions and structure of the
valves. If a variable displacement compressor is used
to control the front evaporator outlet air temperature,
and a two-stage orifice valve to improve the COP, then
a fixed orifice can be used to pass the refrigerant to the
rear evaporator. In this case, there is no direct control
on the outlet air temperature of the rear evaporator. To
have full control authority on both evaporator tempera-
tures, a controllable second expansion device would be
needed. Alternatively, a model-based controller could
be designed to control the compressor relative volume
based on the measured value of the outlet air temper-
ature of both evaporators. The easier way to control
the cooling capacity of the rear evaporator is to use a
variable speed fan and change the air flow around the
evaporator, while the temperature of the front evap-
orator is controlled with the compressor relative vol-
ume variation using the same SISO approach as for
the one-evaporator system. This will change the bal-
ance point of the rear evaporator low-pressure and this
in turn changes the front evaporator low-pressure. The
behaviour of the latter control system is investigated
in [2], where in the modeling of the dual evaporator
system, it is supposed that the front evaporator uses
fresh air for ventilation and the rear compartment has
just one zone. The outlet air of the front evaporator
enters the car cabin, it is mixed with recirculation air
of the rear compartment and then enters the rear evap-
orator for the second phase of cooling.

5.1 Cooling Power Distribution

To compare the cooling power of the one-evaporator
system with the two-evaporator one, both systems are
simulated under the same cooling load and at the same

operating conditions. Note that all other components
are the same, which means in particular that the heat
rejection capacity via the gascooler is identical for
both systems. Figure 17 illustrates that the summation
of the capacity of the front and rear evaporator is equal
to the capacity of one-evaporator system in this condi-
tion. It also shows that the outlet air temperature of the
front evaporator is same for both cases. With a per-
fect model which includes the corresponding effects
of the rear compartment on the front one, this distribu-
tion scheme may change a little and more compressor
work will be needed to keep the front evaporator tem-
perature constant.

Figure 17: Cooling power distribution between two
evaporators in comparison with one-evaporator system

Figure 18 shows the cooling power distribution against
the ambient temperature. At higher temperatures, the
pattern of distribution will change but acceptable cool-
ing power is still provided for both evaporators.

Figure 18: Cooling power distribution between two
evaporators in comparison with one-evaporator system

5.2 Rear AirFlow Effect

In order to order to manipulate the cooling power of
the rear evaporator, it is possible to change the air mass
flow through it. The simulation was run in a limited
range of airflow variations under two different cooling
loads. Figure 19 shows the change of the rear evapora-
tor cooling power when the air mass flow is changed at
5000 second. Figure 20 shows the cooling power vari-
ation against the air mass flow variation under a high
and a low cooling load.

S. Karim, H. Tummescheit

The Modelica Association 484 Modelica 2008, March 3rd − 4th, 2008

Figure 19: Rear evaporator air flow change.

It is seen that the rear cooling power is changed while
the front one is almost kept constant. At lower cooling
loads, the rear evaporator capacity is more sensitive to
the air mass flow change.

Figure 20: Cooling power over air mass flow.

Therefore, at these conditions, using a two-stage valve
besides the front evaporator temperature control is
possible, while the capacity of the rear evaporator is
controlled by means of adjusting the air mass flow.

6 Conclusions

Various aspects of system and control design for a
prototype of a R744 automotive A/C system for the
Mercedes S-class were investigated by simulation us-
ing the AirConditioning Library and Dymola. Differ-
ent system designs with a controllable expansion valve
and a two-stage bypass orifice were compared and
show that the controllable valve gives up to 15 % better
COP than the two-stage valve. Several control designs
were compared and the result was that the simplest
control structure proved to be most robust and had
better performance than the more complex versions.
Furthermore it is demonstrated that the system with
the highly non-linear two-stage valve exhibits limit-
cycling behaviour and bistability around the part of the
valve characteristic that looks almost like a step func-
tion in the valve coefficient Kv. For the two-evaporator
system which uses a two-stage orifice valve to regu-
late the pressure of the front evaporator, simulation re-

sults suggest that the same approach of control for the
one-evaporator system is also applicable for the dual
evaporator system. With the given limited control au-
thority, pressure and temperature of the rear evaporator
will always be defined by the controlled conditions for
the front evaporator and the boundary conditions. In-
stead of temperature control for the rear compartment,
the capacity of the rear evaporator can be controlled
using a variable speed fan, but only within certain lim-
its.

References

[1] Yang W., Fartaj A., Ting S-K., Co2 Automa-
tive A/C System Optimum High Pressure Con-
trol,SAE International 2005-01-2022, 2005.

[2] Karim, S. Open Issues in Control of Automotive
R744 Air-Conditioning Systems: Masters Thesis
Nr E3492E, Department of Electrical Engineer-
ing, Dalarna University, 2007.

[3] Tummescheit H. Design and Implementation of
Object-Oriented Model Libraries using Modelica.
Lund, Sweden: PhD thesis, Department of Auto-
matic control, Lund Institute of Technology, 2002.

[4] Lochmahr K., Baruschke W. and Britsch-
Laudwein A., Control System for R744 Refriger-
ant Circuits, ATZ worldwide, 2005.

[5] Åström K. and Hägglund T., Advanced PID Con-
trol, ISA-The Instrumentation, Systems, and Au-
tomation Society, 2006

[6] Lemke N., Tegethoff W., Köhler J., and
Horstmann, P., Expansion Devices for R744 MAC
Units, Vehicle Thermal Managment Systems 7
Conference and Exhibition, SAE International,
2005.

Controller Development for an Automotive Ac-system using R744 as Refrigerant

The Modelica Association 485 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 486 Modelica 2008, March 3rd − 4th, 2008

Implementation of a Modelica Online Optimization
for an Operating Strategy of a Hybrid Powertrain

Henrik Wigermo, BMW Group, Energymanagement 88077 München
Johannes von Grundherr, BMW Group,Energymanagement 88077 München

Thomas Christ BMW Hybrid Cooperation, Vehicle Architecture,
1960 Technology Dr., Troy, Michigan USA

January 21, 2008

Abstract

The paper presents a method of implementing an
optimization based control algorithm within the
Modelica framework. To find the optimal point
within a given objective function the golden section
search is employed. Its implementation in Modelica
is presented. The optimizer based control strategy is
applied to control a simplified electrical circuit and to
a hybrid electric vehicle.

Keywords: Modelica; Optimization; Hybrid Vehicle;
Simulation; Fuel Consumption

1 Introduction

Online optimization is increasingly being imple-
mented for better results in controlling complex sys-
tems. It is especially helpful if the control objective
depends on several input parameters which influence
the outcome in a non intuitive way. One example is
the operational strategy of a powersplit hybrid electric
vehicle.
Compared to conventional transmissions, hybrid trans-
missions allow for several additional degrees of free-
dom: The combustion engine speed can be controlled
independently from vehicle speed and battery power
can be used for propulsion or the storage of braking
energy. Although the main control objective is the fuel
economy of the vehicle, other goals like dynamic re-
sponse, driveability, acoustic impression and tailpipe
emissions have to be achieved. In many cases the defi-
nition of the control objective is given by a calibration
table or multidimensional mappings. Since a mapping
normally cannot be expressed analytically, the solution
to the optimization problem has to be computed online
for each control step.

In the development process of hybrid vehicles, simu-
lation is a key issue. It is used to study aspects like
fuel consumption and performance and to understand
complex system interactions. Since the hybrid vehi-
cle powertrain is composed of mechanical, electrical,
chemical and thermodynamical components, Model-
ica is a very useful tool for this. The control software
of the hybrid vehicle is normally implemented using
tools like Simulink or ASCET. The actual powertrain
control is only a small part of the entire controls soft-
ware. A great deal of code which is interconnected to
the actual powertrain control concerns system diagno-
sis or remedial actions, and does not need to be simu-
lated. To study the powertrain behavior only the rele-
vant parts of the control code are transferred to Mod-
elica.
In this paper, we shall present a simple optimization
algorithm and give an example on how it can be im-
plemented in Modelica. We will also take a look on a
possible employment of such an algorithm; the power-
train control of a hybrid electric vehicle. In addition,
the following points have been investigated: How will
an algorithm that requires fixed time-steps work to-
gether with an complex vehicle model? How does the
optimization influence the simulation time? How can
standard Modelica elements like tables be integrated
in the optimization algorithm, since it doesn’t allow
graphical programming?

2 Problem statement

A Plant P is controlled by its input u and disturbed by
d. y is the observed measurement. In an early control
development stage the plant can be represented by a
simulation model. The control task is to follow a given
reference yre f so that an objective function J(y,yre f) is
minimized. For linear systems and quadratic objective

Implementation of a Modelica Online Optimization for an Operating Strategy of a Hybrid Powertrain

The Modelica Association 487 Modelica 2008, March 3rd − 4th, 2008

u)
ref

y;y(J

Optimization code

Objective function
)

ref
y;y(J

CController

PPlant
u

d

y

refy

Figure 1: Control optimization problem

functions the choice of controller is well understood.
A linear state feedback control can be directly derived
from the linear plant given by the system matrices A,
B, C, D and by the coefficients of the quadratic objec-
tive function.
For nonlinear objective functions the optimization can
be carried out by an optimization algorithm. In each
optimization step the algorithm calls the objective
function, iterating the control signal u to generate the
optimal solution u∗.
In our case the plant is a Modelica model. The control
using the optimization algorithm is also integrated in
Modelica. A tutorial example of such an optimization
is shown in section 3.2.

3 Online optimization

An optimization algorithm used for the given problem
has to be robust, i.e. it needs to come up with a solution
after a finite number of iterations. Such an algorithm
is golden section search. In this paper its integration
into the Modelica framework is shown.

3.1 Optimization algorithm - Golden section
search

The golden section search derives its name from the
fact that it narrows its search interval with the golden
ratio 1

2(1+
√

(5)) in each step. The technique is effec-
tive only for unimodal functions, where a maximum
or minimum is known to exist within a given inter-
val. As starting points the lower and upper limit of the
search interval are chosen. Using the golden section,
two new points within the interval are evaluated and
compared. The point with the highest functional value
is chosen as a new boundary point, and points outside
of this are no longer considered. The algorithm contin-
ues to search until the maximum number of iterations
is reached or the termination condition suggested in
[4]: | x4− x1 |> τ(| x2 | + | x3 |) is satisfied. τ is a

Boundary point for
next iteration step

x1

x2

x3

x4

x1

x2

x3

x4

n=1

n=2

Boundary point for
next iteration step

x1

x2

x3

x4

x1

x2

x3

x4

n=1

n=2

Figure 2: Principle of Golden Section Search Algo-
rithm

tolerance parameter. Modelica code 1 describes the
golden section search algorithm:

function goldenSectionSearch
extends Modelica.Icons.Function;
parameter Real tau=0.001;
...
constant Real C=0.5*(3 - sqrt(5));
constant Real R=1-C;
...

algorithm
x1:= xLowerLimit;
x4:= xUpperLimit;
x2:= R*x1 + C*x4;
x3:= C*x1 + R*x4;
fx2:=optFunction(x2,alpha,IbatDes,
Ri,Iload,gammaI);
fx3 :=optFunction(x3,alpha,IbatDes,
Ri,Iload,gammaI);

while abs(x4-x1)>
tau*(abs(x2)+abs(x3)) loop

if (fx3<fx2) then
x1:=x2;
x2:=x3;
x3:=R*x3 + C*x4;
fx2:=fx3;
fx3:=optFunction(x3,alpha,

IbatDes,Ri,Iload,gammaI);

H. Wigermo, J. von Grundherr, T. Christ

The Modelica Association 488 Modelica 2008, March 3rd − 4th, 2008

else
x4:=x3;
x3:=x2;
x2:=R*x2 + C*x1;
fx3:=fx2;
fx2:=optFunction(x2,alpha,

IbatDes,Ri,Iload,gammaI);
end if;

end while; if
(fx2<fx3) then
xmin:=x2;
fxmin:=fx2;

else
xmin:=x3;
fxmin:=fx3;

end if;

end goldenSectionSearch;

Modelica Code 1: Golden Section Search Algorithm

3.2 Optimization example

The following example (see fig. 3) illustrates the con-
trol problem: A time varying electric load Iload(t) is
to be supplied with power from an energy storage de-
vice (e.g. a battery) in such a way that the power
losses are minimal and the State-of-Charge (SOC) is
kept at a fairly constant level (to optimize the lifetime
of the energy storage device). The system can be in-
fluenced from an external current source Iopt , which
can deliver power at all times but with losses that are
time-dependent. This means at times it can be effi-
cient to charge the battery and to use the stored energy
at a later time when the losses of the current source are
high. α is a control variable which we choose in order
to weigh the importance of the SOC-control.

Iopt

IloadIbat

Iopt

IloadIbat

Figure 3: Example Electric Circuit

From these control objectives we define the objective
function to be minimized as:

Cost = α | Ibat,des(SOC)− Iopt |︸ ︷︷ ︸
SOCControl

+

Ri(Iopt − Iload)2

︸ ︷︷ ︸
BatteryLoss

+

γI(t)Iopt︸ ︷︷ ︸
CurrentCost

(1)

Iopt is our control variable; the current of the external
current source. The battery losses are assumed to be
a quadratic function of the current through the battery
internal resistance. The SOC-optimal battery current
Ibat,des is a function of the battery SOC and is chosen
to the following curve:

45 50 55 60 65 70 75
−60

−40

−20

0

20

40

60

SOC [%]

Ib
at

D
es

 [A
]

Figure 4: Ibat,des as a function of battery state of charge

γI(t) is a time-varying function that decides the loss
power of the external current source. In this example,
we have chosen it to be sinodial (see figure 6).

3.2.1 Results

We let the optimization algorithm defined in chapter
3.1 find the optimal solution to the objective function
(1). The variable Iopt is computed through a function
call of goldenSectionSearch.
Figure 5 shows the calculated optimal current, as well
as the load current and the resulting battery current.
We can see that high (battery discharging) peaks in the
load current have been compensated for with the cur-
rent source in order to minimize the battery losses.
In figure 6, the optimized current has been compared
to a control strategy that only considers the battery
SOC (as described in figure 4). We can conclude that
the optimization chooses to charge the battery at times
when the current is inexpensive, but at the same time
manages to keep the SOC at levels similar to the SOC-
controlled strategy, not very far from the target value
of 60%.

Implementation of a Modelica Online Optimization for an Operating Strategy of a Hybrid Powertrain

The Modelica Association 489 Modelica 2008, March 3rd − 4th, 2008

500 550 600 650 700 750 800
0

50

100

150

200

t [s]

I [
A

]

I
opt

500 550 600 650 700 750 800
−300

−250

−200

−150

−100

−50

0

50

100

150

t [s]

I [
A

]

−I
load

I
bat

=−I
load

+I
opt

Figure 5: Optimization result: Controlled current Iopt ,
load current Iload and resulting battery current Ibat

500 550 600 650 700 750 800
0

100

200

C
os

t [
W

/A
]

Cost of current

500 550 600 650 700 750 800
0

100

200

I [
A

]

SOC−Controlled current

500 550 600 650 700 750 800
0

100

200

I [
A

]

Optimized current

500 550 600 650 700 750 800
45

50

55

60

t [s]

S
O

C
 [%

]

SOC without optimization
SOC with optimization

Figure 6: Optimization result: Cost of current, SOC-
Controlled current, Optimized current and SOC

As a measurement on how good the optimization has
worked, we compute the total system losses (battery
losses and losses of the external current source). By
integration of the loss power, as shown in figure 7, we
see that the energy lost in the optimized system is only
about half of the SOC-controlled strategy. The heat de-
veloped in the battery is proportional to the loss power,
and the operating temperature of the battery rises over
time. However, with the optimal control the battery
losses are kept down, and the temperature remains at a
lower level than the SOC-controlled strategy.

3.2.2 Implementation of tables in Modelica text

A difficulty in the implementation of the online op-
timization is the use of table look-ups for the objec-

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

t [s]

E
lo

ss
 [W

h]

System loss without optimization
System loss with optimization

0 100 200 300 400 500 600 700 800 900 1000
45

50

55

60

t [s]

S
O

C
 [%

]

SOC without optimization
SOC with optimization

0 100 200 300 400 500 600 700 800 900 1000
20

30

40

50

t [s]

T
 [°

C
]

Battery temperature without optimization
Battery temperature with optimization

Figure 7: Comparison optimized system with SOC-
controlled system: System losses, battery SOC and
temperature

tive function within Modelica text algorithm sections.
In order to do this, one must initialize the table using
dymTableInit. The table/mapping can then be called
from a function using the function dymTableIpo1 or
dymTableIpo2.

...
equation

when initial() then
Data.EngineFuelFlow=dymTableInit
(2.0, smoothness, "FuelFlowAllCyl",
engineFuelFlowTable, table, 0.0);

end when;
...

Modelica Code 2: Table Interpolation in Modelica
Text

3.2.3 Comments on simulation time

In a simple example like the one given above, the sim-
ulation time of a model containing an optimization al-
gorithm is good, only somewhat slower than an equal
model using a traditional control approach. However
when combined with a complex vehicle model, gen-
erating a lot of events due to system state changes, a
fixed-step optimization algorithm can slow the simu-
lation time down considerably. In these cases, it has
been shown that time-discrete sampling of the opti-
mization algorithm increases the computation speed.
A well considered sampled optimization algorithm de-
livers virtually the same result as the non-sampled,
but without recomputing the optimal solution for each
event triggered by the plant. Using this method, we

H. Wigermo, J. von Grundherr, T. Christ

The Modelica Association 490 Modelica 2008, March 3rd − 4th, 2008

have achieved simulation performance comparable to
our traditional control concepts.

4 Hybrid vehicle application

This section will present a simulation model of a hy-
brid electric vehicle using a control strategy based on
online optimization. In this case, the optimization only
governs the choice of engine torque, but it could also
be employed for the choice of gear, or in EVT-mode
(Electrically Variable Transmission) the speed of the
internal combustion engine. The advantage of such an
implementation would be that the vehicle would adapt
its gear strategy depending on the current conditions.
However such a strategy also has the disadvantage that
the gear choice is not always comprehensible to the
driver.
The following control objectives are considered in our
objective function [5]:

• Combustion engine losses

• Battery losses

• Electric machine losses

• Battery SOC control

Below simulation results from an FTP721 simulation
of a hybrid electric vehicle are shown. In figure 8 the
vehicle speed is plotted with our control signal, the
optimal combustion engine torque. TICE is available
for us to choose at all times except the phases where
the vehicle is powered electrically. It has been chosen
to minimize the listed control objectives.
Figure 9 shows the resulting power and SOC of the
battery. At a given engine speed the battery power
is proportional to the combustion engine torque, and
therefore also directly connected to our control sig-
nal. We can conclude that even albeit a high portion of
pure electrical driving in this cycle, the SOC remains
around the target SOC of 60%.

5 Discussion and conclusion

This paper shows that it is possible to implement op-
timization algorithms for the control of a plant, e.g.
a hybrid electric vehicle, in Modelica. Using online
optimization, a fixed-step optimization algorithm can
find a solution to a number of complex and intercon-
nected control objectives. Although the optimization

1The Federal Test Procedure legislation fuel cycle

0 200 400 600 800 1000 1200
0

20

40

60

80

100

v
[k

m
/h

]

0 200 400 600 800 1000 1200

0

100

200

300

400

T
IC

E
 [N

m
]

t [s]

Figure 8: Vehicle speed (above) and combustion en-
gine torque (below) as a function of time

0 200 400 600 800 1000 1200
−40

−20

0

20

40
P

B
at

 [k
W

]

0 200 400 600 800 1000 1200
55

60

65

70

S
O

C
 [%

]

t [s]

Figure 9: Battery power (above) and state of charge
(below) as a function of time

algorithm has to be called at each step of the simu-
lation, the simulation time was comparable to models
using traditional control strategies.

References

[1] Eborn J. On Model Libraries for Thermo-
hydraulic Applications. Lund, Sweden: PhD the-
sis, Department of Automatic control, Lund In-
stitute of Technology, 2001.

[2] Tummescheit H. Design and Implementation of
Object-Oriented Model Libraries using Model-
ica. Lund, Sweden: PhD thesis, Department of
Automatic control, Lund Institute of Technology,
2002.

Implementation of a Modelica Online Optimization for an Operating Strategy of a Hybrid Powertrain

The Modelica Association 491 Modelica 2008, March 3rd − 4th, 2008

[3] Tummescheit H, Eborn J. Chemical Reaction
Modeling with ThermoFluid/MF and Multi-
Flash. In: Proceedings of the 2th Modelica
Conference 2002, Oberpfaffenhofen, Germany,
Modelica Association, 18-19 March 2002.

[4] Press, W. H.; Teukolsky, S. A. & Vetterling, W.
T. et al. (1999), Numerical Recipes in C, The
Art of Scientific Computing (second ed.), Cam-
bridge University Press, Cambridge, ISBN 0-
521-43108-5.

[5] US 2007/0032926 A1 FORD GLOBAL TECH-
NOLOGIES: Optimal Engine Operating Power
Management Strategy for a Hybrid Electric Ve-
hicle Powertrain. 8.2.2007.

H. Wigermo, J. von Grundherr, T. Christ

The Modelica Association 492 Modelica 2008, March 3rd − 4th, 2008

1

Model Embedded Control: A Method to Rapidly Synthesize Control-
lers in a Modeling Environment

 E. D. Tate Michael Sasena† Jesse Gohl† Michael Tiller†

Hybrid Powertrain Engineering, General Motors Corp.
1870 Troy Tech Park, Troy, Michigan, 48009

†Emmeskay, Inc, 47119 Five Mile Road
Plymouth, Michigan, 48170

ed.d.tate@gm.com msasena@emmeskay.com jbgohl@emmeskay.com mtiller@emmeskay.com

Abstract

 One of the challenges in modeling complex
systems is the creation of quality controllers. In some
projects, the effort to develop even a reasonable pro-
totype controller dwarfs the effort required to de-
velop a physical model. For a limited class of prob-
lems, it is possible and tractable to directly synthe-
size a controller from a mathematical statement of
control objectives and a model of the plant. To do
this, a system model is decomposed into a controls
model and a plant model. The controls model is fur-
ther decomposed into an optimization problem and a
‘zero-time’ plant model. The zero-time plant model
in the controller is a copy or a reasonable representa-
tion of the real plant model. It is used to evaluate the
future impact of possible control actions. This type
of controller is referred to as a Model Embedded
Controller (MEC) and can be used to realize control-
lers designed using Dynamic Programming (DP).

 To illustrate this approach, an approximation
to the problem of starting an engine is considered. In
this problem, an electric machine with a flywheel is
connected to crank and slider with a spring attached
to the slider. The machine torque is constrained to a
value which is insufficient to statically overcome the
force of the spring. This constraint prevents the mo-
tor from achieving the desired speed from some ini-
tial conditions if it only supplies maximal torque in
the desired direction of rotation. By using DP, a con-
trol strategy that achieves the desired speed from any
initial condition is generated. This controller is real-
ized in the model using MEC.

 The controller for this example is created by
forming an optimization problem and calling an em-
bedded copy of the plant model. Furthermore, this
controller is calibrated by conducting a large scale
Design of Experiments (DOE). The experiments are
processed to generate the calibrations for the control-
ler such that it achieves its design objectives when
used for closed loop control of the plant model.

 It is well understood that Modelica includes
many language features that allow plant models to be
developed quickly. As discussed previously, the de-
velopment of quality control strategies generally re-
mains a bottleneck. In this paper we show how ex-
isting features along with appropriate tool support
and potential language changes can make a signifi-
cant impact on the model development process by
supporting an automated control synthesis process.

Keywords: Control, Dynamic Programming, Model
Embedded Control, Model Based Control, Optimal
Control

1 Introduction

 The use of modeling is well established in
the development of complex products. Modern tools
have significantly reduced the effort required to
model and tune physical systems. Acausal or topo-
logical modeling reduces the effort required to model
a system’s physics. The use of optimization allows
systematic tuning of parameters to improve a design.
The combination of parameter optimization and

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 493 Modelica 2008, March 3rd − 4th, 2008

2

rapid modeling allows a large set of potential designs
to be quickly evaluated. However for systems which
include controls, the development is, in general, a
man-power intensive process subject to large uncer-
tainty in development time and optimality. The op-
timization of both controls and design must be
solved in many problems [1-3]. One way to address
this problem is to use numerical techniques to con-
struct controllers. For certain classes of problems,
tractable numerical techniques can be used to de-
velop an approximately minimizing controller [4]. A
minimizing controller is a controller which achieves
the best possible performance from a system as
measured against an objective. There may exist more
than one controller able to achieve this minimum,
but no controller can perform better than a minimiz-
ing controller. For this work, the terms minimizing
controller and optimal controller are used inter-
changeably.

 To construct a minimizing controller, an ob-
ject cost, J , is defined. This is a function which
maps the state and input trajectory of the system to a
scalar:

uxCJ , . (1)
Consider the special case of a plant described by or-
dinary differential equations with inputs that are
piecewise constant. These piecewise constant inputs
are updated periodically at the ‘decision instances’
by a controller at intervals of t . The total operating
cost is calculated as a sum over an infinite time hori-
zon. Furthermore, the sum of costs is discounted by
the term which is greater than zero and less than
or equal to one. The total cost is calculated by an
additive function that operates on the instantaneous
state and the control inputs. This cost may take a
form similar to

1

0

0 ,
k

k

t
k

cont k
k t t

J x c x u d . (2)

The total cost in (2) is a function of the initial state
of the system. To simplify notation, let the state at
the decision instances be represented by

k kx x t . (3)

Let the discrete time samples occur at

kt k t . (4)
Furthermore, let the continuous-time instantaneous
cost, contc , in (2) be represented in discrete time no-

tation as an additive cost over an interval,
1

, ,
k

k

t

k k cont k

t t

c x u c x u d . (5)

Using the notation developed in (2) through (5), the
continuous-time system’s total cost is expressed in
discrete time notation as

0
0

,k
k k

k

J x c x u . (6)

To simplify the continuous-time dynamics, let

0

, , , 0
t

df x u f u d x . (7)

Hence,

1 ,k d k kx f x u . (8)

An optimal control choice for each time step can be
found using the dynamic programming equations,

* arg min , ,d
u U x

u x c x u V f x u . (9)

The function V x is known as the value function.

By using the dynamic programming (DP) equations
to find the value function, a minimizing controller is
obtained. The DP equations are

min , ,du U x
V x c x u V f x u , (10)

where

, 0U x u g x u (11)

defines the set of feasible actions, xU . For the
case where the total cost is considered over an infi-

nite horizon and *
k ku u x (see eq (9)), the value

function is the same as the total cost function,
xVxJ . Equation (10) can be solved through

value iteration, policy iteration, or linear program-
ming. See [5-23] for discussion of solution methods.
For discussion of using DP to find value functions
for automotive control application, see [24-29]. The
formulation of equation (11) is chosen to simplify
management of constraints throughout the model and
to conform to a standard form used in the optimiza-
tion community, the negative null form [30].

One problem with solving (10) is that when

the state space consists of continuous states, V x

is a function from one infinite set to another. Except
in special cases, this requires approximation to solve.
One common approach is to use linear bases to ap-
proximate the value function. Possible linear bases
include the bases for multi-linear interpolation, the
bases for barycentric interpolation, b-splines, and
polynomials. See the appendices in [25] for a discus-
sion of linear bases for dynamic programming. In the

case where V x is approximated by a linear basis,

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 494 Modelica 2008, March 3rd − 4th, 2008

3

TV x x w , (12)

where

1 2 Nx f x f x f x . (13)

An approximate solution to (10) is found by finding
the weights, w , which solve

min , ,T T
d

u U x
x w c x u f x u w . (14)

See [5-7] for a discussion of using linear bases to
form the value function.

 It is important to understand that this con-
troller is an optimal controller for the discrete time
case only, when the controller updates every t
seconds. In other uses, the controller will generally
be suboptimal. Additionally, any development algo-
rithm based on this methodology will suffer from the
curse of dimensionality [31]. In other words, the
time to find an optimal controller will increase geo-
metrically with the size of the plant state space. As a
point of reference, using a single commercially
available PC from 2005, a five state controller was
found in less than twenty four hours.

2 Controller Development

 To use equations (2) through (14) to develop
a controller, it is necessary to have a plant model
which includes the dynamics (f), cost function (c),

and constraints (g) all coupled to an integrator
which can be invoked as a function call by a Control
Design Algorithm (CDA). In addition, the set of
states for the plant model and the set of controller
actions must be specified to the CDA. For this work,
a custom wrapper was developed that allowed
batches of states and actions to be efficiently evalu-
ated. Each evaluation returned the state at the next
interval, the cost of operation for the interval, and the
constraint activity over the interval.

To understand the structure of the equations
involved in this work, consider a system consisting
of a plant and a controller. Without loss of general-
ity, assume the plant dynamics are described by or-
dinary differential equations

,x f x u , (15)

where f is a function that describes the plant dy-
namics. For notational simplicity consider a continu-
ous time controller. Let the controller be a full state
feedback controller implemented as a static mapping,
M , from the state, x , to the action set, u :

u M x . (16)

Assuming only a single global minimum exists, the
dynamic programming equations in (9) can be di-
rectly used for the static mapping (16). The autono-
mous dynamics of this system are then described by
the following equation

,arg min , ,d
u U x

x f x c x u V f x u (17)

This equation is then integrated to solve for x t ,

0

,
, arg min

,

t

u U x
d

x t

c x s u
f x s ds

V f x s u

 (18)

where

00x x (19)

defines the initial conditions. To evaluate df from

(7), a nested integrator, which is independent of the
primary simulation integrator, is required. This
nested integrator executes in ‘zero-time’ from the
perspective of the primary integrator. We refer to
this as an embedded or nested simulation. Because
the nested integrator is used inside a numeric optimi-
zation, it will potentially be called multiple times at
each primary integrator evaluation. If df in (18) is

expanded using (7), the plant dynamics function, f ,
from (15) occurs in two locations in

0

0

,

, arg min
, , 0

t

t

u U x

x t

c x s u

f x s ds
V f u d x s

(20)

where

00x x (21)

The nested copy of the plant dynamics equations, f ,
is referred to as the embedded or nested model. In
the case where the controller is modeled as updating
periodically, rather than continuously, the solution to
the optimization problem is held constant between
controller updates.

The equation structure in (20) and the reuse
of the plant dynamics function, f , offer the ability
to quickly synthesize controllers using numerical
techniques. However, existing tools make the im-
plementation of this type of model problematic.
There are two primary issues in implementation. The
first is execution efficiency. Few commercial tools
have been developed with the goal of efficiently
solving this class of equations. Secondly, several

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 495 Modelica 2008, March 3rd − 4th, 2008

4

commercial modeling environments make the defini-
tion and reuse of the plant model cumbersome, re-
quiring significant efforts during development and
maintenance. Fortunately, the features of Modelica
make the definition and reuse of a plant model man-
ageable. The examples that follow have been devel-
oped in Dymola ®, however this general approach
has also been used with Simulink® and AMESim®.

To systematically generate a system with an
optimal controller, a model of the plant is generated.
This plant model is ‘wrapped’ with an application
programming interface (API) so a control design al-
gorithm can determine the state space, the action
space, the state at the next time step, the constraint
activity, and the cost for a given state and action.
This interaction between the plant model, the API
and the control design algorithm is illustrated in
Figure 1. The CDA queries the API to determine the
structure of the state and action space. Given this
structure and the configuration of the CDA, a se-
quence of DOEs is executed. The DOE data are used
to find a solution to (10). For this work, the value
function was modeled using multi-linear interpola-
tion and a solution to (14) was found. To simplify

coding, value iteration was used [5, 6] to find V x .

Control Design Algorithm
Plant
Model

ux,

uxfd ,

uxg ,

xV

API to expose functions

uxc ,
(CDA)

State Space

Action Space

Figure 1 - Plant Model API

Once the value function is generated, the
system model is formed by one of two methods. The
first method is by generating a lookup table that
maps the state variables to an action as in (16). The
process of generating a value function, finding a
mapping equivalent to (9), and realizing a controller
as a mapping (or lookup table) is referred to as Indi-
rect Model Embedded Control (IMEC). This method
is appropriate for some systems. Another approach,
which is more computationally expensive, is referred
to as Direct Model Embedded Control (DMEC). For
DMEC, the controller is realized by forming an op-
timization statement around an embedded copy of

the plant model. This structure is illustrated in Figure
2.

Embedded
Plant
Model

ux ˆ, uxfd ˆ, uxg ˆ,

API to expose functions

Controller

Plant
Model

Optimizer

*ux
uxc ˆ,

Figure 2 - Direct Model Embedded Controller Struc-
ture

To realize a Direct Model Embedded Con-
troller (DMEC), two pieces are added to the system
model. The first piece is an optimizer which solves
(9). This optimizer can be as simple as a Design of
Experiments (DOEs) which considers a fixed set of
actions, and selects one which minimizes (9). For
more sophistication, if the nature of the problem
permits it, a gradient-based optimizer can be em-
ployed [30, 32, 33]. If the nature of the problem does
not allow solution using these types of approaches,
global solvers can be used [34-36]. Ideally, an opti-
mization library should support both gradient and
non-gradient methods for constrained optimization
problems. As part of this project, libraries for per-
forming both DOEs and gradient-based optimiza-
tions were implemented entirely in Modelica. How-
ever, there are currently no comparable commercial
or public domain libraries available. The second
piece required to implement a DMEC is the ability to
invoke a function which efficiently initializes and
simulates, over a ‘short’ time horizon, a set of mod-
els which are copies of the plant model with modi-
fied parameters. Because of the structure of the prob-
lem, each time the controller executes, multiple em-
bedded simulations will execute. Depending on the
nature of the action set, the number of embedded
simulations may vary from as few as two embedded
simulations to several thousand embedded simula-
tions.

3 Example – Simple Engine Start

 To illustrate how these concepts are used to
build a controller, consider the problem of starting an
internal combustion engine using an electric machine

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 496 Modelica 2008, March 3rd − 4th, 2008

5

with insufficient torque to guarantee the engine
completes a revolution from all possible stationary
starting points. If the initial position of the engine is
in a range of angles, the electric machine will stall.
To simplify the modeling, let us assume the engine
can be approximated using a crank slider connected
to a spring. The system model, shown in Figure 3,
consists of an electrical motor connected to the crank
which connects through the crank slider mechanism
to a piston which is subject to damping from friction.
Inertia is present in the motor rotor, crankshaft and
piston. The electric machine is subject to constraints
on minimum and maximum torque.

Figure 3 - Engine Starting Model

The objective of the control system is to en-
sure the engine will overcome the initial compres-
sion torque from any initial state and minimize en-
gine start time. The total cost of operation (what is
being minimized) is expressed mathematically as the
total time taken to achieve a speed greater than or
equal to five hundred RPM. Once this speed is
achieved, the controller is deactivated and another
scheme is used to manage the engine. The total cost
of operation for this system is considered over an
infinite time horizon and is computed as

0

0 , 500 rpm
0

1 ,otherwise

t
J x dt . (22)

The instantaneous cost for this system is

0 , 500 rpm

1 ,otherwise
c x . (23)

This type of cost generates a ‘shortest-path’ control-
ler. The controller will minimize the total time to
achieve 500 rpm. The total cost in (22) is undis-
counted. Therefore the discounting factor, , which

is visible in (2) is assigned a value of one and omit-
ted from the expression.

While it is clear that the system has exactly
two states, they can be selected somewhat arbitrarily.
For this example, the engine angle and engine speed
were selected. With these variables as the states, the
controller is represented as a static map from the en-
gine angle and engine speed to the electric machine
torque.

,u M (24)

The feasible action set is a single real number, the
motor torque, bounded by the constraints on motor
torque and power. The set of feasible actions is de-
fined by

100 100,

10000 10000

u
U x u

u
. (25)

The value function was represented using multi-
linear interpolation, see equation (12).

The plant model was implemented in Mode-
lica. The Controller Design Algorithm (CDA) was
implemented in MATLAB®. The CDA invoked
function calls to a custom API, similar to Figure 1,
applied to the plant model in Dymola®. The CDA
solved for the weights, w , in the value function
(equation (12)). This value function was used to gen-
erate an Indirect Model Embedded Controller
(IMEC) and a Direct Model Embedded Controller
(DMEC). The value function generated by the CDA
is shown in Figure 4.

-1000

-500

0

500

1000

0

50

100

150

200

250

300

350

0

0.2

0.4

Engine Angle [deg]

Value function

Engine Speed [rpm]

Figure 4 - Value function

 The IMEC was realized as a two input
lookup table with multi-linear interpolation on a
regular grid. The grid points in the table were found
by solving (9) using the value function generated by
the CDA. This controller was implemented using

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 497 Modelica 2008, March 3rd − 4th, 2008

6

standard Modelica components. The actuator com-
mands for the IMEC controller are shown in Figure 5
as a function of engine speed and angle.

-1000
-500

0
500

1000

0

50

100

150

200

250

300

350

-100

0

100

Engine Angle [deg]

Best Control Choice - u*

Engine Speed [rpm]

Figure 5 - IMEC control table

 The DMEC was realized by wrapping a copy
of the plant model with an API similar to the one
used for the CDA. A DOE was used to search feasi-
ble actions. The resulting code structure is identical
to Figure 2. The optimal action was chosen to mini-
mize (9).

 For both of these controllers, the problem of
starting the engine from any initial condition was
solved. The solution involved the counter-intuitive
approach of spinning the engine backwards, then
reversing direction to allow enough energy to be
stored in the inertia to overcome the spring force.
From a model and a control objective, an optimal
controller with very complex behaviors was numeri-
cally generated in less than 10 minutes on a single
PC (3GHz, 2Gb RAM). Furthermore, a similar
problem with four states was solved in less than
three hours. Of course the power of this approach
can only be realized once a sufficient level of tool
support is available so that the time required to set
up the analysis is on the same order as the solution
time.

3.1 Direct vs Indirect MEC

 Ideally, both an IMEC and DMEC will re-
sult in identical behaviors. However, differences in
approximation schemes and interpolation can results
in appreciable differences. In many cases, while In-
direct MEC is simpler to realize in a model, there are
good reasons to implement a controller with the
complexity and computational cost of a Direct MEC.

As an example, consider the previous prob-
lem. The value function, V(x), was found using the

Control Design Algorithm (CDA). The IMEC con-
troller was designed by solving for the best electric
machine torque for a set of engine angles and speeds
on a regular grid. For engine states which occur off
this grid, multi-linear interpolation was used to cal-
culate the control action. When the IMEC was used
in an engine start simulation, if the optimal torque
transitioned between positive and negative, the inter-
polation caused a smooth change in the torque be-
cause of the continuity imposed by interpolation.

 Alternatively, consider a Direct MEC. Be-
cause of the characteristics of the dynamic pro-
gramming equations and the value function, the op-
timal choices are either full positive or full negative
torque. This results in an instantaneous, non-
continuous change in torque. When plotted as in
Figure 6, the difference between the control inputs
and the state evolution of the system can be seen.
The interpolation due to the approximation in the
IMEC results in artifacts in the control actions and a
slight loss of performance in the system. Mathe-
matically this means that more detail is required to

resolve xu* , the function that we are ultimately

trying to formulate, than to resolve xV .

 There are cases where an IMEC is superior
to a DMEC approach (e.g. [26] illustrates just such a
case). In general, an IMEC implementation is supe-
rior when both the action set is continuous and the
optimal actions are continuous. The DMEC approach
is superior when either the action set is discrete or
the optimal actions are not continuous with respect
to the state. One example where DMEC is clearly
superior is where the motor is controlled by selecting
the state of a switch inverter. In this case, the action
set consists of a finite set of choices for switch con-
figuration and the optimal actions are not continuous
with respect to the state.

Figure 6 - Comparison of IMEC and DMEC results

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 498 Modelica 2008, March 3rd − 4th, 2008

7

4 Implementation of optimization al-
gorithms

 One of the challenges in Direct Model Em-
bedded Control is the implementation of an opti-
mizer. While this work was performed using a De-
sign of Experiments (DOE) to select optimal actions,
this approach becomes intractable when equality
constraints and larger dimensional actions sets are
considered. Towards the goal of supporting these
classes of problems, a gradient-based optimizer was
developed. One of the goals in developing this opti-
mizer was to fully implement the optimizer in Mode-
lica. By fully implementing in Modelica, all of the
information used by the optimizer would be accessi-
ble for speed improvements by the compiler. Should
native support for model embedding become avail-
able, all equations associated with a Direct MEC
would be accessible to the compiler for speed im-
provement. Additionally, since the embedded simu-
lations in a DMEC can be completely decoupled
from each other, simulation tools could easily exploit
the coarse grained parallelism on multi-core CPUs
by running several embedded simulations concur-
rently when conducting searches in the optimizer
(e.g. line searches and numerical gradients).

 The optimizer was developed in Modelica to
solve a constrained optimization problem which is
generally stated in negative null form [30] as

min

. .

0

0

objective

inequalities

equalities

f

s t

g

h

. (26)

To implement a gradient optimizer, the optimizer
functionality was separated from the objective func-
tion (objectivef), the inequality constraint functions

(inequalitiesg), and the equality constraint functions

(equalitiesh). The optimizer was designed under the

assumption that the inequality constraint functions
are all in negative null form: feasible inequality con-
straints are less than or equal to zero. The objective
function was assumed to be a minimization objec-
tive. Since Modelica does not (yet) support the con-
cept of methods or passing of functions as argu-
ments, the optimizer was designed to use static in-
heritance. For this reason, the objective and con-
straint functions are replaceable functions within an
optimizer package.

 One feature of this library, that is not com-
monly available, is the ability to handle functions

which are undefined over some region. The domain
of the objective and constraints may not be known a
priori. This occurs with MEC applications because
the objective (e.g. equation (9)) and constraint func-
tions (e.g. equation (11)) are typically evaluated us-
ing a solver. The solver may not find a solution.
Hence, classical algorithms must be modified to re-
cover from undefined evaluations.

 Implementation of this capability was prob-
lematic because of the lack of numeric support for a
real value which represents the concept of an unde-
fined quantity. Either a native capability similar to
Matlab’s ® ‘NaN’, or operator overloading with the
ability to extend a class from real numbers would
have simplified implementation.

In this library, Modelica.Constants.inf was
used to indicate that a function call was undefined.
However, the language specification does not define
behavior for operations (e.g. addition, subtraction,
multiplication, division) on Modelica.Constants.inf.
Therefore, all functions and statements which oper-
ated on variables that might be assigned a value of
Modelica.Constants.inf required conditional expres-
sions to ensure expected behavior.

 While this optimization library will not be
publicly released, it is available for further develop-
ment. Contact the lead author for a copy.

5 Recommendations

 While it is possible to realize both IMEC
and DMEC controllers using Modelica 2.2, the addi-
tion of a standard optimization library and native
support for embedded model simulation would
vastly simplify implementation and maintenance.

Towards the goal of simplifying implemen-
tation of MEC, a recommended language improve-
ment is the addition of a ‘model simulate’ function.
The function would accept arguments that specify
the model to simulate, the parameter values to use in
each simulation, the outputs to return, and any solver
specific settings. The solver should be able to be
configured to solve both initialization problems and
simulation problems. For efficiency in evaluation,
the function should support both a scalar and vector
lists of parameters. In addition to results which are
associated with the model, there should be results
associated with the solver. These results should be
sufficient to diagnose solver failures. At a mini-
mum, these should include the final time in the
evaluation and an indication of whether the simula-
tion successfully completed. A sample function defi-

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 499 Modelica 2008, March 3rd − 4th, 2008

8

nition along with an example invocation are shown
in Figure 7.

function simulateModel

input String modelName;

input String paramNames[:];

input String resultNames[:];

input Real

 paramValues[:,size(paramNames,1)];

input SettingsRecord solverSettings;

output Real

 results[size(paramValues,1),

 size(resultNames,1)];

…

end simulateModel;

// example call

[angle, speed, exitCondition, exitTime] =

 simulateModel(

 modelName=“Library.PlantModel”,

 paramNames{“w0”, “theta0”,”u”},

 resultNames=

 {“w”, “theta”,

 “exitCondition”, “exitTime” },

 paramValues=

 [0, 0, -100;

 1, 0, -100;

 …;

 2, 2*pi, 100],

 solverSettings =

 SettingsRecord(

 stopTime=1.0,

 fixedStep=0.1)

);

Figure 7 - Model evaluation

 It is important to point out that the goal is to
be able to invoke such a function from within a run-
ning model and not simply as a command line analy-
sis option. As previously mentioned, the ability to
directly express such nested simulation relationships
makes posing MEC problems much easier. If the
MEC problem could also directly express the “opti-
mization problem” associated with MEC then tools
could also bring the underlying symbolic informa-
tion to bear on efficient gradient evaluation as well.

 One remaining issue for DMEC problems is
the initialization of state variables in the embedded
model. For DMEC problems we typically want the
embedded model to start at the current state of the
parent simulation. Said another way, the current val-
ues of the states in the parent simulation should be

used as initial conditions in the nested simulation.
Of course, it is possible using the function in Figure
7 to establish such a mapping but hopefully the lan-
guage design group will consider alternatives that
would be less tedious and error prone.

6 Conclusions

 It is tractable to numerically synthesize near
optimal (or approximately minimal) controllers for
many systems. While in most cases the state feed-
back required for the controllers may make them
impractical to deploy, they can certainly be used as
prototype controllers that establish performance lim-
its for a given design as well as provide insights into
control laws for production controllers. Further-
more, this approach can easily integrate into a com-
bined plant-controller optimization process. This can
be done by making the optimal controller a function
of the plant parameters. These optimal controllers
can be realized as lookup tables (IMEC) or through
the use of optimization and embedded models
(DMEC). An algorithmic approach to controls syn-
thesis was presented. For this paper, the IMEC and
DMEC approaches were applied to an engine start-
ing problem to generate an optimal controller in an
automated fashion.

As this work has shown, Modelica is a
promising technology for rapid prototyping of sub-
system designs and prototype controllers. However,
lack of support for ‘model embedding’ makes devel-
opment and long term maintenance problematic be-
cause considerable work must be done to implement
this embedding. Lacking any language standard, this
work will always be tool specific. Furthermore, im-
plementation of controllers which rely on optimiza-
tion suffer from the lack of a standard optimization
library. While an optimization library was developed
for this work, it isn’t practical for most users to make
such an investment. By adding both language sup-
port to express the essential aspects of model em-
bedding and optimization discussed in this paper,
Modelica can evolve into a powerful technology for
system development and optimization.

References

[1] H. K. Fathy,"Combined Plant and Control
Optimation: Theory, Strategies, and Appli-
cations," Mechanical Engineering, Univer-
sity of Michigan, Ann Arbor, 2003.

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 500 Modelica 2008, March 3rd − 4th, 2008

9

[2] H. K. Fathy, P. Y. Papalambros, A. G. Ul-
soy, and D. Hrovat, "Nested Plant/Controller
Optimization with Application to Combined
Passive/Active Automotive Suspensions."

[3] H. K. Fathy, J. A. Reyer, P. Y. Papalambros,
and A. G. Ulsoy, "On the Coupling between
the Plant and Controller Optimization Prob-
lems," in American Control Conference, Ar-
lington, Va, 2001.

[4] P. R. Kumar and P. Variaya, Stochastic Sys-
tems: Estimation, Identification and Adap-
tion. Englewood Cliffs, New Jersey: Prentice
Hall, 1986.

[5] D. Bertsekas, Dynamic Programming and
Optimal Control: Vol 2. Belmont, Mass:
Athena Scientific, 1995.

[6] D. P. Bertsekas, Dynamic Programming and
Optimal Control: Vol 1. Belmont, Mass:
Athena Scientific, 1995.

[7] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-
Dynamic Programming. Belmont, Mass:
Athena Scientific, 1996.

[8] M. A. Trick and S. E. Zin, "A Linear Pro-
gramming Approach to Solving Stochastic
Dynamic Programs," Carnegie Mellon Uni-
versity 1993.

[9] M. A. Trick and S. E. Zin, "Spline Ap-
proximations to Value Functions: A Linear
Programming Approach," Macroeconomic
Dynamics, pp. 255-277, 1997.

[10] D. P. de Farias and B. Van Roy, "The Linear
Programming Approach to Approximate
Dynamic Programming," Operations Re-
search, vol. 51, pp. 850-865, November-
December 2003.

[11] V. F. Farias and B. Van Roy, "Tetris: Ex-
periments with the LP Approach to Ap-
proximate DP," 2004.

[12] D. P. de Farias,"The Linear Programming
Approach to Approximate Dynamic Pro-
gramming: Theory and Application," Ph.D.
Dissertation, Department of Management
Science and Engineering, Stanford Univer-
sity, Palo Alto, Ca, 2002.

[13] D. Dolgov and K. Laberteaux, "Efficient
Linear Approximations to Stochastic Ve-
hicular Collision-Avoidance Problems," in
Proceedings of the Second International
Conference on Informatics in Control,
Automation, and Robotics (ICINCO-05),
2005.

[14] G. J. Gordon, "Stable Function Approxima-
tion in Dynamic Programming," January
1995.

[15] R. S. Sutton and A. G. Barto, Reinforcement
Learning: An Introduction. Cambridge,
Mass: MIT Press, 1999.

[16] R. Munos and A. Moore, "Barycentric Inter-
polators for Continuous Space and Time Re-
inforcement Learning," Advances in Neural
Information Processing Systems, vol. 11, pp.
1024-1030, 1998.

[17] R. Munos and A. Moore, "Variable Resolu-
tion Discretization in Optimal Control," Ma-
chine Learning, vol. 1, pp. 1-24, 1999.

[18] J. M. Lee and J. H. Lee, "Approximate Dy-
namic Programming Strategies and Their
Applicability for Process Control: A Review
and Future Directions," International Jour-
nal of Control, Automation, and Systems,
vol. 2, pp. 263-278, September 2004.

[19] D. P. de Farias and B. Van Roy, "Approxi-
mate Value Iteration with Randomized Poli-
cies," in 39th IEEE Conference on Decision
and Control Sudney, Australia, 2000.

[20] D. P. de Farias and B. Van Roy, "Approxi-
mate Value Iteration and Temporal-
Difference Learning," in IEEE 2000 Adap-
tive Systems for Signal Processing, Commu-
nications and Control Symposium, 2000, pp.
48-51.

[21] B. Van Roy and J. N. Tsitsiklis, "Stable Lin-
ear Approximations to Dynamic Program-
ming for Stochastic Control Problems with
Local Transitions," Advances in Neural In-
formation Processing Systems, vol. 8, 1996.

[22] P. W. Keller, S. Mannor, and D. Precup,
"Automatic Basis Function Construction for
Approximate Dynamic Programming and
Reinforcement Learning."

[23] V. C. P. Chen, D. Ruppert, and C. A. Shoe-
maker, "Applying Experimental Design and
Regression Splines to High Dimensional
Continuous State Stochastic Dynamic Pro-
gramming," Operations Research, vol. 47,
pp. 38-53, January-February 1999.

[24] C.-C. Lin, H. Peng, and J. W. Grizzle, "A
Stochastic Control Strategy for Hybrid Elec-
tric Vehicles," in Proceedings of the 2004
American Control Conference, 2004, pp.
4710-4715 vol. 5.

[25] E. D. Tate,"Techniques of Hybrid Electic
Vehicle Controller Synthesis," Electrical
Engineering: Systems, University of Michi-
gan, Ann Arbor, Michigan, 2007.

[26] E. Tate, J. Grizzle, and H. Peng, "Shortest
Path Stochastic Control for Hybrid Electric
Vehicles," Internation Journal of Robust and
Nonlinear Control, 2006.

Model Embedded Control: A Method to Rapidly Synthesize Controllers in a Modeling Environment

The Modelica Association 501 Modelica 2008, March 3rd − 4th, 2008

10

[27] I. Kolmanovsky, I. Siverguina, and B. Ly-
goe, "Optimization of Powertrain Operating
Policy for Feasibility Assessment and Cali-
bration: Stochastic Dynamic Programming
Approach," in Proceedings of the American
Control Conference, Anchorage, AK, 2002,
pp. 1425-1430.

[28] J.-M. Kang, I. Kolmanovsky, and J. W.
Grizzle, "Approximate Dynamic Program-
ming Solutions for Lean Burn Engine After-
treatment," in Proceedings of the 38th Con-
ference on Decision & Control, Phoenix,
Arizona, 1999, pp. 1703-1708.

[29] C.-C. Lin, H. Peng, J. W. Grizzle, and J.-M.
Kang, "Power Management Strategy for a
Parallel Hybrid Electric Truck," IEEE
Transactions on Control Systems Technol-
ogy, vol. 11, pp. 839-849, November 2003.

[30] P. Y. Papalambros and D. J. Wilde, Princi-
ples of Optimal Design: Models and Compu-
tation, 2 ed. New York, New York: Cam-
bridge University Press, 2000.

[31] J. Rust, "Using Randomization to Break the
Curse of Dimensionality," 1996.

[32] S. Boyd and L. Vendenberghe, Convex Op-
timization. New York, N.Y.: Cambridge
University Press, 2004.

[33] P. E. Gill, W. Murray, and M. H. Wright,
Practical Optimization. New York, N.Y.:
Academic Press, 1981.

[34] D. R. Jones, C. D. Peritunen, and B. E.
Stuckman, "Lipschitzian Optimization with-
out the Lipschitz Constant," Journal of Op-
timization Theory and Applications, vol. 79,
pp. 157-181, 1993.

[35] A. J. Booker, J. Dennis, J. E. , P. D. Frank,
D. B. Serafini, V. Torczon, and M. W. Tros-
set, "A Rigorous Framework for Optimiza-
tion of Expensive Functions by Surrogates."

[36] M. J. Sasena,"Flexibility and Efficiency En-
hancements for Constrained Global Design
Optimization with Kriging Approximations,"
Mechanical Engineering, University of
Michigan, Ann Arbor, 2002.

E. Tate, M. Sasena, J. Gohl, M. Tiller

The Modelica Association 502 Modelica 2008, March 3rd − 4th, 2008

Session 4d

Mechanical Systems & Applications

The Modelica Association 503 Modelica 2008, March 3-4, 2008

The Modelica Association 504 Modelica 2008, March 3rd − 4th, 2008

High-Accuracy Orbital Dynamics Simulation through Keplerian
and Equinoctial Parameters

Francesco Casella Marco Lovera
Dipartimento di Elettronica e Informazione

Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract

In the last few years a Modelica library for spacecraft
modelling and simulation has been developed, on the
basis of the Modelica Multibody Library. The aim of
this paper is to demonstrate improvements in terms of
simulation accuracy and efficiency which can be ob-
tained by using Keplerian or Equinoctial parameters
instead of Cartesian coordinates as state variables in
the spacecraft model. The rigid body model of the
standard MultiBody library is extended by adding the
equations defining a transformation of the body center-
of-mass coodinates from Keplerian and Equinoctial
parameters to Cartesian coordinates, and by setting the
former as preferred states, instead of the latter. The re-
maining parts of the model, including the model of the
gravitational field, are left untouched, thus ensuring
maximum re-usability of third-party code. The results
shown in the paper demonstrate the superior accuracy
and speed of computation in the reference case of a
point-mass gravity field.
Keywords: Spacecraft dynamics; Orbit dynamics; Nu-
merical integration; State selection.

1 Introduction

The Modelica Spacecraft Dynamics Library ([6, 7,
10]) is a set of models (based on the already existing
and well known Multibody Library, see [9]) which is
currently being developed with the aim of providing
an advanced modelling and simulation tool capable of
supporting control system analysis and design activ-
ities for both spacecraft attitude and orbit dynamics.
The main motivation for the development of the library
is given by the significant benefits that the adoption
of a systematic approach to modelling and simulation,
based on modern a-causal object-oriented languages
such as Modelica, can give to the design process of
such advanced control systems.

At the present stage, the library encompasses all the
necessary utilities in order to ready a reliable and
quick-to-use scenario for a generic space mission, pro-
viding a wide choice of most commonly used mod-
els for AOCS sensors, actuators and controls. The
library’s model reusability is such that, as new mis-
sions are conceived, the library can be used as a base
upon which readily and easily build a simulator. This
goal can be achieved simply by interconnecting the
standard library objects, possibly with new compo-
nents purposely designed to cope with specific mis-
sion requirements, regardless of space mission sce-
nario in terms of either mission environment (e.g.,
planet Earth, Mars, solar system), spacecraft config-
uration or embarked on-board systems (e.g., sensors,
actuators, control algorithms).

More precisely, the generic spacecraft simulator con-
sists of an Extended World model and one or more
Spacecraft models. The Extended World model is an
extension of Modelica.MultiBody.World which pro-
vides all the functions needed for a complete repre-
sentation of the space environment as seen by a space-
craft: gravitational and geomagnetic field models, at-
mospheric models, solar radiation models. Such an
extension to the basic World model as originally pro-
vided in the MultiBody library plays a major role in
the realistic simulation of the dynamics of a space-
craft as the linear and angular motion of a satellite
are significantly influenced by its interaction with the
space environment. The Spacecraft model, on the
other hand, is a completely reconfigurable spacecraft
including components to describe the actual space-
craft dynamics, the attitude/orbit control sensors and
actuators and the relevant control laws. In this pa-
per we are specifically concerned with the Space-
craft model; this component has been defined by ex-
tending the already available standard model Model-
ica.Mechanics.MultiBody.Parts.Body. The main mod-
ifications reside in the selectable evaluation of the in-

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

The Modelica Association 505 Modelica 2008, March 3rd − 4th, 2008

teractions between the spacecraft and the space envi-
ronment and on the additional initialization option for
the simulation via selection of a specific orbit for the
spacecraft. The main drawback associated with the
adoption of the standard Body model as the core of
the Spacecraft model is related to the intrinsic use this
component makes of the Cartesian coordinates in the
World reference frame for the state variables associ-
ated with the motion of the Body’s center of mass. In-
deed, for spacecraft work it is well known that signifi-
cant benefits, both in terms of simulation accuracy and
computational performance, can be obtained by using
different choices of state variables, such as Keplerian
and Equinoctial parameters (see, e.g., [11, 8]).
Therefore, the aims of this paper, which extends pre-
liminary results presented in [2] are the following:

• to demonstrate improvements in terms of simu-
lation accuracy and efficiency which can be ob-
tained by using Keplerian and Equinoctial pa-
rameters instead of Cartesian coordinates as state
variables in the spacecraft model;

• to illustrate how Keplerian and Equinoctial pa-
rameters can be included in the existing multi-
body spacecraft model by exploiting the object-
oriented features of the Modelica language and
the symbolic manipulation capability of Model-
ica tools.

The paper is organised as follows: first an overview
of the available choices for the state representation of
satellite orbits is given in Section 2; subsequently, the
use of Keplerian and Equinoctial orbital elements for
the simulation of orbit dynamics will be described in
Section 3, while the corresponding Modelica imple-
mentation will be outlined in Section 4 and the re-
sults obtained in the implementation and application
of the proposed approach to the simulation of a Low
Earth and Geostationary orbits will be presented and
discussed in Section 5.

2 Satellite State Representations

The state of the center of mass of a satellite in space
needs six quantities to be defined. These quantities
may take on many equivalent forms. Whatever the
form, we call the collection of these quantities either a
state vector (usually associated with position and ve-
locity vectors) or a set of elements called orbital ele-
ments (typically used with scalar magnitude and angu-
lar representations of the orbit). Either set of quanti-
ties is referenced to a particular reference frame and

completely specifies the two-body orbit from a com-
plete set of initial conditions for solving an initial value
problem class of differential equations.
In the following subsections, we will deal with space-
craft subject only to the gravitational attraction of the
Earth considered as a point mass (unperturbed Keple-
rian conditions) and we will refer mainly to the Earth
Centered Inertial reference axes (ECI), defined as fol-
lows. The origin of these axes is in the Earth’s centre.
The X-axis is parallel to the line of nodes. The Z-axis
is parallel to the Earth’s geographic north-south axis
and pointing north. The Y-axis completes the right-
handed orthogonal triad.

2.1 Position and Velocity Coordinates

In the ECI reference frame, the position and velocity
vectors of a spacecraft influenced only by the gravita-
tional attraction of the Earth considered with puncti-
form mass will be denotated as follows

r =
[
x y z

]T
, (1)

v =
[
vx vy vz

]T =
dr
dt

. (2)

The acceleration of such a spacecraft satisfies the
equation of two-body motion

d2r
dt2 =−GM⊕

r
‖r‖3 (3)

where µ = GM⊕ is the gravitational coefficient of the
Earth. A particular solution of this second order vector
differential equation is called an orbit that can be ellip-
tic or parabolic or hyperbolic, depending on the initial
values of the spacecraft position and velocity vectors
r(t0) and v(t0). Only circular and elliptic trajectories
are considered in this study.
The state representation by position and velocity of a
spacecraft in unperturbed Keplerian conditions is

xECI =
[
rT vT

]T (4)

at a given time t. Time t is always associated with a
state vector and it is often considered as a seventh com-
ponent. A time used as reference for the state vector
or orbital elements is called the epoch.

2.2 Classical Orbital Elements

The most common element set used to describe ellip-
tical orbits (including circular orbits) are the classical
orbital elements (COEs), also called the Keplerian pa-
rameters, which are described in the sequel of this Sec-
tion. The COEs are defined as follows:

F. Casella, M. Lovera

The Modelica Association 506 Modelica 2008, March 3rd − 4th, 2008

• a : semi-major axis, [m];

• n : mean motion, [rad/s]

• e : eccentricity, [dimensionless];

• i : inclination, [rad];

• Ω : right ascension of the ascending node,
[rad];

• ω : argument of perigee, [rad];

• ν : true anomaly, [rad];

• E : eccentric anomaly, [rad];

• M : mean anomaly, [rad];

(see Figures 1 and 2). The definitions of the COEs are
referenced to the ECI frame. The semi-major axis a
specifies the size of the orbit. Alternatively, the mean
motion

n =

√
GM⊕

a3 (5)

can be used to specify the size.
The eccentricity e specifies the shape of the ellipse.
It is the magnitude of the eccentricity vector, which
points toward the perigee along the line of apsis.
The inclination i specifies the tilt of the orbit plane. It
is defined as the angle between the angular momentum
vector h = r× v and the unit vector Z.
The right ascension of the ascending node Ω is the an-
gle from the positive X axis to the node vector n point-
ing toward the ascending node, that is the point on the
equatorial plane where the orbit crosses from south to
north. The argument of perigee ω is measured from
the ascending node to the perigee, i.e., to the eccen-
tricity vector e pointing towards the perigee.
The eccentric anomaly E is defined on the auxiliary
circle of radius a, that can be drawn around the ellip-
tical orbit, as shown in Figure 2. Finally, the mean
anomaly M is defined as M = n(t− tp), where tp de-
notes the time of perigee passage, i.e., the instant at
which the eccentric anomaly vanishes. As is apparent
from its definition, the mean anomaly for an ideal Ke-
plerian orbit increases uniformly over time. E and M
are related by the well known Kepler equation

E− esin(E) = M. (6)

In this work, satellite state representation in terms of
classical orbital elements (Keplerian parameters) will
be denoted as

xCOE =
[
a e i Ω ω M

]T (7)

with the implicit choice of adopting M as a parame-
ter to represent the spacecraft anomaly; the advantages
and disadvantages of this choice will be discussed in
the following.

2.3 Equinoctial Orbital Elements

COEs suffer from two main singularities. The first is
when the orbit is circular, i.e., when the eccentricity is
zero (e = 0). In this case the line of apsis is undefined
and also the argument of perigee ω . The second occurs
when the orbit is equatorial, i.e., when the inclination
is zero (i = 0). In this case the ascending node is un-
defined and also the right ascension of the ascending
node Ω. See Figure 1.

It is nevertheless possible to define the true, eccentric
and mean longitude (L, K and l, respectively) as

L = ω +Ω+ν , (8)

K = ω +Ω+E, (9)

l = ω +Ω+M; (10)

these quantities remain well-defined also in the singu-
lar cases of circular and/or equatorial orbits.

The equinoctial orbital elements (EOEs) avoid the sin-
gularities encountered when using the classical orbital
elements. EOEs were originally developed by La-
grange in 1774. Their definitions in terms of Kep-
lerian elements are given by the following equations

ORBITAL
PLANE

LINE
OF NODES

intersection between
equatorial plane
and orbital plane

ASCENDING
NODE

LINE
OF APSIS

EQUATORIAL
PLANE

X

Y

ZNORTH

Ω

i

i

PERIGEESATELLITE

n

e

ω

ν

h

Figure 1: Classical Orbital Elements (COEs).

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

The Modelica Association 507 Modelica 2008, March 3rd − 4th, 2008

AUXILIARY
CIRCLE

ELLIPTIC
ORBIT

r

νE

a

a

ae
a cos(E)

SATELLITE

Figure 2: True and eccentric anomalies for elliptic mo-
tion.

(see, e.g., [1, 5, 8] for details)

a, (11)

P1 = esin(ω + IΩ), (12)

P2 = ecos(ω + IΩ), (13)

Q1 = tan(i/2)sinΩ, (14)

Q2 = tan(i/2)cosΩ, (15)

l = Ω+ω +M. (16)

True retrograde equatorial orbits (i = 180◦) cause
problems because Q1 and Q2 are undefined. This
problem is solved by introducing a retrograde factor
I which is +1 for direct orbits and −1 for retrograde
orbits. In this work, dealing with geostationary satel-
lites, I is equal to +1 and the mean longitude net of
the Greenwich Hour Angle Θ(t)

lΘ = l−Θ(t) (17)

will be used instead of the mean longitude l given by
equation (16). GEO satellite state representation in
terms of equinoctial orbital elements will be denoted
as follows

xEOE =
[
a P1 P2 Q1 Q2 lΘ

]T
. (18)

The definitions of the EOEs are referenced to the
equinoctial reference frame, which can be obtained
from the ECI reference frame by a rotation through
the angle Ω about the Z axis, followed by a rotation
through the angle i about the new X axis (which points
in the same direction as the node vector n pointing
the ascending node), followed by a rotation through
the angle −IΩ about the new Z axis (which points in

the same direction as the h vector). In the equinoc-
tial frame the elements P1 and P2 represent the pro-
jection of the eccentricity vector onto the Q and E di-
rections, respectively (see Figure 3). The elements Q1
and Q2 represent the projection of the vector oriented
in the direction of the ascending node with magnitude
tan(i/2), onto the Q and E directions, respectively.
Note that in the singular cases of circular (or equa-
torial) orbits, the vector P (or Q) becomes zero; the
indetermination in the two components of each vector
is thus not a problem.

LINE
OF APSIS

LINE
OF APSIS

LINE
OF NODES

ORBITAL
PLANE

ORBITAL
PLANE

P2

Q1

Q2

P1

i = tan(i/2) n /n
e

E

Q

ω

Ω

ν

Q
E

L

r

SPACECRAFT

Ω

Figure 3: Eccentricity and inclination equinoctial
components and true longitude.

2.4 Conversion formulae: COEs to Cartesian

The position coordinates in the orbital plane, centered
in the Earth (Figure 2) are related to the COEs by the
following equations

[
xorb
yorb

]
=
[

acos(E)−ae
asin(E)

√
1− e2

]
. (19)

while the corresponding velocities can be computed as
[

vx,orb
vy,orb

]
=

[
−a2n
|r| sin(E)

a2n
|r|
√

1− e2 cos(E)

]
, (20)

with |r| =
√

x2
orb + y2

orb =
√

rT r. As depicted in Fig-
ure 1, the orthogonal basis RT N of the Gaussian co-
ordinate system can be obtained from the orthogonal
basis XY Z of the ECI frame by means of three succes-
sive rotations




xorb
yorb

0


= RZXZ (xCOE)




x
y
z


 , (21)

with

RZXZ (xCOE) = RZ(ω)RX(i)RZ(Ω) (22)

F. Casella, M. Lovera

The Modelica Association 508 Modelica 2008, March 3rd − 4th, 2008

where matrix

RZ(Ω) =




cosΩ sinΩ 0
−sinΩ cosΩ 0

0 0 1


 (23)

describes the first rotation around the Z axis of an an-
gle Ω, matrix

RX(Ω) =




1 0 0
0 cos i sin i
0 −sin i cos i


 (24)

describes the second rotation around the X of an angle
i, matrix

RZ(ω) =




cos(ω) sin(ω) 0
−sin(ω) cos(ω) 0

0 0 1


 (25)

describes the third rotation around the Z axis of an an-
gle ω . Thanks to the orthonormal property of rotation
matrices, equation (21) can be easily inverted, giving




x
y
z


= RT

Z (Ω)RT
X(i)RT

Z (ω)




xorb
yorb

0


 ; (26)

following the same reasoning, the Cartesian velocity
vector can be expressed as




vx

vy

vz


= RT

Z (Ω)RT
X(i)RT

Z (ω)




vx,orb
vy,orb

0


 . (27)

Further details can be found, e.g., in [11]. Summariz-
ing, it is possible to compute xCOE , given xECI , by first
solving the scalar implicit equation (6) for E, and then
the explicit vector equations (19)-(20), (26)-(27).

2.5 Conversion formulae: EOEs to Cartesian

The conversion formulae from EOEs to Cartesian co-
ordinates in ECI are slightly more involved. The
results are summarised here; for further details, the
reader is referred to, e.g., [1, 5, 8].
The eccentric longitude K can be computed by solving
the implicit equation

ltheta +Θ(t) = K +P1 cos(K)−P2 sin(K). (28)

The ECI coordinates are then given by



x
y
z


= ρ




(1+Q2
2−Q2

1)cos(L)+2Q1Q2 sin(L)
(1+Q2

1−Q2
2)sin(L)+2Q1Q2 cos(L)

2Q2 sin(L)−2Q1 cos(L)


 ,

(29)




vx

vy

vz


= n




x
|r|

d|r|
dl +σ

[
(1+Q2

2−Q2
1)

dcos(L)
dK +2Q1Q2

dsin(L)
dK

]

y
|r|

d|r|
dl +σ

[
(1+Q2

1−Q2
2)

dsin(L)
dK +2Q1Q2

dcos(L)
dK

]

z
|r|

d|r|
dl +2σ

[
Q2

dsin(L)
dK −Q1

dcos(L)
dK

]


 ,

(30)
where

|r|= a(1−P1 sin(K)−P2 cos(K)),

ρ =
|r|

1+Q2
1 +Q2

2
,

σ =
a

1+Q2
1 +Q2

2
,

γ = 1+
√

1−P2
1 −P2

2

sin(L) =
a

γ|r|
[
(γ−P2

2)sin(K)+P1P2 cos(K)− γP1
]

cos(L) =
a

γ|r|
[
(γ−P2

1)cos(K)+P1P2 sin(K)− γP2
]
.

3 COEs and EOEs for simulation of
orbit dynamics

When orbital control problems are studied, it is usually
necessary to integrate the equations of motion of the
satellite under the action of gravity (due to the Earth or
any other celestial body), of the space environment and
of the actuators’ thrust. The usual approach, known as
Cowell’s method (see [3]), is to integrate the equations
of motion in cartesian coordinates

ṙ = v (31)

v̇ = ag(r)+
F
m

(32)

where ag is the acceleration of gravity, F is the sum of
all the other forces, and m is the satellite mass. applied
by the actuators. First-cut models assume a point-mass
model

ag =−GMr/‖r‖3, (33)

while accurate simulations require more detailed mod-
els of the gravitational field, usually in the form of a
series expansion (see, e.g., [12]). In both cases, the
differential equations are strongly non-linear; there-
fore, despite the use of high-order integration algo-
rithm, tight tolerances end up in a fairly high number
of simulation steps per orbit.
If the satellite motion is described in terms of COEs
or EOEs, it is easy to observe that the variability of
the six orbit elements is much smaller than that of the
Cartesian coordinates. In particular, it is well-known
that in case of a point-mass gravity field with no other

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

The Modelica Association 509 Modelica 2008, March 3rd − 4th, 2008

applied forces, the first five parameters are constant,
while the mean anomaly and the mean longitude in-
crease linearly with time. All existing high-order in-
tegration methods have error bounds which depend on
Taylor expansions of the state trajectory. One can then
conjecture that if the COEs/EOEs are used as state
variables, instead of the Cartesian vectors r and v, the
state trajectories will be smoother, and therefore the in-
tegration algorithm will be able to estimate them with
with a higher relative precision using much larger time
steps, compared to the Cartesian coordinates case.
Recalling the definition of vector xECI in (4), letting
z = xCOE or z = xEOE depending on the choice for
the new state variables and denoting by g(·) the trans-
formation relating z and x, equations (31)-(32) can be
written in compact form as

ẋ = f (x) (34)

x = g(z). (35)

If a state variable change from x to z is now performed,
the following equations are obtained

∂g(z)
∂ z

ż = f (g(z)) (36)

which can be solved for ż provided that the new state
variables z are uniquely defined

ż =
(

∂g(z)
∂ z

)−1

f (g(z)) (37)

x = g(z). (38)

The Jacobian for gCOE is generically well defined and
becomes singular only in the case of a circular and/or
equatorial orbit. In this case the EOEs are needed, as
the Jacobian for gEOE is well defined in this case.
The model (37)-(38), which is now in standard state-
space form, has two very important features:

• the right-hand side of (37) is much less variable
than the right-hand side of (34), so it will be eas-
ier to integrate the equations with a higher accu-
racy;

• in case an accurate model of the gravity field is
used, it is not necessary to reformulate it in terms
of the COEs/EOEs, as the right-hand side of (37)
uses the compound function f (g(z)).

Remark 1 The accurate computation of long-term so-
lutions for dynamical problems associated with pure
orbital motion has been a subject of extensive research

for decades. In particular, the so-called class of sym-
plectic integration methods (see, e.g., [4] and the ref-
erences therein) provides an effective and reliable so-
lution to the problem. In the framework of the present
study, however, the aim is to improve accuracy in the
computation of orbital motion while retaining the ad-
vantages associated with the use of a general-purpose
object-oriented modelling environment, in which not
only orbital dynamics can be simulated, but also the
coupled attitude motion, as well as the associated
mathematical models of sensors, actuators and con-
trollers for orbital and attitude control. This more gen-
eral framework requires the use of general-purpose in-
tegration algorithms for ODEs/DAEs.

4 Modelica implementation

The concepts outlined in Section 3 are easily im-
plemented with the Modelica language. The start-
ing point is the Body model of the standard Mod-
elica.Mechanics.MultiBody library [9]: this is a 6
degrees-of-freedom model of a rigid body, which can
be connected to other components to form a multi-
body system model. The original model has six de-
grees of freedom, corresponding to 12 state variables:
the three cartesian coordinates and the three velocity
components of the center of mass, plus three suitable
variables describing the body orientation and the three
components of the angular velocity vector. Assuming
that the gravitational field is applied exactly at the cen-
ter of mass (the gravity gradient effect is computed in a
separate model and thus not included here), the trans-
lational and rotational equations are completely de-
coupled, so it is possible to focus on the former ones,
leaving the latter ones untouched.
First of all, the equations to compute the gravity ac-
celeration as a function of the cartesian coordinates
using accurate field models are added by inheritance
to the standard World model of the MultiBody library,
which only offers the most basic options of no gravity,
constant gravity and point mass gravity (see [7, 10]).
Then, the standard Body model must be enhanced by:

1. adding the COEs a, e, i, ω , Ω, M or the EOEs a,
P1, P2, Q1, Q2, lΘ as new model variables;

2. adding the equations relating COEs/EOEs to the
cartesian coordinates;

3. switching the stateSelect attribute for the r and v
vectors of the Body model to StateSelect.avoid,
and for the COEs/EOEs to StateSelect.prefer.

F. Casella, M. Lovera

The Modelica Association 510 Modelica 2008, March 3rd − 4th, 2008

The Modelica compiler tool will then perform the
transformation from (34)-(35) to (37)-(38) automati-
cally, using symbolic manipulation algorithms.

A first implementation option is to extend the Body
model by inheritance, adding the above-mentioned
features, and thus deriving two enhanced models
BodyKepler and BodyEquinoctial; this approach is
documented in [2].

A second option is to put the additional variables and
equations in a separate model with a multibody flange
interface, and then connect it to the unmodified Body
model within a wrapper model that also sets the pre-
ferred state variables. This option perfectly fits the ar-
chitecture of the Spacecraft Dynamics library, where
such a structure was already used in order to include
the models of the interaction of the satellite with the
space environment: gravity gradient torque, aerody-
namic drag, solar radiation, etc. (see [10], Fig. 3). In
fact, the library described in [10] already contained a
similar model to compute the orbital parmeters; that
model, however, contained explicit inverse conversion
formulae (from cartesian coordinates to COEs), and
was designed to be used with cartesian coordinates as
states. Since either the COEs or the EOEs can be used,
the wrapper model must actually contain two condi-
tionally declared, mutually exclusive models (one for
each choice of coordinates), which are both connected
to the standard Body model; a flag in the wrapper
model decides which of the two will actually be ac-
tivated in the simulation model.

The Modelica code defining the new models is very
compact and easy to check, which is an important fea-
ture to ensure the correctness of the resulting model.
As already noted, the accurate models of the gravity
field, previously implemented in [7, 10], can still use
the Cartesian coordinates as inputs, and are thus left
unchanged.

As to the computational efficiency, the workload at
each time step is increased, compared to the standard
ECI formulation, by the conversion formulae, the Ja-
cobian computation and the solution of the linear sys-
tem (37). However, as will be demonstrated in the next
section, this additional overhead is more than com-
pensated by the fact that the differential equations are
much easier to integrate in the new state variables, re-
sulting in a faster simulation time and in a much tighter
accuracy.

5 Simulation examples

In this Section, the results obtained in comparing the
accuracy obtained by simulating the orbit dynamics
for two Low Earth orbiting (LEO) spacecraft and a
GEO one will be presented. As previously mentioned,
for the purpose of the present study we focus on the
simulation of the unperturbed dynamics, i.e., only the
gravitational acceleration computed from a point-mass
model for the Earth is considered. In this case, the
orbit is an ellipse (closed curve), having well-defined
features. Therefore, this assumption allows us to in-
troduce two simple criteria in order to evaluate the ac-
curacy of the performed simulations, namely:

• The period of an unperturbed elliptical orbit can

be computed a priori and is given by T = 2π
√

a3

µ ,
so a first measure of simulation accuracy can be
given by the precision with which the orbit actu-
ally closes during the simulation. To this purpose,
the following stopping criterion has been defined
for the simulation: the integration is stopped
when the position vector crosses a plane orthogo-
nal to the initial velocity and passing through the
initial position. Then, the final time is compared
with the orbit period and the final position is com-
pared with the initial one.

• Furthermore, for an unperturbed orbit the angular
momentum h = r× v should remain constant, so
a second measure of accuracy for the simulation
is given by the relative error in the value of h, i.e.,
the quantity

eh =
‖h−h(0)‖
‖h(0)‖ . (39)

The considered orbits have been simulated us-
ing the Dymola tool, using Cartesian and Keple-
rian/Equinoctial coordinates, in order to evaluate the
above-defined precision indicators. The DASSL inte-
gration algorithm has been used, with the smallest fea-
sible relative tolerance 10−12. The RADAU algorithm
has also been tried with the same relative tolerance,
yielding similar results which are not reported here for
the sake of conciseness.

5.1 A near-circular, LEO orbit

The first considered orbit is a LEO, near circular one
(see Figure 4), characterised by the following initial

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

The Modelica Association 511 Modelica 2008, March 3rd − 4th, 2008

state, in Cartesian coordinates:

r(0) =




6828.140×103

0
0


 ,

v(0) =




0
5.40258602956241×103

5.40258602956241×103




The results obtained in the comparison of Cartesian
and Keplerian coordinates are summarised in Table 1.
As can be seen from the Table, the precision achieved
in the actual closure of the orbit improves significantly
when using Keplerian coordinates as states: the sim-
ulated period is very close to the actual one and both
the period error and the position error are significantly
smaller.

Figure 4: The considered LEO, near circular orbit.

Similarly, in Figure 5 the time histories of the relative
error on the value of the orbital angular momentum
are illustrated, for a simulation of about one day: the
results are clearly very satisfactory in both cases, how-
ever while in the case of Cartesian states the relative
error is significantly larger than machine precision and
is slowly increasing, in the case of Keplerian states the
relative error is much smaller and appears to be more
stable as a function of time (see also the mean value of
the relative angular momentum error, given in Table
1). Finally, note that the use of Keplerian parameters
also gives significant benefits in terms of simulation
efficiency, as can be seen from the last column of Ta-
ble 1.

5.2 A highly elliptical, LEO orbit

The second considered orbit is again a LEO one, but
it is characterised by a high value of the eccentricity

Figure 5: Relative errors on the orbit angular momen-
tum - near circular orbit: Cartesian (top) and Keplerian
(bottom) coordinates.

(see Figure 6, where it is also compared with the cir-
cular orbit considered in the previous case) and by the
following initial state, in Cartesian coordinates:

r(0) =




6828.140×103

0
0


 ,

v(0) =




0
5.40258602956241×103

7.29349113990925×103




As in the previous case, Table 2 shows the precision
achieved in the actual closure of the orbit: as can be
seen, the errors on the simulated period are of the same
order of magnitude for both choices of state variables.
The position errors, on the other hand are significantly
smaller when simulating the orbital motion using Ke-
plerian rather than Cartesian states.

Similarly, in Figure 7 the time histories of the relative
error on the value of the orbital angular momentum are
illustrated, for a simulation of about one day. In this
case, the results show that using Cartesian states the
relative error is again significantly larger than machine
precision and is slowly increasing, while using Keple-
rian states the relative error is of the order of machine
precision.

Finally, the gain in terms of simulation efficiency can
be verified from the last column of Table 2.

F. Casella, M. Lovera

The Modelica Association 512 Modelica 2008, March 3rd − 4th, 2008

Table 1: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and Kep-
lerian coordinates - near circular orbit.

States ∆T [s] ‖∆r‖ [m] Mean eh Number of steps
Cartesian −1.00332×10−6 1.69711×10−3 1.5373×10−9 959
Keplerian 2.38369×10−8 2.17863×10−5 4.7528×10−13 376

Table 2: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and Kep-
lerian coordinates - highly elliptical orbit.

States ∆T [s] ‖∆r‖ [m] Mean eh Number of steps
Cartesian −1.17226×10−5 4.39241×10−3 1.2927×10−10 3650
Keplerian 1.48665×10−5 2.67799×10−7 2.5223×10−16 1120

Figure 6: The considered LEO, highly elliptical orbit,
compared with the circular one considered in Section
5.1.

5.3 A GEO orbit

The last considered orbit is a GEO one, characterised
by the following initial state, in Cartesian coordinates:

r(0) =




4.21641×107

0
0


 ,

v(0) =




0
3074.66

0




Table 3 shows the accuracy improvement achieved
when simulating the orbital motion using Equinoctial
rather than Cartesian states. As in the previous case,
also for the simulation of GEO orbits it appears from
the inspection of the time histories of the relative error
on the orbital angular momentum (depicted in Figure

Figure 7: Relative errors on the orbit angular momen-
tum - highly elliptical orbit: Cartesian (top) and Kep-
lerian (bottom) coordinates.

8) that in the case of Cartesian states the relative er-
ror is slowly increasing over time, while in the case of
Equinoctial states the relative error appears to be more
stable (see also Table 3).
Finally, the advantages provided by the use of
Equinoctial parameters in terms of simulation effi-
ciency are confirmed by the data provided in the last
column of Table 3.

6 Concluding remarks

A method for the accurate simulation of satellite or-
bit dynamics on the basis of the Modelica MultiBody
library has been presented. The proposed approach is
based on the use of Keplerian and Equinoctial parame-

High-Accuracy Orbital Dynamics Simulation through Keplerian and Equinoctial Parameters

The Modelica Association 513 Modelica 2008, March 3rd − 4th, 2008

Table 3: Orbit closure errors, relative angular momentum error and number of steps using Cartesian and
Equinoctial coordinates - GEO orbit.

States ∆T [s] ‖∆r‖ [m] Mean eh Number of steps
Cartesian −2.79186×10−5 1.88208×10−2 1.0323×10−10 793

Equinoctial −2.92057×10−8 8.91065×10−5 6.8574×10−16 20

Figure 8: Relative errors on the orbit angular momen-
tum - GEO orbit: Cartesian (top) and Equinoctial (bot-
tom) coordinates.

ters instead of Cartesian coordinates as state variables
in the spacecraft model. This is achieved by adding to
the standard Body model the equations for the trans-
formation from Keplerian and Equinoctial parameters
to Cartesian coordinates and exploiting automatic dif-
ferentiation. The resulting model ensures a significant
improvement in numerical accuracy and a reduction in
the overall simulation time, while keeping the same
interface and multibody structure of the standard com-
ponent. Simulation results with a point-mass gravity
field show the good performance of the proposed ap-
proach. The validation with higher order gravity field
models is currently being performed.

References

[1] R.A. Broucke and P.J. Cefola. On the equinoctial
orbit elements. Celestial Mechanics and Dynam-
ical Astronomy, 5(3):303–310, 1972.

[2] F. Casella and M. Lovera. High accuracy simu-
lation of orbit dynamics: an object-oriented ap-

proach. In Proceedings of the 6th EUROSIM
Congress, Lubiana, Slovenia, 2007.

[3] V. Chobotov. Orbital Mechanics. AIAA Educa-
tion Series, Second edition, 1996.

[4] V.V. Emel’yanenko. A method of symplectic in-
tegrations with adaptive time-steps for individual
Hamiltonians in the planetary N-body problem.
Celestial Mechanics and Dynamical Astronomy,
98(3):191–202, 2007.

[5] D. Losa. High vs low thrust station keep-
ing maneuver planning for geostationary satel-
lites. PhD thesis, Ecole Nationale Superieure des
Mines de Paris, 2007.

[6] M. Lovera. Object-oriented modelling of space-
craft attitude and orbit dynamics. In 54th Inter-
national Astronautical Congress, Bremen, Ger-
many, 2003.

[7] M. Lovera. Control-oriented modelling and sim-
ulation of spacecraft attitude and orbit dynam-
ics. Journal of Mathematical and Computer
Modelling of Dynamical Systems, Special issue
on Modular Physical Modelling, 12(1):73–88,
2006.

[8] O. Montenbruck and E. Gill. Satellite orbits:
models, methods, applications. Springer, 2000.

[9] M. Otter, H. Elmqvist, and S. E. Mattsson. The
new Modelica multibody library. In Proceedings
of the 3nd International Modelica Conference,
Linköping, Sweden, 2003.

[10] T. Pulecchi, F. Casella, and M. Lovera. A Mod-
elica library for Space Flight Dynamics. In Pro-
ceedings of the 5th International Modelica Con-
ference, Vienna, Austria, 2006.

[11] M. Sidi. Spacecraft dynamics and control. Cam-
bridge University Press, 1997.

[12] J. Wertz. Spacecraft attitude determination and
control. D. Reidel Publishing Company, 1978.

F. Casella, M. Lovera

The Modelica Association 514 Modelica 2008, March 3rd − 4th, 2008

Rotational3D —
Efficient modelling of 3D effects in rotational mechanics

Johan Andreasson
Magnus Gäfvert

Modelon AB
Ideon Science Park

SE–223 70 Lund, Sweden
E-mail: {johan.andreasson,magnus.gafvert}@modelon.se

Abstract

In this work, it is described how effects of rotational
mechanics represented in three dimensions can be de-
scribed in an efficient way. The ideas have been im-
plemented in the Rotational3D library which is intro-
duced in this paper. Special attention is payed to the
influence of joints and how 1D rotational and multi-
body representations can be combined. Comparison
of accuracy and efficiency with MultiBody is shown
as well as typical application examples.
Keywords: Rotational mechanics, Rotational3D,
Multi-Body, Driveline, Shaft

1 Introduction

There is large class of rotational mechanical systems
where 1-dimensional revolution, or spin, is the dom-
inating motion. Examples of such systems are auto-
motive drivelines, transmissions, and steering mecha-
nisms [1, 2]. These rotational systems are often part of
general 3-dimensional multi-body systems with which
they interact. This may be reaction forces and torques
from brakes or motors, or gyroscopic moments re-
sulting from motion orthogonal to the spin direction.
It can also be kinematic effects on the spin motion
from universal joints with bending angle coupled to
3-dimensional motion of multi-body parts.
Systems of this class may in parts be described with
the Modelica Standard Library (MSL) [3] by using
the the 1-dimensional formalism of the Rotational li-
brary, or by the full multi-body formalism of the
MultiBody library [4]. The 1-dimensional approach
gives a low-complexity representation that allows for
fairly straightforward modeling of components such
as clutches and gears. Simple reaction torques can be
applied to multi-body parts by using the Mounting1D

component. Gyroscopic effect may be included by us-
ing the Rotor1D component instead of the normal rota-
tional inertia. These composite Rotational and Multi-
Body models in the Modelica Standard Library were
introduced in [5]. They were designed for modeling
of automatic transmissions, and are useful in contexts
where the complete rotational mechanism is mounted
on one multi-body part. In more general cases they
have the limitations of not describing all interaction
effects. Other drawbacks are the lack of information
on mechanism geometry and the very rudimentary vi-
sualization.
Using MSL, a full model that includes all interaction
effects requires that also the spin motion is described
with MultiBody models. This results in overly com-
plex and inefficient models where the 1-dimensional
rotation is hidden in transformation matrices. The ro-
tation angle is difficult and computationally expensive
to extract. It is also only available in the range [−π,π]
and it is therefore tricky to track revolutions. Compo-
nents such as shafts introduces a lot of constraint equa-
tions when defined with standard multi-body joints.
The Rotational3D library was designed to combine
the advantages of the Rotational and MultiBody ap-
proaches. In particular, this means:

• Efficient description of the spin motion

• Reaction torques and forces

• Geometry and kinematic effects

• Visualization

• Interfacing to both MultiBody and Rotational

As a result, Rotational3D is very suitable for e.g. auto-
motive applications and it is an established part of the
VehicleDynamics Library [6].

Rotational3D - Efficient Modelling of 3D Effects in Rotational Mechanics

The Modelica Association 515 Modelica 2008, March 3rd − 4th, 2008

2 Modelling principles

The main idea is to describe the spin motion similarly
as in the Rotational library, and provide references that
are coupled to MultiBody frames.

2.1 Connector definition

To represent the reference and the shaft motion, the
following information must be communicated in a
connector.

1. The rotation angle around the axis of rotation

2. The torque around the axis of rotation

3. The forces and torques acting on the reference
frame

4. A reference frame with position and orientation

5. The direction of the axis of rotation, n

6. The axis that defines zero rotation, q

Items 1 and 2 can be described by a Rotational flange
and items 3 and 4 by a MultiBody frame. In addi-
tion, the reference axes n and q are required. The n
and q axes were explicitly defined in the connector in
early versions of Rotational3D. Now they are instead
implicitly defined as the x and y axes of the reference
frame, resulting in the following connector definition1:

connector Flange
MB.Interfaces.Frame frame

"Reference frame";
Rt.Interfaces.Flange flange

"Rotation around frame x-axis relative y-axis";
end Flange;

In Figure 1, the representation of the connector is seen.

2.2 Coupling 1D and 3D effects

Consider the fundamentals of an inertia, the angular
acceleration of the inertia is a sum of the contributions
of the flange and the frame so that the resulting torque
at the flange, τ f lange is defined2 as

τ f lange = J
(
ω̇ f lange + n̂ · ω̇ f rame

)
(1)

1A similar connector definition is also used in [7] and has been
introduced in the Modelica Standard Library as "FlangeWithBear-
ing". The scope of this is different as it essentially is intended as a
Rotational connector with an optional "bearingFrame" that allow
for reaction torques to be applied.

2This can also be found in [5].

Figure 1: Animation view of an axle in a bearing with
a connector reference shown. Axis-of-rotation (n), ref-
erence rotation (q), actual rotation (red arrow) and the
angle ϕ .

and the torque at the frame, τ̄ f rame is defined by

τ f rame + n̂τ f lange = J
(
n̂ω̇ f lange +ω f rame × n̂ω f lange

)
.

(2)
Here ω f lange, ω f rame, n̂, and J refer to the angular ve-
locity of flange and frame, spin axis, and inertia, re-
spectively. As a result, the torque at the flange, de-
pends on the motion of the frame and vice versa.
Another example of how information from both con-
nectors are required to formulate a model is a tyre
model. Typically, the longitudinal force generated by
the tyre is dependent on the wheel’s spin velocity. Un-
like for example a wheel speed sensor that measures
the speed relative to the hub, the total rotational veloc-
ity around the spin axis, ωtot , is required.

ωtot = ω f lange + n̂ ·ω f rame (3)

2.3 Avoiding over- and under-determined
systems

Consider Figure 2: With two mounted bearings (1),
each bearing is mounted to a MultiBody frame and
by supplying parameters for n and q, the rotation axis
and reference is defined in the Rotational3D connec-
tor. This model is over-determined since two con-
nectors, both specifying the reference is connected.
Correspondingly, if none of the connectors in a set
would have the reference specified, the model would
be under-determined (2).
This is avoided by a connection rule using two connec-
tors with different colours, the grey is unconstrained
and the white is constrained: Each connection set must
have one and only one white connector and there must
never be a loop containing only white connectors.
This rule is somewhat simplified, consider for exam-
ple the under-determined example from Figure 2 (3).
Here, both ends of the shaft are attached to white
connectors and there is no loop consisting on only
white connectors. Still, the model is over-constrained

J. Andreasson, M. Gäfvert

The Modelica Association 516 Modelica 2008, March 3rd − 4th, 2008

1 2 3

Figure 2: Example of under- and over-determined systems: Loop consisting on only white connectors (1).
The right-hand flange of the shaft is un-connected and under-determined (2). A model that is over-constrained
through the Rotational part (3).

since the Rotational part is forming a loop. This of
course could be handled by the rule above. It would
require that there were four Rotational3D connectors
to cover the combinations of constrained and uncon-
strained connectors.
Still, however, this would not be sufficient for the
general case since there are cases where some of
the MultiBody variables are constrained and some
not, which ultimately would lead to an unreasonable
amount of connectors.

3 Library contents

Unlike for many other libraries, Rotational3D compo-
nents are not intended to be used entirely on its own,
but together with Rotational and MultiBody compo-
nents. Only parts that cannot be modelled in Rota-
tional are implemented. This includes shafts, inertias,
visualizers, and other models where either the geome-
try or inertial effects are considered. In addition, there
are models that allow both Rotational and MultiBody
models to be used with the library, especially mounts
and housings.
Figure 3 shows some highlighted components: The
MultiBodyMount (1) translates a Rotational3D con-
nector to a rotating MultiBody frame and the Rota-
tionalMount (2) allow Rotational models with action
and reaction torques to be connected. The Supporte-
dRotationalMount (3) is a version of (2) including a
bearing and thus has an additional MultiBody connec-
tor to define the orientation of the flange. The Flange
visualization (4) visualizes the vectors n and q as well
as the rotation angle φ as seen in Figure 1 which is use-
ful both for debugging and comprehension. The Shaft
component (5) defines the motion between two flanges
without reference. It imposes no constraints between

1 2 3

4 5 6

7 8 9

Figure 3: A selection of components from Rota-
tional3D.

the flanges since it is assumed to be flexible also in the
length direction. The twist characteristics is defined by
connecting components to the Rotational connectors
and additionally, inertial effects can be added via the
MultiBody connectors. The rotation angle is defined
based on the choice of joint type made, either univer-
sal and constant velocity. The Inertia (6) corresponds
to the Rotor component but additionally contains geo-
metric information as well as mass properties and the
corresponding visualization.

As an extension to the basic mounts (1-3), there
are also housings suitable for components such as
gear boxes. The SupportedHousing (7) allow for
ideal gears to be directly connected to the Rotational
flanges. The SupportedHousing2 (8) is an adaption to
handle gearboxes from e.g. the PowerTrain library [8]
requiring a MultiBody support frame for internal in-

Rotational3D - Efficient Modelling of 3D Effects in Rotational Mechanics

The Modelica Association 517 Modelica 2008, March 3rd − 4th, 2008

ertias and animation. There are also sensors, such as
the AbsoluteRotationalVelocity (9), described in Sec-
tion 2.2.

4 Examples

As explained earlier, Rotational3D is intended to be
used together with both Rotational and MultiBody
components. This section explains and exemplifies
when Rotational3D is suitable and how component
and subsystem models can be designed.

4.1 Bevel gear

The first example shows two bevel gear components.
Consider first the upper diagram layer in Figure 4,
showing a bevel gear with an external support frame
(1). To this frame, two SupportedRotationalMount
components (2) are connected, each containing a bear-
ing that specifies the orientations of the two axles.
These mounts are connected to a Rotational.GearR2R
component (3) that contains the 1D gear characteris-
tics. Each mount is also connected to a connector (4)
and visualization for gear wheel and axle (5). Both
connectors are white since their orientation is fully
specified and as seen in the animation view (6), there
are two bearings except for the axles and gear wheels.

Now consider the lower diagram, showing the same
bevel gear but without the support frame. Instead,
the left connector is grey, indicating that this compo-
nent has to be connected to an outside bearing. The
left mount is here a RotationalMount, and as a conse-
quence, no bearing is present in the visualization.

4.2 Steering system

Steering systems for passenger cars are typically de-
signed as illustrated in Figure 5. The steering wheel
is attached to the steering column (1) which in turn is
connected to a shaft that is connected to the pinion of
the rack-and-pinion mechanism (3). Each connection
requires a joint (4) with two degrees of freedom to al-
low the shaft to rotate around its length axis. The uni-
versal joint is the most common type, consisting of two
revolute joints in series forming a cross. Unlike more
advanced joints, the universal joint has a varying ratio
over a revolution, depending on the bend angle (α).

This require careful design of the geometric layout
as well as the rotation of the cross and depending on
these two factors, the resulting gear ratio of the mech-
anism will vary. Figure 6 shows the difference in rack

SupportedBevelGear

BevelGear

1

2 2
3

4 4

5 5

6

Figure 4: Diagram layer and visualization of two bevel
gear models.

3

1

α

4

2
4

Figure 5: Typical steering system layout (right) and
universal joint geometry (left).

J. Andreasson, M. Gäfvert

The Modelica Association 518 Modelica 2008, March 3rd − 4th, 2008

-400 -200 0 200 400
0.8

0.4

0.4

0.8

steering wheel angle [deg]

Difference: universal – constant velocity

-

-

0

[m
m

]

Figure 6: Difference in rack position as function of
steering wheel angle.

2

3

4
5

1

Figure 7: Transmission model for the VehicleDynam-
ics library using PowerTrain library components.

position for the steering system in Figure 5, compared
to the same system but with constant velocity joints.

4.3 Automatic Transmission

Another advantage of Rotational3D is its compatibil-
ity with other Modelica libraries. Figure 7 shows
an example of a seamless integration of two libraries
for an automatic transmission. It is defined from a
standard interface in the VehicleDynamics library and
completed with shift mechanism (1), shift controller
(2) and a housing (3). The torque converter (4) and the
gear box (5) are from the PowerTrain library [8]. Note
that the PowerTrain components use a MultiBody sup-
port frame as discussed in Section 3.

Table 1: Translation and simulation results from Dy-
mola [9].

MB Rt3D
linear systems {10,3,3,2} {3,3}

non-linear systems {10} {1}
simulation time 1.91 0.047

4.4 Comparison with MultiBody

Two implementations of a drive shaft are compared. A
drive shaft is typically used to transfer axial rotational
motion between two moving bodies. Using MultiBody
primitives to define a non-elastic shaft with universal
joints yields the series R-U-P-U-R. R denotes a revo-
lute joint, here representing the bearings, P is a pris-
matic and U is a universal (two orthogonal revolute
joints).
Figure 9, shows an animation screen shot of the per-
formed simulation where both the MultiBody (MB)
and the Rotational3D (Rt3D) representations are in-
cluded on top of each other. The trajectory of the first
universal joint is shown as well as vectors for the re-
sulting forces and torques. The first shaft end is driven
with a constant speed relative to its bearing while the
required drive torque as well as the speed at the other
shaft end is shown, Figure 9.
Table 1 shows the number of linear and non-linear sys-
tems of equations and the simulation time for the two
cases described above. By avoiding the constraints
imposed by the MultiBody primitives, the number of
non-linear equations are drastically decreased which
makes the Rotational3D implementation about a factor
40 faster and less sensitive to the specified accuracy of
the integrator.

5 Limitations

Although the library concept is proven to be efficient,
it requires that some fundamental rules are followed.
As already stated, there is a connection rule to avoid
over- and under-constrained models. Additional, relat-
ing to the problems with the representation of multiple
revolution in MultiBody, it is required that the relative
rotation between two reference frames is less than one
revolution.

6 Conclusions

This work presents a new library that combines the ad-
vantage with Rotational and MultiBody representation

Rotational3D - Efficient Modelling of 3D Effects in Rotational Mechanics

The Modelica Association 519 Modelica 2008, March 3rd − 4th, 2008

Figure 8: Animation view of the comparison and val-
idation example with motion, forces and torques indi-
cated. The MultiBody and the Rotational3D models
are overlayed.

0 5 10
-100

-50

0

50

100

0 5 10
-0.010

-0.005

0.000

0.005

0.010

Shaft torque Rt3Dshaft torque MB

Difference in shaft torque MB-Rt3D

[N
m

]
[N

m
]

0 5 10
-5

0

5

10
Shaft velocity Rt3D

0 5 10
-5E-5

0E0

5E-5

1E-4
Difference in shaft velocity MB-Rt3D

shaft velocity MB

[ra
d/

s]
[ra

d/
s]

Figure 9: Comparison of the MultiBody and the Rota-
tional3D implementations. Speed at the second shaft
end (upper two plots) and required drive torque at first
shaft end (lower two plots).

of rotational mechanics. It gives the same simulation
results as MultiBody representations, often at a frac-
tion of the cost. An example shows a factor of around
40. More complex mechanisms such as drivelines are
often difficult/impossible to get to work in MultiBody.
These are built seamlessly in Rotational3D.

References

[1] Andreasson, J., Gävert, M., The VehicleDy-
namics Library - Overview and Applications.
In: Proceedings of the 5th Modelica Confer-
ence, Vienna, Austria, Modelica Association, 4-5
September 2006.

[2] Andreasson, J., On Generic Vehicle Motion
Modelling and Control, Ph.D. thesis, ISBN 91-
7178-527-2, 2006.

[3] Modelica Association. The Modelica Standard
Library, http://www.modelica.org

[4] Otter, M. et al. The New Modelica MultiBody Li-
brary. In: Proceedings of the 3rd Modelica Con-
ference 2003, Linköping, Sweden, Modelica As-
sociation, October 2003.

[5] Schweiger, C., Otter, M., Modelling 3D
Mechancisl Effects of 1D Powertrains. In: Pro-
ceedings of the 3rd Modelica Conference 2003,
Linköping, Sweden, Modelica Association, Oc-
tober 2003.

[6] Modelon AB, Lund, Sweden. The VehicleDy-
namics library, User’s Guide, Version 1.2, 2007.

[7] Dempsey M. et al. Coordinated automotive li-
braries for vehicle system modelling. In: Pro-
ceedings of the 5th Modelica Conference 2006,
Vienna, Austria, Modelica Association, Septem-
ber 2006.

[8] Schweiger, C. et al. The PowerTrain Library:
New Concepts and New Fields of Application.
In: Proceedings of the 4th Modelica Conference
2005, Hamburg, Germany, Modelica Associa-
tion, March 2005.

[9] Dymola - Dynamic Modelica Laboratory,
http://www.dynasim.se

J. Andreasson, M. Gäfvert

The Modelica Association 520 Modelica 2008, March 3rd − 4th, 2008

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig
for Elastomer Bushings

Susann Wolf Joachim Haase Christoph Clauß
Fraunhofer-Institute for Integrated Circuits, Design Automation Division (IIS/EAS)

Zeunerstraße 38, 01069 Dresden, Germany
{Susann.Wolf, Joachim.Haase, Christoph.Clauss}@eas.iis.fraunhofer.de

Michael Jöckel Jürgen Lösch
Fraunhofer-Institute for Structural Durability and System Reliability (LBF)

Bartningstraße 47, 64289 Darmstadt, Germany
{Michael.Joeckel, Juergen.Loesch}@lbf.fraunhofer.de

Abstract

This paper presents methods of sensitivity calcula-
tion applied to a multi-axial test rig for elastomer
bushings. In this context, the effect of parameter
variations on system variables is analysed by using
different tools. Aspects like modelling, modelling
effort, computing time and accuracy are discussed.
This paper is based on results, which were developed
in the Fraunhofer collaborative project “Computer
Aided Robust Design (CAROD)”.

Keywords: parameter sensitivity; Monte-Carlo simu-
lation; elastomer test rig; DAE; Dymola; DASPK;
MATLAB

1 Introduction
Tolerances of material quality, manufacturing proc-
esses and assembly operations lead to scattering
product properties. In mass production therefore
more or less significant deviations of the desired
“ideal” properties occur. Resulting from wear and
degradation, also during product life cycle continu-
ous changes of component and system characteristics
take place.
The named uncertainties are only covered insuffi-
ciently in traditional development workflows of
mechatronical products. In most cases, simulations
without any parameter scatter are performed to opti-
mise mechanical and mechatronical systems and to
analyse their durability and reliability.
The objective of Robust Design is to analyse the ef-
fects of scattering component behaviour in early de-

velopment phases and to optimize products. This
presentation will focus on sensitivity analysis, which
typically is an initial task in robust design studies.
The prior objective is to determine parameters,
which highly affect the product behaviour.
The paper starts with a short description of the cho-
sen technical example: A 3 DOF test rig for elas-
tomer bushings. Subsequently, two multi-body-
simulation models of the test rig using MATLAB
and Modelica are presented, including a cross-
comparison of the particular simulation results. In
the following, the method of “sensitivity calculation”
is introduced, which has conceivable potentials to
lower the effort for sensitivity analyses. To validate
the results, the implementation of a Monte-Carlo
(MC) analysis is treated, which is based on repeated
calls of the Dymola simulator. The results of this MC
analysis are again compared with an MC analysis
performed with MATLAB. Finally, based on the
analysis results, the application and performance of
the methods for sensitivity evaluation are discussed.

2 Technical Example: Test Rig for
Elastomer Bushings

2.1 Application and Technical Description

The methods described in this paper are presented by
example of a multi-axial test rig (figures 1 and 2),
which is owned by Fraunhofer LBF. The test rig is
mainly used for sign-off tests of automotive elas-
tomer bushings considering service loads. Further
on, the bushing’s dynamic transmission behaviour
can be characterised.

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer Bushings

The Modelica Association 521 Modelica 2008, March 3rd − 4th, 2008

Fig. 1: Multi-axial test rig for characterisation and testing of elastomer
bushings at Fraunhofer LBF and CAD model of a typical elastomer
bushing (right)

Using servo-hydraulic actuation, variable cyclic
loading of more than 100 Hz is feasible. Based on a
transmission design with pre-stressed cardan joints,
the load directions “axial (x)”, “lateral (y)” and “tor-
sion (α)” at the bolt can be realised isolated or in
combination, respectively. To minimise wear and
friction, hydrostatic linear guides between bolt and
bail as well as bail and base plate are used. The
movement of the bolt – and therefore the displace-
ment of the elastomer bushing – is measured by sen-
sors, which are positioned near the bushing’s clamp-
ing device. The reaction forces are measured by a
piezoelectric measurement platform.

Fig.2: CAD model of the test rig, declaration of bodies and degrees of
freedom (“absolute”)

2.2 Multi-Body-Simulation Model of the Test
Rig and Simulation Tools

To analyse the dynamic behaviour of test rig me-
chanics, multi-body-simulations (MBS) are used (cp.
[1]). In this context, the models typically include
rigid bodies, which are linked by joints and force
elements.
Corresponding, the MBS model of the elastomer test
rig includes the rigid bodies “bolt”, “bail”, “piston”
and “shaft”, while following joints and force ele-
ments are applied between the bodies (cp. figures 2
and 3):

- Bolt-bail: cylindrical joint x/α, damping x/α
(hydrostatic bearings)

- Bail-base plate: prismatic joint y, damping y
(hydrostatic bearing and friction of hydraulic
cylinder)

- Bolt-base plate: 6 DOF, stiffness x/α/y and
damping x/α/y (elastomer bushing)

- Bolt-shaft: cardan joint, no force element
- Shaft-piston: cardan joint, no force element
- Piston-base plate: cylindrical joint x/α,

damping x/α (friction of hydraulic cylinder)

The transmission characteristic of the elastomer
bushing is modelled by using the approaches

FE,x=cEx3⋅x³+cEx1⋅x+dEx1⋅dx/dt,
FE,y=cEy3⋅y³+cEy1⋅y+dEy1⋅dy/dt and
ME,α=cEα3⋅α³+cEα1⋅α+dEα1⋅dα/dt,

which describe nonlinear stiffness and linear damp-
ing behaviour for each load component. The parame-
ter settings are based on measurement data derived
by tests with a commercial elastomer bushing.
Comparable to the physical test rig, the MBS model
is actuated by axial forces Fx, torsion Mα (piston) and
lateral forces Fy (bail).

Fig.3: Multi-body simulation model of the test rig („top view“)

The MBS model was set up in MAT-
LAB/SimMechanics as well as in Modelica (using a
Dymola solver).

2.3 Comparison of Modelica and MATLAB
Model

To compare the MBS models built in the MATLAB
and Modelica environment, two test cases were de-
fined. The first test case is characterised by sinusoi-
dal forces and moments:

S. Wolf, J. Haase, C. Clauß, M. Jöckel, J. Lösch

The Modelica Association 522 Modelica 2008, March 3rd − 4th, 2008

- Fx=3.0⋅106⋅sin(314⋅t) [N]
- Fy=3.4⋅108⋅sin(t) [N]
- Mα=104⋅sin(150⋅t) [Nm]

In contrast, the second test case includes the applica-
tion of noise signals (figure 4). These signals were
generated with a MATLAB script, which contains
the rand command.

Fig. 4: Applied noise signals in test case 2

Figures 5 and 6 show the calculated displacements x
and y [mm] as well as the torsion α [rad] of the body
“bolt” for the two test cases.

Fig. 5: Test case 1 - Solution (Dymola)

Fig. 6: Test case 2 – Solution (Dymola)

To compare the MBS models created in Modelica
and MATLAB, the displacements x and y as well as
the torsion α of the body “bolt” were analysed in the
time domain. Figure 7 shows the calculated dis-
placements and torsion for test case 1, exemplarily. It
is obvious, that both models lead to nearly identical
results. This conclusion is affirmed by the results
concerning case 2.

Fig. 7: Comparison of results from Modelica and MATLAB model
(case 1)

2.4 Treated Scenario

The investigations target a virtual scenario, which
describes the production of a small series of (only)
theoretically identical test rigs. Due to manufacturing
tolerances the test rig components will differ more or
less, leading to scatter of the test rig’s behaviour.
To examine the scenario, prior parameters of the
MBS model have to be defined, which are affected
by assumable manufacturing tolerances. In this con-
text, 13 parameters have been identified:

- Masses of all rigid bodies
- Inertias “α ” of bodies “piston”, “shaft” and

“bolt”
- Inertia “γ ” of body “shaft”
- Damping coefficients concerning hydrostatic

linear guides “bail-base plate (y)” and “bail-
bolt (x,α)”

- Damping coefficients concerning friction of
hydraulic cylinders (“piston”: x/α, “bail”: y)

In the following, the sensitivity of the test rig dynam-
ics on variations of these parameters is examined by
sensitivity calculation and MC analyses.

3 Sensitivity Calculation

3.1 Method of Sensitivity Calculation

The main idea is to pre-evaluate the sensitivity of the
test rig performance due to variations of single pa-
rameters. Beside information concerning the per-
formance scatter to be expected, promising “adjust-
ing screws” for system optimisation can be derived.

0.3 0.31 0.32 0.33 0.34

-0.05
-0.025

0
0.025

0.05

0.3 0.31 0.32 0.33 0.34
0.1

0.12

0.14

[
]

0.3 0.31 0.32 0.33 0.34

-1

-0.5

0

0.5

1

[
]

MATLAB
Modelica

time [s]

x
[m

m
]

y
[m

m
]

α
[ra

d]

Time t [s]

Fo
rc

es
F x,F

y
[N

]a
nd

 m
om

en
tM

a
[N

m
]

Time t [s]Time t [s]

Fo
rc

es
F x,F

y
[N

]a
nd

 m
om

en
tM

a
[N

m
]

Time t [s]D
isp

la
ce

m
en

ts
x,

y
[m

m
]

an
d

to
rs

io
n

a
[r

ad
]

Time t [s]D
isp

la
ce

m
en

ts
x,

y
[m

m
]

an
d

to
rs

io
n

a
[r

ad
]

x y α

Time t [s]

D
is

pl
ac

em
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
α

[r
ad

]

x y α

Time t [s]

D
is

pl
ac

em
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
α

[r
ad

]

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer Bushings

The Modelica Association 523 Modelica 2008, March 3rd − 4th, 2008

The performance and dynamics of the test rig are
analysed using multi-body-simulation. To perform
sensitivity calculation, the analytical equations of
motion have been set up explicitly using the La-
grange approach. Thus, the system equations are
available in symbolic form. The DAE/ODE system
of the elastomer test rig is described by 3 equations
of motion (1) to (3) with 3 state variables x(t), y(t)
and α(t) as well as 23 system parameters (13 pa-
rameters to be varied, 10 fixed parameters). The sys-
tem is excitated by sinusoidal forces and moments
(compare (1) to (3), case 1) as well as noise signals
(case 2).

3 2 2

2 4 3
3 2 2

2 2 2 2

3.0e6 Sin(314 t) = cEx1 lW + 4 cEx3 lW + cEx1 X(t) + 6 cEx3 lW X(t) + 3 cEx3 lW X(t) +

cEx1 lW 4 cEx3 lW 6 cEx3 lW X
 cEx3 X(t) - 3 cEx3 lW Y(t) - 3 cEx3 X(t) Y(t) - - -

lW -Y(t) lW -Y(t)

2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 4

2 2 2 2

(t)
-

lW -Y(t)

3 cEx3 lW X(t) cEx1 Y(t) 5 cEx3 lW Y(t) 6 cEx3 lW X(t) Y(t)
 + + + +

lW -Y(t) lW -Y(t) lW -Y(t) lW -Y(t)

3 cEx3 X(t) Y(t) cEx3 Y(t)
 - + (dDx+dEx1+dKx) X (

lW -Y(t) lW -Y(t)
′

()

2 2

2 2

3 2 22 2

(dDx+dEx1) Y(t) Y (t)
t) + +

lW -Y(t)

lW (2 mD+mW) Y (t) (2 mD+mW) Y(t) Y (t)
 + (mD+mK+mW) X (t) +

2 lW -Y(t)2 lW -Y(t)

′

′ ′′
′′

(1)

()

2 2

2 2
2

22 2 2
2 2 2

2

3.4e8 Sin(t) = (t) +

(t)

(t
(t)

(t)
(t)

(t) (t)
(t)

cEy1 Y ... +
mW jWzmB+mD+ + +

4 lW -Y

 Y
4 mD+mW jWx lW Tan(AL)Y +

4 lW - 4 Y -lWlW -Y +Y
Cos(AL)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟ ′′
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

)

(2)

2
2

22
2 2

2

(t) (t) (t)
1.0e4 Sin(150 t) = (t) (t) +

(t) (t)
(t)

jWx lW Tan(AL) Y Y (cEa1+cEa3 AL) AL ... +
-lWCos(AL) +Y

Cos(AL)

′′

⎛ ⎞
⎜ ⎟
⎝ ⎠

(3)

The performance and dynamics of the test rig are
evaluated by analysing the resulting displacements x
and y as well as the resulting torsion α of the body
“bolt”, which directly loads the elastomer bushing.
Sensitivity calculation examines the effects of minor
parameter deviations from their nominal values for
the behaviour of the dynamic systems.
In this case systems are regarded, which are de-
scribed by differential-algebraic equations (DAEs) of
the form
 F(x, x, p, t) = 0 (4)

, the equations of motion of the system, whereas
x(t) n∈ are state variables and mp∈ summa-
rises parameters of all types, which mean diverse
determining factors on developing of the variables.
The factor of interest is the influence, which changes
of parameters cause of developing of the variables,

the so-called sensitivities of parameter
()

i

x t
p

∂
∂

(the

sensitivity of variable x concerning parameter ip).
These sensitivities are computed for the evaluation

of the interesting influence. Sensitivities are func-
tions of time t. Also these functions can be used as a
basis for the determination of derived functions.
By differentiation of the system (4) according to all

ip the following system can be set up for the com-
putation of first-order parameter sensitivities:

i

F F + = - (i=1,...,m)
pi i

x F x
x p x p
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 (5)

(4) together with (5) can currently be solved by Dy-
mola, if (5) is added explicitly. The code DASPK [2]
can directly solve the DAE (4) and (5), where (5) is
generated within the code automatically.

3.2 Results of Sensitivity Calculations

Dymola and DASPK were used to calculate both
solution and sensitivities of the elastomer test rig.
For the equations of motion the results for x, y and α
were calculated. The solutions from Dymola and
DASPK are in accordance. In the following, the in-
fluence of parameters on the axial displacement x
and the torsion α of the bolt are illustrated.
The first-order sensitivities for case 1 are computed
using DASPK (figures 8 to 15). The solutions are
shown in 8 and 10 (see also figure 5 using Dymola).
The figure 9 shows first-order parameter sensitivities
of x regarding parameters of mass. The timeline cor-
responds to figure 8. Figure 11 where the timeline
corresponds to figure 10 shows the first-order pa-
rameter sensitivities regarding parameters of inertia.

-1,2

-0,7

-0,2

0,3

0,8

0,0 0,2 0,4 0,6 0,8 1,0

Time t [s]

D
is

pl
ac

em
en

ts
 x

, y
 [m

m
] a

nd
 to

rs
io

n
α

 [r
ad

]

X
Y
AL

 -12,0

-6,0

0,0

6,0

12,0

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Time t [s]

Se
ns

iti
vi

tie
s

of
 x

 re
ga

rd
in

g
pa

ra
m

et
er

s
of

 m
as

s
m

K
, m

W
, m

D

mK
mW
mD

Fig.8: Detail of solution (DASPK) Fig.9: Detail of first-order parame-
 ter sensitivities of x (DASPK)

-1,2

-0,8

-0,4

0

0,4

0,8

1,2

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05

Time t [s]

D
is

pl
ac

em
en

ts
 x

, y
 [m

m
] a

nd
 to

rs
io

n
α

 [r
ad

]

X
Y
AL

-0,12

-0,10

-0,08

-0,06

-0,04

-0,02

0,00

0,02

0,04

0,06

0,08

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05

Time t [s]

Se
ns

iti
vi

tie
s

of
 x

 re
ga

rd
in

g
 p

ar
am

et
er

s
of

in

er
tia

 jK
x

, j
W

x
, j

W
z,

 jD
x

jKx
jWx
jWz
jDx

Fig.10: Detail of solution (DASPK) Fig.11: Detail of first-order
 parameter sensitivities of x (DASPK)

By classifying the amplitudes of the time-depending
sensitivity functions (e.g. figures, 9, 11, 12, 13, 14,
17 and 18) it can be evaluated, which parameters
have a large, a marginal or no influence on the solu-

S. Wolf, J. Haase, C. Clauß, M. Jöckel, J. Lösch

The Modelica Association 524 Modelica 2008, March 3rd − 4th, 2008

tion of the system. Parameters with a significant in-
fluence to solution x are the parameters of mass mK,
mW, mD and the parameters of inertia jKx, jWz and
jDx, see as an example figure 12 and 13. Concerning
sensitivities of y, also parameters of inertia and mass
have an influence. Parameters with a significant in-
fluence to solution α are the inertias jKx, jWz and
jDx.

-0,4

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05

Time t [s]

Se
ns

iti
vi

tie
s

of
 x

mK
mW
mD
mB
jKx
jWx
jWz
jDx
dDx
dDa
dKx
dKa
dBy
lW
cEx1
cEx3
cEy1
cEy3
cEa1

cEa3
dEx1
dEy1

dEa1

Fig.12: Detail of first-order parameter sensitivities of x regarding all
parameters (DASPK)

-300

-200

-100

0

100

200

300

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

Time t [s]

Se
ns

iti
vi

tie
s

of
 x

mK

mW

mD

mB

jKx

jWx

jWz

jDx

dDx

dDa

dKx

dKa

dBy

Fig.13: Detail of first-order parameter sensitivities of x regarding 13
specified parameters) (DASPK)

Again figure 14 illustrates the described results ex-
emplarily of parameter of mass mK regarding x and
α.

-10

-8

-6

-4

-2

0

2

4

6

8

10

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18 0,20

Time t [s]

Se
ns

iti
vi

ty
 o

f x
 a

nd
 α

 re
ga

rd
in

g
m

K mK / X

mK / AL

Fig.14: Comparison of influence of parameter of mass mK on x and α

Solutions of the original system using different pa-
rameter values confirm the sensitivity calculations.
Figure 15 illustrates the range of tolerance of solu-
tion x regarding variation of all parameters (± 0,5%
and ± 1%). The graphic shows that by increasing

time the range of tolerance band is increasing. That
is why parameter changing causes not only different
amplitudes but also variations in the time behaviour.

-0,08

-0,06

-0,04

-0,02

0

0,02

0,04

0,06

0,08

0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 0,04 0,045 0,05

Time t [s]

D
is

pl
ac

em
en

t x
 [m

m
]

X(t)
X(t) / + 0,5 %
X(t) / - 0,5 %
X(t) / + 1 %
X(t) / - 1 %

Fig.15: Detail of range of tolerance of solution x regarding variation of
all parameters (DASPK)

In case 2 (figures 17 and 18), sensitivity calculations
are carried out by means of Dymola. The resulting
first-order parameter sensitivities are approximations
by method of difference quotient. This method is
explained by a scheme which is illustrated in figure
16. The original model was parallel instantiated with
different parameter values, which are necessary for
difference quotient calculation.

Fig.16: Method of difference quotient using Dymola

Figure 17 shows that all considered parameters have
nearly no influence on the solution x of the system,
whereas parameters of mass mK, mW and mD are
dominating parameters.

Fig.17: First-order parameter sensitivities of x for 13 specified parame-
ters (difference quotient)

Parameter with a significant influence on solution α
are parameter of inertia jKx, jWx and jDx, see figure
18. Regarding case 2, first-order parameter sensitivi-
ties will also be carried out by means of DASPK.

Time t [s]

Se
ns

iti
vi

tie
s

of
 x

Time t [s]

Se
ns

iti
vi

tie
s

of
 x

≈

...

p nom

p1 var

x nom (t)

x1 var (t) ... 1p
x

∂
∂1

1

var() nom()
var() nom()

x t x t
p t p t

−
− ≈

...

p nom

p1 var

x nom (t)

x1 var (t) ... 1p
x

∂
∂1

1

var() nom()
var() nom()

x t x t
p t p t

−
−

...

p nom

p1 var

x nom (t)

x1 var (t) ... 1p
x

∂
∂1

1

var() nom()
var() nom()

x t x t
p t p t

−
−

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer Bushings

The Modelica Association 525 Modelica 2008, March 3rd − 4th, 2008

Fig.18: First-order parameter sensitivities of α for 13 specified parame-
ters (difference quotient)

The results show, that sensitivity calculation leads to
comparable results for test case 1 and test case 2.
Related to these sensitivity computations it can be
summarised that additionally to the determination of
the solution of a concrete DAE system also sensitiv-
ity computations are possible. As noted above, the
results from Dymola and DASPK are in accordance.
Concerning the results of sensitivity calculations, the
evaluation of influence of the parameters on the tar-
geted result values is feasible.

4 Monte-Carlo Analysis

To evaluate the results of sensitivity calculation MC
analyses [3] were performed by usage of both Mode-
lica and MATLAB models.

4.1 Modelica Model

Within the Dymola simulator MC simulation is of-
fered as a tool-specific feature. In this paper, another
possibility was used which will also be presented as
a poster on the Modelica’2008 conference.
In the Modelica model the parameters which are to
be varied randomly get their values via a function
call. This function, which can be coded as a Mode-
lica function or a C-Function, is parametrised by the
user with parameters of the desired random distribu-
tion. Repeated Dymola calls (via the scripting lan-
guage) cause the randomly choice of the value of the
chosen parameter. The results of each simulator run
have to be collected.
In this case, a uniform distribution with the nominal
value 6.0 and the tolerance ±10% was used as an
example, which is specified in the model in this way:

Sensitivity calculation described in section 3 yielded
an evaluation of system parameters. Then MC analy-
ses for located dominating parameters were deter-
mined.
The results of MC analyses for case 1 are illustrated
by figures 19 to 23.

Fig.19: Tolerance band of x, y and α regarding parameters of mass

Fig.20: Detail of tolerance band of x, y and α regarding parameters of
mass

Figure 21 shows that parameters of mass have only a
marginal influence on solution α. These result veri-
fied the small tolerance band of α regarding parame-
ters of mass.

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

Time t [s]

Se
ns

iti
vi

tie
s

of
 α

mK
mW
mD
mB

Fig.21: Sensitivity of α regarding parameters of mass (DASPK)

Time t [s]

Se
ns

iti
vi

tie
s

of
 a

Time t [s]

Se
ns

iti
vi

tie
s

of
 a

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[ra
d]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[ra
d]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[ra
d]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[ra
d]

model elast
// parameter of the system

parameter Real mK = uniform(6,0.10)
"mass of piston";

...

S. Wolf, J. Haase, C. Clauß, M. Jöckel, J. Lösch

The Modelica Association 526 Modelica 2008, March 3rd − 4th, 2008

Fig.22: Tolerance band of x, y and α regarding parameters of inertia

Fig.23: Detail of tolerance band of x, y and α regarding parameters of
inertia

The results for case 2 are shown by figures 24 to 26.

Fig.24: Tolerance band of x, y and α regarding parameters of mass

Fig.25: Tolerance band of x, y and α regarding parameters of inertia

Fig.26: Detail of tolerance band of x, y and α regarding parameters of
inertia

MC analyses verified the results of sensitivity calcu-
lation, see section 3.

4.2 MATLAB Model

The sensitivity analysis of the MATLAB model was
performed with the Fraunhofer LBF inhouse soft-
ware MASIMO. The software creates sample sets of
user-defined parameters based on Latin-Hypercube-
Sampling methods and automatically performs the
needed simulations in MATLAB. MASIMO was,
among other things, applied during the EC funded
project “MODBOGIE” [4] to perform sensitivity
analysis of a complex locomotive model.
The MC analyses each contained 100 simulations for
test case 1 and test case 2. All 13 parameters (cp. ch.
2.2) were set to vary in a range of ±10% of their
nominal value, while an equal distribution of pa-
rameter values was defined, respectively.
To analyse the resulting time series of the simula-
tions, scalar evaluation quantities xm, ym and αm were
defined, taking the arithmetic mean value of the
amount of displacements and torsions x(t), y(t) and
α(t). Following, the parameter xm is examined, ex-
emplarily.
Figure 27 shows an qualitative Anthill plot of xm as a
function of the piston mass for test case 1. Each
point represents the (converted) result of one single
simulation of the MC analysis. The diagram shows
the trend, that an increasing piston mass leads to de-
creasing values of xm. In general, Anthill plots can be
used to get a first impression of sensitivities and
trends.

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[ra
d]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[ra
d]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Time t [s]

D
isp

la
ce

m
en

ts
x,

y
[m

m
]a

nd
 to

rs
io

n
a

[r
ad

]

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer Bushings

The Modelica Association 527 Modelica 2008, March 3rd − 4th, 2008

C
or

re
la

tio
n

co
ef

fic
ie

nt
 [-

]

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6
Parameter No.1 13

Pi
st

on
m

as
s

S
ha

ft
m

as
s

Bo
lt

m
as

s

Piston mass

S
ca

la
re

va
lu

at
io

n
pa

ra
m

et
er

x m

Trend

Figure 27: Anthill-plot of xm as a function of piston mass

To derive further information, correlation coeffi-
cients between the result values xm, ym and αm and
the varied input parameters can be applied. Figure 28
exemplary shows the correlation between xm and the
input parameters. In this context, negative correlation
coefficients point out, that an increasing parameter
value leads to decreasing result quantities. It is obvi-
ous, that the masses of piston, shaft and bolt affect xm
dominantly.

Figure 28: Correlation of xm with the varied parameters (1…13), case 1

Similar investigations were performed for the result
values xm and αm. The analysis of αm showed prior
sensitivities on the inertias of piston, shaft and bolt,
while ym is dominantly affected by the masses of all 4
bodies.
The analysis of test case 2 led to comparable results.
Again, the body masses of piston, shaft and bolt af-
fect xm, while the torsion αm is dominantly influ-
enced by the inertias of these bodies. ym again is
dominantly affected by the masses of all 4 bodies.

5 Conclusions

In this paper, the application of sensitivity calcula-
tion was presented by example of a multi-body simu-
lation model of an elastomer test rig. The results
show, that sensitivity calculation has the potential to
pre-evaluate prior parameters of a model, which ex-

emplarily can be deeper analysed by a following MC
analyses. An indispensable precondition for applying
sensitivity calculation is the provision of the equa-
tions of motion in a symbolic representation.
Especially for complex models with a high number
of DOF or long periods to be computed, the preselec-
tion of parameters can lead to a significant reduction
of computational effort. Even in case of the test rig
example, which only comprises 4 DOF and rather
small time series to be computed (< 2 seconds), each
simulation of the MC analysis took approximately 2
minutes (Pentium 4, 3 GHz). Resulting, a complete
analysis with 100 simulations and 13 parameters
took more than 3 hours.
A sensitivity calculation using DASPK respectively
13 parameters (until tend 1 s) took approximately 10
minutes. Using Dymola a sensitivity calculation (as
shown in figure 16) took maximal approximately 40
minutes and a MC analysis with 50 simulations and
4 varied parameters maximal approximately 12 min-
utes. Resulting, a complete MC analysis using Dy-
mola with 100 simulations and 13 parameters (2 sec-
onds) would take approximately 2.5 hours. These
computation times point out, that sensitivity calcula-
tion is able to reduce effort considerably.
Within the Dymola simulator, MC simulation is of-
fered as a tool-specific feature. In this paper a more
common possibility was presented, which describes
the MC method on the Modelica language totally.
Both methods are very time consuming. Using Dy-
mola the effects of parameter tolerances can be cal-
culated by MC simulation (with a high computa-
tional effort), using the sensitivity system (5), which
has to be added manually or using the finite differ-
ence approximation (see figure 16).
Using the code DASPK, system (5) is generated
within the code automatically. It would be desirable,
if this possibility (and also regarding a similar sys-
tem for second-order parameter sensitivity) would be
existant also in Dymola. So far, an operator of sensi-
tivities like the existing operator der (), the deriva-
tion with respect to time, is absent.
Note, that the solver DASPK allows the computation
of first-order parameter sensitivities. The interpreta-
tion of these results leads to a classification of the
importance of the system parameters regarding the
effect to the variables.

6 Outlook

The next steps will cover following topics:

S. Wolf, J. Haase, C. Clauß, M. Jöckel, J. Lösch

The Modelica Association 528 Modelica 2008, March 3rd − 4th, 2008

Parameter Sensitivities of Second-Order using
DASPK

In this section a short description is given to deter-
mine second-order parameter sensitivities by means
of DASPK. By means of differentiation of the sys-
tem (5) according to all ip second-order parameter
sensitivities are computed. As mentioned before, the
code DASPK can solve the DAE (4) and (5). By dif-
ferentiation of the system (4) according to all ip and
using of this system as a new system (4) in the
source code, the second-order parameter sensitivities
are generated automatically.
Another way to determine the second-order parame-
ter sensitivities is the modification of source code of
DASPK. Therefore, an aim is to extend the source
code of DASPK to generate the system of second-
order parameter sensitivities automatically by differ-
entiation of system (5). Then DASPK could solve
(4), (5) and also the system of second-order, where
(5) and the system of second-order could be gener-
ated within the code automatically.

Introduction of scalar evaluation quantities

In continuative work, analyses concerning scalar
evaluation quantities, which are derived from the
results in the time domain, are planned. Examples for
these scalar evaluation result quantities are the first
eigenfrequency or the mean value of the amplitude
spectrum in a defined frequency range. The first ei-
genfrequency can be computed in MATLAB directly
from the condition matrix of the elastomer test rig
model. Using Dymola, the condition matrix can be
generated and denoted by linearisation of the original
model. Within Modelica there are also matrix func-
tions, which are useful for this context. The first ei-
genfrequency can be derived from simulations in the
time domain and a following Fourier transformation.
For each DOF x, y and α, then a scalar quantity can
be calculated.
Regarding sensitivity calculation, problems can oc-
cur in this context, because scalar evaluation quanti-
ties are not directly available in the DAE system. If
the evaluation quantity can be calculated during the
simulation, sensitivities are automatically present.
Otherwise, derived evaluation variables have to be
calculated by post-processing. This challenge will be
discussed in further publications.

References

[1] Jöckel, M.; Wallmichrath, M.; Bruder, M.;
Lösch, J.; Landersheim, V.: Virtual Test Lab –
Simulation Based Testing of Components and
Systems. Proceedings of NAFEMS-Seminar
2006 “Virtual Testing – Simulation Methods
as Integrated part of an Efficient Product De-
velopment”, ISBN 1-874376-14-x, 2006

[2] Petzold, L.; Cao, Y.; Li, S.; Serban, R.: Sensi-
tivity analysis of differential-algebraic equa-
tions and partial differential equations. Com-
puters and Chemical Engineering 30, 2006, pp.
1553-1559.

[3] Robert, C. P.; Casella, G.: Monte Carlo Stati-
stical Methods, Springer, 2004 (2nd ed.)

[4] Jöckel, M.; Bruder, T.; Lösch, J.; Kieninger,
M.; Schmidt, H.: European research projects of
LBF: HEMBOT / MODBOGIE. Proceedings
of 4th Fraunhofer LBF Meeting on Structural
Durability in Railway Engineering, May 16
and 17 2006, Fraunhofer LBF Darmstadt, 2006

Methods of Sensitivity Calculation Applied to a Multi-Axial Test Rig for Elastomer Bushings

The Modelica Association 529 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 530 Modelica 2008, March 3rd − 4th, 2008

Implementation of a Modelica Library
for Simulation of High-Lift Drive Systems

Dipl.-Ing. Malte Pfennig Prof. Dr.-Ing. Frank Thielecke
Hamburg University of Technology, Institute of Aircraft Systems Engineering

Nesspriel 5, 21129 Hamburg

Abstract

The development and design of new high-lift drive
systems is a complex and iterative process, which is
often depending on experience. Especially results de-
termined in the predevelopment phase and based on
uncertain assumptions have decisive influence on the
system specification and thus on the system design.
In order to reduce development time and optimize the
development process, a rapid generation and adapta-
tion of simulation models for analysis of transient sys-
tem behaviour is essential. This article presents an
computer-integrated approach for further reduction of
the high-lift development process. An interface to
Modelia should enable an automated system model
generation. A suitable component library is introduced
and verified by simulation of the Airbus A380 flap ac-
tuation system.
The purpose of this article is to present the project of
a computer-aided development process as well as an
adequate component library for assembling simulation
models of high-lift drive systems.
Keywords: high-lift system; power drive system; sys-
tem development

1 Introduction

In order to reduce take-off and landing airspeed, mod-
ern transport aircraft are equipped with high-lift sys-
tems. The extension of slats and flaps at the wing’s
leading and trailing edges augments the effective wing
area and also allows for higher angles of attack thus in-
creasing the lift coefficient. Figure 1 depicts the high-
lift surfaces, as well as the corresponding drive and
actuation system.
A central power drive unit (PDU), mounted in the cen-
ter fuselage, provides energy for driving a shaft trans-
mission, which ensures mechanical synchronisation of
the left and right actuation systems. The shaft trans-
mission is routed across the wingspan by numerous

bearings, while universal joints and gearboxes com-
pensate changes in direction. Branch gears transmit
the mechanical energy to rotary or ballscrew actuators
which are coupled with the flap traverse mechanism.
High actuator gear ratios reduce fast turning transmis-
sion inputs to slow panel movement.
As part of the secondary flight control, the high-lift
drive system has to be fault-tolerant and fulfill high re-
quirements regarding the reliability. While the power
drive unit and the slat flap control computer are of re-
dundant design, the shaft transmission system offers a
single load path only. Sufficient mechanical strength
of all elements in the actuation system is required for
all possible system states. Peak loads occurring as a
result of a system failure are often a design case for the
mechanical components of the drive system. Thus, the
analysis of transient system behaviour is of uttermost
importance for the determination of strength require-
ments for the drive train’s mechanical elements. As
aerospace applications require certified components,
no standard but custom-build components and assem-
blies have to be installed. In consequence, component
parameters characterising their dynamical behaviour,
e.g. the mass moment of inertia or the friction charac-
teristics, are unknown in the early design phase. Thus,
these parameters have to be estimated based on the
knowledge of existing similar products.
Owing to numerous changes of the system architec-
ture, requirements, constraints or parameters, the ef-
fort for installing and maintaining a complete sim-
ulation model in the early design and specification
phase is not justified. For this reason, simplified mod-
els are used for a rough evaluation of peak loads,
while adequate safety margins compensate uncertain-
ties. However, increasing mechanical strength nor-
mally involves an increasing mass. Thus, considerable
potentials in system weight reduction might be wasted.
In this report an integrated approach is presented that
aims at an optimisation of the high-lift drive system,
as well as its development process. Moreover, an au-

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems

The Modelica Association 531 Modelica 2008, March 3rd − 4th, 2008

Figure 1: High-lift segments and power drive train at leading and trailing edge

tomated generation and easier maintenance of a com-
plex simulation model for analysis of transient system
behaviour should be realised in order to make simula-
tion results available in the predevelopment phase. A
software tool combining knowledge based methods for
high-lift design and steady state calculations is to be
extended to transfer available system information into
a simulation model for analysis of transient behaviour.
Modelica’s characteristic of being object-oriented and
providing a simple way to generate simulation mod-
els by combining library components makes it predes-
tined for this task. In order to facilitate modelling a
complex high-lift drive train, a library containing all
required components has been created.

2 System description and modelling

The basic elements of a high-lift drive system, namely
the power drive unit, the actuators and the shaft trans-
mission connecting actuators and drive unit, were in-
troduced in chapter 1. Besides gearboxes, shafts, joints
and bearings that are essential for the shaft routing,
there are further components required to react to me-
chanical failures. A shaft rupture leading to a separa-
tion of flap segments might result either in an asym-
metric flap setting or even the complete transmission
system might be decoupled from the PDU so that the
aircraft looses its high-lift function in a critical situa-

tion. Furthermore, jamming in the flap tracks might
cause an asymmetric flap setting as well as an over-
load in actuation system and wing structure. In order
to avoid an unacceptable flap asymmetry that cannot
be compensated by the rudders, safety brakes are in-
stalled at the spanwise ends of the shaft transmission.
These wing tip brakes (WTB) are activated if the mon-
itoring systems identifies a failure by comparing the
position at the transmission ends, the drive units out-
put angle and the commanded position.
Moreover, the installation of torque limiting devices
reduces loads in the drive system and structure in case
of jamming in one of the drive stations. High loads
and load gradients result from rapid deceleration of the
system by either jamming or brake activation.
The analysis of such transient behaviour requires a
nonlinear model. Figure 2 exemplifies a flap drive
system architecture and its elements. For the purpose
of an acceptable simulation time, modelling each me-
chanical element separately is not practicable. Thus,
adjacent parts are merged into a lumped model. The
total inertia and torsional stiffness can easily be cal-
culated from the elements connected in series. Other
variables like friction coefficients or backlash can be
determined accordingly.
While the system model in contrast to the real drive
system posesses concentrated parameters, an appro-
priate discretisation must not change the dynamic be-
haviour of the system. Different approaches have

M. Pfennig, F. Thielecke

The Modelica Association 532 Modelica 2008, March 3rd − 4th, 2008

Figure 2: Schematic representation of a flap drive system and its model according to [4]

proven their value. In [2], Neumann proposes to sub-
stitute all transmission elements between the down-
drives by at least two systems made up of spring,
damper and mass. Adapting the distribution of the tor-
sional stiffnesses, the relevant natural modes can be
preserved.
A closer look at the distribution of drive system ele-
ment masses and torsional stiffnesses reveals that in-
stalled gearboxes make up a major share of the total
mass moment of inertia, while the torsional stiffness is
mainly influenced by long shaft elements. Another ap-
proach, reducing the model order by summing up the
mass moments of inertia around those areas that al-
ready show an accumulated inertia, like gearboxes, is
presented in [4]. On the other hand, a single torsional
spring represents the torsional stiffness of the elements
between those inertias.
Both methods show a good correlation between simu-
lation and measured data.

3 Development of high-lift actuation
systems

The design and construction process of a new high-
lift actuation system starts early in the overall devel-
opment process of a new aircraft. Thus, only few and
uncertain information is available at the beginning. Es-
pecially in the concept and preliminary design phase,
the requirements, system constraints and component
data often change. The data becomes more reliable
and more detailed while the development process pro-
ceeds. However, mandatory inputs for the design pro-
cess of the high-lift drive systems that have to be avail-

able from the start are:

• the number and type of actuators. The application
of either a geared rotary actuator or a ballscrew
actuator depends on the planned flap kinematics.

• effective airloads at the actuators.

• wing geometry and available installation space in
the wing area.

• maximum travel of the actuators and required
time for their adjustment.

The development and design of the mechanical trans-
mission system, the hydraulic and/or electric power
drive unit and the monitoring and failure detection sys-
tem is complex and highly interdependent. The focus
in this article is on the actuation system.
With the listed inputs, a first drive system architecture
can be designed schematically. To guarantee a uni-
form motion of the actuators, gear ratios have to be
determined accordingly. Mechanical properties of the
components have to be estimated at first. Experience
from the development of former drive systems is of
tremendous value for this parameter estimation.
If gear ratios, characteristic friction coefficients and
the architecture are known, steady state calculations,
e.g. for determination of the drive torque required by
the PDU and torque limiter settings, are possible.
For a rough evaluation of maximum loads resulting
from transient changes in consequence of wing tip
brake activation or torque limiter lock out, simple
models seem practicable. As proposed in [4], the part
of the transmission that is in focus of the analysis can

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems

The Modelica Association 533 Modelica 2008, March 3rd − 4th, 2008

Figure 3: Concept for an computer-aided development process of high-lift drive systems

be transformed to a torsional oscillator with a single
inertia J∗. For dynamic similarity, the torsional stiff-
nessc∗ of the vibrator is adjusted, such that the first
eigen mode of the complete transmission system and
the reduced model are identical. Presuming a sudden
deadlock in the transmission and neglecting nonlinear
influences, the kinetic energyEkin of the transmission
converts to potential energyEpot in the spring, allow-
ing the calculation of the peak load:

Ekin = Epot

⇒ 1
2
·J∗ ·ω2 =

1
2
·c∗ ·∆ϕ2 =

1
2
· τ2

s

c∗

⇒ τs,max = ωmax·
√

c∗ ·J∗ . (1)

Thus, the possibility to do rough system evaluations
and trade-offs is provided. For example, the system
dependency on the chosen gear ratio could be anal-
ysed.
Regarding equation (1), another problem seems ob-
vious. The maximum transmission speed, especially
after a mechanical disconnect, depends on nonlinear
friction characteristics. While the effort of generating
a complex simulation model and the time for running
these simulations is not justified as long as most pa-
rameters are uncertain and many changes are neces-
sary, the need for more detailed system analysis when

the system specification reaches a mature level and re-
liable data are available is obvious.

In order to reduce development time, the Institute of
Aircraft-Systems Technology at Hamburg University
of Technology is working on a tool called WissBaSys
to support the design process. Particularly, the efforts
in early design and specification phases, that are in
focus, could be reduced by numerous computer-aided
features, which are introduced hereafter.

While the architecture of high-lift transmission sys-
tems may change, they generally consist of a rela-
tively small number of different mechanical compo-
nents. Thus, a library of generic, parameterised com-
ponents has been created. A graphical user interface
(GUI) offers the possibility to connect these generic
elements to a complete transmission system. The re-
sulting system layout can easily be changed by adding
or removing components.

In order to support the difficult task of parameter es-
timation when reliable data are not available, not only
default values are provided, but also functions describ-
ing an interdependence between variables are sup-
ported. Furthermore, the user has access to an external
database containing extensive information about many
existing aircraft components.

Another characteristic of the preliminary design phase
is the handling of uncertain knowledge and checking

M. Pfennig, F. Thielecke

The Modelica Association 534 Modelica 2008, March 3rd − 4th, 2008

the system requirements after every change. For this
reason, continuous domains are attached to all vari-
ables. This is the basis for an interval constraint sat-
isfaction problem (ICSP). Constraint propagation as it
is presented in [5] enables the evaluation of nondirec-
tional equations and inequalities containing variables
with interval domains.
Establishing an ICSP brings further useful advantages.
Enabling nondirectional evaluation, trade-off studies
are encouraged. Furthermore, violations of system re-
quirements or constraints are detected automatically
within the constraint propagation process.
The concept of a computer-aided development pro-
cess is illustrated in figure 3. The system architec-
ture is assembled utilising generic library components.
System and component parameters are estimated with
help of data base information, default values and em-
pirical estimation functions. An automated generation
of simplified models enables approximation of maxi-
mum load result from transient behaviour. The system
analysis is completed by steady state calculations. The
ICSP automatically checks all system requirements so
that the basis for a system synthesis is available. While
synthesis methods allow for an evaluation and optimi-
sation of slat and flap traverse mechanisms [1] an all-
including high-lift optimisation on aircraft level is not
available up to now.
Containing all relevant component data, the transfer
to a complex nonlinear simulation model would com-
plete the development process. The way Modelica
uses for modelling by combining generic library com-
ponents offers ideal possibilities for an interaction in
this context.
WissBaSys supports design studies in early develop-
ment phases and generates lumped models of reduced
order. An appropriate Modelica model has to be
named for general concentrated transmission sections.
Presuming the allocation of available and model pa-
rameters is existent, model instances corresponding to
the concentrated parameters can be generated. With
the knowledge that some parts execute special func-
tion, e.g. the wing tip brake, additional models have
to be inserted. If an allocation of simulation models
for the mechanical elements in the transmission sys-
tem is existent, the generation of the complete simula-
tion model can be realised.

4 HighLift library for drive systems

The high-lift drive system consists of the mechanical
actuation system, hydraulic drive units, as well as a

control and fault detection system. Here, the actua-
tion system and the power drive unit are considered in
more detail. For a determination of maximum trans-
mission loads, the mechanical components of the drive
train can be modelled as one-dimensional rotational el-
ements. These are characterised by their mass moment
of inertia, a torsional stiffness, structural damping, me-
chanical backlash, gear ratio and the friction charac-
teristic. While the modelsInertia, ElastoBacklashand
IdealGearof Modelica’s standard library cover most
of these attributes a new friction model is needed and
introduced in this chapter.
Besides models representing a nonlinear torsional os-
cillator, some components fulfill additional tasks that
have to be taken into account. These components are
the safety brakes and mechanical torque limiters. The
HighLift library contains models for a shaft brake, an
ideal torque limiter, the general mechanical rotational
part and a geared rotary actuator. Moreover, hydraulic
components necessary for modelling hydraulic power
drive units are available.
The focus is on the mechanical drive train and its rele-
vant models are discussed in the following. All models
are designed such that they need only the information
that is relevant for a specification.

This model represents the brake function of the wing
tip brake, which is mounted in the wing structure.
If the brake is activated, the compression of friction
packages causes a friction torque that stops the trans-
mission. Essential parameters describing the brake be-
haviour are the maximum dynamic brake torque, max-
imum static brake torque and the time for reaching the
maximum dynamic torque. Thus these are the only in-
put variables of the model which extends the interfaces
RigidandFrictionBase.
In order to allow different approaches for describing
the transient change of the friction torque when the
brake is activated, the model’s inputu is the normal-
ized maximum dynamic brake torquetauB_max. Af-
ter reaching a halt, the static friction torque might
increase up to the brake’s maximum limit load
tauB_lim. In contrast to the models available in
the standard library, friction coefficients are no longer
needed here.

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems

The Modelica Association 535 Modelica 2008, March 3rd − 4th, 2008

A coupling consisting of balls embedded along the cir-
cumferece of two flanges guarantees a positive con-
nection in normal operation mode. In case a torque
limit is passed, the balls start to move along a ramp
thus pushing one of the flanges against a friction de-
vice. The increasing relative angle between the flanges
results in an increasing brake torque.
The torque limiting function has two characteristics.
First of all, a brake torque depending on the relative
angle of the flanges is induced. Moreover, the torsional
stiffness changes within the lock out process. While
the balls are in motion, the stiffness decreases signifi-
cantly compared to the normal operation mode. When
the balls reach their end stop, the device is grounded
and the torsional stiffness changes again.

Figure 4: Nonlinear torsional stiffness characteristic of
a mechanical torque limiter

For modelling these characteristics, a torsional spring
with nonlinear stiffness, according to figure 4, is
needed. Furthermore, the dynamic brake torque in-
creases after lock out and reaches its maximum when
the balls reach their end stop.
A new spring model has been created. Required in-
puts are the lock out torqueτ1 and the end stop torque
τ2 as well as the different torsional stiffnesses for all
three states. Compared to the standard spring, this
model has an additional outputy describing a normal-
ized brake torque:

y =





0 : ϕrel < ϕ1

1 : |ϕrel| ≥ ϕ2
|ϕrel|−ϕ1

ϕ2−ϕ1
: ϕ1 ≤ |ϕrel|< ϕ2

(2)

Combining the nonlinear spring with a shaft brake as

figure 5 shows, an ideal mechanical torque limiter is
modelled.

Figure 5: Ideal torque limiter model

As shown in its symbol the general rotational me-
chanical element consists of anElastoBacklashmodel
and a modifiedInertia as well as of anIdealGear.
The LossyInertamodel takes friction losses into ac-
count. Most elements of the transmission system like
bearings show friction behaviour corresponding to the
Stribeck Friction Law:

τ f ric,S = τCoulomb+dvis ·ω + τStribeck·e− fexp·|ω| (3)

However, the detailed analysis of single state gear-
boxes shows additional friction losses that highly de-
pend on the transmitted loads [6]. This phenomenon
is valid only when the unit is in motion and the break-
out has occurred. Based on the results of sophisticated
analyse of gearbox friction behaviour, a combined ap-
proach appears feasible. As discussed in [3] bearing
losses and load dependent gear stage losses differ. For
representation of a total drag torque, the friction torque
is made up of the bearing friction according to the
Stribeck law which is depending on ambient condi-
tions and gearbox losses characterised by a gearbox
efficiencyηGE:

τ f ric = τ f ric,S+(1−ηGE) · τload . (4)

While ηGE varies between 0 and 1, it represents the
dependence on the transmitted torque and is easily de-
termined by measurement.

M. Pfennig, F. Thielecke

The Modelica Association 536 Modelica 2008, March 3rd − 4th, 2008

Most Airbus aircraft use planetary gears with high gear
reduction for flap and slat actuation. Their dynamic
behaviour has essential effects on the complete high-
lift actuation system. Exact modelling of these compo-
nents is of vital importance for the reliability of sim-
ulation results. Analysis of the friction behaviour of
these actuator types also shows remarkable influence
of the transmitted loads on the friction torque [2].
Furthermore, the load-dependent friction changes with
the energy flow direction. Generally, driving against
opposing load has better efficiency than in the case of
aiding loads. The load-dependent friction does not oc-
cur stepwise as soon as the unit begins to move, but
increases smoothly after a change in direction.

Figure 6: Normalised input torque of a geared rotary
actuator with constant load

For validation a geared rotary actuator has been tested
and its friction behaviour determined [2]. Simulation
results using the model described above show good re-
semblance to test data as presented in figure 6. For
validation of the actuation system measured data of
the actuator loads as well as the power drive unit’s
speed is an inputs to the model. The contact of the gear
wheel teeth is the reason for the load-dependent fric-
tion torque [3]. When a turnaround occurs, the wheels
do not turn simultaneous but consecutively. Thus, the
contact between the gear wheels establishes smoothly.
Since the geared rotary actuator is modelled as a single
stage gearbox in order to reduce the model order, this

phenomenon can be represented by the gearbox effi-
ciencyηGE as a function of the input angleϕin. If the
unit stops,ηGE increases linearly to 1 after a speed
threshold is crossed. Consequently, load-dependent
friction diminishes according to equation (4). When
the unit starts to move again,ηGE is a function ofϕin,
while its final value depends on the sign of the trans-
mitted power. Figure 7 shows this characteristic.

Figure 7: Gearbox efficiency for deceleration (a) and
acceleration (b)

Further Models

The models presented in detail here are of vital impor-
tance for modelling a complete high-lift actuation sys-
tem. Furthermore, the HighLift library contains mod-
els for inducing mechanical failures in the drive train.
For this purpose, an element that can be used for a me-
chanical disconnection and another model that causes
jamming at a specified time are included. Besides the
transmission system, the power drive unit is of major
interest. Hydraulic component models for turbulent
resistances, servo valves, a differential cylinder as well
as an example that uses these components for mod-
elling a PDU’s drive train with a variable displacement
hydraulic motor (VDHM) are included.

5 Transient simulation of Airbus
A380 flap actuation system

For a verification of the presented models the Air-
bus A380 flap actuation system is taken into account.
The number of actuators and mechanical elements in
total outnumbers that of all other flap actuation sys-
tems of Airbus aircraft. The actuation system utilises
geared rotary actuators, a wing tip brake and a sys-
tem torque limiter that is installed between the power
drive unit and the first downdrive. A test rig replicat-
ing the A380 high-lift drive system of one wing only,
has been installed at the Airbus facilities in Bremen
in order to run certification tests. Utilising the models

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems

The Modelica Association 537 Modelica 2008, March 3rd − 4th, 2008

Figure 8: Airbus A380 flap actuation system and model

of the HighLift library the actuation system is mod-
elled and verified by means of measured data. Figure
8 presents a schematic view of the transmission sys-
tem and a lumped model of reduced order in Modelica.
Furthermore, sensor positions are marked in figure 8.
For modelling the approach presented in [4] and dis-
cussed in 2 is used.

For validation test data of the actuator loads and the
PDU speed are used as input. The drive systems starts
to operate against increasing opposing actuator loads.
After an acceleration phase the system speed is almost
constant until a position threshold is reached and the
speed is reduced before the system stopps at its deter-
mined position.

Figure 9 shows that the speed within the shaft trans-

Figure 9: Transmission speed

mission system varies only slightly. Comparing simu-
lation and test data for the input torque at the system
torque limiter (STL) that depends on the exact mod-
elling of the complete actuation system, the data show
good conformability. While the simulated break out
occurs 0.5 seconds earlier than in the test the simu-
lation results are very accurate afterwards. Figure 10
compares simulation and test results for the specified
sensor positions.

Now the introduced model is used to analyse a failure
case scenario. Att1 the disconnector model is used to
simulate a shaft rupture between system torque limiter
and first downdrive while the transmission system

Figure 10: Simulated and measured actuation system
input torque

M. Pfennig, F. Thielecke

The Modelica Association 538 Modelica 2008, March 3rd − 4th, 2008

Figure 11: Transmission speed and torque at the wing tip brake after shaft rupture and brake activation

drives against opposing loads. After the mechanical
disconnection the complete system is accelerated by
the applied actuator loads. The failure is detected and
the wing tip brakes are applied att2 and cause a system
stop. In consequence of the rapid deceleration,
load peaks occur within the shaft transmission. The
maximum is to be found at the safety brake.
Figure 11 compares test rig data and simulation re-
sults for transmission speed and torque at the wing tip
brake. Although simulated and measured speed have
different gradients during the acceleration phase, their
oscillatory behaviour is similar and their value att2 is
almost identical. The simulated deceleration phase is
shorter as it was in the test. Nonetheless, the maximum
transmission loads differ only slightly.

6 Conclusion and future work

This article presents the development and design of
high-lift actuation systems and its implied challenges.
For further reduction of development time for new
high-lift systems a computer-aided approached is as-
pired. In order to enable an automated generation of
nonlinear models for simulation of the complete drive
train, a library containing all essential elements of the
described drive system is introduced. With the help of
the modelled components the Airbus A380 flap actu-
ation system has been modelled. Simulating a normal
extension cycle, the simulation model provides results
that are close to measured data. The verified model is
used for analysis of maximum loads when the safety
brakes are applied after a shaft rupture.
While the basis for an interface between the design

tool WissBaSys and the Modelica environment has
been established by the implementation of the pre-
sented HighLift library, its execution is still outstand-
ing. Furthermore a simulation of the complete system
including the power drive unit as well as the slat flap
control computer is necessary.

Acknowledgment

The authors thank the Airbus Deutschland GmbH for
sponsoring and supporting this project.

References

[1] Holert, B.: Eine Methode zum mehrkri-
teriellen Entwurf der Führungsmechanismen
in Hochauftriebssystemen von Transport-
flugzeugen. Hamburg: Dissertation, Institut
für Flugzeug-Systemtechnik, TU Hamburg-
Harburg, 2005.

[2] Neumann, U.; Holert, B.; Carl, U.B.: Für eine
sichere Landung - Simulation von Landeklap-
penantriebssystemen. Antriebstechnik, 4/2004.

[3] Pelchen, C.;Schweiter, C.; Otter, M.: Modeling
and Simulating the Efficiency of Gearboxed and
of Planetary Gearboxes. 2nd International Mod-
elica Conference, Oberpfaffenhofen 2002.

[4] Rechter, H.; Richter, M.: Die Simulation
als Hilfsmittel bei der Entwicklung und In-
tegration der A330/340-Hochauftriebssysteme.
DGLR-Jahrestagung, Band 1, Göttingen 1993.

Implementation of a Modelica Library for Simulation of High-Lift Drive Systems

The Modelica Association 539 Modelica 2008, March 3rd − 4th, 2008

[5] Runte, W.: YACS: Ein hybrides Framework
für Constraint-Solver zur Unterstützung wissens-
basierter Konfigurierung. Diplomarbeit, Fach-
bereich Mathematik / Informatik, Universität
Bremen, 2006.

[6] Ruprecht, T.; Thielecke, F; Recksiek, M: SIVA
- A testrig for the validation of high lift compo-
nent models. AST Workshop on Aircraft System
Technologies, Hamburg 2007.

M. Pfennig, F. Thielecke

The Modelica Association 540 Modelica 2008, March 3rd − 4th, 2008

Session 5

Poster Session

The Modelica Association 541 Modelica 2008, March 3-4, 2008

The Modelica Association 542 Modelica 2008, March 3rd − 4th, 2008

4-DIMENSIONAL TABLE INTERPOLATION WITH MODELICA
Tobias Hirsch Markus Eck
German Aerospace Center (DLR)

Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
tobias.hirsch@dlr.de, markus.eck@dlr.de

Abstract

The steady-state model for a solar field contains a
large number of equations including conditional
statements. For a yearly energy yield analysis the
operational state (on duty, off duty) of the solar field
may change from one time instant to the other. Due
to the strongly varying boundary conditions a simu-
lation run without convergence problems is not
likely. For this reason a lookup-table model is de-
signed to calculate the five output variables of the
solar field depending on the four input variables. The
interpolation model is based on the existing MODE-
LICA model for 2D-interpolation and can be used
for table interpolation tasks independent of the tech-
nical application. The structure of the model and a
method for the automatic generation of the required
interpolation data from the complex solar field
model is described.
Keywords: solar power plant; look-up table; interpo-
lation

1 Introduction

Solar thermal power plants are one of the most inter-
esting options for renewable electricity production.
For the calculation of the annual energy yield of
these plants steady-state models are used. The calcu-
lation method which is based on mass and energy
balances is called for every hour of the year with the
corresponding weather data input and delivers an
output of electric energy. This approach works well
as long as transient effects in the plant can be ne-
glected. When a thermal storage has to be considered
an additional transient model has to be implemented.
Since the solar field and the power block can still be
represented as a steady-state block, the final plant
model is composed of very complex steady-state
models for the solar field and the power block and a
rather simple transient model of the storage system.
For an annual calculation on an hourly basis, the
model is called 8760 times with input data that might

be strongly varying from hour to hour. First tests
with the complex steady-state models show that ro-
bustness of the simulation is not satisfying. Due to
the large changes in input parameters and model de-
pendencies it is very likely that an annual calculation
might terminate before reaching the end time.
The reason for the complexity of the solar field
model is the aspect that the model has to describe the
operation in full load, part load and stand-by mode.
While mass and energy balances are derived for
regular field operation this is not the case for the
stand-by mode. In order to determine the time instant
with irradiation conditions sufficient for a switch
from stand-by into part-load operation the set of bal-
ance equations has to be solved with a modified set
of input parameters even if the field is shut-down.
Implementing the equations within the MODELICA
language yields a number of conditional statements
that have to be operated by the solver. Robustness of
the resulting system is hard to check and may differ
from one field layout to the other.
A way to couple the complex steady-state field
model with the simple transient thermal storage
model is developed by replacing the equation-based
solar field model by a table-based interpolation.
When analyzing the system it is found that the solar
field output is determined by just four independent
inputs. Unfortunately, the existing interpolation
model in MODELICA is limited to two independent
variables. Within this paper, a MODELICA model is
presented that allows a three dimensional interpola-
tion using the MODELICA 2D-interpolation model.
By an additional interpolation level the capability
can easily be extended to an interpolation in four
dimensions.

2 Solar field model characteristics

The solar field is composed of a large number of
parabolic trough collector rows arranged in parallel.
The water fed into the field at high pressure is pre-
heated, evaporated and superheated by the solar irra-

4-Dimensional Table Interpolation with Modelica

The Modelica Association 543 Modelica 2008, March 3rd − 4th, 2008

diation. This kind of system is called a Direct Steam
Generation parabolic trough power plant [1]. Apart
from general parameters of the field, the output of
the solar field is determined by the following input
variables:

- Direct normal irradiation, DNI
- Ambient temperature, T_amb
- Feed water specific enthalpy, h_in
- Operating pressure of the field, p_out

All of these are a function of time with the first two
taken from the weather data file and the last two be-
ing determined by the whole plant model. In addition
to the generated mass flow, four more outputs have
to be provided by the model, so the list of output
variables reads:

- Steam mass flow, m_out
- Field inlet pressure, p_in
- Field outlet temperature, T_out
- Recirculation pump power, P_rec
- “Field in operation”-indicator, FIO

A MODELICA solar field model is available that
describes the relation between input- and output pa-
rameters based on the physical equations. The model
allows changes in the solar field configuration in an
easy way by simply changing some parameters that
e.g. determine the number or arrangement of collec-
tor rows. It is therefore suited for the design of a so-
lar field but is not suited for annual energy yield
analysis.

3 General approach

The physically based solar field
model is replaced by a table in-
terpolation model that calculates
one output variable (e.g. m_out)
based on a set of interpolation
data and the three input variables
(h_in, p_out, DNI). Extension to
the forth input variable is done by
linear interpolation in the ambi-
ent temperature (T_amb). For
each of the five output variables
the same interpolation model can
be used with an individual set of
interpolation data. The interpola-
tion data are automatically gener-
ated by calling the physical solar
field model from a MATLAB
script for all nodes of the interpo-
lation data. The outputs of the

solar field are stored in MATLAB .mat files and can
directly be read by the MOCELICA interpolation
model. Within the following sections the automatic
generation of the interpolation data and the structure
of the interpolation model will be described.

4 Generation of interpolation data

Since a large number of solar field configurations,
each described by one set of interpolation data, is to
be analysed for the yearly output, an efficient
method is needed to generate the interpolation data.
For the interpolation routines in MODELICA one
look-up table in three dimensions (variation of input
variables p_out, h_in, DNI) has to be provided for
each of the five output variables (m_out, p_in, T_out,
P_rec, FIO).
This is realized by a MATLB script file that calls the
MODELICA executable for all combinations of in-
put variables. By use of the DYMOLA-MATLAB
interface the output variables are then stored by the
MATLAB script in a “.mat”-file. For each output
variable a separate file is generated that stores the
three vectors of parameter variations
 p_steps =[p_start : dp_: p_end]
 h_steps =[h_start : dh_: h_end] ;
 I_steps =[I_start : dI_: I_end] ;

and the three-dimensional result matrix containing
the results at the nodes defined by the vectors above.
The procedure is illustrated in figure 1.
Due to the complexity of the solar field model it is
initialized with a fixed set of parameters. The desired
operating point for each input parameter combination

Complex MODELICA model

compile: dymosim.exe, dsin.txt
MATLAB script file

define variation in 3 parameters

store parameter ramps as .mat file

call dymosim from MATLAB interface

store relevant output data in result files

Interpolation based MODELICA model

.mat files containing interpolation nodes

loop over all
variations

Figure 1: Procedure for generation of interpolation data

T. Hirsch, M. Eck

The Modelica Association 544 Modelica 2008, March 3rd − 4th, 2008

is then reached by a ramp in the three input vari-
ables. The final state of the ramp (values of the input
variables for the actual combination) is stored by the
MATLAB script in a .mat file before the executable
is called. The data are then read by the executable to
define ramps in the input variables that lead from the
fixed initialization state to the desired final state.
This approach has the advantage that no problems
with the initialization occur during the parameter
variations due to the stable initialization state. One
separate call of the executable for each parameter
variation is chosen, although the ramps might have
been defined to generate a number of results points
in one simulation run. The advantages for the im-
plementation chosen are:

- only one data point is lost if the simulation
does not converge

- high flexibility in the definition of the pa-
rameter variations (e.g. no need for equidis-
tant grids) .

The output variable FIO is very important for the
following interpretation of the interpolated data since
it determines if a data point calculated by interpola-
tion is valid. The value is set to false if the solar field
can not be operated for the combination of input
variables or if the simulation has not converged. In
both cases, the data points obtained from the interpo-
lation do not represent a physical state of the solar
field.
In order to allow direct access to the interpolation
data from the MODELICA 2D-interpolation model
CombiTable2D the data a stored in the following
way. For each value of input variable x3, e.g. 70 bar,
80 bar, 90 bar, 100 bar, 110 bar, a set of 2D-
interpolation data are stored in one separate matrix.
In our example, these matrices are named data1 to
data5. The matrix contains in the first row the vector
of nodes in variable x2 and in the first column the
vector of nodes in variable x1. The matrix is then
filled with the output data at the corresponding
nodes:
0 x2(1) x2(2) ... x2(ih)

x1(1) dat(1,1) dat(1,2)... dat(1,4)

x1(2) dat(2,1) dat(2,2)... dat(2,4)

...

x1(iI) dat(iI,ih)

All data matrices together are stored in one sin-
gle .mat-file. This file holds all data necessary for the
3D-interpolation in variables x1, x2 and x3. For each

output variable that has to be described by 3D-
interpolation a separate file is generated. This allows,
in principle, an arbitrary number of output variables.
In our example, five output variables are used with
the data stored in the files FIO.mat, m_flow.mat,
p_in.mat, P_rec.mat, T_out.mat.

5 3D interpolation model

The three-dimensional table interpolation used in the
yearly analyzer is based on the two-dimensional ta-
ble interpolation model available in the MODELICA
standard library. This model is very efficient since
the search for the interpolation interval starts at the
result found in the last time instant. The two dimen-
sional interpolation model is used to interpolate in
the variables x1 (DNI) and x2 (h_in) for a fixed value
of variable x3 (p_out). For each value of the variable
x3 defined in the vector p_steps one value ui (i=1:n)
for the output variable is calculated. The final output
value is then generated by a 1-D interpolation in the
n results ui. The procedure is illustrated in figure 2.
The model that holds the following equations is
named Kennlinie3D (german word for Characteris-
tic3D). In the following, the code of this model is
described. The model contains three inputs
Modelica.Blocks.Interfaces.RealInput x1;
Modelica.Blocks.Interfaces.RealInput x2;
Modelica.Blocks.Interfaces.RealInput x3;

for variables x1, x2 and x3. In the solar field example
these inputs correspond to h_in, DNI, p_out. The
result is delivered via output
Modelica.Blocks.Interfaces.RealOutput y;

A data structure is defined to provide information on
the upper and lower limits of x1 and x2 as well as the
matrix name in the interpolation file that holds the
interpolation data.
encapsulated record interpolation_source
 Real x3;
 Real min_x1;
 Real max_x1;
 Real min_x2;
 Real max_x2;
 String table_name;
end interpolation_source;

In the model n instances of this data structure are
created as parameters by:
parameter interpolation_source[:]
 IP_source;

In Dymola, the data can be entered via the graphical
user interface which is shown in figure 3. In this ex-
ample, 2-D-interpolation in x1 and x2 data have been
generated for five pressure levels from 70 bar up to

4-Dimensional Table Interpolation with Modelica

The Modelica Association 545 Modelica 2008, March 3rd − 4th, 2008

110 bar. The interpolation data are found in matrices
data1 to data5 in the interpolation data file defined
by parameter String SourceFile= "p_in".

 The variable x1 (h_in) may vary between 500 kJ/kg
and 1100 kJ/kg and the variable x2 (DNI) between 0
and 1000 W/m2. The 2-dimensional interpolation is
done in n MODELICA interpolation blocks which
are instantiated by
 Modelica.Blocks.Tables.CombiTable2D
 IP_table[n](
 each tableOnFile=true,
 each fileName=SourceFile,
 tableName={IP_source[i].table_name
 for i in 1:n}
);

The inputs x1 and x2 and connected to the corre-
sponding inputs u1 and u2 of the n interpolation
blocks, taking into account the variable range limita-
tions defined in IP_source.
for i in 1:n loop
 IP_table[i].u1=
 max(IP_source[i].min_x1,
 min(IP_source[i].max_x1, x1)
);

 IP_table[i].u2=
 max(IP_source[i].min_x2,
 min(IP_source[i].max_x2, x2)
);
end for;

The final result is calculated by weighting the n out-
puts of the 2D-interpolation blocks
 y = sum(IP_table[i].y*weight[i]
 for i in 1:n);

The weighting factors are calculated from a linear
interpolation in the variable x3. For example, a value
of x3=82e5 Pa would lead to a vector of weighting
factors weight =[0 0.8 0.2 0 0]. The Dymola rou-
tine dymTableIpo1 is used for the interpolation. This
routine has to be initialized by
when initial() then
 Weight_tableID=dymTableInit(
 1.0,
 smoothness,
 "NoName",
 "NoName",
 Weight_matrix,
 0.0);
end when;

and called with the command
for i in 1:n loop
 weight[i] =
 min(1.0,
 max(0.0,dymTableIpo1(
 Weight_tableID,
 Weight_columns[i],
 x3)));
end for;

with the corresponding declarations
parameter Real[:,:] Weight_matrix =
 [IP_source.x3, diagonal(ones(n))];

parameter Integer Weight_columns[:]=
 2:size(Weight_matrix, 2);

Real Weight_tableID;
Real[n] weight;
parameter
 Modelica.Blocks.Types.Smoothness.
 Temp smoothness =
 Modelica.Blocks.Types.Smoothness.
 LinearSegments;

x1 x3

x2

x1 x3

x2
x1 x3

x2
x1 x3

x2

x2

x1

x3

y
x3

ui

n 2D-table interpolations weighting of n signals

Figure 2: Structure of the 3D interpolation model

Figure 3: Screenshot of the Dymola graphical user interface for IP_source with five pressure levels

T. Hirsch, M. Eck

The Modelica Association 546 Modelica 2008, March 3rd − 4th, 2008

6 Solar field model with 3 inputs

The solar field model SolarField_Characteristic
based on the interpolation is assembled from five
3D-interpolation blocks of type Kennlinie3D as
shown in figure 4. The three input connectors for
h_in (red lines), DNI (blue lines) and p_out (green
lines) are connected to the corresponding inputs of
the 3D-interpolation blocks. Based on the interpola-
tion data provided in files FIO.mat, m_flow.mat,
p_in.mat, P_rec.mat, T_out.mat the outputs FIO,
m_flow, p_in, P_rec and T_out are calculated. The
values are only valid if the indicator FIO is 1. In case
this value is smaller than 1, a default value, e.g.
70 bar for p_in, is used instead of the calculated
value.

7 Extension to four dimensions

As mentioned in the beginning of this text the solar
field output depends on one more variable namely
the ambient temperature. Since the dependence on
this variable is nearly linear three nodes in ambient
temperature (0 °C, 20 °C, 40 °C) are sufficient for
the model. For each of the three temperature levels a
separate set of interpolation data is generated. Three
instances of the solar field model Solar-
Field_Characteristic are created with the outputs
linearly weighted with the actual ambient tempera-
ture T_amb. The weighting is realized by the same

approach as in the 3D-interpolation model using the
Dymola function dymTableIpo1. For reusability a
model called WeightedSignals is defined. Figure 5
shows a screenshot of the final solar field model with
the three SolarField_Characteristic models each
representing one level of ambient temperature and
five WeightedSignals models that are responsible
for weighting obtained from the three interpolation
models.

Figure 5: Solar field model with three instances of the
SolarField_Characteristic model representing three
levels of ambient temperatures

Weighting blocks

0° C

20° C

40° C

2D

2D

2D

2D

2D

0.999

>

Sw itch_p_in

70e5
Constant_p_in

400
Constant_T_...

Sw itch_T_out

0
Constant_m_...

Sw itch_m_flow

0
Constant_P_r...

Sw itch_P_rec

h_in

DNI

p_out

p_in

T_out

m_flow

P_rec

FIO

Figure 4: The SolarField_Characteristic model composed of five 3D-interpolation blocks of type Kennlinie3D

4-Dimensional Table Interpolation with Modelica

The Modelica Association 547 Modelica 2008, March 3rd − 4th, 2008

8 Conclusions

A MODELICA model Kennlinie3D for table inter-
polation in three dimensions is developed. The
model is based on the MODELICA 2D-interpolation
model CombiTable2D which gives access to an effi-
cient interpolation routine provided by Dymola. In-
terpolation to four dimensions is possible with an
additional interpolation level supported by the devel-
oped model WeightedSignals. In order to allow a
large number of parameter studies a method is de-
veloped that automatically generates the required
interpolation data from a complex solar field model.
Due to the universal design of the models they can
also be used apart from the solar field application.

Acknowledgements

The authors would like to thank the German Ministry
for the Environment, Nature Conservation and Nu-
clear Safety for the financial support given to the
ITES project under contract No. 16UM0064.

References

[1] Eck M., Zarza E., Eickhoff M., Rheinländer
J., Valenzuela L. Applied research concern-
ing the direct steam generation in parabolic
troughs. Solar Energy, Vol. 74, 2003,
pp. 341-351

Apendix: Source code of model WeightedSignals

model WeightedSignals

 Modelica.Blocks.Interfaces.RealInput x “actual value of x”;

 Modelica.Blocks.Interfaces.RealInput u[n] “values at nodes x_param”;

 Modelica.Blocks.Interfaces.RealOutput y “interpolation result”;

 parameter Real x_param[:] "interpolation nodes”

 // (here [0°C, 20°C, 40°C])

 parameter Integer n=size(x_param,1) "Dimension of signal vector";

 parameter Modelica.Blocks.Types.Smoothness.Temp

 smoothness=Modelica.Blocks.Types.Smoothness.LinearSegments

 "smoothness of table interpolation”;

 parameter Real[:,:] Weight_matrix = [x_param, diagonal(ones(n))];

 parameter Integer Weight_columns[:] = 2:size(Weight_matrix, 2);

 Real Weight_tableID;

 Real[n] weight “weights of the values u[i]”;

equation

 for i in 1:n loop

 weight[i] = dymTableIpo1(Weight_tableID, Weight_columns[i], x);

 end for;

 y = sum(u[i] * weight[i] for i in 1:n);

when initial() then

 // Initialize Weighting functionality

 Weight_tableID=dymTableInit(1.0,smoothness,"NoName","NoName",Weight_matrix, 0.0);

end when;

end WeightedSignals;

T. Hirsch, M. Eck

The Modelica Association 548 Modelica 2008, March 3rd − 4th, 2008

PlanarMultiBody
A Modelica Library for Planar Multi-Body Systems

Mathias Höbinger1, Martin Otter2

1Vienna University of Technology, Austria
2German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Germany

mathias.hoebinger@gmx.at, martin.otter@dlr.de

Abstract

A new Modelica library for the modeling and simu-
lation of 2-dimensional mechanical systems has been
developed. It is based on the existing Mode-
lica.Mechanics.MultiBody library and implements a
number of simplifications and optimizations for 2-
dimensional environments, which bring the advan-
tages of a reduced complexity of the modeling proc-
ess as well as a reduced computational effort. Addi-
tionally, new components are present for joints with
curve-curve contact (e.g. cam follower joints). The
basic approach is, to have a 1:1 mapping of pack-
ages, models and functions, if this makes sense, and
specialising them to 2 dimensions.
Keywords:
Modelica, planar multi-body, contact mechanics.

1 Introduction

The PlanarMultiBody library is a Modelica package
providing 2-dimensional mechanical components to
model in a convenient way planar mechanical sys-
tems. The main design goal of the library was to util-
ize the fact that in such systems coordinates, direc-
tions and rotations can be expressed and computed in
a much simpler way than in 3-dimensional systems.
A typical example of this library is a mechanism
with 2 kinematic loops as shown in the Figure 1.

Figure 1: A planar mechanical system containing

2 coupled kinematic loops

The PlananMultiBody library,
see screenshot to the right, has
the following main features:
• In 2-dimensional systems, the

orientation of any object with
respect to another one can be
described by a single angle.
This simplifies the notation for
orientation of objects consid-
erably. The use of the “orien-
tation objects” from the Mode-
lica.Me
brary can be dropped com-
pletely, as well as the special
handling of the orientation ob-
ject with Connections.Root
(..), Connections.Branch(..) operators to define the
connected network of coordinate systems in order
to handle over-determined DAEs. The require-
ments for a Modelica translator to process models
of this library are therefore much less as for the 3-
dim. Modelica.Mechanics.MultiBody library.
The visualizer objects used in the Multi

chanics.MultiBody li-

• Body li-

• del joints based on two

brary for the animation of objects have been al-
tered to achieve two aims: Firstly, all animation
objects can be addressed as 2D objects, e.g., the
bars used to animate a fixed translation have a
length and a width, no height. The Visualiz-
ers.Advanced.Shape object, as well as the objects
used for animating all kinds of arrows, includes
input values for length, width and position. Sec-
ondly, because the actual animated shapes are still
3D-objects, the height is automatically set to a
very low value which gives the animation a
“pseudo-planar” look.
The possibility to mo
curves sliding along each other. In model Planar-
Multibody.Joints.CurveCurveJoint, different
curve objects can be selected. They all contain
functions used to compute three vectors depend-
ing on a curve parameter s: the curvePosition,, the
curveTangent and the curveNormal. The Planar-

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 549 Modelica 2008, March 3rd − 4th, 2008

MultiBody.Joints.CurveCurveJoint object in-
cludes two instances of arbitrary curve objects,
each connected to a frame. This joint constrains
the movement of its two frames by requiring
proper contact conditions for the two curves.
These are computed using the two curve parame-
ters s1 and s2. Additional curves needed by a user
can easily be added by just providing the neces-
sary equations of the curve and its normal and
tangent vectors.

2 Describing Orientation

The simplified way of describing absolute and rela-

3 PlanarMultiBody

The “Frame” connector is used to connect planar

ctor r that is directed from the ori-

• the

It is agram is constructed,

elica.SIunits;

on vector";

 x-axis world to frame";

n world frame";

in world frame";

As usual, if velocities or accelerations are needed,

4 Elementary Components

Using the “Frame” connector and the utility func-

4.1 PlanarMultiBody.World

This model represents a global coordinate system

tive orientation of objects is the most significant im-
provement for modeling planar systems compared to
model the same system using the 3-dimensional
MultiBody library. For notational convenience the
word “frame” is used in the sequel as a synonym for
“coordinate system”. Instead of using three orthogo-
nal unit vectors to define a specific frame we can do
that with a single angle φ that describes the rotation
of that frame with respect to the global coordinate
system around the only possible axis of rotation, the
z-axis. To define the position and rotation of a sec-
ond frame relative to the first one is equally simple: a
two-dimensional vector r_rel and a relative angle
φ_rel are everything that is needed. Given the abso-
lute angles φ_a and φ_b of two different frames, the
relative angle can be computed by simply stating
φ_rel= φ_b − φ_a .

Frame Connector

multibody components together. It is rigidly fixed at
an attachment point of a mechanical part. A frame
“frame a” is described with respect to the world
frame using the
• 2-element ve

gin of the world frame to the origin of frame a
and is resolved in the world frame and by the
angle φ between the x-axis of the frame and
x-axis of the world-frame.
 assumed that a free body di

i.e. that a cut is performed between mechanical parts
that shall be connected together at frame a. In the cut
plane a resultant cut force fa and resultant cut torque
τa act on frame a. Since in planar multi-body systems
there are no advantages to express vectors in local
frames, all vectors, and especially fa, are expressed in

the world-frame. The resultant cut torque is a scalar
along the z-axis of the world-frame. To summarize,
the connector is defined as:

connector Frame
 import SI = Mod
 SI.Position r[2]
 "Absolute positi
 SI.Angle phi
 "Angle from
 flow SI.Force f[2]
 "Constraint force i
 flow SI.Torque t
 "Constraint torque
end Frame;

they can be obtained by applying the derivative op-
erator der(...). This also holds for the angular veloc-
ity which is simply der(phi), where as in the Mode-
lica.Mechanics.MultiBody library the computation of
the angular velocity is complicated and is performed
with a function.

tions in PlanarMultiBody.Frames, it is straightfor-
ward to implement the elementary components that
are usually available in multi-body programs. The
PlanarMultiBody library has about 40 components.
The most important ones are shown in Table 1. Ex-
actly like in the Modelica.Mechanics.MultiBody li-
brary, equations are only defined on “position” level.

fixed in ground. It is used as inertial system in which
the equations of all elements of the PlanarMultiBody
library are defined and is the world frame of an ani-
mation window in which all elements of the Planar-
MultiBody library are visualized. Furthermore, the
gravity field of the multi-body model is defined here.
Default is a uniform gravity field; a point gravity
field can also be selected. The world object is also
used to define default settings of animation proper-
ties (e.g. the width of the rectangles representing a
revolute joint). The world object itself is animated as
a coordinate system with 2 axes and labels.

M. Höbinger, M. Otter

The Modelica Association 550 Modelica 2008, March 3rd − 4th, 2008

Abbreviations:
 ra,ϕa,fa,τa := frame_a.r, .phi, .f, .t
 rb,ϕb,fb,τb := frame_b.r, .phi, .f, .t
 resolve1(..) := Frames.resolve1(..)
grav := world.gravityAcceleration(..)

World

rb = 0
ϕb = 0

Parts.Fixed
Translation

rb = ra + resolve1(ϕa, rrel)
ϕb = ϕa
0 = fa + fb
0 = τa + τb + rrel × fb

Joints.Revolute

rb = ra
ϕb = ϕa + ϕrel
0 = fa + fb
0 = τa + τb

Joints.JointRR

rrel0 = rb - ra
L*L = rrel0* rrel0
0 = fa + fb
fa = frod * rrel0 / L
0 = τa
0 = τb

Parts.Body

w = der(ϕa)
z = der(w)
rCM0 = resolve1(ϕa, rCM)
rabsCM0 = ra + rCM0
g = grav(rabsCM0)
v = der(rabsCM0)
a = der(v)
fa = m * (a – g)
I * z = τa – rCM0 × fa

Table 1: Elementary components of PlanarMultiBody.

4.2 PlanarMultiBody.Parts.FixedTranslation

This component defines a fixed translation of a
frame. It is, e.g., used to define frames for several
attachment points on a body. The equations state that
the position vector of frame_b is defined from the
position vector of frame_a and the relative position
vector rrel from frame_a to frame_b (rrel is defined as
parameter “r”). Since frames are translated, the an-
gles in the two frames are set equal. Finally, a force

and torque balance of this massless part is present in
the Modelica model.

4.3 PlanarMultiBody.Joints.Revolute

In planar systems, the only possible axis of rotation
is the z-axis, so this component always defines such
a rotation using a vector φrel. When φrel = 0, frame_a
and frame_b coincide. Unlike in the Mode-
lica.Mechanics.MultiBody library, the absolute ori-
entation vector of frame_b, frame_b.phi, can easily
be obtained by stating

frame_b.phi = frame_a.phi + φ_rel.
As with most other joints, the generalized coordi-
nates (here: φ_rel and its derivative ω_rel) have the
attribute stateSelect = StateSelect.prefer in order that
they are selected as states if possible. The position
vectors of the two frames are identical and there is a
force and torque balance present. Instead of imple-
menting an additional model “ActuatedRevolute”, a
conditional 1-dim. flange connector is present onto
which a drive train can be attached driving the revo-
lute joint, e.g, with components from the Mode-
lica.Mechanics.Rotational library. There is a Boolean
parameter drivenFlange present to activate or deacti-
vate the additional flange.

4.4 PlanarMultiBody.Parts.Body

This component defines the mass and inertia proper-
ties of a body. They are defined using the following
parameters: m for the mass, the position vector r_CM
from the origin of frame_a to the center of mass (re-
solved in frame_a) and the inertia value I. There is a
Boolean parameter enforceStates present which de-
fines if the positon vector r and orientation angle φ
of frame_a should be use as states. These variables
have the attribute stateSelect = if enforceStates then
StateSelect.always else StateSelect.avoid. The fea-
ture to have potential states both in joints and in bod-
ies makes it easier to model systems with bodies
which are connected to the environment without us-
ing a joint or freely moving bodies.

4.5 PlanarMultiBody.Joints.JointRR

This component fixes the distance between its two
frames to parameter L, but does not constrain the
orientation angles of any of them. Therefore it can be
used as a replacement for two revolute joints con-
nected by a fixed translation. Using this component
reduces the order of the nonlinear equation system
and helps avoiding problems with non-linear equa-
tion systems caused by kinematic loops. The cut
force is constrained to act only along the vector be-

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 551 Modelica 2008, March 3rd − 4th, 2008

tween the origins of the two frames. Finally, a force
and torque balance is present in this component.
There is an additional object called PlanarMulti-
Body.Joints.JointRRWithMass present which in-
cludes a mass fixed relative to the two frames of the
joint.

Figure 2: The diagram level of the model animated in

Figure 1 using two instances of JointRRWithMass

5 Force Elements

Force elements exert forces and torques between two
frames. Because these elements, although they have
obviously been altered to fit into the different orien-
tation setup of this new library, are virtually identical
in their functionality and structure to the ones in the
MultiBody library, we will not discuss them here in
great detail. For a more detailed description of the
most important force elements, see [1].

6 Animation

The animation environment in Dymola [2] is native-
ly a 3-dimensional one, and all animated objects
therefore have to be programmed in that way. How-
ever, the Modelica.Mechanics.MultiBody library

utilizes a single model to realize virtually of all its
animations, MultiBody.Visualizers.Advanced.Shape.
The following features were implemented into the
PlanarMultiBody animation engine:
• Having a user-interface with purely 2-

dimensional animation parameters gives the user
the convenience of not having to deal with a z-
coordinate that only exists in the animation and
has nothing to do with the planar system being
modeled.

• To provide users with a maximum of freedom of
design, either side of a 3d-object displayed by
the “FixedFrame” component of the library can
be used as a “pseudo-2d” object. E.g. a cylinder
can be used as a circle or a rectangle. For this
purpose, a boolean parameter “zDirection” was
added to the Shape object which rotates the
animated object by 90° around the y-axis.

• To avoid overlapping of objects in the “pseudo-
2D” animation, it is possible to shift an object
along the z-axis of the animation using the
parameter “heigthShift”.

• The heigth of all objects is automatically set to a
low value which results in the desired “pseudo-
2D” look of the animation.

Table 2 shows all the parameters of the
PlanarMultiBody.Visualizers.Advanced.Shape object
with their default values and a short description of
their functionality.

Table 2: Parameters of the PlanarMultiBody.Visualizers.Advanced.Shape object

M. Höbinger, M. Otter

The Modelica Association 552 Modelica 2008, March 3rd − 4th, 2008

7 Curve-Curve Contact

With Joints.CurveCurveJoint, the PlanarMultiBody
library includes a new joint making it possible to
simulate two surfaces having to remain in contact
with each other. In every instance of this joint, the
user can choose two out of a library of curves used to
simulate the connected surfaces. Each curve is fixed
to one frame of the joint, in the sequel we will use
the name curve_1 for the curve object connected to
frame_a and curve_2 for the one connected to
frame_b. The main idea is to have two variables s1

and s2, one for each curve, in the CurveCurveJoint
model, which stand for the path parameter of the re-
spective curve, describing the current contact point
on the curve with respect to a fixed starting point.
Usually “s”is the arc-length along the curve, but this
need not to be the case in general. For a given value
of their respective curve-variables, curve_1 returns a
relative position vector from frame_a to the point of
contact as well as the normal and tangent vector at
that point on the curve.

7.1 Joints.CurveCurveJoint

As mentioned above, this mod-
el includes two frames as well
as two instances of a “curve
object”. The possibility of
choosing the curves inside the

actual instance of the joint is realized by including
them as “replaceable” objects:

In the equation section of the CurveCurveJoint
model, position, normal and tangent variables are

connected to the respective variables in the curve
objects.

r1_rel = curve1.position(s1);
r2_rel = curve2.position(s2);
r1 = Frames.resolve1(frame_a.phi,r1_rel);
r2 = Frames.resolve1(frame_b.phi,r2_rel);
normal1 = Frames.resolve1(frame_a.phi,
 curve1.normal(s1));

normal2 = Frames.resolve1(frame_b.phi,
 curve2.normal(s2));

tangent2 = Frames.resolve1(frame_b.phi,
 curve2.tangent(s2));

More importantly, the kinematic constraint equations
as well as the force and torque balances of the joint
and the curves are defined here:
First, the distance between the contact point on
curve_1 and the one on curve_2 is set to zero:

{0,} = frame_b.r + r2 - (frame_a.r + r1);

Then, additional equations ensure that the contact
point is actually an osculation point of the two
curves, meaning that their standard normal vectors
point in the same direction with different signs:

0 = Modelica.Math.atan2(
 normal1*tangent2, -normal1*normal2);

tangent1

tangent2

normal1

normal2

curve_1

curve_2

The formulation of this condition is from Hans Ols-
son [3] and requires some explanation: The contact
conditions on the normal could be formulated as
“normal1*normal2=0”. However, this equation has a
singular Jacobian and therefore every solver would
have severe difficulties. The condition could also be
formulated as “normal1*tangent2 = 0”, as often sug-
gested in literature. Here, we have the problem that a
contact where normal1 and normal2 are directed in
the same direction, will also fulfill this equation and
therefore it can happen that during simulation sud-
denly a wrong contact appears. The formulation used
in the CurveCurveJoint is basically using the “nor-
mal1*tangent2 = 0” formulation, but uses this as the
first argument to the “atan2(..)” function. As second
argument “-normal1*normal2” is used. The
“atan2(..)” function has the property that the signs of
the two arguments determine the quadrant of the so-
lution. Especially, only if the second argument is
positive, -π/2 <= atan2(x,y) <= π/2. Therefore, in the
solution point “0 = atan2(x,y)”, the second argument
“-normal1*normal2” must be positive which means
that the two normal’s have to be directed in opposite
direction.

Figure 3: Normal and tangent definition of
curve-curve contact

replaceable Joints.Internal.Circle
 curve1(phi=frame_a.phi,r_0=frame_a.r)
 extends
 PlanarMultiBody.Interfaces.BaseCurve
 (phi=frame_a.phi, r_0=frame_a.r)

Finally, force and torque balances are included:

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 553 Modelica 2008, March 3rd − 4th, 2008

7.2 Predefined Contact Curves

The package PlanarMulti-
Body.-Joints.Internal in-
cludes the models which are
predefined in the
CurveCurveJoint object. Ad-
ditional curves can easily be
added by a user. We will use
the Ellipse model to explain
the functionality of these
objects. All curve-definition
models extend a model
called PlanarMultiBody.Interfaces.BaseCurve which
defines the basic input variables r_0 and phi which
are the absolute position vector and orientation angle
of the frame to which the curve is attached.
The BaseCurve model also establishes the three
functions position, normal and tangent and their ba-
sic input and output variables. The input variable s is
the curve parameter; the 2-dimensional output vector
is called r, n or t depending on the function. To en-
able the different curve-definition models to have
different versions of these functions, they are defined
as “replaceable encapsulated partial functions” in
BaseCurve.

Every curve model has its own set of parameters
used to adjust the actual curve surface In case of the
ellipse there are two of them: a and b, defining the
length of the two ellipse-axis.
Furthermore, there is always at least one parameter
defining the path parameter of the animated curve. In
case of the ellipse, the final parameter C is the ap-
proximated circumference of the Ellipse computed
from the given parameters a and b. In the models
which define non-closed curves, e.g. “StraightLine”,
there is an input parameter instead of this final pa-
rameter allowing the user to define how long a part
of the curve should be animated.

Additionally, there are the usual animation-
concerned parameters animation, switching the ani-
mation of the curve on or off, and color, defining the
color of the animated curve. Finally, the parameter
ns defines how many points should be used to inter-
polate the animated curve and the SwitchSide pa-
rameter defines on which side of the curve the con-
tact should occur.

// Force and torque balance of joint
zeros(2) = frame_a.f + frame_b.f;

0 = frame_a.t + frame_b.t +
 Frames.cross(frame_b.r - frame_a.r,
 frame_b.f)

// Force and torque balance of curve1
f_contact1 = -normal1*f_N;
 zeros(2) = frame_a.f + f_contact1;
 0 = frame_a.t +
 Frames.cross(r1, f_contact1); The most important part of a curve-definition model

are of course the three functions actually defining the
shape of the curve: curvePosition, curveNormal and
curveTangent. They extend the respective functions
in the BaseCurve model by including the necessary
additional parameters and adding an “algorithm”
section with the statement computing their output
variable. Here we present the CurvePosition function
from the Ellipse model as an example:

Finally, the model includes an algorithm computing
the points used to animate the curve in its current
position defined through the curve parameter. This is
done by filling three coordinate vectors with length
ns. These vectors are actually realized as ns*2 matri-
ces, the second columns being filled with slightly
shifted values to ensure better visibility of the ani-
mated curve. The animation is performed with Dy-
mola’s built-in support for parameterized surfaces.

model Ellipse "Ellipse contact curve"
 extends
 PlanarMultiBody.Interfaces.BaseCurve(
 redeclare final function position =
 curvePosition(a=a,b=b,C=C),
 redeclare final function normal =
 curveNormal(a=a,b=b,C=C,sw=sw),
 redeclare final function tangent =
 curveTangent(a=a,b=b,C=C));
protected
 function curvePosition
 extends PlanarMultiBody.Interfaces.
 BaseCurve.position;
 input Modelica.SIunits.Length a
 "Length of a-axis of ellipse";
 input Modelica.SIunits.Length b
 "Length of b-axis of ellipse";
 input Modelica.SIunits.Length C
 "Approximated circumference";
 algorithm
 r := { a*sin(s*2*pi/C),
 -b*cos(s*2*pi/C)};
 end curvePosition;
...
end Ellipse; replaceable encapsulated partial

 function normal
 input Real s "Curve parameter";
 output Real n[2] "Normal to curve";
end normal;

M. Höbinger, M. Otter

The Modelica Association 554 Modelica 2008, March 3rd − 4th, 2008

7.3 Examples

Package PlanarMultiBody.Examples.CurveCurve-
Joint includes a number of examples demonstrating
the use of this new joint. The most obvious example
is probably the classic Cam-Follower setup. In this
model, an elliptic object driven by gravity acting
upon a body attached to it turns on a revolute joint
fixed to the ground. It is connected to an object with
a straight surface being attached to a prismatic joint
and forced into movement by the ellipsoid (see
model schematic und animation in next Figure 4).

It it realized by connecting frame_a of a CurveCur-
veJoint to the world frame through a revolute joint

joint. Then the appropriate curves have to be selected
by double clicking on the joint and selecting them
from a dropdown menu (see next Figure 5).

 final parameter Real s_min=0
 "Minimum value of s";

 final parameter Real s_max=C
 "Maximum value of s";
algorithm
 for i in 1:ns loop
 s := s_min + (i - 1)*
 (s_max - s_min)/(ns - 1);
 r := Frames.resolve1(phi,
 position(s));
 x[i,1] := r_0[1] + r[1];
 x[i,2] := r_0[1] + r[1] + 0.01;
 y[i,1] := r_0[2] + r[2];
 y[i,2] := r_0[2] + r[2] + 0.01;
 z[i,1] := 0;
 z[i,2] := 0.01;
 end for;

and doing the same with frame_b using a prismatic

 demonstrates the

The th ssibil-

Finally, a body is attached to frame_a of the joint

Figure 5: Selecting a curve in the
CurveCurveJoint menu

and the start value of the ellipses curve parameter is
set to an appropriate value to ensure that the system
is not in an idle position at time 0.
Another example from this package
effect of the switchSide parameter, see Figure 6. Two
CurveCurveJoint objects are present, both describing
the contact between two circles. In the upper circle-
circle contact, switchSide = true, whereas in the
lower circle-circle contact, the default switchSide =
false is used. The effect can be seen in Figure 6.

Figure 4: Model and animation of CamFollower

Figure 6: Example CurveCurveJoi SwitchSides nt

demonstrating the switchSide parameter

ird example, see Figure 7, shows the po
ity of more complex curves by using an ellipse dis-
torted by a sinus wave. This curve has amplitude and
frequency of the wave as additional parameters.
Here, a very small circle attached to a small body
runs along the distorted ellipse. It is connected to the
world frame using a prismatic joint.

PlanarMultiBody - A Modelica Library for Planar Multi-Body Systems

The Modelica Association 555 Modelica 2008, March 3rd − 4th, 2008

Figure 7: Example SinusEllipse demonstrating more

complicated curve-curve contacts

8 Conclusions

The PlanarMultiBody library is a mechanical library
to model planar mechanical systems. The main ad-
vantage is its simplicity and that no special symbolic
manipulation features of the Modelica simulation
environment is needed, contrary to the Mode-
lica.Mechanics.MultiBody library that describes 3-
dim. mechanical systems. Therefore, the PlanarMul-
tiBody library is well suited for teaching, but also for
a quite large class of technical problems that are 2-
dim. in nature. Besides standard joints, the Planar-
MultiBody library allows the definition of curve-
curve contacts, especially to describe cam-follower
types of contact. The non-standard formulation [3] of
the contact condition with the atan2(..) function has
proven to result in reliable solutions of the occurring
non-linear algebraic equation systems.
It is planned to include this library as free package in
the Modelica Standard Library after an evaluation
phase. Currently, there is also an Interpolation pack-
age under development. Once available, it is planned
that the curve descriptions in the curve-curve contact
description can be optionally described by splines of
this package.

References

[1] Otter M., Elmqvist H., Mattson S.E. The new
Modelica Multibody Library. Proc. of the 3rd
International Modelica Conference, pp. 311-330,
2003.
http://www.modelica.org/Conference2003/papers/
h37_Otter_multibody.pdf

[2] Dynasim. Dymola Users Guide, Version 6.0,
http://www.dynasim.se.

[3] Olsson H.: Formulation of contact conditions.
Personal communication to M. Otter, Sept. 2007.

M. Höbinger, M. Otter

The Modelica Association 556 Modelica 2008, March 3rd − 4th, 2008

Implementation of Hybrid Electric Vehicles using the
VehicleInterfaces and the SmartElectricDrives Libraries

Dragan Simic Thomas Bäuml
Arsenal Research

Giefinggasse 2, 1210 Vienna, Austria

Abstract

In this paper different configurations of hybrid electric
vehicles summarized in the SmartHybridElectricVe-
hicles library were examined and simulated. The
presented simulation models and results were created
and achieved with Modelica using Dymola. The
models represent different kinds of electric and
hybrid electric vehicle configurations. Furthermore,
different strategies for operating the hybrid electric
vehicles energy sources are provided. The parameters
needed for parameterization of the vehicle models
were, in case of the electric vehicle, taken from real
measurements on the vehicle and vehicle components.
For all other models parameters were assumed due
to a lack of measurement data. In the library three
Modelica packages specifically designed for modeling
systems including mechanical components, electrical
components and control components have been used.
These are the SmartElectricDrives library, the Vehi-
cleInterfaces library and the PowerTrain library. Due
to the object oriented architecture of these libraries all
necessary components needed for the implementation
and simulation of electric and hybrid electric vehicle
configurations are provided and can be reused. Hence,
the efficiency optimization of such configurations gets
eased by these libraries.

Keywords: simulation, modeling, hybrid electric vehi-
cles, optimization, fuel consumption, operating strat-
egy

1 Introduction

In this contribution a simulation library, the SmartHy-
bridElectricVehicles (SHEV) library, will be pre-
sented. This library is developed by arsenal research
with focus on automotive applications, such as electric
and hybrid electric vehicles (HEV). The SHEV library

is written in Modelica language [1] and simulated us-
ing the Dymola simulation environment. The library
is implemented on the basis of the VehicleInterfaces
(VI) library [2]. Therefore compatibility with all other
libraries based on the VI library is ensured. For sim-
ulations of the electrical components the SmartElec-
tricDrives (SED) library [3] is used. The StateGraph
library, included in the Modelica Standard Library
(MSL), has been chosen for modeling the operating
strategies of the included vehicles. All mechanical
components, such as the power train including trans-
missions, differentials, axles, etc. are provided by the
PowerTrain library.

2 Electric Vehicle

An electric vehicle using the above mentioned li-
braries was modeled as depicted in figure 1. This
configuration consists of a front axle modeled in the
driveline model, a transmission (trans.) with
one gear and an electric machine (MG2). Attention
is paid to the energy consumption during a simulated
drive cycle. Therefore the quasi stationary model of
an electrical excited DC machine with integrated con-
verter and control system, including voltage and cur-
rent limitation as well as flux weakening from the SED
library is used here. For powering the vehicle, an en-
ergy source (battery) is modeled using a simple
idealized battery model included in the SED. This bat-
tery model consists of a constant capacitor and a con-
stant internal resistor only. All mechanical compo-
nents, such as brakes, chassis and driveline
are taken from the PowerTrain library. They are pro-
vided there as ready to use models. For controlling the
vehicle velocity (acceleration pedal and brake pedal
position) a virtual drivermodel taken from the Pow-
erTrain library was adapted. In the controller model
(control.), different operating strategies are imple-
mented.

Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the SmartElectricDrives Libraries

The Modelica Association 557 Modelica 2008, March 3rd − 4th, 2008

Figure 1: The Modelica simulation model of the electric vehicle

2.1 Operating strategies

Three different operating strategies are implemented
in the controller of the electric vehicle. These strate-
gies are modeled using the StateGraph library of the
MSL. All operating strategies control the reference
torque of the electric machine. In the first case ref-
erence torque of the electric machine is limited be-
tween maximum machine torque and zero. The refer-
ence torque is restricted to be positive only. In this first
operating strategy, only the drive mode of the electric
machine is active, no recuperation occurs.
The second operating strategy includes the basic func-
tionality of the first operating strategy with an addi-
tional recuperation mode. When the virtual driver ac-
tuates the brake pedal, the electric machine is driven in
generator mode and the battery is recharged. The ref-
erence torque of the electric machine is directly pro-
portional to the brake pedal position. Additionally, ve-
hicle deceleration occurs by mechanical braking.
The third operating strategy is split into two braking
mode levels. During the first stage, vehicle decel-
eration occurs by electrical braking and recuperation
only. The battery is charged. If the demanded ref-
erence braking torque exceeds the electric machines
maximum torque, additional mechanical braking oc-
curs.
In the last two strategies electrical braking and hence
electrical recuperation only occurs if the battery state
of charge decreases beneath a certain limit. By reach-
ing the upper set limit, electrical braking is switched
off to prevent overloading and damaging the battery.
The model of the electric vehicle in figure 1 was simu-
lated with all three operating modes in the New Euro-
pean Drive Cycle (NEDC). The state of charge (SOC)

Figure 2: Simulated state of charge of the battery dur-
ing different operating strategies

of the battery was compared and is shown in figure
2. mode1 represents the first operating strategy with-
out recuperation, mode2 the second operating strategy
with proportional recuperation and mechanical brak-
ing and mode3 the third implemented operating strat-
egy. Due to a high recuperation ratio mode3 is the
strategy with the lowest energy consumption and the
highest recuperation potential, respectively. Mainly
electrical braking occurs and therefore the battery is
recharged more than in any other implemented strat-
egy.

3 Series Vehicle

The series hybrid electric vehicle depicted in figure 3
is modeled based on the electric vehicle model. It con-
tains an additional internal combustion engine (ICE),

D. Simic, T. Bäuml

The Modelica Association 558 Modelica 2008, March 3rd − 4th, 2008

Figure 3: The Modelica simulation model of the series hybrid electric vehicle

engine, and an electric machine acting as genera-
tor, MG1. The generator is driven by the ICE and is
used to charge the battery. The operating maps and
the fuel consumption of the ICE are taken from a Toy-
ota Prius, according to [4]. The basic drive modes for
the MG2 are taken from the electric vehicle. Addition-
ally, different operating strategies for the ICE and the
MG1 have been implemented. With the disabled re-
cuperation mode of the MG2 and a disabled generator
MG1, the behaviour of the series vehicle is the same
as the electric vehicle. For operating the MG1 a shift
of the ICE operating point is implemented. It is de-
pendent on the demanded electrical power and, hence,
the required torque and speed of the generator. The
input value for this operating strategies are the mea-
sured motor power and the current generator power,
respectively. During a change of the demanded gen-
erator power the strategy calculates the most efficient
operating point of the ICE regarding fuel consump-
tion. In figure 4 the shifting between two operating
points with different demanded generator power is
depicted. τmax is the maximum torque and τmin is the
drag torque of the ICE. These two operating points
of the ICE are those with the highest efficiency and
the lowest fuel consumption, respectively. The operat-
ing strategy is modeled in the controller (control.)
block and based on different control algorithms that
will not be described here in detail. The control is in-
dependent of size and type of the electric machine as
well as of the size of the ICE, which means, that any
kind of ICE or machine can be included in the model.
Currently the user can choose between two engines
and various transient and quasi stationary electric ma-
chines in different power classes.

Figure 4: Operating point shift of the internal combus-
tion engine

4 Parallel Vehicle

The parallel HEV, figure 5, contains an ICE, engine,
and an electric machine acting as starter/generator,
MG1 with two shaft ends. This electric machine is
used for starting the ICE, for boosting during driving
mode and for recharging the battery. The electric ma-
chine, MG1, is coupled on one side with the ICE by a
mechanical clutch, C1, and on the other side with the
transmission by a mechanical clutch, C2. The mechni-
cal clutch, C2, is embedded in the transmission model
(trans. + C2). Using this kind of power train
configuration, it is possible to switch between more
driving modes. Potential driving modes are driving
with the electric machine only, driving with engine and
electric machine (ICE and boosting electric machine),
start/stop operation of the ICE, load point shifting of

Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the SmartElectricDrives Libraries

The Modelica Association 559 Modelica 2008, March 3rd − 4th, 2008

Figure 5: The Modelica simulation model of the parallel hybrid electric vehicle

the ICE and recuperation during vehicle deceleration.
Exemplarily, two operating strategies for the ICE and
the starter/generator are simulated and shown here.
The first operating strategy demonstrates the basic
operating strategy of a conventional vehicle, only
driven by the ICE without recuperation or start/stop
operation. The second operating strategy manages
the start/stop driving operation of the ICE and the
starter/generator. The comparison of the fuel con-
sumption of the ICE is depicted in figure 6, where
Σconventional is the fuel consumtion of conventional
driving and Σstart/stop is the fuel consumption during
start/stop operation, respectively. Both vehicle mod-
els are simulated in an NEDC operating cycle. The
SOC of the battery is balanced in both models at start
and end of the simulation, figure 7. One can see, that
the state of charge of the conventional vehicle remains
unchanged, because no electrical driving or boosting
occurs. By contrast the SOC during start/stop opera-
tion shows slight changes. During standstill the engine
is switched off. By activating the acceleration pedal,
the engine is started by the electric machine. While
accelerating the engine, the SOC decreases until the
engine has reached idle speed. Then the electric ma-
chine switches to recuperation mode and the battery is
recharged to the upper set limit. Due to a fuel saving
during standstill, the vehicle with start/stop operating
mode shows a slightly lower fuel consumption as the
conventional vehicle.

5 Electric Vehicle Validation

For validation of the HEV models and the SHEV li-
brary the electric vehicle was used in a first step, be-

Figure 6: Comparison of the fuel consumption of con-
ventional and parallel hybrid electric vehicle

Figure 7: Comparison of the battery SOC of conven-
tional and parallel hybrid electric vehicle

D. Simic, T. Bäuml

The Modelica Association 560 Modelica 2008, March 3rd − 4th, 2008

description value unit
vehicle mass 1625 kg
front area 2.653 m²
wheel radius 0.285 m
inertia of electric machine 0.2 kgm²
final gear ratio 7.35 -
aerodynamic resistance
coefficient

0.407 -

rolling resistance coefficient 0.0144 -

Table 1: Parameters of the chassis model and driving
resistances derived from measurements

cause measurements on and electric vehicle could be
accomplished easily. A Citroën Belingo electrique ve-
hicle was chosen for validation, according to [5]. After
determination of the component parameters, all single
components and the entire electric vehicle model were
parameterized. Afterwards simulation results were
gathered and compared with measurement results of
the real vehicle.

5.1 Parameterization

Every component of the electric vehicle model needs
a set of parameters which have to be determined prior
to the simulation. They have been derived from nu-
merous measurements on all mechanical and electri-
cal components and data sheets. The data sheet for
the electric machine is taken from a Peugeot Partner
Electric vehicle which has the same as the Citroën
Berlingo Electrique, according to [6]. For the param-
eterization of the chassis model and the driving re-
sistances, freewheeling curves of the electric vehicle
were determined. Out of these measurements param-
eters listed in table 1 were calculated and used for the
simulation.
For a detailed battery simulation a dynamic battery
model was developed at arsenal research, whereas for
the simulation and validation of the entire electric ve-
hicle power consumption the more simplified idealized
model was used. The parameterization of both battery
models, linearized and dynamic, is based on measure-
ments on the real vehicle battery using a standardized
charging/discharging test cycle. Throughout this in-
vestigation it was possible to determine the parameters
of the battery.
The electric machine as described in the data sheet ac-
cording to [6] was parameterized with the values listed
table 2.

description value unit
nominal armature voltage 162 V
nominal armature current 110 A
nominal excitation current 12.5 A
nominal rotor speed 1340 rev/min
maximum rotor speed 6500 rev/min
warm armature resistance 0.069 Ω
armature circuit inductance 0.00169 H
warm excitation resistance 9.47 Ω
excitation circuit inductance 0.0947 H

Table 2: Parameters of the electric machine according
to the Peugeot Partner data sheet

Figure 8: Comparison of the measured and simulated
freewheeling curve of the electric vehicle

5.2 Model Validation

The validation of the electric vehicle model was ex-
ecuted first on component level and then regarding
the complete vehicle. All mechanical and geometri-
cal parameters, the electrical parameters of the electric
machine and the battery as well as the overall power
consumption of the entire electric vehicle were deter-
mined. The vehicles driving resistances such as aero-
dynamic and rolling resistances have been calculated
based on the measured freewheeling curve. For val-
idating the electric vehicle resistance model the sim-
ulated freewheeling curve is compared with the mea-
sured one in figure 8. The very small difference be-
tween the real measured and the simulated freewheel-
ing curve allows the assumption, that the driving resis-
tances have been chosen in an accurate way.
For validation of the vehicles power train, the elec-
trical excited DC machine, the DCDC converter and
the battery model are validated. For modeling the
electric machine a torque controlled quasi stationary

Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the SmartElectricDrives Libraries

The Modelica Association 561 Modelica 2008, March 3rd − 4th, 2008

Figure 9: Power and torque curves of electric machine

model, taken from the SED library, was used. The
electric machine is driven by a reference torque and
the simulation covers the entire admissible electric ma-
chine speed range. The maximum feasible inner elec-
tric torque and the mechanical output power in de-
pendence on the electric machine speed is depicted in
figure 9. This parameterization is based on the elec-
tric machine manufacturers data sheet and shows good
congruence with the measured values.
Using measurement results of the voltage, current and
temperature gathered during road test procedures, the
complex battery model was parameterized. The mea-
surement results were recorded during a ride through
the city of Vienna, Austria. For the battery model
and the entire electric vehicle validation the measured
curents were used as reference signals. The measured,
Vmeasured , and simulated, Vsimulated , battery voltages are
depicted in figure 10. The deviation of the voltages is
assigned to the fact that some cells of the real battery
were slightly damaged. Though, the overall voltage er-
ror of less then 5% is still in an acceptable bandwidth
and shows the applicability of the used models.

6 Conclusions

The presented vehicle simulations allow the determi-
nation of the energy and fuel consumption as well as
the identification of the economic savings potential
by integrating alternative vehicle drive train concepts.
Using the developed SHEV library different HEV con-
cepts and operating strategies can be analyzed and
tested very quickly . Based on the developed vehicle
models different potential concepts have been identi-
fied and analyzed under different application scenar-

Figure 10: Mesured and simulated battery voltage

ios. A significant acceleration of the development pro-
cess of HEV drive train concepts and technologies can
be achieved and effort can be reduced. The achiev-
able improvements of a HEV concept highly depend
on the specific driving cycle and the boundary con-
ditions, e.g. driving time without recharging possibili-
ties, recharging time during standstill periods, recharg-
ing during recuperation, recharging during load point
shifting of the ICE operating point, etc. Therefore,
these boundary conditions should be defined prior to
the simulations to assure simulation results that can
match the real system behaviour in a satisfying way.
Furthermore, already small changes in the control
strategy can have big influence on the overall energy
consumption. Also these steps of development can be
simulated by means of this library in a rather easy way.

References

[1] Peter Fritzson, Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
IEEE Press, Piscataway, NJ, 2004.

[2] M. Dempsey, H. Elmqvis, M. Gaefvert, P. Har-
man, C. Kral, M. Otter, and P. Treffinger, “Coordi-
nated automotive library for vehicle system mod-
elling”, 5th International Modelica Conference
2006, 2006.

[3] J.V. Gragger, H. Giuliani, C. Kral, T. Bäuml,
H. Kapeller, and F. Pirker, “The SmartElectric-
Drives Library – powerful models for fast simula-
tions of electric drives”, 5th International Model-
ica Conference 2006, Vienna, Austria, 2006.

D. Simic, T. Bäuml

The Modelica Association 562 Modelica 2008, March 3rd − 4th, 2008

[4] National Renewable Energy Labaratory (NREL),
“ADVISOR documentation, ADVISOR data file
fc prius jpn”, www.ctts.nrel.gov, 2002.

[5] M. Noll, H. Giuliani, D. Simic, V. Conte,
H. Lacher, and P. Gollob, “Simulation and op-
timisation of a full electric hybrid vehicle”, In-
ternational Battery, Hybrid and Fuel Cell Electric
Vehicle Symposium & Exposition, 22nd, EVS23,
Anaheim, USA, 2008.

[6] Peugeot, “Partner Electric Motor, Beschrei-
bung Technischer Daten, Organummer 7725, Ref:
1238-D-04/98”, Partner Electric Motor, 1998.

Definitions, Acronyms and Abbrevia-
tions

SHEV SmartHybridElectricVehicles

HEV hybrid electric vehicle

VI VehicleInterfaces

PT PowerTrain

SED SmartElectricDrives

MSL ModelicaStandardLibrary

NEDC New European Drive Cycle

SOC state of charge

ICE internal combustion engine

Implementation of Hybrid Electric Vehicles using the VehicleInterfaces and the SmartElectricDrives Libraries

The Modelica Association 563 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 564 Modelica 2008, March 3rd − 4th, 2008

Modeling of CO2 Reduction Impacts on Energy Prices with Modelica
Philip Machanick1, Ariel Liebman1, Peter Fritzson1,2
1School ITEE, University of Queensland, Australia

2PELAB, Department of Computer and Information Science
Linköping University, SE-581 83 Linköping, Sweden

aliebman@itee.uq.edu.au, philip.machanick@gmail.com, petfr@ida.liu.se

Abstract
There is growing evidence that anthropogenic carbon
dioxide (CO2) emissions as a by-product of the com-
bustion of fossil fuels for energy use is raising the
earth’s temperatures and potentially leading to irre-
versible climate change. Additionally the growth in
global emissions is likely to rise at an increasing rate
due economic growth, especially in developing
countries. Leading climate change mitigation strate-
gies require a global CO2 emission permit trading
regime which is postulated to facilitate the lowest
cost emission reduction options and technologies.
However, given the technologies are still maturing
the economic considerations appear to dictate slow
initial reductions which will then grow at an increas-
ing rate as technologies such as wind, solar and car-
bon capture and storage mature. These economic
considerations however may be in conflict with
longer-term optimization of costs and benefits,
which may be better addressed by earlier interven-
tion. In this paper we present a Modelica model de-
signed to allow exploration of the tradeoffs between
least cost emission cuts and early stabilization of
atmospheric carbon dioxide.

1 Introduction
The energy and climate systems are now intimately
bound through human activity. The evidence that
anthropogenic carbon dioxide (CO2) emissions as a
by-product of the combustion of fossil fuels for en-
ergy use is raising the earth’s temperatures and po-
tentially leading to irreversible climate change [6].
Additionally the growth in global emissions is fore-
cast to rise rapidly due to economic growth, espe-
cially in developing countries. In order to minimize
the impacts of rising emissions on global tempera-
tures and potentially catastrophic events such as
multi-metre sea level rises deep cuts are required
early [5,16].

The leading climate change mitigation strategies
require a global CO2 emission permit trading regime
which is postulated to facilitate the lowest cost emis-
sion reduction options and technologies. However,
given the technologies are still maturing the eco-
nomic considerations appear to dictate slow initial
reductions which will then grow at an increasing rate
as technologies such as wind, solar and carbon cap-
ture and storage mature.

A significant question in the politics of climate
change has been the trade-off between the costs of
mitigation versus the costs of doing nothing. What is
missing is a model quantifying the costs and benefits
of the rate of of mitigation, taking into account that
early strategies may be less efficient than later ones,
yet have more value for mitigation if it is accepted
that early mitigation is better than late mitigation,
since effects accumulate.

The leading climate change mitigation strategies
require a global CO2 emission permit trading regime
which is postulated to facilitate the lowest cost emis-
sion reduction options and technologies. This kind of
scheme has its origin in earlier approaches to emis-
sions reduction, such as the US Acid Rain Program,
initiated by the Clean Air Act of 1990 [17], with the
underlying theory of artificial markets being created
to correct for market failures dating back to the late
1960s [18].

Given that the technologies are still maturing, the
economic considerations appear to dictate slow ini-
tial reductions which will then grow at an increasing
rate as technologies such as wind, solar and carbon
capture and storage mature – hence the need not only
to create an artificial market, but to explore how to
use price as an instrument to drive change at the ap-
propriate rate.

In this paper we present a Modelica model which
explores the tradeoffs between least cost emission
cuts and early stabilization of atmospheric carbon
dioxide.

Modeling of CO2 Reduction Impacts on Energy Prices with Modelica

The Modelica Association 565 Modelica 2008, March 3rd − 4th, 2008

1.1 Model assumptions

1.2 The climate system

The climate model allows for either linear or expo-
nential growth in emissions and in atmospheric car-
bon dioxide; current trends look linear but exponen-
tial growth may occur in the worst case if growth in
energy use tracks population growth. As a first ap-
proximation, although there are indications that envi-
ronmental sinks may saturate [7], we assume a fixed
ratio of natural CO2 sinks (plants, land, ocean) to
emissions. This assumption is reasonable if abate-
ment measures are effective (changes in the ocean in
particular can be rapid [8]), i.e., this is a conservative
assumption for the benefits of early abatement.

Our climate model assumes the following pa-
rameters:

• We assume all variation in greenhouse cases, at a
first approximation, is in CO2 (reasonable since
methane outputs have stabilized since 1990, and
CO2 output is the largest single anthropogenic
contributor to greenhouse gases [10]) and there-
fore work with gigatonnes CO2-equivalent
(GtCO2-eq)

• We base our scenarios on the IPCC’s, which vary
total emissions increases from 2000 to 2030 from
9.7 GtCO2-eq to 36.7 GtCO2-eq off a baseline of
39.8 GtCO2-eq, prior to mitigation [11]

• Total sinks including oceans and land-based con-
sumers of CO2: 50% of anthropogenic CO2 pro-
duction (30% oceans, 20% land) [9]

Our starting point is the scenarios defined by the In-
tergovernmental Panel on Climate Change (IPCC)
[12]. These scenarios are intended to illustrate a
range of possibilities, without attempting to predict
the likelihood of any one outcome [13]. Any of these
scenarios could equally well be modeled and for
completeness all should be modeled. However, for
purposes of illustrating the use of Modelica, we fo-
cus here on using only one base scenario, and vary
mitigation strategy assuming a given trend in energy
demand. Specifically, we choose the A1C scenario,
because that represents high growth with maximal
convergence of developing economies with devel-
oped economies. This scenario combination is rele-
vant because of the debate as to whether mitigation
implies forcing unremitting poverty on developing
countries [14,15].

1.3 Structure of Paper

The remainder of this paper is structured as follows.
In Section 2, we develop a model, based on plausible
parameters, In Section 3, we present examine outputs
of the model, and discuss future applications. Fi-
nally, Section 4 concludes with an overall discussion
of findings and proposals for future work.

2 The Model

2.1 Methodology and assumptions

• We assume that the system is continuous
since all physical process are continuous and
the abatement and economic changes happen
slowly

• Assume that the influence of abatement
paths impacts only the cost of abatement
represented by the carbon price. We don’t
model the feedback in the other direction

• Assume that 50% of emissions are absorbed
environmentally

2.2 The economics of abatement

We develop a simple model based on the technology
assessments of McKinsey and Co.’s climate change
mitigation team in Sweden [19,20]. This model in-
cludes a cost curve for marginal abatement inte-
grated with a mean reverting model for global energy
prices.

• Assume that costs reduce over time as
learning occurs

o constant learning rates for effi-
ciency of energy production and
use

• There are two ways to reduce emissions:
o efficiency-based which reduces

total energy produce to meet
same “virtual demand”

o increase proportion of zero-CO2
energy

• Underlying energy price remains constant
and is increased only through carbon
pricing (likely to be incorrect as supply
fails to keep up with demand, e.g., as ap-
pears to be happening at time of writing
with oil).

P. Machanick, A. Liebman, P. Fritzson

The Modelica Association 566 Modelica 2008, March 3rd − 4th, 2008

2.3 Model design

The continuous assumption allows use to use ordi-
nary coupled differential equations (ODEs).

Data from IPCC converted to rates of emission
change and energy production/efficiency change and
are incorporated as growth parameters in ODEs.

The most significant equations are:

1) U' (t) = E(t) x U(t) + L
2) PE' (t) = PE-MRR x (PLT + PC x CBI – PE)
3) PC ' (t) = PC-MRR x (PA – PC)

Equation (1) allows us to express energy use U as an
exponential component E and a linear component L. U
represents virtual energy as explained above: it is the
trend in energy demand, not taking into account that
actual energy use may be less owing to efficiency
gains. In our examples in this paper, we hold E to zero.

Equation (2) captures the variation in energy
price (PE) in terms of the energy price mean rever-
sion rate (PE-MRR) which captures the tendency for
price spikes to smooth out, long term energy price
(PLT), the modeled carbon price (PC), the carbon in-
tensity at the start of the modeled time (CB).

Equation (3) models the trend in carbon price in
terms of the carbon price mean reversion rate (PC-

MRR) and abatement cost (PA).
This is a closed form model for the interaction be-

tween energy costs under a carbon pricing regime
and the concentration of carbon dioxide in the at-
mosphere.

These equations can be expressed in Modelica as
follows:

der(energyUse) = // (1)

energyGrowthExp * energyUse +

energyGrowthLinear;

der(energyPrice) = // (2)

energyPriceMRR *

(longTermEnergyPrice +

carbonPrice * baseCarbonIntensity –

energyPrice);

der(carbonPrice) = // (3)

carbonPriceMRR * (abatementCost –

carbonPrice);

This model is provided as a starting point, so the pa-
rameters should be taken as examples. Given that the
IPCC has deliberately not provided probabilities for
their scenarios [12], in the same spirit we do not claim
that our specific examples are predictions, but rather
case studies on which predictions can be built, once it

becomes clearer which scenarios are most likely.

3 Results
We have run some variations on parameters through
the model, to illustrate how scenarios can be ex-
plored.

The A1C scenario explored here in its worst case
with no mitigation results in rapid growth in carbon
emissions, resulting in atmospheric CO2 of the order
of 800 parts per million (ppm), as illustrated in Fig-
ure 1(a). In this scenario, most energy by 2100 is
carbon-based, as we have assumed zero mitigation:
no increase in efficiency, no increase in non-emitting
energy sources. With mitigation CO2, peaks at
around 450ppm (Figure 1(b) illustrates the early
mitigation strategy; the late mitigation strategy is
similar with a slightly higher, later peak).

Our mitigation strategy is based on reducing
emissions to those of the B1T IPCC scenario. The
early mitigation and late mitigation strategies are
based on assuming the same cumulative reduction in
emissions, but reversing the order, with faster change
earlier in the more aggressive scenario.

(a) No mitigation, high Carbon growth

(b) With mitigation

Figure 1. CO2 concentration

Figure 2. Energy Pattern (late mitigation)

Modeling of CO2 Reduction Impacts on Energy Prices with Modelica

The Modelica Association 567 Modelica 2008, March 3rd − 4th, 2008

Figure 2 illustrates the change in energy pattern
with our late mitigation (less aggressive) strategy. In
this scenario, an abatement strategy has already
started in 2000, and increases up to 2060, when new
measures start to ease off. In the meantime efficiency
measures increase up to 2050. In graphs, energyUse
means “virtual” energy demand (energy demand not
taking into account reductions caused by efficiency),
energyReal is actual energy demand, allowing for
efficiency measures, energyBlack is energy resulting
in carbon emissions, and energyZeroCO2 is emis-
sion-free energy.

Figure 3 contrasts the less aggressive (a) and
more aggressive (b) strategies, this time leaving out
the “virtual” energy line, since it is the same in all
cases. Required non-emitting energy goes below
zero in (b) because we are more than meeting the
emission target in early years without adding more
zero-emission energy, by aggressive efficiency
measures. This is a flaw in the model, since we
should not force abatement costs to be higher for
more mitigation than is actually needed.

When we compare costs, the two mitigation
strategies come out approximately equal – in the end.
As illustrated in Figure 4 (cost scaled to no mitiga-
tion = 1), the fast mitigation strategy results in higher

energy costs in the interim. However, the following
limitations in the model favour the late mitigation
strategy and therefore make it appear the better strat-
egy in terms of cost:

• The constant learning rate assumption bi-
ases the simulation towards lower costs
for late mitigation, as new technologies
are more efficient, later

o in practice, an aggressive mitiga-
tion strategy is likely to increase
the learning rate e.g. if carbon
taxes are passed through to low
emission R&D

• Extra costs of late mitigation to the envi-
ronment are not factored in, especially if
environmental sequestration becomes less
efficient as CO2 levels rise

• Extra costs of early decommissioning of
polluting plant would be higher in a late
mitigation strategy, as a higher fraction of
such plant would be built later in the
strategy

We should however note that even where the
faster mitigation strategy is more expensive, the gap
is not large (at most 2%), owing to the fact that effi-
ciency strategies are included in the mix.

4 Conclusions
This model provides a starting point for evaluating
abatement paths for bringing CO2 levels into line
with requirements for stabilizing climate change.

We have modeled a limited range of scenarios to
illustrate the techniques. Once it becomes clearer
which scenarios are more probable, it will be a sim-
ple matter to rerun the model with different parame-
ters.

In our future work we will investigate a wider
range of scenarios, and fine-tune the model for a bet-
ter fit to the real world, for example, changes in envi-
ronmental sequestration as CO2 levels rise. We will
also fine-tune economic assumptions, to allow for a
range of policy options such as more aggressive sup-
port for R&D for low-emissions technologies, and
carbon taxes.

5 Acknowledgements
This work was supported by ARC Centre for Com-
plex Systems Univ. Queensland, by Vinnova in the
Safe and Secure Modeling and Simulation project,
and by the Swedish Science Council (VR). Philip
Machanick has been hosted by the School of ITEE,
University of Queensland as a Visiting Fellow.

(a) Less aggressive strategy

(b) More aggressive strategy.

Figure 3. “Real” Energy Pattern

Figure 4. Energy cost relative to no mitigation

P. Machanick, A. Liebman, P. Fritzson

The Modelica Association 568 Modelica 2008, March 3rd − 4th, 2008

References
[1] Peter Fritzson, Peter Aronsson, Håkan Lundvall,

Kaj Nyström, Adrian Pop, Levon Saldamli, Da-
vid Broman. The OpenModelica Modeling,
Simulation, and Development Environment. In
Proceedings of the 46th Conference on Simula-
tion and Modelling of the Scandinavian Simula-
tion Society (SIMS2005), Trondheim, Norway,
October 13-14, 2005.
http://www.ida.liu.se/projects/OpenModelica

[2] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press,
2004.

[3] The Modelica Association. The Modelica Lan-
guage Specification Version 3.0, Sept 2007.
http://www.modelica.org.

[4] Peter Fritzson et al. The OpenModelica Users
Guide, July 2007.
http://www.ida.liu.se/projects/OpenModelica.

[5] JE Hansen. Scientific reticence and sea level rise,
Environ. Res. Lett., vol. 2 no. 2 April-June 2007

[6] GC Hegerl and FW Zwiers and P Braconnot and
NP Gillett and Y Luo and JA Marengo Orsini and
N Nicholls and JE Penner and PA Stott, Chapter
9: Understanding and Attributing Climate
Change. In Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I
to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change (ed. S
Solomon and D Qin and M Manning and Z Chen
and M Marquis and KB Avery and M Tignor and
HL Miller, pages 663-745, Cambridge University
Press 2007

[7] Peter M. Cox, Richard A. Betts, Chris D. Jones,
Steven A. Spall and Ian J. Totterdel. Acceleration
of global warming due to carbon-cycle feedbacks
in a coupled climate model, Nature vol. 408, 9
November 2000, pp 184-187

[8] John E. Dore, Roger Lukas, Daniel W. Sadler and
David M. Karl. Climate-driven changes to the
atmospheric CO2 sink in the subtropical North
Pacific Ocean, Nature vol. 424, 14 August 2003
pp 754-757

[9] Richard A. Feely, Christopher L. Sabine, Kitack
Lee, Will Berelson, Joanie Kleypas, Victoria J.
Fabry and Frank J. Millero. Impact of Anthropo-
genic CO2 on the CaCO3 System in the Oceans,
Science 16 July 2004:�Vol. 305. no. 5682, pp.
362 – 366

[10] IPCC, 2007: Summary for Policymakers. In: Cli-
mate Change 2007: The Physical Science Basis.

Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental
Panel on Climate Change [Solomon, S., D. Qin,
M. Manning, Z. Chen, M. Marquis, K.B. Averyt,
M.Tignor and H.L. Miller (eds.)]. Cambridge
University Press, Cambridge, United Kingdo-
mand New York, NY, USA.

[11] IPCC, 2007: Summary for Policymakers. In: Cli-
mate Change 2007: Mitigation. Contribution of
Working Group III to the Fourth Assessment Re-
port of the Intergovernmental Panel on Climate
Change [B. Metz, O.R. Davidson, P.R. Bosch, R.
Dave, L.A. Meyer (eds)], Cambridge University
Press, Cambridge, United Kingdom and New
York, NY, USA.

[12] Nebojsa Nakicenovic, Joseph Alcamo, Gerald
Davis, Bert de Vries, Joergen Fenhann, Stuart
Gaffin, Kenneth Gregory, Arnulf Grübler, Tae
Yong Jung, Tom Kram, Emilio Lebre La Rovere,
Laurie Michaelis, Shunsuke Mori, Tsuneyuki
Morita, William Pepper, Hugh Pitcher, Lynn
Price, Keywan Riahi, Alexander Roehrl, Hans-
Holger Rogner, Alexei Sankovski, Michael
Schlesinger, Priyadarshi Shukla, Steven Smith,
Robert Swart, Sascha van Rooijen, Nadejda Vic-
tor, Zhou Dadi. IPCC Special Report on Emis-
sions Scenarios (SRES),: Special Report on Emis-
sions Scenarios, Working Group III, Intergov-
ernmental Panel on Climate Change (IPCC),
Cambridge University Press, Cambridge, 2000.
http://www.grida.no/climate/ipcc/emission/index.
htm

[13] Nebojsa Nakicenovic, Arnulf Grübler, Stuard
Gaffin, Tae Tong Jung, Tom Kram, Tsuneyuki
Morita, Hugh Pitcher, Keywan Riahi, Michael
Schlesinger, P. R. Shukla, Detlef van Vuuren,
Ged Davis, Laurie Michaelis, Rob Swart and
Nadja Victor. IPCC SRES Revisited: A Re-
sponse, Energy & Environment, vol. 14, nos. 2 &
3, 2003, pp 187-214.

[14] Olive Heffernan. A push for political will, Nature
Reports Climate Change, vol. 6 Nov 2007 p 79.
http://www.nature.com/climate/2007/0711/pdf/cli
mate.2007.60.pdf

[15] Up in smoke? Threats from, and responses to, the
impact of global warming on human develop-
ment, New Economics Foundation, London,
2004,
http://www.neweconomics.org/gen/uploads/igeeb
que0l3nvy455whn42vs19102004202736.pdf

[16] J. Hansen, Mki. Sato, P. Kharecha, G. Russell,
D.W. Lea, and M. Siddall. Climate change and

Modeling of CO2 Reduction Impacts on Energy Prices with Modelica

The Modelica Association 569 Modelica 2008, March 3rd − 4th, 2008

trace gases. Phil. Trans. Royal. Soc. A, vol. 365,
2007, pp 1925-1954, doi:10.1098/rsta.2007.2052

[17] Clean Air Act, US Government, 1990
[18] W.D. Montgomery, Markets in Licenses and Ef-

ficient Pollution Control Programs, Journal of
Economic Theory 5 (Dec 1972):395-418

[19] Per-Anders Enkvist, Tomas Nauclér and Jerker
Rosander. A cost curve for greenhouse gas reduc-
tion, The McKinsey Quarterly, no. 1 2007, pp 35-
45

[20] Diana Farrell, Scott S. Nyquist and Matthew C.
Rogers. Curbing the growth of global energy
demand, The McKinsey Quarterly Web exclu-
sive, 12 pp, July 2007

Appendix – The Complete Model

class CarbonWorldXIIa

 parameter Integer scenario=1 "1 for faster
early abatement, to 2 for slow early
abatement or 3 for 0 abatement";

 parameter Real gamma = 0.006725 "Correction
factor which can be used to account for
concentration dependent sequestration such as
sea and bio-";

 parameter Real absorptionFactor = 0.5;

 Real emission(start = baseEmission);
 Real carbConc(start=384)
 "Carbon Concentration";
 Real abatementCO2(start =
startAbatementCO2);
 Real abatementEfficiencyCO2 (start=0);
 Real abatementCO2Imputed;
 Real energyZeroCO2 (start = 0);
 Real energyEfficiency (start = 0);
 Real energyReal (start = 0);
 Real abatementCost;
 Real energyPrice(start =
 longTermEnergyPrice);
 Real carbonPrice(start =
 longTermCarbonPrice);
 Real energyUse (start = baseEnergyUse);
 Real energyBlack;
 Real totalCarbonIntensity;
 Real totalCarbonIntensity100;
 Real efficiencyValue(start =
 startEfficiencyValue);
 parameter Integer abateCO2 = 1,
 efficiencyEnergy = 2, abateEffciency = 3;
 Real abatementStepsCO2(start =
 plans[1, scenario, abateCO2]);
 Real efficiencyStepsEnergy (start =
 plans[1, scenario, efficiencyEnergy]),
 Real abatementStepsEffciency(start =
 plans[1, scenario, abateEffciency]);

 parameter Real plans [:,:,:] = {
 {{0.22, 0.69, 0.2},{0, 0, 0.76},{0, 0,
0}},

 {{0.22, 0.69, 0.2},{0, 0, 0.76},{0, 0,
0}},
 {{0.57, 5.33, 0.56},{0.72, 15.23, 1.11},
 {0, 0, 0}},
 {{1.07, 10.64, 0.58},{1.01, 17.76, 0.86},
 {0, 0, 0}},
 {{1.16, 14.02, 0.65},{0.99, 19.04, 0.83},
 {0, 0, 0}},
 {{1.69, 23.47, 0.72},{1.52, 25.11, 0.78},
 {0, 0, 0}},
 {{1.84, 28.18, 0.76},{1.84, 28.18, 0.76},
 {0, 0, 0}},
 {{1.52, 25.11, 0.78},{1.69, 23.47, 0.72},
 {0, 0, 0}},
 {{0.99, 19.04, 0.83},{1.16, 14.02,
0.65},{0, 0, 0}},
 {{1.01, 17.76, 0.86},{1.07, 10.64,
0.58},{0, 0, 0}},
 {{0.72, 15.23, 1.11},{0.57, 5.33,
0.56},{0, 0, 0}},
 {{0, 0, 0.76},{0.22, 0.69, 0.2},{0, 0,
0}}
 };

 parameter Real abatementCatchupRate=1 "From
final abatementPlan to end of sim";

parameter Real energyGrowthExp=0.0,
energyGrowthLinear=20.0/(GJ_MWh/energyConvFac
tor);
 parameter Real tonnesToPPM =0.127365 "from
H:-aliebman-My Research-Energy-Climate
Change-Emissions trading-AL - Carbon Trading
Research-Modelica Models-
CalibrationData.xls";
 parameter Real carbonToCO2 = 3.664
"Conversion between mass Carbon and Carbon
Dioxide";

 parameter Real startEfficiencyValue= 31.06
"150 $/tCO2e";
 parameter Real startAbatementCO2=5 "tCO2e";
 parameter Real learningRate=0.02;
 parameter Real GJ_MWh=3.6,
energyConvFactor=GJ_MWh "GJ_MWh or 1.0";
 parameter Real baseEmission=40 "40 GtCO2e
from energy sector - McKinsey", baseEnergyUse
= 411*energyConvFactor/GJ_MWh "IPCC Special
Report on Emission Scenario (SRES) 2000 -
linear fit and interpolation between 1990-
2050 ";
 parameter Real baseCarbonIntensity =
baseEmission /baseEnergyUse "0.7
/energyConvFactor - tonnes/MWh converted to
tonnes/GJ";
 parameter Real carbonPassThrough = 1;
 parameter Real longTermEnergyPrice = 80
/energyConvFactor; //"$100/MWh long term
energy price" // Will need to be a dynamic
quantity later
 parameter Real longTermCarbonPrice = 0.0;
// "$20/tCO2 long term abatement /carbon
cost" // Need to check this actually makes
sense!
 parameter Real energyPriceMRR = 1.0 "Energy
price mean reversion rate";
 parameter Real carbonPriceMRR = 1.0 "Carbon
Price mean reversion rate" ;
 Real relEnergyPrice (start = 1);
 Real energyCostTrend (start = 1);
 Real scaledEnergyPrice (start=0);

P. Machanick, A. Liebman, P. Fritzson

The Modelica Association 570 Modelica 2008, March 3rd − 4th, 2008

 Integer which (start = 2); // used which =
1 to initialize abatements

 function nextStep
 input Real data[:,:,:];
 input Integer i,j,k;
 output Real step;
 algorithm
 step := data[i,j,k];
 end nextStep;

equation
 energyCostTrend = relEnergyPrice *
energyUse / baseEnergyUse;
 // useful to compare strategies on cost
 relEnergyPrice = energyPrice /
longTermEnergyPrice;
 // useful to compare energy cost across
strategies that vary total use
 scaledEnergyPrice = relEnergyPrice *
energyReal / energyUse;
 abatementCost =
efficiencyValue*(sqrt(abatementCO2/startAbate
mentCO2) - 1);
 der(efficiencyValue) = -
learningRate*efficiencyValue " -
longTernmEnergyPrice *
someKindOfCarbonIntensity)";

 when sample(0, 10) then //StartTime
 which = if pre(which) < size(plans,1)
then
 pre(which) + 1 else pre(which);
 end when;

 abatementStepsCO2 = nextStep (plans, which,
scenario, abateCO2);
 efficiencyStepsEnergy = nextStep(plans,
which, scenario, efficiencyEnergy);
 abatementStepsEffciency = nextStep(plans,
which, scenario, abateEffciency);

 der(abatementCO2) = abatementStepsCO2; //
This is a carbon dioxide quantity

 der(energyEfficiency) =
efficiencyStepsEnergy*energyConvFactor/GJ_MWh
; // This is an energy quantity

 der(abatementEfficiencyCO2) =
 abatementStepsEffciency; // This is a
carbon dioxide quantity

 energyZeroCO2=(abatementCO2-
abatementEfficiencyCO2)/baseCarbonIntensity;
 energyBlack = energyUse - energyEfficiency-
energyZeroCO2;
 emission = energyBlack*baseCarbonIntensity;

abatementCO2Imputed=energyZeroCO2*baseCarbonI
ntensity;

 totalCarbonIntensity = emission/energyUse;
 der(carbConc) =
tonnesToPPM*(emission*absorptionFactor)-
gamma*carbConc;

 der(energyUse) =
energyGrowthExp*energyUse+energyGrowthLinear;
 der(energyPrice) = energyPriceMRR*(
longTermEnergyPrice +
carbonPrice*carbonPassThrough*

baseCarbonIntensity - energyPrice);
 der(carbonPrice) =
 carbonPriceMRR*(abatementCost -
carbonPrice);
 totalCarbonIntensity100=
 100*totalCarbonIntensity;
 energyReal = energyBlack + energyZeroCO2;
end CarbonWorldXIIa;

Modeling of CO2 Reduction Impacts on Energy Prices with Modelica

The Modelica Association 571 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 572 Modelica 2008, March 3rd − 4th, 2008

Modelling of an adsorption chiller with Modelica
Matthias Schicktanz

Fraunhofer Institute Solar Energy Systems
Heidenhofstr. 2, 79110 Freiburg

matthias.schicktanz@ise.fraunhofer.de

Abstract

This paper describes the model of an adsorption
chiller. The model follows a component modeling
approach based on the Modelica Media and Mode-
lica Fluid Library. New models describe the phe-
nomenon of condensing, evaporation and adsorption.
A new library has been created to describe the physi-
cal properties of adsorption materials. First simula-
tions were performed and are compared to measured
data of an existing machine. The simulated curves
show good accordance to measured data.
Keywords: thermally driven chiller, adsorption
chiller

1 Introduction

Facing a globally increasing cold demand to cover
the need of comfort in hot areas and at the same time
facing the problem of global warming, the market for
thermally driven chillers is increasing. Thermally
driven chillers produce cold but are powered by heat
instead of mechanical work (electricity). Depending
on the application, heat sources with temperatures
above 70°C such as solar heat, waste heat or heat of
a cogeneration unit can be used.

Fig. 1: Thermally driven chiller (TDCs) pump heat
from a low temperature heat source at TC to a middle
temperature heat source at TM and are powered by
heat at a temperature level TH (TC<TM<TH).

Fig. 1 shows the working principle of a thermally
driven chiller. It pumps heat from a low temperature
heat source at TC to a middle temperature heat source
at TM powered by heat at a temperature level TH
(TC<TM<TH).

Fig. 2: Scheme of an adsorption chiller with two ad-
sorbers. Cited from [3].
Fig 2 shows the technical implementation of an ad-
sorption chiller. It shows four vacuum vessels for the
four main components evaporator, condenser and
two adsorbers. Each component contains a heat ex-
changer that is connected to one of the three heat
reservoirs TC, TM and TH as mentioned in Fig 1. The
water in the loops is called chilled water, cooling
water and hot water, respectively. The components
are separated by four flaps that control the vapor
flow in the machine. An expansion valve connects
the condenser to the evaporator.
At a low pressure and low temperature level refriger-
ant (here: water) evaporates in the evaporator and
passes the flap to the left adsorber (2). Thereby it
takes up heat from the chilled water. The left ad-
sorber adsorbs the water vapor at the surface of the
adsorbent coating (here: silica gel). The energy re-
leased during this exothermal process is passed to the
cooling water.

Modelling of an Adsorption Chiller with Modelica

The Modelica Association 573 Modelica 2008, March 3rd − 4th, 2008

In the meantime the second adsorber (1) at the right
side gets desorbed powered by energy of the hot wa-
ter loop. This occurs at a higher pressure level by
heating the adsorbent. The released water vapor
passes the flap to the condenser where it condenses
and releases energy to the cooling loop. The conden-
sate afterwards passes an expansion valve before
reaching the evaporator.

2 Structure of the adsorption chiller
model

Fig. 3 shows the Modelica representation of the
process described above. The four main components
condenser, evaporator and two adsorbers are sepa-
rated by four flaps. All models are connected via the
fluid port of the Modelica Fluid Library [1]. A causal
connector represents the expansion valve between
condenser and evaporator.

E_in

E...

A...

A...

A...

A...

C...

C...

Fig. 3: Modelica representation of the adsorption
chiller main components.

2.1 Functional Component Models

All main components used in the model have a simi-
lar design. Fig. 4 shows the graphical representation
of the condenser.
The model mainly uses components from the Mode-
lica Fluid Library. The ports at the top lead to the
hydraulic connections (here cold water). The golden
box in the middle represents a finned heat exchanger
which is described below. As a first approximation,
the heat transfer coefficient describing the condensa-
tion of water vapor at the heat exchangers surface is
assumed to be constant. Therefore, a constant ther-

mal conductor taken from the Modelica Standard
Library connects the heat exchanger to a condensing
model. In the condensing model simple heat and
mass conservation equations are taken into account.
Within this model, no mass and energy storage takes
place. All condensate is released to the water outlet
connector which is a causal output connector and
was especially designed for this purpose. Opposed to
the standard Modelica Fluid connector it only trans-
mits flow variables (m_flow, H_flow) but no state
variables (p, h), since the later change during the ex-
pansion process in the expansion valve.

C...

k_
va

lu
e_

Co
n.

..

G
=k

_c
on

d.
..

V

W
aterO

utlet

hydrauli... hydrauli...

SteamPin1SteamPin2

Fig. 4: Graphical Modelica representation of the con-
denser.
The models for the evaporator and the adsorber have
the same structure as the condenser but the condens-
ing model is replaced by an evaporation model and
an adsorption model, respectively.
The evaporation model in the evaporator contains
basically the same heat and mass conservation equa-
tions as the condensing model, but additionally heat
and mass is stored to describe the refrigerant pool
that covers the heat exchanger. Moreover, the con-
nector for the condensate is defined as input as a
counterpart to the condenser.
The adsorption model contains fundamental heat and
mass conservation equations with internal storage to
describe the adsorption process. The load

),(Tpfx = describes the amount of refrigerant
that is adsorbed by the adsorbent

adsorbent

trefrigeran

m
m

x =

M. Schicktanz

The Modelica Association 574 Modelica 2008, March 3rd − 4th, 2008

In equilibrium the load only depends on temperature
and pressure at the adsorbent surface. The specific
adsorption enthalpy as well as the equilibrium
relation are defined in the adsorption
material package described below. However, the
speed of adsorption is described as a simple linear
relation between driving pressure and mass flow

adh
),(Tpfx =

)(ppm sat −= β&

where is the saturation pressure for the refriger-
ant in the adsorbent,

satp
p is the vapor pressure in the

vessel and is the mass flow of refrigerant into or
out of the adsorbent.

m&
β is an effective diffusion co-

efficient that describes the kinetics and so for is a fit
parameter [2].

2.2 Finned Heat Exchanger Model

Fig. 5 shows a graphical representation of a finned
heat exchanger model. It is a simple model consist-
ing of different heat capacities for fins and tubes and
a constant heat transfer coefficient model that repre-
sents the heat transfer from the hydraulic medium in
the pipe to the pipe’s wall. The pipe model from the
Modelica Fluid Library is applied.

CapacityFins

cp_Fi...

CapacityTu...

cp_T...

pipe

HT
C_

M
ed

iu
m

...

G
=k

_T
ub

e.
..

heatPort

hydrauli... hydrauli...

Fig. 5: Modelica representation of a simple finned heat
exchanger.

2.3 Adsorption chiller piping model

Fig. 6 shows a graphical representation of the ad-
sorption chiller piping. The purpose of the piping is
to distribute the flow of the three loops for hot water,
cooling water and chilled water to the four main
components.
The connections to the hot water, cooling water and
chilled water loops are shown on the left side. The
connections to the four vessels from Fig. 3 are on
the right side. The single valve in the lower right

controls the distribution of the cooling water be-
tween condenser and cooled adsorber. From a hy-
draulic point of view both vessels are arranged in
parallel.

const

k=0....

T

Temp_A1_out

T

Temp_A2_out

E_in

E...

A...

A...

A...

A...

C...

C...

H...

H...

M...

M...

C...

C...

Si
gn

al
V

al
...

Si
gn

al
V

al
...

Tem
p_A

1

Tem
p_A

2
Fig. 6: Modelica representation of the piping of the
adsorption chiller.
The two three-way-valves in the upper left of Fig. 6
control the forward flow of hot water and cooling
water. Either the one or the other adsorber is con-
nected to the hot water loop and cold water loop,
respectively. Similarly, the two three-way-valves in
the middle control the reverse flow. An external con-
troller connected via the control connector at the bot-
tom controls the valves. In order to improve the effi-
ciency of the chiller the reverse flow valves are
switched according to the temperatures in the reverse
flow of the adsorbers. The warmer outlet flow is
connected to the hot water and the colder outlet flow
to the cooling water. Therefore, temperatures at the
adsorber outlets are delivered to the controller.
Switching of the valves in reverse flow occurs at a
later time than switching of the valves in forward
flow.

3 Adsorption Material Properties

At Fraunhofer ISE different adsorption materials are
measure and characterized. The material package in
the adsorber model is therefore defined as replace-
able and simulation can be performed with different
materials.

Modelling of an Adsorption Chiller with Modelica

The Modelica Association 575 Modelica 2008, March 3rd − 4th, 2008

3.1 Description of the adsorption physics

According to Dubinin’s theory [4] the physical equi-
librium between temperature, pressure and load in
the adsorber can be described by knowing only one
function

)(AfW =

in which kg
mW 3][= is the adsorption volume onto

the adsorbent surface that describes how much vapor
can be adsorbed. Therefore, it is proportional to the
load

Wx ⋅= ρ

where ρ is the density of the refrigerant in the liq-
uid adsorbed state. The adsorption potential

kg
JA =][describes the conditions of pressure and

temperature charactering adsorption process and is
defined as

p
p

TRA trefrigeranln⋅⋅=

with specific gas constant R , saturation pressure of
the pure refrigerant and saturation pres-
sure

trefrigeranp
p of the refrigerant in the adsorbed state. Also

the adsorption enthalpy is derived from the
characteristic material equation:

adh

T
vad W

ATAhh ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⋅−+=
ln

α

Here is the specific evaporation enthalpy of the
refrigerant and

vh
α is the linear thermal expansion

coefficient of refrigerant in the adsorbed state.

3.2 Implementation of adsorption data in Mod-
elica

The implementation of the adsorption material prop-
erties in Modelica follows Dubinin’s theory to de-
scribe all parameters with the relation. In
practice, for the specific adsorption enthalpy also the
derivative

)(AfW =

A
W
∂

∂ is needed since Modelica cannot

perform this transformation. Therefore, three func-
tions are needed to describe the properties of a mate-
rial:
The first function describes the relation between W
and A (which may contain piecewise-defined func-
tions), the second function gives the according de-
rivative and the third function contains the needed
coefficients. The first two functions therefore are
extended by the coefficient function.

Each material package is then extended by a partial
base class package. In this partial package all physi-
cal adsorption properties as described above are cal-
culated.
So far, all implemented adsorption materials work
with water as refrigerant but in principle it is possi-
ble to extend the package to the physical properties
of other adsorption pairs like methanol/activated car-
bon.

4 Preliminary results and discussion

Simulations with real measured data as input have
been performed in order to compare the model with a
real machine. As working water according to the
IAPWS-formulation from the Modelica Media Li-
brary and pair silica gel from the adsorption materi-
als package are used. Measurement data come from
the SorTech SKA PT 402 chiller. Data for tempera-
ture and mass flow at the inlets of the adsorption ma-
chine are given as inputs for the simulation from the
measurement. Weight of adsorbent and heat capaci-
ties are given as parameters. Moreover, switching
times for forward valves in the adsorption chiller
piping are set manually, whereas reverse flow valves
are switched by the controller as described above.
Fig. 7 compares measured data with the simulated
results. It shows the measured temperatures at the
inlet and outlet of the hot water, cooling water and
chilled water loops versus time. Moreover, simulated
results at the outlets are shown.

Fig. 7: Comparison between measured and simulated
data. Temp_HW_in.T, Temp_MW_in.T and
Temp_E_in.T are input data for the inlets of the ad-
sorption chiller. Temp_HW_out.T, Temp_MW_out.T
and Temp_E_out.T are simulated temperature values
at the chiller’s outlets. HW_out_Measured.y,
MW_out_Measured.y and CW_out_Measured.y are
measured outlet temperatures.
A half cycle needs approximately about 500s. After
this time adsorption or desorption, respectively, stops
and the valves in the piping model are switched to
change operation mode. Therefore, a complete ad-

M. Schicktanz

The Modelica Association 576 Modelica 2008, March 3rd − 4th, 2008

sorption/desorption cycle needs about 1000s. The
peaks especially in the hot and cooling water loop
are caused by this switching process.
The simulated curves show good accordance to the
measured data. After the switching process the simu-
lated output temperature from the hot water loop
(Temp_HW_out.T) and measured data
(HW_out_measured.y) start from a similar tempera-
ture and converge against the same final desorption
temperature.
The same is true for the simulated and measured val-
ues (Temp_MW_out.T) and (MW_out_measured.y),
respectively, in the cooling water loop.
In both loops the simulated temperature differences
after the switching process are smaller than the
measured values. This might indicate that the switch-
ing in the reverse flow valves of the SKA PT 402
happens to soon.
Inlet temperatures actually were supposed to be con-
stant temperatures but the test bench for the chiller
was not able to handle the high power requirement
which resulted in oscillating inlet temperatures. For
example the middle temperature level
Temp_MW_in.T shows a double overshoot in the
time interval 5800s-5900s. The model can handle
this fluctuation. At the outlet Temp_MW_out.T and
MW_out_measured.y both show a reaction to the
fluctuation. But since the model does not include the
length of the pipes between adsorber and thermome-
ter the simulated reaction happens before the real
measured events.

5 Conclusion

A simulation model for an adsorption chiller on a
component approach has been implemented in Mod-
elica. Even though it consists of simple equations for
heat and mass transfer it already shows good accor-
dance to measured data. It demonstrates the principle
functions of the adsorption chiller and shows reac-
tion to dynamic changes.
Moreover a package for different adsorption materi-
als has been designed according to Dubinin's Theory.
New measurements will also contain pressure data in
the adsorption machine, with this data it will be pos-
sible to calibrate the free parameters in the model
which are currently only first approximations.

Acknowledgment

I would like to thank SorTech AG for appropriating
measured data.

References

[1] Casella F., Otter M., Proelss K., Richter C.,
Tummescheit H., The Modelica Fluid and
Media library for modeling of incompressi-
ble and compressible thermo-fluid pipe net-
works. Modelica Conference 2006

[2] Núñez, T. Charakterisiserung und Bewertung
von Adsorbentien für Wärmetransformati-
onsanwendungen. Freiburg im Breisgau,
Germany: PhD thesis, Department for phy-
sics, Albert-Ludwigs-Universität, 2001.

[3] Henning H-M, Solar cooling. Presentation
ISES Beijing, China 2007.

[4] Dubinin M. Physical Adsorption of Gases
and Vapors in Micropores, volume 9, pages
1-70. Academic Press, 1975.

Modelling of an Adsorption Chiller with Modelica

The Modelica Association 577 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 578 Modelica 2008, March 3rd − 4th, 2008

An External Model Interface for Modelica

Torsten Blochwitz Gerd Kurzbach Thomas Neidhold

ITI GmbH, Webergasse 1, 01067 Dresden, Germany

Abstract

The paper describes the integration of non-Modelica

submodels to a complete Modelica model. We show,

that the Modelica standard interfaces to external

code (external function and external object) are not

suited to integrate the behavior of non-trivial models.

The necessary enhancements of the external object

interface are worked out and the usage is demon-

strated.

Keywords: External Function, External Object,

C-Interface

1 Introduction

With ITI-SIM and SimulationX [1] the company ITI

develops and distributes software for system simula-

tion since 1991. SimulationX provides full support

for Modelica since release 3.0. The steadily growing

acceptance of these programs is based on a modern

user interface, which enables engineers an easy

access to modeling, simulation and optimization

techniques by using efficient calculation methods

associated with a wide range of libraries and tools. A

large contribution to this success is the availability of

interfaces to other CAE tools like MAT-

LAB/Simulink, MSC.ADAMS or SIMPACK. In

addition to various forms of co-simulation the C

code based exchange of models between different

tools is also supported. This enables the user to coo-

perate across team boundaries independent of the

finally used simulation tools. The encapsulation of

the model functionality, which will be achieved by

the compilation of the code generated from the origi-

nal model, also allows an effective protection against

unwanted insight into the parameters and behavior.

With the description of this interface, as well as our

proposal for its integration into the Modelica lan-

guage we want to make available the described ad-

vantages to the whole Modelica community.

2 Motivation

There are different motivations to integrate non-

Modelica submodels into Modelica models:

1. Sometimes a component is modeled using a spe-

cialized simulator for a specific physical domain

(e.g., SIMPACK for complex multi body sys-

tems or GT-POWER [2] for combustion en-

gines). For system simulation within a Modelica

simulator the component should be integrated in-

to a Modelica model. Often the model functio-

nality of the special simulator can be exported as

C-code.

2. A supplier has developed a model of a compo-

nent in Modelica. He wants to supply this model

to the OEM but wants to protect his know how,

contained in the physical model. The safest way

to do that is to provide the model in binary form

as a compiled library with a well defined inter-

face.

Figure 1: Modelica model with embedded external

components

An External Model Interface for Modelica

The Modelica Association 579 Modelica 2008, March 3rd − 4th, 2008

Modelica currently supports the following interfaces

to external functionality [3]:

 external function interface

 external object interface

According to the Modelica Language Specification

results of external functions may only depend from

their arguments, i.e., the functions have no internal

memory. Complex models do have a memory.

External objects as an improvement of external func-

tions provide a memory context which is reported

between the function calls.

Beside the more or less complex function for the

right hand side of an ODE or DAE, external models

may contain discrete states, state- or time-dependent

events, or delay buffers. To integrate those into the

simulation, information about the objects have to be

exchanged between the external model and the simu-

lation environment. The Modelica external object

interface does not provide the functionality to ex-

change this information. It must be extended to an

"External Model Interface." The following chapter

describes the requirements to the external model in-

terface resulting from the features of complex

models.

The inclusion of controller code (e.g. ECU code gen-

erated by the Real Time Workshop from The Math-

Works) is not subject of this article. Such compo-

nents must be called with a constant sample rate dur-

ing the simulation. This can be done utilizing the

existing Modelica interfaces (external function or

external object). No extensions are necessary.

3 Requirements for External Model

Interface

3.1 Requirements Resulting from Model Fea-

tures

At first we consider external models, which are

represented by ordinary differential equations

(ODE). The equations may contain discontinuities.

Such systems are represented by following equa-

tions:

)t,r,z,p,u,x(fx  (1)

)t,r,z,p,u,x(gy  (2)

)t,s,r,p,u,x(hz 1 (3)

)t,z,p,u,x(hr 2 (4)

with:

 x Continuous states

 u Inputs

 y Outputs

 p Parameters

 z Discrete states

 r Root functions

 s Sample variables

 t Time.

Equation (1) represents the right hand side (RHS) of

the ODE. Equation (2) represents the calculation of

the outputs. Both calculations should be separated in

different functions to enable an optimum arrange-

ment of the external model in the calculation se-

quence of the enclosing model.

The other equations deal with event handling and

discontinuities.

Events:

Two kinds of events must be handled: time events

and state-dependent events. Time events are pro-

duced by timers or the Modelica sample keyword.

They are signaled from the solver to the model by

setting corresponding sample variable s.

State events are signaled from the model to the solv-

er by zero crossings of the root functions r. Discrete

variables z can change its values only at events.

According to our experience a reliable event han-

dling is crucial for a robust and fast calculation.

Reinitialization of States:

At event instants state values may be reinitialized by

the external model. The solver should be informed

about such an operation.

Additional Model Information:

External models of specific domains may provide

further information which eases a robust and fast

solution. Examples are minimum and maximum

permissible values for states (e.g. absolute tempera-

tures and pressures have to be positive).

Other models could provide the Jacobian matrix di-

rectly.

It depends on the simulator, if this data is used.

Special Features:

Some special features demand actions on valid

model data. For example, the buffers of delay blocks

must be updated with valid data once after a success-

ful time step. For that reason, the external model

must be called once after successful steps with valid

data and must be informed about that.

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 580 Modelica 2008, March 3rd − 4th, 2008

Other model features may require the allocation and

freeing of memory or data is to be read from files

once. For that reason special functions must be

called once at the beginning and the end of the simu-

lation run.

3.2 Requirements Resulting from the Integration

into the Enclosing Model

For integration of the external model into the enclos-

ing Modelica model the external model calls must be

correctly positioned in the calculation sequence.

If the outputs of the external model depend only

from states, the arrangement is simple: the external

model must be called before one of the outputs is

needed.

If the external model has direct feed through (outputs

depend directly from inputs) the situation is more

complex. The external model must be called before

the outputs are needed and after the inputs are calcu-

lated. If the enclosing model defines dependencies of

the inputs from the outputs of the external model, we

have algebraic loops. The simulator must treat them

in an appropriate manner.

For this reason it is essential for the external model

to provide the information, which output depends on

which input(s). If the model creator is not able to

offer this structural information, the worst case (each

output depends from each input) has to be assumed.

3.3 Technical Requirements

The external model interface for Modelica should be

similar to the Simulink S-function interface from

The MathWorks [4]. This interface is quite well

adopted and widely used.

The realization of the data transfer should be simula-

tor-specific. The external model accesses the data via

functions or macros. These functions or macros are

provided by the target simulator.

The external model interface should be usable by

non-Modelica simulators too. These simulators

should be able to use and/or to create models using

the interface.

We will assume that at least the interface part of ex-

ternal models is written in C. How the external mod-

el is linked to the simulator is tool specific and de-

pends on the capabilities of the operating system.

4 The External Model Interface

The external model interface can be seen from the

following three perspectives:

 Specification of the functions and data provided

by the external model.

 Specification of the calling sequence by the

solver.

 Specification of the interface to Modelica.

These three views to the external model interface are

shown in Figure 2.

EMI

EMSolver

Modelica

Simulator

em.dll

EMI

EMSolver

Modelica

Simulator

em.dll

Figure 2: Three views to the external model interface

On the other hand the interface provides a set of

utility functions which can be called from external

model code.

According to the requirements we get the following

data flow between the components (Figure 3).

External Model

)t,r,z,p,u,x(fx 

)t,r,z,p,u,x(gy u y

GUI

Enclosing Model

)t,s,r,p,u,x(hz 1

)t,z,p,u,x(hr 2

p

x r,z,x t,s

Solver

External Model

)t,r,z,p,u,x(fx 

)t,r,z,p,u,x(gy u y

GUI

Enclosing Model

)t,s,r,p,u,x(hz 1

)t,z,p,u,x(hr 2

p

x r,z,x t,s

Solver

Figure 3: Data flow

An External Model Interface for Modelica

The Modelica Association 581 Modelica 2008, March 3rd − 4th, 2008

The details, i.e. which data is to be provided by

which function, are part of the complete specifica-

tion, which will be published by the authors.

4.1 External Model View

The data transfer is realized via the external model

context, the structure emc. The external model must

implement the following functions:

void emiInitializeSizes(emc *C)

 Defines the dimensions of the model.

 Transfers additional information (input – output

dependencies)

 Is called multiple times before the calculation.

void emiStart(emc *C)

 Is called once at the beginning of the simulation

run.

 Can be used, e.g., to allocate memory.

void emiInitializeSampleTimes(emc *C)

 Transfers constant sample times.

 Is called once at the beginning of the simulation

run.

void emiInitializeConditions(emc *C)

 Sets the initial conditions for continuous and dis-

crete states.

 Is called once at the beginning of the simulation

run.

void emiTerminate(emc *C)

 Is called once after the simulation run.

 Allocated memory can be freed here.

The following functions are called multiple times

during one calculation step:

void emiDerivatives(emc *C)

 Computes the RHS of the ODE (1), and (3) dur-

ing event iteration.

void emiOutputs(emc *C)

 Computes the outputs (2).

void emiZeroCrossings(emc *C)

 Computes the root functions (4).

The next function is called once after a successful

calculation step:

void emiUpdate(emc *C);

 Called after a successful calculation step with va-

lid data.

It is not allowed to access the data in the external

model context emc directly. Instead, a set of func-

tion or macros is to be used, e.g.:

emcSetNumContStates(emc *C, int_T n)

 Sets the number of continous states.

emcGetContStates(emc *C)

 Returns a pointer to the state array.

emcSetSolverNeedsReset(emc *C)

 Informs the solver about a reinitialization of

states.

The implementation of the emc and the access func-

tions are target tool specific and must be provided by

the simulator manufacturer.

4.2 Solver View

Figure 4 shows a simplified flow chart of the solu-

tion process for a Modelica model. It demonstrates

which functions are called at each stage.

Figure 4: Solution process flow chart

If the integrator works iteratively, the functions

emiOutputs and emiDerivatives may b

called several times at the same time be instant with

temporary data. These functions are to be imple-

mented as reentrant and must not store any data.

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 582 Modelica 2008, March 3rd − 4th, 2008

For these purposes emiUpdate is called with valid

data once after a successful time step.

The method for robust handling of discrete variables

during event iteration is an open issue at the moment.

There are several possibilities, which should be dis-

cussed with other simulator vendors.

4.3 Modelica View

This section describes the enhancements of the ex-

ternal object call interface to the external model in-

terface. The information to be exchanged between

the external model and the Modelica simulator are of

two types:

 Data for the model (parameters, inputs, outputs).

These are exchanged via usual function argu-

ments and appear inside the Modelica model.

 Data for the solver (states, derivatives, residuals,

discrete states, root functions…). These are han-

dled implicitly by the simulator using the external

model context.

We suggest the new Modelica built in type "external

model" as an extension of the external object inter-

face. The implicit declaration of the type could be:

class ExternalModelInterface

 extends ExternalObject;

 function constructor

 input String emName;

 output ExternalModelInterface emi;

 external "C" emi=initEM(emName);

 end constructor;

 function destructor

 input ExternalModelInterface emi;

 external "C" terminateEM(emi);

 end destructor;

end ExternalModelInterface;

The calculation function is declared implicitly as

follows:

function calcEM

 input ExternalModelInterface emi;

 input Real u[nu]; //inputs

 input Parameter Real p[np]; //parameters

 output Real y[ny]; //outputs

 external "C" y=calcEM(emi, u, p);

end calcEM;

Differing from the external object interface, the func-

tions initEM, terminateEM and the calculation

function calcEM do not correspond one to one to

the functions of the external model. During the sym-

bolic analyses of the model these functions have to

be mapped to the appropriate function calls of the

external model.

The dimensions (nu, np, ny) and the dependencies

of the outputs from the inputs must be known during

the symbolic analyses. This information should be

provided by the external model. To get this informa-

tion, the external model must be called already dur-

ing the analyses. This is another difference to the

external object interface.

The usage of the external model interface in a Mod-

elica model is:

model Block "Block with External Model"

 input SignalBlocks.InputPin u1;

 input SignalBlocks.InputPin u2;

 input SignalBlocks.InputPin u3;

 output SignalBlocks.OutputPin y1;

 output SignalBlocks.OutputPin y2;

 ExternalModelInterface emi=

 ExternalModelInterface("c:\test.dll");

 equation

 {y1,y2}=calcEMI(emi,{u1,u2,u3},{1,2,3});

end Block;

As denoted before, the Modelica model handles only

the inputs, outputs, and parameters of the external

model. The other information is exchanged implicit-

ly between the solver and the external model. If the

user wants to access such internal data for debugging

purposes, special functions could be provided.

Access to the states could be given by:

function getEMStates

 input ExternalModelInterface emi;

 output Real x[nx]; //states

 external "C" x=getEMStates(emi);

end getEMStates;

5 Application Scenarios

5.1 Hand-Written External Models

External models can be developed by any program-

mer. The complete API with all necessary data struc-

tures and functions is described in a programmer’s

manual. Normally it should be the exception to im-

plement an external model completely by hand. In-

stead, the adaption and integration of existing source

An External Model Interface for Modelica

The Modelica Association 583 Modelica 2008, March 3rd − 4th, 2008

code according to the external model interface re-

quirements will be the typical task. This way is prac-

ticable for single solutions and non-commercial ap-

plications. The necessary work can be simplified by

using precast templates.

Figure 5: Work flow for hand-written external

models

5.2 Tool-Generated External Models

For commercial CAE tools the automatic generation

of external models is feasible. The Code Export

Wizard integrated in SimulationX is already able to

generate source code for various target platforms.

Figure 6: Work flow for tool-generated external

models

Among S-functions for MATLAB/Simulink and

UFORCE-routines for SIMPACK [5] also real time

targets like ProSys-RT from Cosateq [6] are sup-

ported. For the automatic generation of EMI-

conform model code a new target project type was

added to the SimulationX Code Export Wizard. The

wizard assists the user in the selection of inputs, out-

puts, and parameters. If a supported compiler is in-

stalled, SimulationX is able to build the External

Model DLL immediately. The resulting model li-

brary does not need any additional runtime modules

and can be distributed without limitations.

6 Conclusions and Outlook

We have shown how the interface to an external

model in SimulationX is structured.

In one of the next Modelica Design meetings, we

will make a proposal for the new predefined partial

class ExternalModel which represents the model

context inside the Modelica language.

The external model interface will be open for other

software vendors. The interface itself does not con-

tain Modelica specific parts. In this way external

model components could be created and used by

non-Modelica simulators too.

The authors explicitly invite interested colleagues for

discussions about the interface proposal. A detailed

specification is available on requested.

7 References

[1] http://www.simulationx.com

[2] http://www.gtisoft.com

[3] Modelica Association: Modelica A Unified

Object-Oriented Language for Physical Sys-

tems Modeling. Language Specification,

Version3.0, September 5
th
 2007.

[4] The MathWorks: Writing S-Functions

(Manual), 2002.

[5] http://www.simpack.com

[6] http://www.cosateq.de

Compiler / Linker

emi.c
emi.h

model.c
model.h
…

Model specific code Target tool specific code

em.dll

emi.c
emi.h

model.c
model.h
…

Model specific code Target tool specific code

em.dll

model.mo

SimulationX

Code Export Wizard

Compiler / Linker

T. Blochwitz, G. Kurzbach, T. Neidhold

The Modelica Association 584 Modelica 2008, March 3rd − 4th, 2008

Two Steady State CHP Models with Modelica : Mirafiori overall
Model and Multi-configuration Biomass Model

Baligh EL HEFNI Benoît BRIDE Bruno PECHINE

baligh.el-hefni@edf.fr benoit.bride@edf.fr bruno.pechine@edf.fr

EDF R&D
6 Quai Watier

F-78401 CHATOU CEDEX
FRANCE

Keywords : Power Plant, CHP Models, Biomass Model Steady State Modelling, Combined Cycle,
Inverse Problems

Abstract
Steady state 0D/1D models are useful to check,
validate and improve through simulation the energy
performances of existing heat and/or power plants.
They are also used to find the best design that meets
required economical criteria.
A library of fully static 0D thermal-hydraulics
component models was built. It contains the models of
a grid furnace, gas combustion chamber, electrical
boiler, steam boiler, multifunctional heater, waterwall
gas/water steam exchangers, tubular air heater, steam
turbine, condenser, aero-condenser, pump, drum,
valves, pipes, gas turbine, compressor, kettle boiler,
mixer and splitter etc...
This library now enables us to build models of any
CHP plant. A 0D steady state model of the MiraFiori
heat and power plant was built in order to check,
validate and improve the energy performances of the
plant. A multi configurations steady state model of a
combined heat and power biomass plant was built, the
plant satisfies the steam demand during all the year
and produces electricity with its remaining energy.
Models were built by connecting the component
models in a technological way, so that its topology
reflects the process flow diagram of the plant.
A preliminary calibration of the Mirafiori model was
made based on measurement data obtained from on-
site sensors and using inverse calculations. The best
steam cycle configuration for the Biomass CHP plant
was chosen computing various normal conditions
points. The models were then able to compute
precisely the distribution of the steam/water mass flow
rates, pressure and temperature across the network, the
exchangers thermal power, and the performance
parameters of all the equipments. They converge very
quickly, provided that the iteration variables are
properly fed in by the user (approx. 5% of the total
number of variables).

1 Introduction
Modelling and simulation play a key role in the
design phase and performance optimization of
complex energy processes.
Steady state 0D/1D models are useful to check,
validate and improve through simulation the
energy performances of existing heat and/or power
plants. They are also used to find the best design
that meets required economical criteria.
The modelling and simulation of the plant was
originally carried out with LEDA. LEDA is a tool
developed and maintained by EDF since 1982 for
the modelling and simulation of the normal or
incidental operation of nuclear and conventional
thermal plants.
For present and future models, we are using
MODELICA modelling tool. New blocks and
models are being developed with Modelica and
standard guidelines have been adopted for power
plants modelling. It is now used at EDF-R&D as
well as in Engineering Departments.
Modelica models are used by EDF to improve its
knowledge about existing or future types of power
plants, check the design performances and
understand important transients situations.
Besides technical benefits of Modelica, it is likely
that using a free and non proprietary language will
promote partnerships around joint R&D and
engineering projects, thus giving the opportunities
to share development costs between participants.
Two Steady State CHP models with Modelica -
Mirafiori overall model and Multi-configuration
Biomass model - were built in 2007.
The modelling and simulation were carried out
with the commercial tool Dymola, as it is the most
advanced Modelica based tool up to now.

Two Steady State CHP Models with Modelica : Mirafiori overall Model and Multi-configuration Biomass
Model

The Modelica Association 585 Modelica 2008, March 3rd − 4th, 2008

2 Modelling practices at EDF
Modelling and simulation play a key role in the design
phase and performance optimization of complex
energy processes. At EDF, modelling and simulation
of the plant was originally carried out with LEDA.
LEDA is a tool developed and maintained by EDF for
the modelling and simulation of normal or incidental
operation in nuclear and fossil-fuel power plants.
LEDA models are used by researchers and engineers
in order to improve their knowledge of existing or
future types of power plants, to check the design
performances and to understand important transient
situations.
EDF traditionally used steady state models in order to
check precisely the performances and the design given
by manufacturers. EDF used dynamic models to check
automation and operating procedures and to optimise
design for a specific operation.
In order to improve the performance of its simulation
tools while reducing their cost, EDF R&D made the
decision to replace LEDA with Modelica and the
commercial tool Dymola.
Application fields

• Nuclear power plants.
• Thermal fossil fuel fired power plants

(pulverized coal, fluidized bed, ...).
• Combined heat and power plants.
• Waste to energy.

Utilization fields
• Operation and maintenance.
• Design and analysis.
• Innovative technologies.

3 EDF Modelica Library

3.1 Component models
A library of fully static 0D thermal-hydraulics
component models was built. It contains the models of
a grid furnace, gas combustion chamber, boiler,
electrical boiler, steam boiler, multifunctional heater,
waterwall gas/water steam exchangers, tubular air
heater, steam turbine, condenser, aero-condenser,
pump, drum, valves, pipes, gas turbine, compressor,
kettle boiler, mixer and splitter etc...
The model equations take into account the non-linear
and the state-of-the-art physical behaviour of each
important phenomenon.

3.2 The thermodynamic properties
Properties of flue gases

The thermo-physical properties of the flue gases
(for the exchangers, gas turbines, compressors, gas
combustions chambers, …..) were computed using
Fortran subroutines called MONOMELD.
Properties of water and steam

The properties for water and steam were computed
from polynomials defined by the international
standard IAPWS-IF97. The efficient original
Modelica implementation of H. Tummescheit was
used.

4 The Mirafiori model
Steady state model of the MiraFiori heat and power
plant was built in order to check, validate and
improve the energy performances of the plant. The
model contains six units (systems) of production :
� HP water/steam cycles with 3 gas boiler,
� IP water/steam cycles with 4 gas boiler,
� 2 combined cycles,
� 2 GT.

As it has already been mentioned, MiraFiori is a
fully static model.
The full model is built by connecting the
component models in a technological way, so that
its topology reflects the functional schema of the
plant (see Figure 7 in the appendix). It is composed
of 420 elementary models, generating 9560
variables and 1950 non-trivial equations.
The model is composed of : 7 gas boilers,14
exchangers, 10 steam turbine stages, 15 pumps, 28
pressure drops, 4 gas turbines, 4 compressors, 4
kettles boilers, 4 gas combustions chambers,
several mixers, several collectors and several
boundary conditions.
It is very important to provide an efficient way to
handle the iteration variables, as the task of setting
them properly is time consuming. It is by no way
automatic, since it requires a good expertise of the
problem to be solved (the number of iteration
variables represent roughly 5% of the total number
of variables).

4.1 Model calibration
The calibration phase consists in setting the
maximum number of thermodynamic variables to
known measurement values (enthalpy, pressure,
mass flow rates), taken from on-site sensors during
performance tests. This method ensures that all
needed performance parameters, size
characteristics and output data can be computed.

B. El Hefni, B. Bride, B. Pechine

The Modelica Association 586 Modelica 2008, March 3rd − 4th, 2008

A preliminary calibration of the model was made
based on measurement data obtained from on-site
sensors. The model was then able to compute
precisely the distribution of water and steam mass
flow rates, pressure and temperature across the
network, the exchangers thermal power, and the
performance parameters of all the equipments. It
converges very quickly, provided that the iteration
variables (approx. 5 % of the total number of
variables) are properly fed in by the user.

Figure 1 shows the evolution of the efficiencies of
the boilers as a function of the ambient air
temperature calculated through Dymola, the
variation of the efficiencies of the boilers is +/-1%
compared to the nominal value.

92.0
92.5
93.0
93.5
94.0
94.5
95.0
95.5
96.0

-20 -10 0 10 20 30 40 50

Ambient air temperature (°C)

Ef
fic

ie
nc

ie
 o

f t
he

 b
oi

le
r (

%
)

The main computed performance parameters are :
• the ellipse law coefficients of the turbines,
• the isentropic efficiencies of the turbines,
• the pressure drop correction coefficients of the

exchangers and of the pipes between pieces of
equipment.

• the compression ratio of the GTs.
Figure 1 - Efficiencies of the boilers as a
function of the ambient air temperature

Etc.

 The main computed outputs are :
• fuel mass flow rate of gas boilers, Figure 2 shows the efficiencies of the boilers as a

function of the excess air, the boilers efficiencies
vary from 94,4% down to 92% when the excess of
air passes from 10% (nominal value) to 90%
(maximum value recorded on the operating data).

• Air mass flow rate of gas boilers,
• thermal power of exchangers,
• temperatures and pressures in places where no

sensor are installed.
Etc.

90%

91%

92%

93%

94%

95%

96%

0 20 40 60 80
Excess air (%)

Ef
fic

ie
nc

ie
 o

f t
he

 b
oi

le
r (

%
)

100

4.2 Simulation results
After calibration, the model allowed us to make what-
if simulation and provide to the plant operators :
• The performances of the equipments (for example

boiler performances),
• The global efficiencies of the water/steam cycles,
• The gains or extra costs associated with the

varying operating conditions of the unit
(condenser pressure, exhaust temperature, excess
air, fouling coefficients…),

• The best operating point with respect to the
various operating conditions of the unit.

Figure 2 - Efficiencies of the boilers as a
function of excess air

4.3 Sensitivity analysis Figure 3 shows the efficiencies of the boilers as a

function of temperature of the exhaust flue gases,
the boilers efficiencies decreases by 2% when the
temperature of the exhaust flue gases passes from
110 °C (nominal value) to 150 °C (maximum value
recorded on the operating data).

Then, the model allowed us to make a sensitivity
analysis of the effect of air mass flow rate (excess air),
ambient air temperature (combustive), temperature of
the exhaust flue gases and the condenser vacuum on
the thermo-hydraulic behaviour of the power plant
and the efficiencies of boilers.

Two Steady State CHP Models with Modelica : Mirafiori overall Model and Multi-configuration Biomass
Model

The Modelica Association 587 Modelica 2008, March 3rd − 4th, 2008

92%

93%

93%

94%

94%
95%

95%

96%

96%

100 110 120 130 140 150 160

Temperature of the exhaust flue gases (°C)

Ef
fic

ie
nc

ie
 o

f t
he

 b
oi

le
r (

%
)

39.0
40.0
41.0
42.0
43.0
44.0
45.0
46.0
47.0
48.0

0 0.05 0.1 0.15 0.2 0.25 0.3

Condenser vacuum (bar)

St
ea

m
 tu

rb
in

e
po

w
er

 (
M

W
)

Figure 3 - Efficiencies of the boilers as a function of

the temperature of the exhaust flue gases Figure 5 - Evolution of the steam turbine power
of GT as a function of the condenser vacuum

Figure 4 shows the evolution of the power of gas
turbines of the combined cycles as a function of
ambient air temperature. The nominal value of power
of gas turbines is 80.5 MW for ambient air
temperature at 20 °C.

4.4 Correction curves
The correction curves used to forecast the behavior
of the pieces of equipment. These correction
curves represent a simplified physical model of the
plant, which is fed into a mathematical model used
to compute on a six-week period the cheapest
operating scenario which meets environmental and
technical requirements.

75
76
77
78
79
80
81
82
83
84
85

-20 -10 0 10 20 30 40 50
Ambient air temperature (°C)

Po
w

er
 o

f g
as

 tu
rb

in
es

(M

W
)

The different correction curves create with the
model are:
• Gas boiler : (Boiler Power / Fuel Power) ,
• Steam turbine : (Mechanical Power / Boiler

Power) ,
• Gas turbine : (Mechanical Power / Fuel

Power) ,
Figure 4 - Power of gas turbines of the combined

cycles as a function of the ambient air temperature
• Combined cycle : (Total mechanical Power /

Fuel Power).

Figure 5 shows the evolution of the steam turbine
power of the combined cycles as a function of the
condenser vacuum, the loss of the steam turbine
power is about 7,5 MW, between a condenser vacuum
of 50 mbar and a vacuum of 250 mbar.

50.0

55.0

60.0

65.0

70.0

60 65 70 75 80
Fuel power (MW)

B
oi

le
r p

ow
er

 (M
W

)

Figure 6 - Example of correction curve :
Evolution of the boiler power as a function of

the fuel power

B. El Hefni, B. Bride, B. Pechine

The Modelica Association 588 Modelica 2008, March 3rd − 4th, 2008

5 Biomass CHP steady state
model

Recent developments of environmental concerns
drove states to promote renewable energies and
energy efficient solutions. Some invitation to tender
often are proposed so as to create new biomass CHP
plants at the best operating cost.

5.1 Need
Companies answering to these invitations to tender for
biomass CHP plants shall be able to choose the best
configurations for the plants in order to reach the
following criteria:

• The yearly average efficiency (steam +
electricity) is greater than 50%;

• The plant is able to satisfy the steam demand
of the customer (usually an industry) at all
time;

• The yearly biomass consumption is fixed;
• The return on investment time is as low as

possible.
Usual studies for this type of issue only give an
efficiency at nominal point for one or two plant
configuration. Models are able to provide various
configurations and what-if studies in order to broaden
the range of efficiency calculations and help the
company to choose the best investment.
One of these companies asked us to assist them by
creating and using a MODELICA Biomass CHP
plant.

5.2 Building the model
This model uses the same library as the Mirafiori one.
It is a fully static model. It also needs to use the same
physical properties as Mirafiori.
The full model is built by connecting the component
models in a technological way, so that its initial
topology reflects the functional schema of the more
complex plant (see Figure 7C in the appendix).
In order to be able to answer to many different
situations, we created some variables in some of the
component model enabling to switch itself on or off.
This multi configurations steady state model of a
combined heat and power biomass plant contains 96
elementary models, generating 2162 variables and 460
non-trivial equations.

5.3 Multi – configuration calculations
at normal operating condition

First the model is able to give figures at nominal
point for various situations.
The same model can simulate 16 different plant
configurations:

• w/wo air heater
• w/wo reheaters
• w/wo water heating
• w/wo condenser

NB: any fuel can be set into the grid furnace, but
its physical equations are ideal for solid fuels (coal,
waste, biomass etc.).
The plant works with a fixed biomass flow rate, it
satisfies the steam demand during all the year and
produces electricity with its remaining energy.
We make an inverse calculation (such as the
calibration phase for Mirafiori model) with
DYMOLA setting the nominal parameter to their
expected value in the plant projects.
The results given by the model are :

• The efficiency at nominal point (steady
state calibration),

• The electric power produced

These results at nominal point are a first step to
choose the best configuration regarding the
investment cost of each type of plant.

5.4 What-if steam demand varies?
Of course, the results given at nominal point are
not consistent to know precisely the average
performance on a one-year operation.
Consequently, we use what-if ability of
DYMOLA/MODELICA model in order to realize
the following computations :

• What-if simulation varying any parameter:
e.g. steam flow rate,

• Economic study on a one-year typical
steam demand (what-if quasi-static
simulation).

The forecast of steam demand is defined as a load
curve with 365 values of flow rate (one per day). It
is based on measurements made by the customer
on a past year considered as normal. The variation
of the steam flow rate makes the global efficiency
vary and changes the electric power produced.

Two Steady State CHP Models with Modelica : Mirafiori overall Model and Multi-configuration Biomass
Model

The Modelica Association 589 Modelica 2008, March 3rd − 4th, 2008

Hence the best yearly average figures (global
efficiency, electric power) are given by the model.
It gives a much better forecast of the incomes that will
be generated by the plant.

5.5 Creation of a tool for non-modeller
The executable file of the model has been integrated
in an easy-to-use Excel sheet for non-modelers, and it
was given to our customer.
With this tool, one who is not used to models can
make calculations on any plant configuration and
launch what-if calculation varying steam demand.

5.6 Trigeneration issues
An absorption chiller model is being created in the
static library. This could represent one-stage or two
stage Water/LiBr systems on hot water or hot flue gas.
This will give us the ability to model trigeneration
systems in order to compute performance figures for
existing and projected plants and to simulate various
behavior.
The optimal point, harder to find for a trigeneration
than for a CHP, will easily be found with a
DYMOLA/MODELICA model.

Conclusion
Two Steady State CHP Models were built with
Modelica to evaluate the capacity of Modelica based
tools to perform steady state direct and inverse
computations for the sizing of power plants.

To even further reduce the effort required to do
Modelica modelling and simulation for such systems,
it is necessary to provide more advanced tool
functionalities to handle efficiently the iterations
variables, and trace the automatically generated
numerical system back to its original mathematical
equations, as declared by the user with the Modelica
language.
Nevertheless, this work shows that the Modelica
technology is mature enough to replace proprietary
solutions such as LEDA for the steady state modelling
and simulation of power plants.

References
[1] El Hefni B., Bouskela D. Modelling of a

water/steam cycle of the combined cycle
power plant “Rio Bravo 2” with Modelica
“Modelica 2006 conference“

[2] Souyri A., Bouskela D. Pressurized Water
Reactor Modelling with Modelica
“Modelica 2006 conference“

[3] Avenas C. et al. Quasi-2D steam generator
modelling with Modelica. ISC’2004,
Malaga, Spain.

B. El Hefni, B. Bride, B. Pechine

The Modelica Association 590 Modelica 2008, March 3rd − 4th, 2008

Appendix
HP Water/steam cyclesIP Water/steam cycles

Figure 7A - Parts of the Dymola model of “Mira-Fiori

Combined cyclesGas turbines

Figure 7B - Parts of the Dymola model of “Mira-Fiori

Two Steady State CHP Models with Modelica : Mirafiori overall Model and Multi-configuration Biomass
Model

The Modelica Association 591 Modelica 2008, March 3rd − 4th, 2008

w/wo air heater

w/wo condenser
w/wo reheater

w/wo water heating

Figure 7C Dymola steady state model of a biomass CHP plant

B. El Hefni, B. Bride, B. Pechine

The Modelica Association 592 Modelica 2008, March 3rd − 4th, 2008

Efficient Analysis of Harmonic Losses in PWM Voltage Source
Induction Machine Drives with Modelica

Johannes V. Gragger Anton Haumer Christian Kral Franz Pirker
Arsenal Research

Giefinggasse 2, 1210 Vienna, Austria

Abstract

This paper presents an approach to calculate the cop-
per and core losses caused by harmonics of the PWM
of a voltage source inverter. For the analysis some
models of theSmart Electric Drives(SED) library,
and additionally, aModelica library for modeling
AC circuits by means of electric time phasors, are
used. With the proposed analysis the influence of
space phasor PWM signals on the machine efficiency
is investigated. AModelica model of a speed con-
trolled induction machine drive working at different
load points and different switching frequencies is
presented. The results of the simulation are compared
and discussed.

Keywords: induction machine, inverter, speed con-
trolled drive, efficiency, copper losses, core losses,
space phasor PWM, SED library

1 Introduction

In most variable speed drives pulse width modulation
(PWM) voltage source inverters are used. Usually
machine design tools only consider the fundamental
harmonic of the stator voltage when calculating the
losses. The major aim of the presented work is to in-
vestigate the negative impact of PWM switching on
additional losses in the machine windings and the iron
cores. These additional losses are caused by harmon-
ics of the voltage and the current due to the PWM. The
harmonic losses of the induction machine are modeled
using the AC library, which is based on the stationary
analysis with complex time phasors [1].
A number of algorithms for PWM voltage generation
are available. Some well known techniques are unipo-
lar voltage switching and bipolar voltage switching
[2], harmonic elimination [3] and space vector PWM
[4]. In fact there are many more techniques in which

the basic principles of the ones mentioned are used
with some modifications. Different PWM algorithms
cause different voltage harmonics. These voltage har-
monics give rise to current harmonics due to the ma-
chine impedance. The voltage harmonics cause addi-
tional core losses whereas the current harmonics cause
additional losses in the stator and rotor winding of the
machine. Moreover, the frequency of the carrier sig-
nal has a significant influence on the voltage and cur-
rent spectra and consequently increases the losses aris-
ing in the machine. It is widely accepted that PWM
switching has a negative impact on the efficiency of
the drive and some efforts had been undergone to cal-
culate the amount of losses caused by PWM switching.

In [5, 6, 7, 8, 9] finite element analysis (FEA) tech-
niques are implemented, which require high computa-
tional expenses for calculating the additional losses. In
an FEA model the ohmic heat losses due to the PWM
switching are inherently covered. The additional core
losses are computed by a frequency and flux depen-
dent model, which is evaluated locally throughout the
machine volume.

Alternatively, the harmonic losses can be assessed
keeping the processing efforts low by defining specific
loss factors [10]. In this case it is crucial to keep the
energy balance between the electric terminals and the
shaft of the machine consistent.

In this paper the energy balance is implemented
straight forward by defining an equivalent circuit [11,
12, 13, 14]. The presented work is based solely on
analytical equations using data from conventional in-
duction machine calculation programs without FEA.
An equivalent circuit with elements taking deep bar
effects and the influence of the stator voltage and the
stator frequency on iron losses into account is used to
calculate the harmonic losses with the principle of su-
perposition. The proposed models are designed such
way that it takes only little effort to replace the PWM
algorithm by an alternative one and to change machine

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives with Modelica

The Modelica Association 593 Modelica 2008, March 3rd − 4th, 2008

Figure 1: Three phase full bridge.

Figure 2: Possible voltage space vectors of a three
phase space vector PWM.

data in order to benchmark different variable speed
drive setups.

2 PWM voltage generation

The PWM waveform depends on the control unit and
the converter topology. In this work one of the most
commonly used PWM waveforms is analyzed, the
space vector PWM. Space vector PWM can be im-
plemented if a three phase converter of the topology
shown in fig. 1 is used. The states of the six switches
(S1 to S6) must be chosen such way that the switches
of one leg of the converter switch complementary. Ne-
glecting dead times, it must hold that whenever one
switch of a leg is ON the other one must be OFF. By
no means both can be ON at the same time.
There are eight possible combinations for the switch
commands, which result in seven elementary output
voltage space vectors as shown in fig. 2. By using
PWM for switching between these seven elementary
space vectors any space vector position can be real-
ized. The output phase voltages of a space phasor
PWM controlled three phase full bridge are shown in
fig. 3. Using the models of ideal switching con-
verters and the respective PWM control blocks from
the SED library [15, 16], it is possible to compare the
”quality” of PWM signals with different switching fre-

Figure 3: Reference signals and resulting PWM sig-
nals,vPWM, of the investigated space vector PWM al-
gorithm.

quencies (and with different switching algorithms). In
fig. 4 the spectra of space vector PWM with two dif-
ferent frequency ratios are shown wherevre f is the
phase voltage amplitude of the reference space vec-
tor rotating with constant angular speed and magni-
tude and fre f is the frequency of the phase voltage.
The frequency per unit (p.u.) isf

fre f
and the voltage

p.u. is v
vre f

. It appears that space vector PWM with
high switching frequency,fSwitch, causes considerably
lower harmonics with low order numbers than space
vector PWM with low switching frequency. If the
spectrum of the PWM voltage signal and the frequency
dependent impedances of the machine are known the
harmonic copper losses and the harmonic core losses
can be calculated. It can be shown that high switch-
ing frequencies help decreasing the iron losses and the
copper losses in voltage source inverter drives.

3 Model of the copper losses

The copper losses in an induction machine can be de-
termined by using the well known single phase equiv-
alent circuit [17]. Figure 5 shows theModelicamodel
of the investigated induction machine. This equivalent
circuit represents the machine behavior in steady state
operation. The connectors used in the equivalent cir-
cuit model contain complex current time phasors as
flow variables and complex voltage time phasors as
potential variables. Furthermore, the reference frame
of the time phasors is defined by a reference angleϕ in
the connectors. For the calculation of the copper losses
the deep bar effects of the rotor stray inductance and

J. V. Gragger, A. Haumer, C. Kral, F. Pirker

The Modelica Association 594 Modelica 2008, March 3rd − 4th, 2008

Figure 4: Spectra of space vector PWM voltages with
low and with high switching frequency.

the rotor resistance are considered. Skin effects in the
stator resistance and stator inductance are neglected
because they can be mostly avoided through wires with
small radial length in the stator winding [18]. Satura-
tion effects are neglected as well.
The slip with respect to a certain harmonic depends
on the orders of this harmonic. It can be shown that
the rotational directions of the spatial harmonic waves
of the stator field are dependent on the order number
[19]. Therefore the slip related to the different voltage
harmonics,

sν =
ων −ωm

ων
(1)

whereωm is the shaft speed of an equivalent two pole
machine and the angular velocities of the harmonic
waves of the stator quantities,

ων = ω1 ·ν. (2)

Using (1) and (2) the slip can be written as

sν = 1− 1−s1

ν
. (3)

In a symmetric induction machine withm phases fed
by PWM voltages the order numbers of the harmonics
of the stator field [20] are

ν = 2·m·k+1, (4)

where

k = {0,±1,±2,±3, ...} . (5)

It is well known that

R
′
rν =

Rrν

sν
= Rrν +Rmechν (6)

with

Rmechν = Rrν
1−sν

sν
. (7)

For each harmonic order, the power dissipated byRrν
represents the copper losses in the rotor and the power
dissipated byRmechν represents the mechanical power
of the machine distributed to the shaft (without con-
sidering stray load losses) [17].
According to [21] the deep bar effects in rotor bars
with rectangular profile can be considered by a resis-
tance factor

KRν = ξν ·
sinh(2ξν)+sin(2ξν)
cosh(2ξν)−cos(2ξν)

(8)

and an inductance factor

KIν =
3

2ξν
· sinh(2ξν)−sin(2ξν)
cosh(2ξν)−cos(2ξν)

, (9)

with

ξν = h·
√

µ0 ·2π fν
2ρ

· b
bs

. (10)

The subsidiary quantityξν is a function of the bar
height,h, the frequency of the voltage harmonic,fν,
the specific resistance of the rotor bars,ρ, the width
of the rotor bar,b, and the width of the rotor slot,bs.
Hence, the rotor resistance,

R
′
rν = KRν ·R

′
r,var +R

′
r,const. (11)

In (11) the constant resistance,R
′
r,const, represents the

end rings and the parts of the rotor bars that are not
embedded in the slots whereas the variable resistance,
KRν ·R

′
r,var, represents the parts of the rotor bars that

are embedded in the slot.
The rotor stray inductance is modeled the same way:

L
′
rσν = KIν ·L

′
rσ,var +L

′
rσ,const (12)

By calculating the stator current,Isν, and the rotor cur-
rent, I rν, of the single phase equivalent circuit for all
harmonics, the stator and rotor copper loss increase
due to the harmonics can be expressed by

pCu,s∑ ν = ∑(|Isν|2)
|I s1|2

−1 (13)

and

pCu,r ∑ ν = ∑(Rrν · |I
′
rν|2)

Rr1 · |I ′r1|2
−1 (14)

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives with Modelica

The Modelica Association 595 Modelica 2008, March 3rd − 4th, 2008

Figure 5: Equivalent circuit of an induction machine
implemented withModelica.

Consequently, the total harmonic copper losses are

PCu∑ν = PCu,s1 · pCu,s∑ ν +PCu,r1 · pCu,r ∑ ν (15)

wherePCu,s1 andPCu,r1 are the stator and rotor copper
losses with respect to the fundamental wave.

4 Model of the core losses

The core losses,PFe, in an induction machine can be
divided into two parts: the hysteresis losses and the
eddy current losses [22, 23, 24, 25]. Hysteresis losses,
PFe,h, and eddy current losses,PFe,e, can both be ex-
pressed as functions of the magnetic flux linkage,ψ,
and the stator frequency,f :

PFe,h = Fh{ψ2, f} (16)

PFe,e = Fe{ψ2, f 2}. (17)

Considering that the voltage is directly proportional to
the flux linkage and the frequency according to

Vν = ψν ·ων (18)

the hysteresis losses and eddy current losses caused by
the harmonics of the stator voltage can be calculated
per unit to

pFe,hν = [(
f1 ·Vsν

fν ·Vs1
)2 · fν

f1
] =

f1 ·V2
sν

fν ·V2
s1

(19)

pFe,eν = [(
f1 ·Vsν

fν ·Vs1
)2 · (fν

f1
)2] =

V2
sν

V2
s1

. (20)

In the equivalent circuit shown in fig. 5 the hysteresis
and the eddy current losses are both considered in one
conductorGFeν. Using the hysteresis losses,PFe,h1,
and the eddy current losses,PFe,e1, of the fundamental
together with (19) and (20),

GFeν =
PFe,h1

3·V2
sν
· pFe,hν +

PFe,e1

3·V2
sν
· pFe,eν. (21)

Hence, the total harmonic core losses

PFe∑ ν = 3·∑(GFeν ·V2
sν) (22)

which can also be written as

PFe∑ ν = PFe,h1 ·
{[

∑ pFe,hν
]
−1

}
+

+ PFe,e1 ·
{[

∑ pFe,eν
]
−1

}
. (23)

5 Simulation setup

In mining, chemical, waste water, gas or oil industries
there are high-power medium-voltage variable speed
drives used that work with IGCT or IGBT convert-
ers. Such IGCT converters have switching frequency
ranges around 1 kHz and IGBT converters work with
frequencies up to 10 kHz [26].
In this paper a high-power medium-voltage water
pump drive is simulated. The specifications of the
investigated induction machine are shown in table 1.
The spectra of the voltage waveforms generated by
space vector PWM are calculated using the SED li-
brary and theModelicaStandard library in a Dymola
simulation environment. In fig. 6 the model calculat-
ing the harmonic components from the inverter voltage
is shown. The model contains three ideal reference
voltage signals, a block generating the PWM switch-
ing commands, and a model representing a three phase
full bridge with integrated DC-link voltage source as
well as a Fourier analysis block. In the Fourier analy-
sis block the Fourier coefficients,ak andbk, get calcu-
lated according to the Euler-Fourier formulas [27] with
two integrators and a sine and a cosine signal source.
The spectral components are computed by converting
the Cartesian coordinates,ak andbk, to polar coordi-
nates,dk and ϕk. From the generated spectral com-
ponents the harmonic losses are processed through a

J. V. Gragger, A. Haumer, C. Kral, F. Pirker

The Modelica Association 596 Modelica 2008, March 3rd − 4th, 2008

Table 1: Parameters of the high-power medium-
voltage induction machine.

Induction Machine

Pole Pairs 2
Nominal Power [kW] 1600
Nominal Frequency [Hz] 50
Nominal Voltage [V] 6000
Nominal PF 0.873
Nominal Slip [%] 0.25

Fourier synthesis in the model shown in fig. 7. The en-
capsulated induction machine model applied for loss
calculation is depicted in fig. 5. It is fed with an array
of stator voltage time phasors.
In the induction machine model the inner torque com-
ponents,Tinnerν, with respect to a harmonic,ν, are
computed by

Tinnerν = p· Pinputν − (PCu,sν +PFeν)
(2·π · fν)

, (24)

where p is the number of pole pairs,Pinputν are the
electrical input power components of the machine,
PCu,sν are the stator copper loss components,PFeν are
the iron loss components, andfν are the harmonic sta-
tor frequencies. The shaft speed of the induction ma-
chine is controlled by an integral action controller such
way that the fundamental component of the mechani-
cal power

Pairgap1 = Tinner1 · (2·π · f1), (25)

matches the reference power,Pre f . Since the friction
losses,Pf r , are not considered in the equivalent cir-
cuit, the reference power with respect to the shaft of
the machine model is determined by

Pre f = Pm,re f +Pf r , (26)

wherePm,re f is the desired mechanical power of the
induction machine. If the actual power,Preal, at the
shaft of the machine model matchesPre f , the desired
operation point is reached.
The harmonic losses of the inverter drive are com-
puted for two different operation points of the ma-
chine. In case A the machine is operated at nominal
supply frequency,fNominal, and nominal mechanical
power, PNominal. In case B the machine is simulated
at fNominal

3 and PNominal
27 . The reason for assessing case B

is to investigate the influence of the harmonic losses
specifically in variable speed drives that are connected

Figure 6: Model used for the PWM signal analysis.

Figure 7: Model of the PWM voltage source induction
machine drive.

with mechanical loads such as pumps or fans. Many
of these loads have an approximately quadratic speed
dependent load torque characteristic.
Besides the variation of the operation point also the
converter switching frequency is varied. The harmonic
spectra of the PWM voltages with switching frequen-
cies of 1950 Hz, 1050 Hz and 450 Hz are calculated
and fed to the machine model.

6 Simulation Results

In table 2 the simulation results of the machine fed
with space vector PWM are presented. The investi-
gations show that increasing the PWM switching fre-
quency decreases the total harmonic core losses. The
total harmonic core losses at a switching frequency of
450 Hz are about 60% higher than at a switching fre-
quency of 1950 Hz. It can also be seen that the total
harmonic copper losses rise much more than the total
harmonic core losses. In case A, for instance, the total
harmonic copper losses become more than ten times
higher if the switching frequency gets decreased from

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives with Modelica

The Modelica Association 597 Modelica 2008, March 3rd − 4th, 2008

Table 2: Modelica simulation results of the high-power medium-voltage induction machine drive.

Case A: Case B:
f = fNominal f = fNominal

3
P = PNominal P = PNominal

27

Switching Frequency = 1950 Hz

Machine Output Power (Fundamental) [W] 1600000.00 59259.30
Shaft Speed [rpm] 1496.34 499.62
Stator Current (Fundamental) [A] 179.85 49.19
Power Factor (Fundamental) 0.87 0.38
Friction Losses [W] 5566.00 1996.00
Core Losses (Fundamental) [W] 10706.50 3039.31
Stator Copper Losses (Fundamental) [W] 8453.70 630.36
Rotor Copper Losses (Fundamental) [W] 3928.22 47.19
Core Losses (Harmonics) [W] 582.59 377.65
Stator Copper Losses (Harmonics) [W] 20.84 5.46
Rotor Copper Losses (Harmonics) [W] 436.41 152.45

Efficiency (Fundamental) [%] 98.24 91.21
Efficiency considering Harmonics [%] 98.18 90.46

Switching Frequency = 1050 Hz

Machine Output Power (Fundamental) [W] 1600000.00 59259.30
Shaft Speed [rpm] 1496.32 499.62
Stator Current (Fundamental) [A] 180.33 49.18
Power Factor (Fundamental) 0.87 0.38
Friction Losses [W] 5566.00 1996.00
Core Losses (Fundamental) [W] 10651.60 3037.93
Stator Copper Losses (Fundamental) [W] 8499.40 630.16
Rotor Copper Losses (Fundamental) [W] 3952.34 47.21
Core Losses (Harmonics) [W] 678.37 561.57
Stator Copper Losses (Harmonics) [W] 73.31 21.81
Rotor Copper Losses (Harmonics) [W] 1115.07 463.48

Efficiency (Fundamental) [%] 98.24 91.21
Efficiency considering Harmonics [%] 98.13 89.76

Switching Frequency = 450 Hz

Machine Output Power (Fundamental) [W] 1600000.00 59259.30
Shaft Speed [rpm] 1496.17 499.61
Stator Current (Fundamental) [A] 183.42 49.14
Power Factor (Fundamental) 0.87 0.38
Friction Losses [W] 5566.00 1996.00
Core Losses (Fundamental) [W] 10312.80 3029.27
Stator Copper Losses (Fundamental) [W] 8796.23 628.91
Rotor Copper Losses (Fundamental) [W] 4108.64 47.35
Core Losses (Harmonics) [W] 917.97 763.86
Stator Copper Losses (Harmonics) [W] 461.05 125.53
Rotor Copper Losses (Harmonics) [W] 4429.64 1780.97

Efficiency (Fundamental) [%] 98.23 91.22
Efficiency considering Harmonics [%] 97.88 87.62

J. V. Gragger, A. Haumer, C. Kral, F. Pirker

The Modelica Association 598 Modelica 2008, March 3rd − 4th, 2008

1950 Hz to 450 Hz. The results also show that the har-
monic stator copper losses only make up for a small
share of the entire losses caused by the PWM harmon-
ics. The biggest parts of the PWM harmonic losses
are the harmonic rotor copper losses, especially when
the drive is operated at low switching frequencies. The
overall machine efficiency without stray load losses is
also presented in table 2.

It appears that the consideration of harmonic losses
only causes an efficiency decrease from 98.24 % to
98.18 % in case A withfswitch = 1950 Hz. The effi-
ciency decreases from 98.23 % to 97.88 % forfswitch=
450 Hz. For case B the impact of the harmonics is
much higher on the efficiency. Atfswitch = 1950 Hz
the efficiency decreases from 91.21 % to 90.46 %. The
largest impact on the efficiency is due to a switching
frequencyfswitch= 450 Hz.

From this comparison one can conclude that when de-
signing a machine for variable speed drives the PWM
harmonic losses should be taken into account, espe-
cially if PWM frequencies below 1 kHz are used. Fur-
thermore, the overall efficiency values show that as
long as the machine is operated close to the nomi-
nal operation point (case A) with switching frequen-
cies above 1 kHz the PWM harmonic losses can be ne-
glected.

7 Conclusions

An analytical approach to calculate the copper and
core losses caused by the harmonics of PWM volt-
ages in variable speed induction machine drives is pre-
sented. The derived equations are implemented in
Modelicalanguage applying the AC library for model-
ing electric circuits by means of time phasors. By us-
ing the proposed models the PWM harmonic losses of
a high-power medium-voltage induction machine with
1600 kW are calculated. Furthermore, the influence of
reduced load and changes in the switching frequency
are investigated. The results show that if the switch-
ing frequency is low and the machine is likely to be
operated at low load points the PWM harmonic losses
can decrease the overall efficiency of the machine con-
siderably. Still, as long as the switching frequencies
of the PWM are above 1 kHz and the load point does
not vary significantly from the nominal load point the
PWM harmonic losses can be neglected.

References

[1] A. Haumer, C. Kral, J. V. Gragger, and
H. Kapeller, “Quasi-stationary modeling and
simulation of electrical circuits using complex
phasors”, International Modelica Conference,
6th, Bielefeld, Germany, 2008.

[2] Mohan and Robbins,Power Electronics, J. Wiley
Verlag, New York, 2 edition, 1989.

[3] H. S. Patel and R. G. Hoft, “Generalized tech-
niques of harmonic elimination and voltage con-
trol in thyristor inverters: Part I-harmonic elimi-
nation”, IEEE Transactions on Industry Applica-
tions, vol. IA-9, Issue 3, pp. 310–317, 1973.

[4] H.W. van der Broeck, H. C. Skudelny, and G.V.
Stanke, “Analysis and realization of a pulsewidth
modulator based on voltage space vectors”,IEEE
Transactions on Industry Applications, vol. 24,
No. 1, pp. 142–150, 1988.

[5] T.C. Green, C.A. Hernandez-Aramburo, and
A.C. Smith, “Losses in grid and inverter sup-
plied induction machine drives”,IEE Proceed-
ings - Electric Power Applications, vol. 150, no.
6, pp. 712–724, 11 2003.

[6] Y. Wu, R.A. McMahon, Y. Zhan, and A.M.
Knight, “Impact of PWM schemes on induc-
tion motor losses”, 41st IAS Annual Meeting,
IEEE Industry Applications Conference, vol. 2,
pp. 813–818, 8-12 Oct. 2006.

[7] C.A. Hernandez-Aramburo, T.C. Green, and
S. Smith, “Assessment of power losses of an
inverter-driven induction machine with its exper-
imental validation”, IEEE Transactions on In-
dustry Applications, vol. 39, Issue 4, pp. 994–
1004, 2003.

[8] S. Mukherjee, G.E. Adams, and R.G. Hoft,
“FEM analysis of inverter-induction motor rotor
conduction losses”,IEEE Transactions on En-
ergy Conversion, vol. 4, no. 4, pp. 671–680, Dec.
1989.

[9] A.M. Knight, P.D. Malliband, C.Y. Leong, and
R.A. McMahon, “Power losses in small inverter-
fed induction motors”,IEEE International Con-
ference on Electric Machines and Drives, pp.
601–607, 15-18 May 2005.

Efficient Analysis of Harmonic Losses in PWM Voltage Source Induction Machine Drives with Modelica

The Modelica Association 599 Modelica 2008, March 3rd − 4th, 2008

[10] A. Boglietti, G. Griva, M. Pastorelli, F. Profumo,
and T. Adam, “Different PWM modulation tech-
niques indexes performance evaluation”,IEEE
International Symposium on Industrial Electron-
ics, ISIE’93 - Budapest., pp. 193–199, 1993.

[11] V. Kinnares, S. Potivejkul, and B. Sawetsaku-
lanond, “Modified harmonic loss model in PWM
fed induction machines”, IEEE Asia-Pacific
Conference on Circuits and Systems, IEEE APC-
CAS, pp. 535–538, 24-27 Nov. 1998.

[12] Isao Takahashi and Hiroshi Mochikawa, “A new
control of PWM inverter waveform for mini-
mum loss operation of an induction motor drive”,
IEEE Transactions on Industry Applications, vol.
21, no. 3, pp. 580–587, May 1985.

[13] H.W. van der Broeck and H. Skudelny, “Analyt-
ical analysis of the harmonic effects of a pwm ac
drive”, IEEE Transactions on Power Electronics,
vol. 3,2, pp. 216–223, 1988.

[14] E. N. Hildebrand and H. Roehrdanz, “Losses
in three-phase induction machines fed by PWM
converter”, IEEE Transactions on Energy Con-
version, vol. 16, no. 3, pp. 228–233, Sept. 2001.

[15] H. Giuliani, D. Simic, J. V. Gragger, C. Kral, and
F. Pirker, “Optimization of a four wheel drive hy-
brid vehicle by means of the SmartElectricDrives
and the SmartPowerTrains library”,The 22nd In-
ternational Battery, Hybrid and Fuel Cell Elec-
tric Vehicle Symposium & Exposition, EVS22,
2006.

[16] J.V. Gragger, H. Giuliani, C. Kral, T. Bäuml,
H. Kapeller, and F. Pirker, “The SmartElectric-
Drives Library – powerful models for fast simu-
lations of electric drives”,5th International Mod-
elica Conference 2006, Vienna, Austria, 2006.

[17] R. Fischer,Elektrische Maschinen, Carl Hanser,
München, 9 edition, 1995.

[18] H. Sequenz, Die Wicklungen elektrischer
Maschinen, vol. 3, Springer Verlag, Wien, 1954.

[19] G. Müller, Elektrische Maschinen - Theorie
rotierender elektrischer Maschinen, VEB Verlag
Technik, Berlin, 2 edition, 1967.

[20] H. Kleinrath, Stromrichtergespeiste Drehfeld-
maschinen, Springer Verlag, Wien, 1980.

[21] W. Schuisky, Berechnung elektrischer Maschi-
nen, Springer Verlag, Wien, 1960.

[22] Th. Bödenfeld and H. Sequenz,Elektrische
Maschinen, Springer Verlag, Wien, 7 edition,
1965.

[23] G. Müller, Elektrische Maschinen - Grundlagen,
Aufbau und Wirkungsweise, VEB Verlag Tech-
nik, Berlin, 4 edition, 1977.

[24] V. Del Toro, Electric Machines and Power Sys-
tems, Prentice-Hall, Englewood Cliffs, NJ, 1985.

[25] I. Boldea and A. Nasar,The Induction Machine
Handbook, CRC Press, London, 2002.

[26] B. Bose, Power Electronics and Motor Drives,
Elsevier, 2006.

[27] Bronstein and Semendjajew,Taschenbuch der
Mathematik, B.G. Teubner Verlag, Leipzig, 19
edition, 1979.

J. V. Gragger, A. Haumer, C. Kral, F. Pirker

The Modelica Association 600 Modelica 2008, March 3rd − 4th, 2008

Monte Carlo Simulation with Modelica
Joachim Haase Susann Wolf Christoph Clauß

Fraunhofer-Institute for Integrated Circuits, Design Automation Division
Zeunerstraße 38, 01069 Dresden, Germany

{Joachim.Haase, Susann.Wolf, Christoph.Clauss}@eas.iis.fraunhofer.de

Abstract

Monte Carlo simulation allows to obtain statistical
information derived from estimates of the random
variability of component parameters. The paper
demonstrates how to describe the random character-
istic of parameters in a tool-independent manner in
Modelica. Using the multi-run facilities of a simula-
tion engine statistical analysis can be carried out
without any code intervention concerning the tool.
The approach is based on the SAE 2748 standard.
Solutions of implementation problems with respect
to Modelica are discussed. This paper is based on
results, which were developed in the Fraunhofer col-
laborative project “Computer Aided Robust Design
(CAROD)”.

Keywords: Statistical analysis, SAE 2748, Monte
Carlo simulation

1 Introduction

It is more and more required within industrial appli-
cations to consider the influence of the variability of
design parameters on the behaviour of systems. For
instance yield and reliability often depend on the
statistical characteristics of such parameters [1].
Monte Carlo methods are widely used to analyze the
effects of parameter tolerances. In a Monte Carlo
simulation, a mathematical model of a system is re-
peatedly evaluated. Each run uses different values of
design parameters. The selection of the parameter
values is made randomly with respect to given distri-
bution functions. Monte Carlo simulation is very
time consuming. A lot of simulation runs are re-
quired to investigate the behavior of a system subject
to the statistical distribution of parameters. Neverthe-
less, Monte Carlo simulation is very favored in vari-
ous application areas where an analytical relation
between design and system parameters is difficult to
find. For example mixed-signal electrical systems

consisting of analog and digital components often
belong to this class of systems.
The objective of this paper is to make a proposal
how to handle the description of random parameters
in Modelica in a tool-independent way. Furthermore
a way is presented how to carry out a Monte Carlo
simulation within an existing simulation engine. It is
only required that the simulator supports multiple
runs of a simulation task.
 The approach is close to the standard J 2748 pre-
pared by the Electronic Design Automation Stan-
dards Committee of the Society of Automotive En-
gineers (SAE) that describes random parameter han-
dling in a VHDL-AMS simulation problem [2, 3].
Describing parameter variations in nearly the same
way in VHDL-AMS and Modelica offers the oppor-
tunity to reduce the effort to provide random parame-
ter data in the design process and to avoid misunder-
standings.

2 SAE-Standard J 2748

Some basic requirements that are supported by the
SAE J 2748 standard are summarized in the follow-
ing. The basic idea is to add information to charac-
terize the parameters. Thus, it should be possible to
use existing models also for statistical analysis. In
detail it is required
• Usage of the same model for nominal and

Monte Carlo analysis
• Possibility to assign different statistical distri-

butions to each constant or parameter
• Support of continuous and discrete distributions
• Permission of user-defined distributions
• Possibility to specify correlation between con-

stants
From a practical point of view the following points
should also be mentioned
• Independent random number generation for any

constant

Monte Carlo Simulation with Modelica

The Modelica Association 601 Modelica 2008, March 3rd − 4th, 2008

• Reproducibility of Monte Carlo simulation
within the same simulation tool

Statistical distributions are characterized from an
engineering point of view. That means the mathe-
matical parameters as for instance the moments are
derived from engineering parameters as nominal
value, tolerances, minimum and maximum values.
The standard provides implementations of basic
regular distribution functions. Futhermore, standard
functions are provided that allow to declare user-
defined distributions. Also truncated distributions
are supported that limit the random numbers to a
given interval.

Table 1: Regular distribution functions [3]

UNIFORM Uniform distributed values

NORMAL Gaussian distributed values

PWL_CDF Piecewise-linear description of a cumula-
tive distribution function

PWL_PDF Piecewise-linear description of a prob-
ability density function

BERNOULLI Bernoulli distribution
DISCRETE_CDF
DISCRETE_PDF

Tabular description of the probability of
discrete values

The VHDL-AMS implementation details are online
available [4].

3 Method

Methods to create random numbers are in general
based on a (0,1) uniform distributed values.

Fig. 1. (0,1) uniform random number generator

Widely used methods to generate random number
with a given distribution are the inverse transforma-
tion approach based on the cumulative distribution

function and its modifications for truncated distribu-
tions. The Box-Muller algorithm can be applied for
normal distributed numbers [5].Thus, the main prob-
lem during parameter initialization for Monte Carlo
Simulation is to generate independent (0,1) distrib-
uted values. [2] describes the requirements to a built-
in random number generator provided by a tool.
The basic idea of a tool-independent random number
generator is shown in Fig. 1. The seed values that
are needed to generate a sequence of random num-
bers are immediately saved in a file.
With the help of global parameters it is possible to
switch between nominal and statistical analysis ei-
ther w.r.t. parts of a description or the entire simula-
tion task.

4 Realization with Modelica

Using Modelica the idea of a tool independent ran-
dom number generation is realized in the following
way. As an example the uniform distribution is used
which produces uniformly distributed values within
the interval (nominal – tolerance*nominal, nominal
+ tolerance* nominal). For better reading some de-
tails compared to the final solution are simplified.

4.1 Randomly changed parameters

To supply a parameter (or a constant) with randomly
generated values it is necessary to specify random
distribution in the Modelica source code. Instead of

 parameter Real p = nominal;

which specifies a fixed parameter, the specification
of the uniform distribution function call is:

 parameter Real p = uniform(nominal,
 tolerance);

4.2 Random number generation

The Modelica function uniform is an interface to a C
function. It is defined like this:

function uniform
 input Real Mean;
 input Real Tol;
 output Real random_value;
external "C" uniform(Mean, Tol,
 random_value);
end uniform;

Save seed
values

RND
generator

(0,1) uniform
distributed values

J. Haase, S. Wolf, C. Clauß

The Modelica Association 602 Modelica 2008, March 3rd − 4th, 2008

Within the C function the randomly distributed val-
ues have to be calculated. An example is the follow-
ing function:

void uniform (double M, double Tol,
 double *aus)
{ double xMin = M * (1.0 - Tol);
 double xMax = M * (1.0 + Tol);

 if (xMin > xMax)
 { xMax = xMin;
 xMin = M * (1.0 + Tol);
 }
 *aus = xMin + (xMax - xMin)*RND();
}

The random function is a (0,1) uniformly distributed
random value generator for instance according to
Schrages method [8]:

double RND()
{ FILE *read_fp, *write_fp;
 long seed = 2, M = 2147483647;
 long A = 16807, Q = 127773;
 long R = 2836, k;
 double F = 1.0/ M;

 read_fp = fopen ("seed.dat","r");
 fscanf (read_fp, "%ld",&seed);
 fclose(read_fp);

 assert(seed != 0);
 k = seed / Q;
 seed = (seed - k * Q) * A - k * R;
 if (seed < 0) seed += M;

 write_fp = fopen ("seed.dat","w");
 fprintf (write_fp, "%ld", seed);
 fclose(write_fp);

 return seed * F;
}

By access to the file “seed.dat” , which has a fixed
name, the seed value is saved between two calls of
the random function.
In the final solution a global change of the seed file
name is possible. In case of a nominal analysis the
final function uniform would deliver the Mean value.
A more convenient way would be to provide the ran-
dom number generator RND by a Modelica function.
This would allow to formulate the random distribu-
tion functions using Modelica language constructs
only. This approach could not be realized in the used
tool environment. From the language point of view it
must be possible that a Modelica function called with
the same arguments may deliver different results. For
this reason, for instance VHDL(-AMS) distinguishes
between pure and impure functions.

Furthermore, the RND function above could be re-
placed by the random number generator incorporated
in a Modelica simulator by a tool provider. In this
way the file access to seed.dat can be avoided.

4.3 Application

After having specified the parameter to be changed
in the Modelica source code, the Modelica function
with the foreign function interface to the C domain,
and the C function “random”, the following steps are
necessary:
A file “seed.dat” has to be generated, which contains
an integer starting number for the sequence of ran-
dom values. If a sequence shall be repeated, the same
seed number must be chosen.
Then the model under investigation (which contains
the parameter specification mentioned above) has to
be simulated by a Modelica simulator repeatedly.
The number of repetitions depends on the wanted
number of trials for the Monte Carlo simulation. Af-
ter each single simulation the interesting results must
be saved. The results can be visualized or used in
posteriori calculations.

4.4 Remarks

The method allows easily to define both correlated
and dependent random values of parameters. A sim-
ple example might explain the procedure:

 parameter Real p1 = uniform(1, 0.1);

 parameter Real p2 = uniform(p1, 0.01);

If the same sequence of randomly generated values is
desired (e.g. to investigate a special effect) the same
seed number and the same seed file name have to be
used at the beginning.

5 Example

Fig. 2. Monte-Carlo-Plot for variables

Monte Carlo Simulation with Modelica

The Modelica Association 603 Modelica 2008, March 3rd − 4th, 2008

In the DifferenceAmplifier of Modelica.Electrical.
Analog.Examples [9]. the resistance R of the resistor
R2 is randomly generated by the following formula-
tion:
 ...

 Basic.Resistor R1(R=0.0001);

 Basic.Resistor R2(R=uniform(100,0.05));

 Basic.Resistor R3(R=0.0001;

 ...

Repeated simulations using Dymola show that
R2.n.v (the thick line pencil) is sensitive with respect
to R2.R. The voltage R4.n.v (thin line) is not sensi-
tive to that parameter. Basing on the Monte Carlo
results further calculations (density distribution …)
are possible.
Furthermore, the randomly chosen parameter values
can also be visualized or used for further calcula-
tions. The following figure shows the above speci-
fied parameter R2.R which is uniformly distributed
in the interval (95, 105) (=100 – 100 * 5%, 100 +
100 * 5%).

Fig. 3. Randomly chosen parameter R2.R

6 Discussion

The proposed approach realizes a simple Monte
Carlo simulation based on behavioral descriptions in
Modelica. Beyond the focus of this paper is the us-
age of the results of the Monte Carlo simulation for
other purposes. For example the data could be used
to create Response Surface Models. This would re-
quire to save the randomly generated parameters of
any simulation run. Also improved techniques to
create the random numbers and reduce the simula-
tion effort could be applied. For instance possibilities
of so-called importance sampling [6] could be ap-
plied using user defined functions.
The Monte-Carlo-Simulation is also possible using
the Dymola Monte-Carlo feature. The advantage of
the suggested way is:

• It is a more general, tool independent ap-
proach.

• The user is free to define its own distribution
based on the RND function.

• Correlations can be defined easily.
• For documentation purposes the distribution

specification is part of the model files.
The approach in [7] is also simulator independent,
but is uses a (firm-)specific nested toolkit. Our way
is defined only using the Modelica language.
Whether a language construct like ours is used in [7]
is not documented.

7 Conclusions

An approach to handle statistical analysis problems
within Modelica is presented. It is based on the SAE
J 2748 standard. The current version allows Monte
Carol simulations if the used simulation engine sup-
ports multiple runs in a simple way. If the approach
is accepted it could also be the basis of efficient im-
plementation in Modelica simulators. In this case the
generation of the sequences of (0,1) distributed uni-
form random numbers must be supported without
file access.
The applicability of the approach is demonstrated
with the help of a simple example from the existing
Modelica standard library. Only existing tool and
language features are used. This and the orientation
to the SAE standard are the main advantages of the
approach compared to [7].

References

[1] O’Connor, P.D.: Practical Reliability Engineering. John
Wiley & Sons, 2003 (5th ed.)

[2] J2748, VHDL-AMS Statistical Analysis Packages, The SAE
Electronic Design Automation Standards Committee, Troy,
MI, October 2006

[3] Christen, E.; Bedrosian, D.; Haase, J.: Statistical Modeling
with VHDL-AMS. Proc. Forum on Specification and Design
Laguages FDL ’07, Barcelona, September 18-20, 2007.

[4] http://links.sae.org/j2748
http://fat-ak30.eas.iis.fraunhofer.de

[5] Saucier, R. Computer Generation of Statistical Distribu-
tions. US Army Research Lab ARL-TR-2168, available at
http://ftp.arl.mil/random/random.pdf

[6] Robert, C. P.; Casella, G.: Monte Carlo Statistical Methods.
Springer, 2004 (2nd ed.)

[7] Batteh, J.; Tiller, M.; Goodman, A.: Monte Carlo Simula-
tions for Evaluating Engine NVH Robustness. 4th Interna-
tional Modelica Conference, Hamburg, March 7-8, 2005,
385-392

[8] www.physics.rutgers.edu/grad/509/random.pdf
[9] www.modelica.org/libraries/Modelica

J. Haase, S. Wolf, C. Clauß

The Modelica Association 604 Modelica 2008, March 3rd − 4th, 2008

Comparisons of Different Modelica-Based
Simulators Using Benchmark Tasks
Olaf Enge-Rosenblatt1), Christoph Clauß1), Peter Schwarz1),

Felix Breitenecker2), Christoph Nytsch-Geusen3)
1) Fraunhofer Institute for Integrated Circuits, Branch Lab Design Automation,

Zeunerstraße 38, 01069 Dresden, Germany
olaf.enge@eas.iis.fraunhofer.de

2) Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
3) Fraunhofer Institute for Computer Architecture and Software Technology,

Kekuléstraße 7, 12489 Berlin, Germany

Abstract

A benchmark library is presented which collects
models for testing and comparing different analog
and hybrid simulators as well as their numerical
simulation algorithms. Many of these models are
described with Modelica and simulated with Dymola
and the Modelica-related simulator Mosilab. But
VHDL-AMS descriptions are also used to compare
simulation results of Modelica simulators with those
of other types of simulators. The motivation of the
selection of benchmark problems, the modeling and
documentation “style guide”, and some small exam-
ples from electronics and mechanics are described.

1 Motivation

The development of new simulators and model li-
braries has to be accompanied by intensive simula-
tions of test examples and their comparison. The first
reason for collecting a new benchmark library was
the development of a Modelica-based simulator
Mosilab [1] and accompanying test examples to en-
sure the Mosilab functionality. But, there are some
other objectives:

• comparison of Mosilab with commercial
Modelica simulators: Dymola, SimulationX;

• potential extension to comparisons with
other analog simulators (e.g. VHDL-AMS,
Verilog-AMS, SystemC-AMS);

• getting experiences with the numerical prop-
erties of the implemented solvers and their
robustness (e.g., influenced by simulator
control parameters);

• testing extreme cases (e.g., depending on the
number of variables and equations as well as
numerical parameter values);

• collecting models with a special focus on
systems with variable structure;

• preparation of regression tests;
• and, last but not least, pedagogical aspects:

for use in lectures and tutorials.
Therefore, the construction or selection of bench-
mark models has to fulfill many criteria. The
ARGESIM comparisons ([2], [3]), published in the
journal Simulation News Europe (SNE) and via
http://www.argesim.org/ , have a similar goal. They
are considered here from a common point of view.
Further suggestions are expected from benchmarks
in other disciplines ([7], [8]) or with a general meth-
odological background ([9]).

2 Types of simulation problems

The benchmark models are selected with respect to
the following tasks:

• simple tests of keywords and other language
constructs (especially for compiler tests and
version checking in the new Mosilab simula-
tor),

• simple but non-trivial electric circuits (from
RLC circuits up to transformers and rectifi-
ers),

• testing typical numerical simulation prob-
lems (e.g. stiff differential equations, discon-
tinuities, simulation of ideal oscillators)

• more complicated transistor models which
lead in many cases to numerical simulation
problems in simulators which are not spe-
cialized for electronic applications,

• test of advantageous description means (e.g.
object oriented approaches)

Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks

The Modelica Association 605 Modelica 2008, March 3rd − 4th, 2008

• erroneous models (e.g. parallel ideal voltage
sources) to check the simulator’s behavior in
error cases

• inclusion of some “classical”, mostly non-
electrical ARGESIM comparisons in new or
updated form (until now: C1, C3, C5, C7; in
preparation: C11, C12),

• testing the capability of simulating systems
with variable structures (also called “struc-
tural variability” or “model structure dynam-
ics”, see [3], [4], [5], [6]): rectifiers with
ideal diodes, voltage duplexers with two
ideal diodes, constrained pendulum C7,
string pendulum,

• modeling with embedded statecharts (as a
potential extension of the Modelica lan-
guage), especially for the Mosilab capabili-
ties of handling variable structures.

1 Introduction 5

2 Small examples, taken from Modelica 6
2.1 Damped RLC oscillator (rlc_osci) 6
2.2 Transformer (trafo) 8
2.3 Ideal diode (ideal_diode) 12
2.4 MOS inverter (mos_inv) 15
2.5 MOS oscillator (mos_osci) 18
2.6 Switched capacitor integrator (sc_integrator) 23
2.7 Test of integrator’s error (integr_error) 27
2.8 Voltage duplexer (Vduplexer) 30
2.9 Graetz rectifier with resistive load (ideal_graetz) 34
2.10 Graetz rectifier with RC load (ideal_graetz2) 38

3 ARGESIM examples 43
3.1 Comparison 1 (comparison_1) 43
3.2 Comparison 3 (comparison_3) 48
3.3 Comparison 5 (comparison_5) 55
3.4 Comparison 7 (comparison_7) 61

4 Examples with structural variability 63
4.1 Ideal diode using events (ideal_diode_event): 63
4.2 Ideal diode using statecharts 64
4.2.1 1st realisation (ideal_diodeSC) 64
4.2.2 2nd realisation (ideal_diodeSCcon) 67
4.2.3 3rd realisation (ideal_diodeSCdyn) 69
4.2.4 4th realisation (ideal_diodeSCvN) 71
4.3 Voltage duplexer using statecharts 75
4.3.1 1st realisation (VduplexerSC) 75
4.3.2 2nd realisation (VduplexerSCcon) 78
4.3.3 3rd realisation (VduplexerSCdyn) 81
4.4 Comparison 7 using statecharts 84
4.4.1 1st realisation (comparison_7SC) 84
4.4.2 2nd realisation (comparison_7SCdyn) 86
4.5 String pendulum with free motion (fadenpendel) 88
4.6 String pendulum with free motion using statecharts 96
4.6.1 Realisation fadenpendelSC 96
4.6.2 Realisation fadenpendelSCaF 102
4.6.3 Realisation fadenpendelSC1 103
4.6.4 Realisation fadenpendelSC3a 103
4.6.5 Realisation fadenpendelSCdyn 106
4.7 Switched capacitor integrator in QV formulation 112
4.7.1 Realisation without statecharts (sc_integrator_QV) 112
4.7.2 Realisation with statecharts (sc_integrator_QVSC) 116

Table 1: Benchmark library

ARGESIM continues the comparisons by bench-
marks with extended information and prepares spe-
cial benchmarks with emphasis on various modeling
approaches. In 2008, benchmarks for hybrid model-
ing and simulation will be published, addressing dif-
ferent modeling techniques for four or five systems
(constrained pendulum, rotating pendulum, heat dif-
fusion with different regimes, rotor dynamics).

The content of the actually implemented benchmark
library is summarized in Table 1. It consists of three
main sections. In the first section, some electrical
examples are collected. The second section deals
with a selection of the ARGESIM benchmarks,
which are mainly published in the journal Simulation
News Europe (SNE). The third section collects ex-
amples which are characterized by a variation of the
model structure. Such systems lead to different sets
of differential-algebraic equations and the need of
exchanges between them from time to time during
the simulation process ([1], [4], [5], [10]).

3 Documentation

Each test example is documented in the same man-
ner:

• short description of the problem and the rea-
son for selecting this model,

• graphical description (schematic/sketch),
• definition of relevant physical quantities and

dimensions,
• interface description (e.g., type of signals

and quantities),
• textual input description in the Modelica

language,
• applied simulator control parameters,
• graphical simulation results and some addi-

tional textual information,
• discussion of results (e.g., accuracy, run-

time behavior) and detected problems.
If the models should be used for regression tests,
further regimentations are necessary.

4 Examples

In this section, some interesting benchmark tasks are
collected and discussed shortly. All examples are
characterized by variable structure because serious
numerical problems consist yet in very small sys-
tems.

O. Enge-Rosenblatt, C. Clauß, P. Schwarz, F. Breitenecker, C. Nytsch-Geusen

The Modelica Association 606 Modelica 2008, March 3rd − 4th, 2008

4.1 Electric example

The electric example shall illustrate the application
of different models of a diode component. For this
purpose, the diode is used within two different well-
known set-ups: a one-way rectifier with an ohmic
load (shown in Fig. 1) and a Graetz rectifier with an
ohmic-capacitive load (depicted in Fig. 2).

M1 M2

R=1

R V=220Di

Figure 1: One-way rectifier with ohmic load

M1

R=10

R
1

V

Di1 Di3

Di2 Di4

M2

C=1

C
1

R=1

Rinnen

Figure 2: Graetz rectifier with ohmic-capacitive load

First, the piecewise-linear (PWL) diode model of the
Modelica Standard Library is used. The relevant
source code is shown in Table 2. This model imple-
ments the behavior of an idealized switching diode
consisting of a piecewise-linear voltage-current char-
acteristic. A so-called auxiliary variable is used
which implements a parametric representation of the
length of both straight lines [11], [12], [14].

model IdealDiode

extends OnePort;
parameter Real Ron= 1.E-5,
parameter Real Goff= 1.E-5;
Boolean off(start=true);
Real s;

equation
off = s < 0;
v = s*(if off then 1 else Ron);
i = s*(if off then Goff else 1);

end IdealDiode;

Table 2: Source code of diode using auxiliary variable

Second, an ideal diode model was implemented:
• The voltage in flow direction is zero (con-

ducting state).
• The current in the blocking direction is zero

(cut-off state).
Conditional equations are used for voltage and cur-
rent always forcing at least one of them to zero. The
source code is shown in Table 3. This implementa-
tion requires an event handling by the simulator.
model IdealDiodeEvent

extends OnePort;
Boolean blocking(start=true);

equation
blocking = if pre(blocking)

then v<0 else i<0;
if blocking then

i = 0;
else

v = 0;
end if;

end IdealDiodeEvent;
Table 3: Source code of diode using conditional equation

With all simulators under test, very similar simula-
tion results were received for the one way rectifier.
Exemplarily, Fig. 3 shows simulation results for
some voltages calculated by Mosilab using the PWL
diode model. The results of the other simulators are
the same. This statement also holds for the ideal di-
ode model no matter which simulator is tested. Of
course, the current of the blocking diode is now ex-
actly equal to zero or, vice versa, the voltage of the
conducting diode now vanishes completely.

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

V.v
R.p.v

Figure 3: Simulation result from Mosilab for a one-way rectifier

In contrast, the electric circuit of the Graetz rectifier
can only be simulated using the PWL diode model
(Table 2). The property of such a circuit, that two
diodes of the four must unconditionally be closed (or

Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks

The Modelica Association 607 Modelica 2008, March 3rd − 4th, 2008

opened) at the same time, is the reason for this fact.
This conclusion is valid for Dymola as well as for
Mosilab. To handle a circuit with a Graetz rectifier
using ideal diodes, it is necessary to qualify a simula-
tor with the feature of finding a valid new model
structure from the complete set of structures at each
switching point in time.
Some simulation results for the Graetz rectifier using
the PWL diode model are shown in Fig. 4 and Fig. 5.
Fig. 4 depicts some voltages while the corresponding
currents are shown in Fig. 5.

0 50 100
-200

-100

0

100

200

 [V
]

V .v R1.v

Figure 4: Voltages of the Graetz rectifier circuit

0 50 100
-60

-40

-20

0

20

40

60

 [A
]

Rinnen.i R1.i C1.i

Figure 5: Currents of the Graetz rectifier circuit

4.2 Two-state model

The two-state model considered here is the
ARGESIM comparison C5 which is of high interest
regarding to the numerical behavior of each simula-
tor. The problem consists of the two simple differen-
tial equations:

()
().

,

2432

12211

yccy
ycycy

−=
−+=

&

&
 (1)

In Equ. (1), the parameters c1 and c3 are fixed while
c2 and c4 have different values depending on the
actual state of the system. State 1 is valid as long as

8.51 <y . Reaching this value, the system state is
changed to state 2 which, then, is valid until 1y goes
below 5.2 . All parameters and initial conditions
were chosen in a very sophisticated manner. This
way, the numerical accuracy of the simulators under
test can be investigated by looking at the switching
points in time, especially at the last one (denoted
with t5) which appears generally at about 5 Sec-
onds.
The Dymola result computed by the DASSL solver
using the highest possible numerical accuracy (toler-
ance is set to 1E-12) shall be taken as reference for
other simulators. The last switching point in time
appears at t5=4.999999646. Other solvers, like
Runge-Kutta methods, are less suitable for such kind
of a simulation task.
With Mosilab, the switching point in time is found
very well if using the IDA solver which is very simi-
lar to the DASSL method. With an absolute toler-
ance of 1E-14 and a relative tolerance of 1E-10,
the switching point in time can be determined to
t5=4.999999645. Surely, this is a very good re-
sult. But using lower tolerances or using one of the
other numerical solvers of the Mosilab simulator
leads to more inexact results.
Exemplarily, Fig. 6 shows the time behavior of 1y
using Dymola with the DASSL method as mentioned
above.

0.0 2.5 5.0
0

1

2

3

4

5

6
y1

Figure 6: Time behavior of state variable 1y

O. Enge-Rosenblatt, C. Clauß, P. Schwarz, F. Breitenecker, C. Nytsch-Geusen

The Modelica Association 608 Modelica 2008, March 3rd − 4th, 2008

4.3 String pendulum

A string pendulum is shown in Fig. 7. A point mass
is able to perform circular or free (downfall) move-
ments – so-called phases (see Fig. 7A). The circular
movement is characterized by a stretched (but non-
widening) thread, i.e. the mass has the maximal pos-
sible distance to the fixing point. In contrast, the
mass has a smaller distance and the thread is folded
during the free movement. This is an extension of the
well-known mathematical pendulum with small
elongations and without the downfall phase.

Fig. 7: String pendulum

A) Geometrical configuration
B) Mathematical problem formulation of both phases
C) Simulation results

The simplest description of the circular motion uses
polar coordinates; the downfall motion may be de-
scribed with Cartesian coordinates. There are two
differential-algebraic equation systems with two and
three variables, respectively, describing both phases
(see Fig. 7B). In phase 1 (circular movement), the
stretching force F in the thread is greater zero. In
phase 2 (free movement), the distance r between
point mass and fixing point is less than the length L
of the thread. The “indicator functions” (0<F and

Lr ≥) are used to detect the points in time of a nec-
essary switching between the phases.
A large initial impulse results in a sequence of circu-
lar and free movements. This is illustrated in Fig. 7C.
The point mass performs two “circles” followed by
some swinging movements. The time behavior of the
mass position and the corresponding force F are
shown in Fig. 8 and Fig. 9, respectively.

0.0 2.5 5.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
x y

Figure 8: Pendulum’s mass position (x and y)

0.0 2.5 5.0
-10

0

10

20

30

40

50

60
F

Figure 9: Force F in the thread

This description is closely related to a statechart de-
scription, which can be formulated with the State
Graph Library and simulated using Dymola or with

free motion,
downfall

circular motion

?Lr ≥

?0<F

, ,x y r

, Fϕ

, , , ,→ && &x x y y ϕ ϕ

yyxx &&& ,,,, →ϕϕ

ykmgym
xkxm

&&&

&&&

−−=
−= ,

222 yxr +=

ϕκϕϕ &&& −= sinmgLJ
2cos ϕϕ &mLmgF +−=

variables:

variables:
transformation:

transformation:

().r konst=

free motion,
downfall

circular motion

?Lr ≥

?0<F

, ,x y r

, Fϕ

, , , ,→ && &x x y y ϕ ϕ

yyxx &&& ,,,, →ϕϕ

ykmgym
xkxm

&&&

&&&

−−=
−= ,

222 yxr +=

ϕκϕϕ &&& −= sinmgLJ
2cos ϕϕ &mLmgF +−=

variables:

variables:
transformation:

transformation:

().r konst=

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y

initial
impulse

x

y
1. cycle

2. cycle

3., 4. … swing

L

r

Phase changes

-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

x

y

initial
impulse

x

y
1. cycle

2. cycle

3., 4. … swing

L

r

Phase changes

x

y

ϕ
a) circular motion

b) free motion
(downfall)

Pendulum
thread

r
x

y

ϕ
a) circular motion

b) free motion
(downfall)

Pendulum
thread

r

Comparisons of Different Modelica-Based Simulators Using Benchmark Tasks

The Modelica Association 609 Modelica 2008, March 3rd − 4th, 2008

an extended Modelica description for the Mosilab
simulator.
The model implementation depends strongly on the
applied simulator. In Dymola, it is necessary to use
the same number of equations in both phases. There-
fore, some dummy equations have to be introduced.
In simulators like AnyLogic or Mosilab, different
numbers of equations are allowed in various model
states.

5 Summary and outlook

This collection of benchmark problems is under de-
velopment in connection with the Mosilab develop-
ment [1] and has its roots in a Fraunhofer-internal
research project GENSIM. Some parts of these ex-
amples will be published in connection with new
Modelica-oriented projects. Problems of more gen-
eral interest will be prepared for the widely-
distributed ARGESIM comparisons.
The collection of benchmarks presented here has
proved as a powerful tool for testing the numerical
behavior and the modeling limits of different simula-
tors. In this paper, only some examples of general
interest are described.
The collection is under continuous development. The
pool of tasks as well as the tested simulators and the
different modeling languages have to be extended.
It is intended to include parts of the benchmark ex-
amples into the regression test library ModelicaTest,
which is used by the Modelica Design Group for de-
veloping the Modelica Standard Library.

References
[1] Nytsch-Geusen C et al. Mosilab: Develop-

ment of a Modelica based generic simulation
tool supporting model structural dynamics.
4th Int. Modelica Conf., Hamburg, Germany,
March 2005.

[2] Breitenecker F et al. Education in modeling
and simulation using ARGESIM compari-
sons/benchmarks with physical modeling.
MATHMOD (5th IMACS Symposium on
Mathematical Modelling), Vienna, Austria,
February 2006.

[3] Pawlik S et al. A classification of modeling
and simulation approaches based on the AR-
GESIM benchmarks. EUROSIM, Ljubljana,
Slovenia, September 2007.

[4] Schwarz P. Simulation of systems with dy-
namically varying model structure. MATH-
MOD (5th IMACS Symposium on Mathe-
matical Modelling), Vienna, Austria, Febru-
ary 2006.

[5] Breitenecker F et al. Structure of simulators
for hybrid systems – general development
and introduction of a concept of external and
internal state events. EUROSIM, Ljubljana,
Slovenia, September 2007.

[6] Nytsch-Geusen C. The use of the UML
within the modelling process of Modelica-
models. Proc. 1st Int. Workshop EOOLT,
Berlin, Germany, August 2007.

[7] Benchmarks for water supply modelling,
simulation and optimisation.
http://www.eng.dmu.ac.uk/~wss/

[8] Iwnicki S (Ed.). The Manchester Bench-
marks for Rail Vehicle Simulation (Supple-
ment Vehicle System Dynamics (SVD)).
Swets & Zeitlinger, July 1999.

[9] Gelfert A. Simulating many-body models in
physics: rigorous results, ‘benchmarks’, and
cross-model justification. LSE/CPNSS Conf.
on Models and Simulations, Paris, France,
June 2006.

[10] Enge-Rosenblatt O et al. Numerical Simula-
tion of Continuous Systems with Structural
Dynamics. EUROSIM, Ljubljana, Slovenia,
September 2007.

[11] Mattsson SE, Otter M, Elmqvist H. Modelica
Hybrid Modeling and Efficient Simulation.
38th IEEE Conference on Decision and Con-
trol, CDC’99, Phoenix, Arizona, USA, De-
cember 1999.

[12] Otter M, Elmqvist H, Mattsson SE. Objekt-
orientierte Modellierung physikalischer Sys-
teme, Teil 8. at – Automatisierungstechnik
47(1999)9, A29-A32.

[13] Fritzson P. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1.
Wiley, New York, 2004.

[14] Clauß C, Haase J, Kurth G, Schwarz P. Ex-
tended admittance description of nonlinear n-
poles. Archiv für Elektronik und Übertra-
gungstechnik / Int. J. Electronics and Com-
munications, Vol. 40, pp. 91-97, 1995.

O. Enge-Rosenblatt, C. Clauß, P. Schwarz, F. Breitenecker, C. Nytsch-Geusen

The Modelica Association 610 Modelica 2008, March 3rd − 4th, 2008

Modelica Wind Turbine Models with Structural Changes
Related to Different Operating Modes

Olaf Enge-Rosenblatt, Peter Schneider
Fraunhofer Institute Integrated Circuits, Branch Lab Design Automation,

Zeunerstraße 38, 01069 Dresden, Germany
olaf.enge@eas.iis.fraunhofer.de

Abstract
Investigation of large technical systems by simulation
of long time periods requires effective methods. One
possibility to handle such problems is the implementa-
tion of simulation models which use suitably simplified
descriptions of the real behaviour of technical systems.
In some cases, however, operating modes with highly
dynamic processes have to be investigated. These proc-
esses may occur suddenly within long time periods of
behaviour with none or very low dynamics, which can
be considered as static behaviour. In such cases, it
would be advantageous to be able to switch from the
simplified model mentioned above to a more complex
model describing the real behaviour in more detail.

In the paper, four different Modelica models for wind
turbines are presented. On the one hand, two static
models – the “simple static model” and the “static me-
chatronic model” – are shown representing two
different instances of a simplified behaviour. On the
other hand, two dynamic models – the “mechanical
model” and the “dynamic mechatronic model” – are
presented which describe the dynamic behaviour of a
wind turbine in more detail. Furthermore, a method
will shortly be proposed to exchange one model with
another one at certain points in time (see also [5]). Such
structural changes allow the application of that particu-
lar model of behaviour which suits the current situation
best. Using this method, the simulation of a complex
mechatronic system like a wind turbine can very effec-
tively be carried out. Additionally, some simulation
results will be given to show the advantage of the meth-
od proposed.

1 Introduction
The proportion of renewable energy in industrial coun-
tries is growing with increasing speed. The usage of
wind turbines plays an important role among these
forms of power generation. A wind turbine is a com-
plex mechatronic system consisting of mechanical
parts, electrical components, and a very complex con-
trol strategy.

Investigation of wind turbines using numerical simula-
tion becomes more and more important. Therefore,
design, construction and scheme of operation of the
turbine under investigation must be taken into account.
The level of detail which is necessary for a special
model depends on the questions which are to be an-
swered by the simulation results. On the one hand, we
have to distinguish between models of single turbines
and whole wind parks. In the paper, model types suita-
ble for both situations will be presented. On the other
hand, behavioural models describing only the flow of
electrical energy stand in opposition to models which
use voltage and current as time-depending electrical
quantities. Again, both types of models are introduced
here.

Every type of a wind turbine model presented in this
paper is suitable for a well determined level of detail.
Every model uses a particular set of physical quantities
to describe the corresponding physical behaviour. All
models are equipped with interfaces that allow a simple
exchange of one model with another one at arbitrary
points in time. This property makes it possible to inves-
tigate a complex mechatronic system like a wind
turbine as exact as necessary depending on the current
situation of operation simply by using the actually best
suiting model of behaviour.

In the following section, the general logical scheme of
operation of the construction type of wind turbine con-
sidered in this paper is outlined. The four models are
presented in section 3. Some simulation results are giv-
en in section 4.

2 Scheme of operation
There is a great variety of types of existing wind tur-
bines (see e.g. [6], [7], [8], [14]). All of them have
advantages and disadvantages. However, the most
widely used type of a wind turbine is equipped with a
so-called pitch control and an asynchronous generator
([6], [9]). With such a turbine, the energy harvested
from the wind can be influenced by controlling the
pitch angle which is the angle of the rotor blade across

Modelica Wind Turbine Models with Structural Changes Related to Different Operating Modes

The Modelica Association 611 Modelica 2008, March 3rd − 4th, 2008

its longitudinal axis. The simplified logical scheme of
operation of such a wind turbine is shown in Fig. 1.

The controller always tries to harvest as much as possi-
ble energy from the actual wind. To this end, the
controller uses the actual speed of wind and the actual
speed of rotor as input signals to calculate the pitch an-
gle. This angle then again mainly determines the
angular momentum acting on the rotor. Hence, the rotor
speed and, therefore, the speed of the electric generator,
is influenced by the controller. Going into more detail,
the controller endeavours to put the point of operation
into a maximum of the power coefficient’s array of
curves, which are exemplarily depicted in Fig. 2. In
this figure, is the power coefficient, stands for
the speed ratio between blade’s tip and wind
(, – radius of rotor, – speed of
wind), and denotes the pitch angle. In Fig. 2, five
curves of the whole array for fixed values of are
shown (solid lines). The dotted line depicts an approx-
imation of the connecting curve of the maximum points
of all -curves using the pitch angle as a parameter.
Using such an array of curves, the controller chooses a
pitch angle which determines the rotor speed in such a
way that as much as possible energy can be harvested
from the actual wind. A realistic array of -curves –
implemented in the models of the next section – was
taken from [15].

3 Wind turbine models
In this section, four different models of a wind turbine
characterized by a pitch angle and an asynchronous in-
duction generator are presented. All these models use
the speed of wind as an input variable. Number and
physical quantity of the output variables depend on the
particular model. The direction of the wind (and the
variation of the direction) is not considered in any tur-

bine model presented here. Hence, investigations of
changing wind directions, their measurement, as well
as the dynamic behaviour of a turbine when rotating
across its vertical axis (i.e. when “turning into the
wind”) are not included in the models considered in
this paper.

The range of applicability of every model depends on
its level of detail. The simplest one is called “simple
static model”. It is suitable for energy flow considera-
tions of whole wind parks. The “mechanical model”
allows simple dynamic investigations of the mechani-
cal part of a single turbine. With both models, no
interaction between the turbine and the energy grid can
be considered. Compared with this, the “static me-
chatronic model” and the “dynamic mechatronic
model” are physical models with a more sophisticated
design. They use characteristic quantities of both me-
chanical and electric domain. Because of the usage of
electric quantities like current and voltage of the gener-
ator, many interations between turbine and energy grid
can be taken into account. Hence, these models are well
suitable for investigations of the mutual influence of
different turbines within a wind park.

3.1 Simple static model
The “simple static model” is the simplest possible mod-
el describing the physical behaviour of a wind turbine.
The only input is the actual speed of wind. The output
quantity is the electric power which can be harvested
from the actual wind under the assumption of an opti-
mal operation of the turbine’s controller.

The relation between speed of wind and electric power
is shown in Fig. 3. It consists of two main areas: the
partial load range and the full load range (see e.g. [16]).
Within the partial load range, the speed of wind is slow-
er than a value which is called the nominal
speed of wind. Here, the electric power is a cubic func-
tion of the speed of wind. The full load area is the range

cP λ

λ Rω vW⁄= R vW
β

β

cP β

cP

pitch
angle

rotor
speed

gear box
and

generator

control
strategy

speed
of

wind

electric
power

fed
into grid

Figure 1: Wind turbine’s logical scheme of operation

λ

β
Pc

Figure 2: Array of curves of power coefficient

eP

WvWnomv

Figure 3: Characteristic curve of the “simple static
model”

vWnom

O. Enge-Rosenblatt, P. Schneider

The Modelica Association 612 Modelica 2008, March 3rd − 4th, 2008

of wind speeds which are higher than the nominal val-
ue. Here, the electric power does not depend on the
actual speed of wind. Instead, it is assumed to be con-
stant. Finally, the electric power is set to zero for both
very small values and very high values of . Within
these ranges, the system is not in operation because of
inefficiency and safety, respectively.

The “simple static model” describes a simple relation
between speed of wind and electric power without any
dynamics. No more characteristic quantities of a tur-
bine are used. Therefore, the model can only be used if
all components of the turbine work correctly. Of
course, behavioural simulations with this model are re-
ally very fast. Hence, the model is suitable for
considerations of energy flows with single turbines as
well as with whole wind parks (consisting e.g. of 100
or more installations). The determination of bottle
necks within the energy grid while assuming typical
wind profiles for the park location may be of special in-
terest in this context.

3.2 Mechanical model
The “mechanical model” implements the main proper-
ties of the turbine’s mechanical subsystem. Like with
the “simple static model”, the actual speed of wind is
used as the only input and the electric power is the out-
put. In the model, some dynamics of mechanical
components are included.

The appropriate logical scheme is shown in Fig. 4. The
pitch angle is governed by the controller according to
the maximum power coefficient principle (see Fig. 2).

Depending on the actual speed ratio between the
blades’ tip and wind, the nominal pitch angle is choos-
en so that the power coefficient becomes a maximum
value (i.e. the point of operation is located on the dotted
line in Fig. 2). After a change of wind speed, the pitch
angle has to be readjusted. This has to be done in con-
sideration of the limited angular velocity and
acceleration of the rotor blades. The profile of angular
velocity assumed here is a so-called trapezoid profile
(see Fig. 5, where the angular velocity is plotted
against time). It consists of an acceleration region, a
range with constant speed and a deceleration region.
Using this profile, the pitch angle is changed if neces-
sary. This way, the so-called pitch dynamics is included
in the “mechanical model”. Then, the actual pitch value
influences the driving torque via the array of curves of
the so-called torque coefficient. A sketch of this array
is shown in Fig. 6. In this figure, denotes the torque
coefficient, where is again the speed ratio and is
the pitch angle. The realistic array of -curves imple-
mented within the “mechanical model” is taken from
[15]. The same array is also applied within both me-
chatronic models (see sections 3.3 and 3.4). Using the
actual value of at a time, the driving torque is cal-
culated according to

(1)

(– air density). After computation of driving torque,
the rotor acceleration is determined using the following
torque balance

(2)

vW

control
strategy

pitch
angle

gear
box

Kloss‘s
approx.
of AIM

ω

eP

LT

β

Wv

λ

calc. of
torque

Nω

T

Figure 4: Logical scheme of the “mechanical model”

t

β&

Figure 5: Profile of pitch angle velocity

λ

β·

t

λ

β

Tc

Figure 6: Array of curves of torque coefficient

cT
λ β

cT

cT T

T cT
ρ
2
---πR3vW

2=

ρ

J̃ω· T TL– κω–=

Modelica Wind Turbine Models with Structural Changes Related to Different Operating Modes

The Modelica Association 613 Modelica 2008, March 3rd − 4th, 2008

(– rotor’s moment of inertia related to gear box ratio,
 – load torque, – damping coefficient). For this

purpose, the generator’s load torque is calculated by
Kloss’s approximation for an asynchronous induction
machine (see e.g. [13])

, (3)

where denotes the slip (–
breakdown torque, – breakdown slip, – grid’s
angular frequency). Finally, the electric power fed
into the grid (the model’s output) is assumed to be
equal to the mechanical power (a given efficiency fac-
tor may be taken into account).

The “mechanical model” describes the electrical power
fed into the grid as a function of the speed of wind. This
description includes the main dynamics of the wind tur-
bine’s mechanical subsystem and takes into account the
correct calculation of the driving torque using the
pitch-depending torque coefficient. Therefore, many of
the mechanical characteristic quantities are provided
for a dynamic simulation by the model. The model is
suitable for investigations of the dynamic behaviour of
the mechanical part of a single wind turbine if the dy-
namics of the electrical part is either negligable or not
of interest. An example for such investigations is e.g.
the problem of finding the optimal time interval for
measuring the speed of wind and – corresponding to
this question – the optimal strategy for controlling the
pitch angle.

3.3 Static mechatronic model
The “static mechatronic model” extends the “mechani-
cal model” mentioned before by an electrical
subsystem. Like with both models before, the actual
speed of wind is used as an input. But additionally, the
voltage of the energy grid is used as input, too. The out-
put is the electrical current fed into the grid. Therefore,
the mechatronic models (the static one here and the dy-
namic one in the next section) implement a fully bi-
directional connection between the turbine’s electrical
subsystem and the energy grid.

The appropriate logical scheme is shown in Fig. 7.
Most of the mechanical subsystem is realized in the
very same way like in the “mechanical model”. This
concerns the pitch angle adjusting with its dynamics,
the calculation of driving torque, and the determination
of rotor’s acceleration via torque balance. Only Kloss’
approximation of an asynchronous induction machine
is substituted by an equivalent circuit.
The electrical subsystem of the “static mechatronic
model” realizes only its steady state behaviour. Consid-
ering only steady states, the phasor description of
sinusoidal quantities leads to an adequate mathematical
model for the electrical subsystem (see e.g. [2], [12]).
An appropriate equivalent circuit for the asynchronous
induction generator (see Fig. 8) is used. Please note
that all underlined symbols in this figure denote
phasors (is a voltage phasor, is a phasor of an
electric current – both are also used in Fig. 7) whereas

, , , and denote ohmic resistor, inductance, an-
gular frequency, and slip, respectively.

The electrical subsystem is implemented using a spe-
cial Modelica library for phasor domain-based
systems. This library was already presented at the last
Modelica conference (see [3]). Hence, details to the
phasor description and the special library shall not be
given here. In [3], we also pointed out that – with such
a model – a so-called quasi-stationary mode can be de-
scribed under some weak assumptions. With a wind
turbine, such an operating mode is characterized by
slow dynamics of the mechanical subsystem and a se-
quence of steady states of the electrical subsystem. See
[3] for more details.

J̃
TL κ

TL
TB

s sB⁄ sB s⁄+
------------------------------=

s ωN ω–() ωN⁄= TB
sB ωN

Pe

control
strategy

pitch
angle

gear
box

ω

LT

β

Wv

λ

calc. of
torque

AIM

Nω

grid

I

V

T

Figure 7: Logical scheme of the “static mechatronic model”

NV

sR σω sLj σω rLj ′

mLjω sRr′

sI rI ′

mI

Figure 8: Equivalent circuit of an asynchronous
induction machine using phasor description

V I

R L ω s

O. Enge-Rosenblatt, P. Schneider

The Modelica Association 614 Modelica 2008, March 3rd − 4th, 2008

The “static mechatronic model” realizes a complete
mechatronic system of a wind turbine consisting of a
controlling part, a mechanical part, and an electrical
part. Due to the application of phasor domain-based
electrical quantities, the high dynamics of the electrical
subsystems (usually the 50 Hz or 60 Hz sinusoidal os-
cillations) do not carry any weight concerning dynamic
simulations of the whole system. Hence, this model is
well suitable for investigations of the behaviour of
many turbines of a wind park, especially for consider-
ations of mutual interactions between the turbines and
the grid or between different turbines connected with
the same part of the grid.

3.4 Dynamic mechatronic model
The “dynamic mechatronic model” is the most com-
plex one described within this paper. Like with the
“static mechatronic model”, the actual speed of wind
and the voltage of the grid are used as inputs while the
output is the electric current fed into the grid. Hence,
the model implements a fully bi-directional connection
between turbine and grid.

The appropriate logical scheme is shown in Fig. 9. The
mechanical submodel is completely equal to that of the
static mechatronic model. The important difference to
this model mentioned above is the implementation of
the fully dynamic behaviour of an asynchronous-type
generator. Please note that time-depending electrical
quantities (,) are used in Fig. 9 instead of
phasors. In the usual case of a three phase grid, such a
model of a generator consists of six time-depending
electrical currents (three stator currents and three rotor
currents) which require, of course, six differential
equations to calculate them. One extra (algebraic)
equation is necessary to determine the load torque pro-
duced electrically (see e.g. [4]). Because of the
generator equations and the sinusoidal electrical quan-
tities appearing there, high dynamics is involved in the
turbine’s model. Hence, a dynamic simulation using
such kind of model needs small solver steps. This fact
leads to time-consuming simulation experiments.

The “dynamic mechatronic model” realizes a fully dy-
namic model of the mechatronic system of a wind
turbine. Both subsystems (mechanical and electrical)
are described by differential-algebraic equations.
Merely, the power electronics with its switching effects
is neglected. Hence, this model is well suitable for in-
vestigations of the behaviour of a single wind turbine
taking into account many dynamic effects from me-
chanical and electrical domain. Especially, the
interaction between a wind turbine and the energy grid
can be considered in a detailled way with this model.
Enormous simulation times because of the high dy-
namics of many electrical quantities are a disadvantage
of this model.

3.5 Model exchange
Investigations of interesting questions concerning wind
turbines often require dynamic simulations over very
long time periods. To carry out such analysis in a con-
veniently effective manner, special simulation methods
are necessary. The main influence to the dynamic be-
haviour of a turbine is exerted by the wind. On the one
hand, there are long time periods with only few varia-
tions of its speed. Within these periods, a simulation
model consuming as less as possible calculation time is
of interest. On the other hand, there are short time in-
tervals, where the speed of wind is changing very fast.
In such critical cases, the compliance of given condi-
tions of operation is very important. Hence, a dynamic
simulation with a sufficient level of detail is of essential
importance.

To handle the problem of changing demands to the lev-
el of detail of a model, the exchange of one submodel
with another one at proper points in time is proposed.
The points in time of a necessary change from the sim-
ple model to the detailled one can e.g. be found by
monitoring the acceleration of the wind (i.e. the varia-
tion of the speed of wind). If the accerelation value
exceeds a well defined border then the model change is
necessary. Switching on and off of main consuming de-
vices may also be of interest. Here, the points in time
are predetermined. The switching back from the de-

control
strategy

pitch
angle

T
gear
box

ω

LT

β

Wv

λ

calc. of
torque

AIM

Nω

grid

()ti

()tv

Figure 9: Logical scheme of the “dynamic mechatronic model”

v t() i t()

Modelica Wind Turbine Models with Structural Changes Related to Different Operating Modes

The Modelica Association 615 Modelica 2008, March 3rd − 4th, 2008

tailled model to the simple one may be carried out if the
dynamics of the complete system is faded away.

Both switching operations – from low level to high lev-
el of detail and vice versa – have to be performed taking
into account the possibly changing number of differen-
tial and algebraic equations. That means that three
steps are to be done:
• The dynamic simulation may be terminated at a

certain point in time.
• The actual state of the old model has to be trans-

formed into the new model.
• Consistent initial values for the complete set of

equations of the new model have to be found.
For more information concerning this way of realisa-
tion, please refer to [5].

3.6 Model implementation
The models presented here have been implemented us-
ing the Modelica Standard Library, extended by some
physical relations and algorithms in order to provide an
arbitrary wind profile, to model the whole turbine’s
control strategy, to handle the pitch angle adjustment,
as well as to carry out some approximations concerning
the coefficient’s arrays of curves (power coefficient,
torque coefficient) included in the models. Additional-
ly, a Modelica library for phasor domain-based
description (see [3]) is used in case of the “static me-
chatronic model”.

Unfortunately, a real switching between different lev-
els of detail – i.e. an exchange of model parts in such a
way that the equations of the “inactive” part at a time
are excluded from the equation set of the numeric solv-
er – is not supported by most Modelica simulators until
now. For this reason, parts of the following results are
achived by a kind of “step-wise” simulation.

4 Simulation results
Considering the four models of wind turbines present-
ed in section 3, the mechatronic models are the most
interesting ones. Therefore in this section, some simu-
lation results are shown which were reached using
these two models.

Please imagine a little wind park connected to some
consumers. A similar (but simplified) scenario is
shown in Fig. 10. Dynamic simulations of such a com-
plex system using the “dynamic mechatronic model”
would require a huge simulation effort. An investiga-
tion of the system’s behaviour for, say, one year would
hardly be possible. The only way to earn some results
within a reasonable time effort is to operate with chang-
ing submodels. To this end, the “static mechatronic
model” and the “dynamic mechatronic model” are al-
ternately applied. Depending on the actual situation,
either the static model or the dynamic model is used to
describe the complete system.

4.1 Functionality test
First, a functionality test for the two mechatronic mod-
els is presented. This this end, a rapid change of speed
of wind – a zooming ramp which is nearly a step – is
assumed as input signal at time (see Fig. 11).
Such a sudden step is admittedly very unlikely for a re-
al wind turbine. But the functionality test was
intentionally performed under extreme conditions.

The step responses of the two wind turbine models are
shown in the following figures (Fig. 12 ... Fig. 15). In
all these figures, the prefix “smm” (corresponding to a
solid line) means that the result originate from the
“static mechatronic model” while the string “dmm”
(corresponding to a dashed line) indicates the “dynam-

wind parkmore producers / consumers

consumers consuming devices
(industrial plant,
public building, …)

other producing devices
(e.g. photo-voltaic)

energy grid

Figure 10: Energy grid with wind park and consumers

t 1s=

O. Enge-Rosenblatt, P. Schneider

The Modelica Association 616 Modelica 2008, March 3rd − 4th, 2008

ic mechatronic model”. In Fig. 12, the time progress of
the pitch angles is depicted. Both angles are very fast
justified by the controller from 0° to 20°. The small dif-
ference of the ramp’s increase is caused by the fact that
the controller uses both the speed of wind and the rotor
speed as input signals. The rotor speed is shown in
Fig. 13 for both models. Here, the different behaviour
of both models is illustrated. The static model calcu-
lates significantly higher values than the dynamic
model. This is valid in the time interval of the changing
pitch angle as well as in the time of constant rotor
speed. The same behaviour is demonstrated in Fig. 14.

This figure contains the curves of the angular velocity
of the generator which is connected to the rotor via an
ideal gear with a speed ratio of 1:180. Fig. 13 and
Fig. 14 show after a very close look that the dynamic
model needs less more time to react to the sharp change
of wind speed. That means on the other hand that the
static model does not yield correct results in such cases.
Finally, the same effect is shown in Fig. 15 which de-
picts the corresponding time history of the electric
power produced by the turbine and fed into the grid.
Though in this diagram, the difference between both re-
sults is not such significant like with the turbine’s rotor
speed of with the generator’s angular velocity. Howev-
er, the dynamic model needs less more time to reach the
area of constant electric power.

4.2 Long-term simulation
In this section, results of a long-term simulation are
given. Using such investigations, on the one hand the
suitability of different models and on the other hand the
rate of effectiveness of model exchange can be deter-
mined. As already pointed out in section 3.6, a “step-
wise” simulation method is necessarily applied here
because of the inability of most Modelica simulators to
handle models with exchanging parts correctly. In this
context, “step-wise” simulation method means that the

Figure 11: Sharp change of wind speed

Figure 12: Pitch angle

Figure 13: Turbine’s rotor speed

Figure 14: Generator’s angular velocity

Figure 15: Electric power

Modelica Wind Turbine Models with Structural Changes Related to Different Operating Modes

The Modelica Association 617 Modelica 2008, March 3rd − 4th, 2008

three step mentioned in section 3.5 were carried out not
driven by the simulator but forced by the user. In other
words, different tasks had to be performed where the
model exchanges were done by transforming the actual
state into the new model and starting a further simula-
tion task. Possibly, new developments (see e.g. [1], [5],
[10], [11]) will improve the situation in the near future.

The simulation period shall have a length of 1200 s.
The used wind profile along the complete time interval
is a realistic profile near to wind data meassured in re-
ality. The shape of the wind profile is depicted in
Fig. 16. It has three regions with relatively low wind
speeds between 5 m/s and 10 m/s (time intervals: 0-
30 s, 60-80 s, 100-120 s). In contrast, there are two re-
gions with high or middle speeds of wind of about
20 m/s and 15 m/s, respectively (time intervals: 33-
55 s, 80-100 s).

First, the complete task was computed using the “static
mechatronic model”. On a nowadays standard PC (In-
tel T2400 dual-core CPU with 1.8 GHz each), the
simulation took only 1.8 s. But the results can only be
understood as a sequence of steady states (see [3]). In
highly dynamic situations, the numeric error of such a
calculation method may not be neglected. But if per-
forming the complete task using the “dynamic

mechatronic model”, it takes much more time to finish.
On the same PC, a time effort of 43.5 s was needed.

A compromising solution is shown in Fig. 17. The five
regions mentioned above are investigated using the
“static mechatronic model” because the wind shows
only low dynamics there. The corresponding time his-
tory of the turbine’s electric power is indicated by solid
lines. However if monitoring high wind dynamics, the
“dynamic mechatronic model” is used. The corre-
sponding power curves are indicated by dashed lines.
The dynamic model is used during the four short time
intervals between the five steadied regions. This way, a
model exchange is needed at eight points in time. These
are marked in Fig. 17 by changing line types.

5 Summary
A wind turbine is a complex mechatronic system con-
sisting of mechanical parts, electrical components, and
a very complex control strategy. The article deals with
a widely used type of wind turbines which is equipped
with a so-called pitch control and an asynchronous gen-
erator. Four different models for describing the static
and/or dynamic behaviour of such a wind turbine are
presented. Every model implements a well determined
level of detail and uses a particular set of physical
quantities to describe the corresponding physical be-
haviour. All models are equipped with interfaces that
allow model exchanges. This property makes it possi-
ble to investigate a complex mechatronic system like a
wind turbine as exact as necessary depending on the
current situation of operation simply by using the actu-
ally best suiting model of behaviour.

In the paper, two static models are shown representing
two different instances of a simplified behaviour (a
simple characteristic curve and a static model using
mechanical and electrical components). Furthermore,
two dynamic models are presented which describe the
dynamic behaviour of a wind turbine in more detail (re-
specting only the dynamics of the mechanical
subsystem or taking into account the dynamics of me-
chanical and electrical components). In addition, a
method of model exchange at certain points in time is
proposed. Such structural changes allow the applica-
tion of that particular model of behaviour which suits
the current situation best. Using this method, the simu-
lation of a complex mechatronic system like a wind
turbine could very effectively be carried out.

Additionally, some simulation results using the two
mechatronic models are given. Both a functionality test
performed under extreme conditions as well as an in-
vestigation using a realistic wind profile are included.

Figure 16: Realistic shape of wind speed

Figure 17: Electric power with switching models

O. Enge-Rosenblatt, P. Schneider

The Modelica Association 618 Modelica 2008, March 3rd − 4th, 2008

References
[1] Breitenecker F et al. Structure of simulators for

hybrid systems – general development and
introduction of a concept of external and inter-
nal state events. 6th EUROSIM Congress on
Modelling and Simulation – EUROSIM 2007,
Ljubljana, Slovenia, September 9-13, 2007,
Proceedings.

[2] Desoer CA, Kuh ES. Basic Circuit Theory.
McGraw-Hill, 1966.

[3] Enge O, Clauß C, Schneider P, Schwarz P, Vet-
ter M, Schwunk S. Quasi-stationary AC Analy-
sis Using Phasor Description With Modelica.
5th International Modelica Conference – Mod-
elica 2006, Vienna, Austria, September 4-5,
2006, Proceedings, pp. 579-588.

[4] Enge O, Kielau G, Maißer P. Modelling and
Simulation of Discrete Electromechanical Sys-
tems. 3rd Conference on Mechatronics and
Robotics, Paderborn, Germany, October 4-6,
1995, In Lückel, J. (Ed.): Mechatronics and
Robotics - From Design Methods to Industrial
Applications, Teubner, Stuttgart, 1995, pp. 302-
318.

[5] Enge-Rosenblatt O, Bastian J, Clauß C,
Schwarz P. Numerical Simulation of Continu-
ous Systems with Structural Dynamics. 6th
EUROSIM Congress on Modelling and Simula-
tion – EUROSIM 2007, Ljubljana, Slovenia,
September 9-13, 2007, Proceedings.

[6] Garsch R, Twele J. Wind Power Plants – Fun-
damentals, Design, Construction and Opera-
tion. James and James, 2002.

[7] Gasch R (Ed.). Windkraftanlagen – Grundla-
gen und Entwurf. B.G. Teubner, 1996.

[8] Hau E. Windkraftanlagen – Grundlagen, Tech-
nik, Einsatz, Wirtschaftlichkeit. Springer, 1996.

[9] Heier S. Grid Integration of Wind Energy Con-
version Systems. John Wiley & Sons, 1998.

[10] Nytsch-Geusen C et al. Mosilab: Development
of a Modelica based generic simulation tool
supporting model structural dynamics. 4th
International Modelica Conference – Modelica
2005, Hamburg, Germany, March 7-8, 2005,
Proceedings, pp. 527-535.

[11] Schwarz P. Simulation of systems with dy-
namically varying model structure. 5th IMACS
Symposium on Mathematical Modelling –
MATHMOD 2006, Vienna, Austria, February
8-10, 2006.

[12] Steinmetz CP. Theory and Calculations of
Alternating Current Phenomena. 1e, W.J. John-
son Comp., 1897, or 4e, McGraw, 1908.

[13] Woodson HH, Melcher JR. Electromechanical
Dynamics – Part I: Discrete Systems. John
Wiley & Sons, 1968.

[14] Zhang T. Energieertrag und dynamische Belas-
tungen an einer Windkraftanlage mit stufen-
losem leistungsverzweigten Getriebe bei
aktiver Dämpfung. Dissertation, TU Chemnitz,
GUC-Verlag, Chemnitz, 2004.

[15] Zhao X. Simulation des dynamischen Ver-
haltens einer Windenergieanlage als mechatro-
nisches System. Dissertation, TU Chemnitz,
Shaker, Aachen, 2004.

[16] http://www.windpower.org/en/tour.htm.
Guided Tour on wind energy. Danish Wind
Industry Association, seen on October 25,
2007.

Modelica Wind Turbine Models with Structural Changes Related to Different Operating Modes

The Modelica Association 619 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 620 Modelica 2008, March 3rd − 4th, 2008

ExcelInterface – A Tool for Interfacing Dymola through Excel
Kristian Tuszynski,

Modelon AB, Ideon Science Park, SE-22370 Lund, Sweden

kristian.tuszynski@modelon.se

Abstract

This paper presents a tool created in Excel which en-
ables interfacing with Dymola. The tool was created
to simplify batch simulations and allow easy post
processing of a large number of simulations. The in-
terface handles both steady state sweeps of a model
as well as continuing from a previous simulation.
Support for calibration using linear regression is also
implemented which allows calibration of simpler
models.

Keywords: Excel; Simulation; DDE; Scripting; Dy-
mola; Batch simulation; Steady State; Interface

1 Introduction

When simulating a large number of cases, either to
validate a model against measurement data or when
acquiring experimental results, there is strong need
to be able to organize and get a good overview of
both the experiment setup and the result of the simu-
lations. The ExcelInterface greatly improves and
simplifies both the post processing and setup in-
volved when running a batch of simulations with
changing boundary conditions between the cases.
The tool allows the user to define a number of cases
to run and then get the result from the simulations
presented in Excel for easy comparison. This gives a
good overview of what has been set in the model,
without actually changing the model code allowing
the model stored in Dymola to be generic and instead
all different simulation cases are defined in the Excel
sheet.
Doing the same thing using Dymola directly would
force the user to make model changes for each pa-
rameter set, create multiple models where each uses
a different parameter set or make a custom made
script file where the simulation cases are defined. All
these options are quite time consuming and do not
provide a good overview.

Having the result in Excel also enables the use of the
tools included in the program. Excel and its tools
have the advantage that the knowledge and use of
them are wide spread which means that it is not nec-
essary for a person with Modelica or Dymola knowl-
edge to analyze and make further post processing of
the result. This simplifies the result exchange when
working with someone without any prior Modelica
knowledge.

2 Overview

The tool is built using VBA (Visual Basic for Appli-
cations) which comes with Excel. The communica-
tion between Excel and Dymola is performed both
using files and a DDE connection established be-
tween Dymola and Excel.

When simulating, the interface works by creating a
Dymola script based on chosen settings in the Ex-
celInterface. This script is executed in Dymola, using
DDE commands sent from Excel. For each simula-
tion, specified output values are saved in temporary
files which are read by Excel after all simulations
have completed. In Excel the result is presented at
position and with appearance defined by the user
through the interface. The communication is illus-
trated in Figure 1.

Figure 1 Communication between Excel and Dymola

ExcelInterface - A Tool for Interfacing Dymola through Excel

The Modelica Association 621 Modelica 2008, March 3rd − 4th, 2008

3 Setup

The ExcelInterface contains a setup sheet, seen in
Figure 2, where all cases to be simulated are speci-
fied. A case is defined by a unique name used in the
interface, a path to a model file and the Modelica
path to the model to be simulated within the file.
Each case can be enabled and disabled deciding if
they are run or not when starting the simulations.

Figure 2 Setup sheet of the ExcelInterface

For each case a new excel sheet is created where the
user has to specify a number of parameters including
work directory, integrator, tolerance, number of sim-
ulations cases and simulation time as seen in Figure
3.

Figure 3 Sheet specific for a case

The input and output variables to/from the model are
selected from menus in Excel. The first time a model
is to be simulated through the ExcelInterface, the
model has to be analyzed to find all parameters and

variables contained in the model. A DDE connection
is used between Excel and Dymola to execute the
commands necessary to perform these operations
which include:

• translation and simulation of the model
• parameter and variable names extraction

from the generated result file
• saving extracted parameter and variable

names in a user specified file

This procedure only has to be performed once for
every model as any following need to add paramet-
ers/variables the saved file is used.

Figure 4 Tree view menu with parameters and vari-
ables

Input and output variables are then selected from the
generated tree view menu, seen in Figure 4, and fi-
nally values are set in the generated input table such
as the one shown in Figure 5.

Figure 5 Set boundary conditions

4 Running Simulations

There are two ways to run multiple simulations using
the ExcelInterface:

• Steady State Simulations
• Continue Simulation

o Continue from First
o Continue from Previous

K. Tuszynski

The Modelica Association 622 Modelica 2008, March 3rd − 4th, 2008

4.1 Steady State Simulations

This option simulates the specified cases one after
another and the results at the specified end time are
returned. In case of a model that initializes in steady
state, the simulation time should be set to zero for
faster execution, for all other cases the user has to
determine a simulation time that is long enough for
the simulation to reach steady state.

Structural parameters are parameters which force a
re-compilation of the model as they change the gen-
erated code structure. A good example of structural
parameters is discretization parameters. If all select-
ed input parameters are non-structural the model is
only translated and compiled once, enabling fast
simulations. As it may not always be trivial to know
which parameters in a model that are structural, the
ExcelInterface automatically detects if a structural
parameter was selected as an input parameter. If one
or more structural parameters are detected the model
has to be retranslated between each run case.

Figure 6 Input and output in Excel

Figure 6 shows an example on how the output in Ex-
cel can look like after a successful simulation. In the
example four different cases were run and two pa-
rameters (init.mdot_init and init.p_in_init) were
changed between the simulations.

4.2 Continue Simulation

Besides running each simulation as a separate case,
the ExcelInterface offers two other ways for series of
steady state calculations. The most common reasons
for using these options are that the model can not
successfully initialize at every steady state point
and/or that the initialization phase of the model is
very time consuming making it practical to continue
from a initialized model that has reached steady
state.

By connecting ramp blocks to the boundary condi-
tions of the simulated model where the start values
of the output signals equal the end value from the
previous simulation it is possible to start each new
simulation from steady state and then change the
boundary conditions by setting desired height of the
ramp blocks.

Continue from First simulates the model for a spec-
ified time and then the remaining simulations contin-
ue from this point. This makes it possible to define a
number of transients using, for instance, ramp blocks
and sweep any number of steady state points.

Figure 7 shows the outlet evaporator temperature in
an AC-cycle simulation where the model was first
simulated until it was in steady state. Once this point
was reached (after 200 seconds) five simulations
were executed from the end of the first simulation
where the inlet air temperature was changed between
the simulations.

Figure 7 Example result when using “Continue from
First”

The second option Continue from Previous also
simulates the model for a specified time and then
each specified case continues from the previous sim-
ulation.

A Continue from Previous run is illustrated in Fig-
ure 8 where the outlet evaporator temperature of an
AC-cycle is shown. The initial simulation is contin-
ued after 200 seconds. After this time 5 simulations
are run where each one is 100 seconds long.

ExcelInterface - A Tool for Interfacing Dymola through Excel

The Modelica Association 623 Modelica 2008, March 3rd − 4th, 2008

Figure 8 Example result when using “Continue from
Previous”

For both these options it is possible to start the simu-
lations from a saved result file. Using this option the
initial simulation, which takes the model to steady
state, is skipped. Instead all initial values are taken
from the result file.

4.3 Plotting and Dynamic Result

For all simulations performed using the interface it is
optional to include plots of chosen variables in Ex-
cel. Enabling this option is useful to get a quick visu-
al comparison of the different simulation results and
when it is necessary to verify that the model really
reached steady state after an initial transient.
The plots are created by extracting wanted trajecto-
ries from the result files and saving them in sheets
within the work book making the trajectories easily
accessible.

5 Usage Example – Charge Opti-
mization

To find the optimal charge of an AC-Cycle the cycle
is first almost completely drained and then filled in
multiple steps until the accumulator of the cycle is
over filled. At each step important values such as the
power, pressures, subcooling and superheat tempera-
tures are measured.
Simulating this procedure in one continuous simula-
tion might prove difficult as it is often necessary to
simulate between 8 and 15 points altogether and
there is a risk that the simulation will fail during the
transition between, at least, two of the points. If this
happens it is quite time consuming to re-run the sim-

ulation and there are no guarantees it will work the
second time around either.
Using the ExcelInterface the risk is minimized when
simulating the charge optimization using the contin-
ue feature of Dymola. The experiment is setup by
adding a controlled flow source, to the cycle, which
fills the accumulator with refrigerant at specified
time as shown in .

Figure 9 Cycle with controllable flow source

In the ExcelInterface the start time of the filling,
height and offset of the set-point ramp block is se-
lected as input parameters and the experiment is run
using Continue from First. Finally, the cycle model
is parameterized to begin the continue simulations
having a charge of 150 kg/m3.

Figure 10 Setup in the ExcelInterface

Assuming that the initial simulation, which controls
the charge down to 150 kg/m3 passes the whole ex-
periment will not fail if a single simulation fails. In-
stead of risking having to redo the whole experiment
the worst case scenario is now that some of the simu-
lations have to be redone because they crashed.

K. Tuszynski

The Modelica Association 624 Modelica 2008, March 3rd − 4th, 2008

Figure 11 Plot of specific charge. 5 points were simu-
lated from 200-400 kg/m3

6 Summary

The ExcelInterface has proven to be an efficient tool
to use when doing batch simulations over a large
number of steady state points.
The interface gives the user a good overview of the
cases to simulate and simplifies the post processing
of the result as well as speeding up the setup of the
experiments. This in combination with the fact that
Excel is a well known program which many people
have experience working with gives the interface
great flexibility and a broad user base.

References

[1] Excel VBA Language Reference, www.mi-
crosoft.com

[2] Dymola User Manual

ExcelInterface - A Tool for Interfacing Dymola through Excel

The Modelica Association 625 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 626 Modelica 2008, March 3rd − 4th, 2008

Modeling of Cold Plates for Power Electronic Cooling

Karin Dietl∗ Jens Vasel† Gerhard Schmitz‡ Wilson Casas Christian Mehrkens
Hamburg University of Technology

Institute of Thermo-Fluid Dynamics§, Applied Thermodynamics
21071 Hamburg, Germany

Abstract

This paper deals with the cooling of high power
electronic devices. Usually those devices dissipate 5
- 10% of their electrical power, therefore (convective)
cooling is needed. Power electronics can be cooled
directly by air or a non-conductive fluid via (forced)
convection. However discharging the heat of the
power electronics via convective heat transfer with
air leads often to a large cooling elements due to the
poor heat transfer coefficient of air. Also in most
applications the direct contact between the electronic
and the cooling fluid is undesirable.
For these applications the use of cold plates can be
an option. The fluid flows through a plate (see. fig.1)
which is directly connected to the electronic. This

Figure 1: Cold plate

type of cooling is far more effective than air cooling,
since the cold plate can be designed in order to cool
also high power density electronics without resulting
in a disproportional increase of the space envelope.
The fluid temperature can be increased with respect to
the air temperature, without decreasing reliability and
durability of the power electronics components.
Using cold plates open up possibilities of decen-
tralised cooling which can improve the efficiency of
the cooling system.

∗email: karin.dietl@tu-harburg.de, Tel:+49 4042878 3765
†email: vasel@tu-harburg.de, Tel:+49 4042878 3765
‡email: schmitz@tu-harburg.de, Tel:+49 4042878 3144
§www.tt.tu-harburg.de

This paper presents a model library developed in
order to model power electronics cooling. The library
provides on the one hand heat loss models for basic
power electronics equipment itself, like IGBTs, and
on the other hand thermodynamic models for different
cold plates. Lumped models of the cold plates can be
used in large system simulations whereas cold plate
models using a distributed approach are foreseen for
more detailed analysis.
To be able to calculate the temperature distribution
in the cold plate, the solid and fluid parts of the cold
plate have to be discretised in all directions (see fig.2).

Figure 2: Cold plate model

The library is based on Modelica.Fluid, however for
the modeling of the single phase cooling medium, the
compressibility of the liquid is considered in order to
avoid large non-linear system of equations.
An important aspect of the library is the coupling of
the power electronic models to the cold plate model.
Hereby an efficient algorithm is needed which enables
the user to connect an unlimited number of power
electronic components of any size to arbitrary places
on the cold plate.

Modeling of Cold Plates for Power Electronic Cooling

The Modelica Association 627 Modelica 2008, March 3rd − 4th, 2008

Additional to the simulations a test rig is built,
where the cold plates are tested. Whereas the models
can be used for both, single phase and two phase
cooling, on the test rig only single phase cooling is
investigated. Since the fluid channels often have a
complicated finned structure, where the geometric pa-
rameters are usually not accessible, the measurements
are needed to validate the cold plate models. Hereby
a large emphasis is placed on validating the pressure
drop and heat transfer correlations, as well as the time
constants.

Keywords: Modelica; Simulation; Cold plate; Cool-
ing; Power Electronics

K. Dietl, J. Vasel, G. Schmitz, W. Casas, C. Mehrkens

The Modelica Association 628 Modelica 2008, March 3rd − 4th, 2008

Heavy Vehicles Modeling with the Vehicle Dynamics Library

Niklas Philipson Johan Andreasson
Magnus Gäfvert Andrew Woodruff

Modelon AB
Ideon Sience Park, SE-22370 Lund, Sweden

Abstract

This paper presents and describes recent extensions
to the Vehicle Dynamics Library (VDL) for heavy
and commercial road-vehicle modeling and simula-
tion (VDL/Trucks). Until now, the VDL was targeted
mainly at passenger cars applications (VDL/Cars).
Users in this domain have been particularly enthusi-
astic about the openness, flexibility, and extensibility
compared to many competing solutions. These advan-
tages which are inherent to Modelica technology are
even more important for heavy vehicles applications,
where a much larger set of vehicle configurations and
variations must be supported. It has therefore been nat-
ural to extend the scope of the library also into this
field with the VDL/Trucks options presented in this
paper. New components and templates have been in-
troduced to reflect many standard chassis layouts. A
number of new experiment templates are also supplied
to make standard analysis tasks easy to perform.
Keywords: heavy vehicles; trucks; vehicle dynamics;
Vehicle Dynamics Library

1 Introduction

The Vehicle Dynamics Library (VDL) [1, 2] was orig-
inally designed for studies on vehicle handling for pas-
senger cars (VDL/Cars). It was early clear that an
extension into the heavy vehicles domain would be
natural. The inherent flexibility and extensibility of
the Modelica-based solutions offers great benefits in
this domain where a vast set of vehicle configurations
and variants must be handled, such as combinations
of trucks, tractors, full trailers, semi-trailers, tankers,
with various axle and powertrain configurations, and
also a wide range of payload conditions. This paper
introduces the VDL/Trucks option of VDL aimed at
modeling and simulation of heavy vehicles.
Vehicle dynamics analysis of heavy vehicles and pas-

Figure 1: Truck-fulltrailer in a double lane-change

senger cars have many common inputs such as a hu-
man driver model with similar driver-vehicle inter-
face, road and environment properties, etc, and outputs
of interest such as tire forces at the contact patches,
chassis and suspension motion. Joints, links, springs,
dampers, drivers, roads, and tires all produce simi-
lar types of constraints on the model. A large set of
model components are therefore common for cars and
truck modeling. There are, however, some major dif-
ferences between heavy commercial vehicles and pas-
senger cars when it comes to chassis layout. The num-
ber of axles, tires and trailers are some of the many
parameters that are combined to form a heavy vehi-
cle configuration, while cars have a more static setup.
This requires an even more flexible interface and tem-
plate design for heavy vehicles than for cars.

The heavy vehicles option has been developed from
the same library base as the car option. This means
that the new heavy vehicle models can benefit from an
already well tested and mature overall design.

Heavy Vehicle Modeling with VehicleDynamics Library

The Modelica Association 629 Modelica 2008, March 3rd − 4th, 2008

2 Heavy vehicle components

As mentioned above, there are many low level
components that are shared between VDL/Cars and
VDL/Trucks, but there are of course many examples
of new components and components that are used dif-
ferently in the context of heavy vehicles [3]. Essen-
tially, this is due to the difference in weight and di-
mensions. The higher over-all weight requires differ-
ent solutions and very large load variations means that
good performance have to be achieved for a wide vari-
ety of load cases. The higher center-of-gravity makes
rollover rather than road adhesion the handling limit in
many situations. This section highlights some of the
extensions made to VDL for heavy vehicle simulation
to address these differences. Figure 2 shows a screen
shot of parts of the library, indicating some important
new additions.

Figure 2: Screen shot of parts of VDL as it appears
in Dymola. Some main extensions to VDL for heavy
vehicles are indicated.

Suspension The suspension designs in heavy trucks
are usually axle-based for the steerable and non-
steerable wheels. Leaf springs are commonly used
for both axle guidance and load support and are im-
plemented as described in [4]. To meet the require-
ment of high load variations the leaf springs are often
mounted in such a way that the effective length of them
decreases when they are subjected to load. There are
also leaf spring versions that are equipped with helper
springs that becomes active when the vehicle is loaded.
Air springs are often used in heavy vehicle suspen-
sions in conjunction with trailing arms to easily ad-
just for different load cases, see Figure 3. Air springs
can be used to change the ride height of the vehicle by
increasing the air mass inside the spring, which also
results in a stiffer spring that can carry more load.

Figure 3: Typical heavy vehicle rear axles.

Frame The frame elasticity influences the load dis-
tribution between the axles, and therefore the available
grip from the tires. The elastic frame included in VDL
trucks has a torsional degree of freedom. It is easy to
add or change the degrees of freedom in the frame by
extending the interface so the common template con-
nectors are used.

Payloads The payloads can be static (e.g. a crane),
dynamic (e.g. a tank for liquid load) or have vary-
ing masses or mass distributions (e.g. cargo contain-
ers). These different cases are supported with user-
friendly configuration setup. The existing liquid pay-
load model considers the dimensions of the tank and a
rotational damped degree of freedom for slosh.

Cabin The truck cabin is usually suspended for
driver comfort since the chassis suspension must be

N. Philipson, J. Andreasson, M. Gäfvert, A. Woodruff

The Modelica Association 630 Modelica 2008, March 3rd − 4th, 2008

Figure 4: Sine-excitation of a tractor-trailer combina-
tion with the liquid load in the tank modelled with with
a one degree of freedom to capture dynamic load dis-
tributions.

stiff to accommodate the high loads. The cabin
suspension is a linkage mechanism equipped with
springs, dampers and antiroll bars. The suspension
also causes a relative motion between the steering
wheel and the steering gear since the steering wheel
moves with the suspended cabin. This is incorporated
in the vehicle templates and ensures that it is easy to
change the different subsystems such as the cabin sus-
pension or the steerable axle linkage in an flexible way.

Couplings Heavy vehicle combinations often have
tractor (driven) and trailer vehicle units. The attach-
ment to guide and constrain the trailer can vary, but has
a significant effect on the handling and vehicle behav-
ior. One of the most common couplings is a fifth wheel
for the tractor/semi-trailer combination. Full trailers
and dollies usually have a draw bar and hook to attach
to the tractor, driven truck, or preceding trailer (in the
case of road trains). The coupling must have a mass on
both sides of the joint or be locked to avoid a singular
setup when no unit is attached on one side. This is
conveniently handled without much user intervention
by the available components and templates.

3 Heavy vehicle templates

The variation and configuration space of heavy vehi-
cle combinations are much larger then for normal pas-
senger cars. Also, the components can be of vary-
ing fidelity depending on the design and purpose of
the model. A new set of templates for heavy vehicle
components has therefore been developed to sustain
the user-friendliness offered in VDL/Cars. These new

templates are based on the same usage principles as the
car templates, where templates for aggregate models
are built by connecting replaceable components that
can be parameterized depending on application. An
example of a tractor template is given in Figure 5.

Figure 5: Tractor template with two rear axles.

The heavy vehicle interfaces for basic components are
largely the same as those for cars. Some changes in-
clude extra connections to incorporate the frame and
suspended cabin. The axle-based suspension models
typically have connectors for the axle and chassis, in-
stead of using separate connectors for the left and right
suspension linkage models. The templates still have
all connections and parameters predefined and propa-
gated between models so they only require the replace-
able components to be redeclared from the graphical
Dymola user interface.
The main chassis components include a number of sus-
pension models that contain one or more axles, frame,
coupling, wheels, and a body or payload. Trailers can
also include components for a dolly.
The suspension templates are based on axle con-
straints. The axle can be a steerable or non-steerable
version. The axle connects through the linkage to the
chassis. The linkage has external or internal force el-
ements such as coil/air springs or leaf springs, respec-
tively, to support the chassis. An anti-roll bar is at-
tached to the axle and chassis. The suspension compo-
nents vary from the most basic bounce and roll degrees
of freedom to detailed elasto-kinematic setups.

4 Experiments

Simulation experiments for passenger cars and heavy
vehicles have many similarities and correspondingly
share setup of e.g., drivers, roads and grounds, and en-
vironments. Just as for cars, both the open and closed
loop driver models are available. The double lane-

Heavy Vehicle Modeling with VehicleDynamics Library

The Modelica Association 631 Modelica 2008, March 3rd − 4th, 2008

change road maneuver as seen in Figure 1 is useful for
emergency handling evaluation since it excites the roll
motion which may cause roll-over [5]. The experiment
is set up using a driver model that follows the road path
defined by RoadBuilder [2]. The sine steering excita-
tion experiment shown in Figure 4 is instead realized
using an open loop steering robot while a drive robot
is keeping the speed constant.
For out-of-plane frequency response, the shaker table
can be used [2]. It is implemented as a ground model
containing patches with time dependent altitudes, de-
fined by inputs. Since a heavy vehicle can have more
than two axles, the shaker table has a configurable
number of patches to suite any number of axles and
wheel locations. Correspondingly, several suspension
rigs can be used together for detailed analysis of bogie
axles, see Figure 6.

Figure 6: Twin axle with load distribution linkage in a
suspension rig.

5 Customization

Just as for passenger cars and light vehicles,
VDL/Trucks is extended with a set of examples for
heavy vehicles. This includes both truck with full
trailer and tractor with semitrailer as seen in Figures 1
and 4, respectively. Thanks to the flexibility inherent
in the library, it is straightforward to re-configure these
and even build completely different equipages, as il-
lustrated by the examples in this section.

5.1 Road Train

Equipages with combinations of a truck or tractor with
two or more trailers forms a road train of the type com-

monly used in e.g. Australia. These vehicle combina-
tions allow for one driver to freight a larger amount
of cargo compared to a tractor pulling a single trailer.
Unlike rail-carried trains that are self steered by the
rail-wheel interaction, road trains are more sensible to
disturbances and may even exhibit instability if care
is not taken. Additionally, road trains are heavy and
thereby hard to stop which requires them to be able to
steer to avoid accidents. This puts high demands on
the design of trucks and trailers so that they safely can
be combined into road trains under a variety of load
conditions. In VDL, these configurations can be de-
fined and tested conveniently. Figure 7 shows a set-up
with tree trailers pulled by a tractor.

Figure 7: Road train with three trailers, diagram view
(top) and animation screen shot (bottom).

5.2 Moving tire test rig

Tire test rigs are can be subdivided into two main cat-
egories depending on if the tested wheel or the ground
surface is moving. For the latter case, the ground is
typically implemented as drum or a belt. The draw-
back with these two concepts are on one hand that the
belt only makes it possible to use elastic surface ma-
terial such as steel and on the other hand that a drum
has to have a curvature which impacts the tire-surface
contact. To avoid this and to enable testing on real road
surfaces such as gravel, asphalt, and ice under differ-
ent conditions with respect to moisture, temperature,
and so on, the tested wheel can be mounted on a mov-
ing rig, typically attached to a heavy truck. However,

N. Philipson, J. Andreasson, M. Gäfvert, A. Woodruff

The Modelica Association 632 Modelica 2008, March 3rd − 4th, 2008

a moving rig is harder to control, especially since the
forces generated from the tested wheel will affect the
course of the truck. To investigate both the static and
dynamic effects of the total system of truck, rig, and
tire on resulting measurements, a moving tire test rig
was implemented by mounting a test rig with wheel
onto a truck model as illustrated in Figure 8. The re-
sults were then compared to standard test rig simula-
tions and real mobile-rig mesurement results and pro-
vided insight into the interpretation of sensor signals.

Figure 8: Mobile tire test rig mounted on a truck.

6 Simulink

Just as for passenger cars, heavy vehicles modeled
with VDL can be imported into the Simulink [7] en-
vironment. Figure 9 shows an experiment layout in
Dymola [6] used for the yaw control application in
Simulink shown in Figure 10. In applications like this
VDL/Trucks can provide models that are of great use
in the design and validation of various chassis control
functions.

7 Future

Currently the VDL/Trucks option is focused on the
chassis and covers well the most commonly used vehi-
cle types. VDL/Cars have more complete support for
full vehicle modeling with templates for powertrains,
drivelines, brakes, engines, etc. Future development
will move in the direction of complete vehicle model-
ing also for heavy vehicles. Until then, many compo-
nents are still available to build those subsystems from
base classes, but without extensive templates.

Figure 9: Experiment with in- and outputs for
Simulink. Inputs: Steering wheel angle, engine
torque, gear, wheel brake clamp forces. Outputs: Ve-
hicle states, tire forces and wheel spin velocities.

Figure 10: Yaw control application for the tractor-
semitrailer combination shown in Figure 9.

8 Summary

This paper shows how the Vehicle Dynamics Library
is extended with the VDL/Trucks option for heavy
and commercial road-vehicle modeling and simula-
tion. An overview of the recent additions is given and
it is shown with several examples how the openness,
flexibility, and extensibility from VDL/Cars is main-
tained and extended.

References

[1] Modelon AB, Lund, Sweden. The VehicleDy-
namics library, User’s Guide, Version 1.2, 2007.

Heavy Vehicle Modeling with VehicleDynamics Library

The Modelica Association 633 Modelica 2008, March 3rd − 4th, 2008

[2] J. Andreasson and M. Gävert, The VehicleDy-
namics Library - Overview and Applications.
In: Proceedings of the 5th Modelica Confer-
ence, Vienna, Austria, Modelica Association, 4-5
September 2006.

[3] N. Philipson, Extension of a tool for vehicle dy-
namics studies to handle heavy vehicle configu-
rations. Master Thesis Report, KTH-AVE, 2007.

[4] N. Philipson, Leaf spring modeling. In: Proceed-
ings of the 5th Modelica Conference, Vienna,
Austria, Modelica Association, 4-5 September
2006.

[5] E. Dahlberg and A. Stensson, The Dynamic
Rollover Threshold of Commercial Vehicles - a
Sensitivity Study. International Journal of Vehi-
cle Design, Vol. 40, No. 1-3, pp. 228-250, 2006.

[6] Dymola - Dynamic Modelica Laboratory,
http://www.dynasim.se

[7] The MathWorks: Matlab and Simulink
http://www.mathworks.com

N. Philipson, J. Andreasson, M. Gäfvert, A. Woodruff

The Modelica Association 634 Modelica 2008, March 3rd − 4th, 2008

Session 6a

Language, Tools and Algorithms

The Modelica Association 635 Modelica 2008, March 3-4, 2008

The Modelica Association 636 Modelica 2008, March 3rd − 4th, 2008

Compiling and Using Pattern Matching in Modelica

The Modelica Association 637 Modelica 2008, March 3rd − 4th, 2008

K. Stav̊aker, A. Pop, P. Fritzson

The Modelica Association 638 Modelica 2008, March 3rd − 4th, 2008

Compiling and Using Pattern Matching in Modelica

The Modelica Association 639 Modelica 2008, March 3rd − 4th, 2008

K. Stav̊aker, A. Pop, P. Fritzson

The Modelica Association 640 Modelica 2008, March 3rd − 4th, 2008

Compiling and Using Pattern Matching in Modelica

The Modelica Association 641 Modelica 2008, March 3rd − 4th, 2008

K. Stav̊aker, A. Pop, P. Fritzson

The Modelica Association 642 Modelica 2008, March 3rd − 4th, 2008

Compiling and Using Pattern Matching in Modelica

The Modelica Association 643 Modelica 2008, March 3rd − 4th, 2008

K. Stav̊aker, A. Pop, P. Fritzson

The Modelica Association 644 Modelica 2008, March 3rd − 4th, 2008

Compiling and Using Pattern Matching in Modelica

The Modelica Association 645 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 646 Modelica 2008, March 3rd − 4th, 2008

Patterns and Anti-Patterns in Modelica
Dr. Michael M Tiller

Emmeskay, Inc.
Plymouth, MI, USA

mtiller@emmeskay.com

Abstract

In 1977, Christopher Alexander, Sara Ishikawa
and Murray Silverstein published the book “A Pat-
tern Language: Towns, Buildings, Construction” [1].
Although the topic of the book was architecture, it
inspired Erich Gamma, Richard Helm, Ralph John-
son and John Vlissides in their approach to pattern
based software development. This ultimately led to
the publication, in 1994, of the book “Design Pat-
terns: Elements of Reusable Object-Oriented Soft-
ware” [2] (also known as the “Gang of Four” or
“GoF” book) which launched a major movement in
the software development community toward pattern
based software design. The idea behind the pattern
movement is to formally identify sound design solu-
tions to common problems.

Since the publication of “Design Patterns” there
have been numerous books published on the topic of
software patterns. Several of these books dealt with
the sub-topic of anti-patterns [3,4]. In contrast to a
normal pattern, anti-patterns are an attempt to iden-
tify common bad practices and ways they can be
refactored using sound design patterns.

The emphasis of the pattern community is, un-
derstandably, on object-oriented languages with pro-
cedural semantics. This paper will build on previous
work [5] identifying patterns in Modelica. These
design patterns include how medium properties can
be handled in a flexible way, how to deal with sys-
tems with varying causality and differential index,
idealized plant control and, finally, coordination be-
tween models. In addition, this paper includes some
extensive discussion of anti-patterns to avoid redun-
dant code, awkward data management and inflexible
models.

This paper continues the discussion on patterns
within the Modelica community with the hope that
this will encourage others to contribute patterns of
their own. One obvious benefit of such efforts will
be additional resources for Modelica developers to
make the process of developing models in Modelica
easier. In addition, we expect that many of the pat-

terns discussed will also generate proposals for im-
proving the Modelica language through new features
and semantics.

Keywords: patterns, anti-patterns

1 Background

When Alexander et. al., published their work,
each pattern included four principle aspects, the pat-
tern name, the context in which the pattern applied,
the problem the pattern attempted to address and the
proposed solution. This paper will focus primarily
on the problem and solution.

In September of 2006, Mark Dominus wrote an
essay in his blog [6] in which he concluded with the
following statement:

“Patterns are signs of weakness in programming
languages. When we identify and document one,
that should not be the end of the story. Rather,
we should have the long-term goal of trying to
understand how to improve the language so that
the pattern becomes invisible or unnecessary.”

This statement triggered quite a bit of controversy
and many people argued with this assertion, not the
least of which was Ralph Johnson [7], co-author of
the original “Design Patterns” book who argued that
patterns are simply manifestations of high level con-
cepts beyond the scope of language semantics.

In this paper the assumption will be that the truth
lies somewhere in between. Some patterns are sim-
ply manifestations of design decisions made in the
development of a given language. Other patterns
appear to address missing expressiveness in the un-
derlying language. In some cases, patterns are sim-
ply introduced to encourage consistency and read-
ability above and beyond what is really the purview
of language designers. Along with the patterns
themselves some discussion will be included indicat-

Patterns and Anti-Patterns in Modelica

The Modelica Association 647 Modelica 2008, March 3rd − 4th, 2008

ing to what degree each pattern (or anti-pattern, as
the case may be) could be mitigated by changes in
the language or standard library.

2 Design Patterns

2.1 Architecture Pattern

2.1.1 Problem
While building models to support a variety of

systems and/or subsystems a large collection of
models with many structural similarities have been
developed. Adding additional models involves con-
structing models either by copy and pasting large
chunks from previous models or dragging and drop-
ping the complete model from scratch.

There are two distinct issues being discussed.
The first is the amount of work required to create a
new model. The second is about redundancy be-
tween models. This pattern focuses on the former
and the latter is discussed as part of the DRY anti-
pattern in Section 3.1.

2.1.2 Solution
When significant structural similarities exist be-

tween system or subsystem models then these mod-
els can be formulated in terms of architectures. In
doing so, each model becomes simply a variation of
the architecture with the various interfaces replaced
by implementations that are appropriate for that spe-
cific model.

For example, building vehicle models by simply
dragging all the usual constituents (e.g. engine,
transmission, chassis, etc) into a diagram can be
quite time consuming and tedious whereas building
them as variations from a standard vehicle architec-
ture (e.g. [8]) can greatly reduce the overhead of cre-
ating and managing such models.

2.2 Singleton Pattern

2.2.1 Problem
When building libraries of models it is some-

times necessary to design the library in such a way
that there is a single instance somewhere that in-
cludes a definitive reference for some information.
The basic idea is that within some scope there is ex-
actly one such instance. The challenge is not simply
how to access that “singleton” object but how to de-
sign the library so that this is handled well for users.

2.2.2 Solution
In languages like Java and C++, the use of the

static qualifier on members provides a language
supported mechanism for ensuring uniqueness within
a given program. The closest equivalent in Modelica
would be a variable declared as constant. How-
ever, the values of constants cannot be changed so
while semantically similar, this is not adequate to
achieve the singleton pattern. Instead, the use of
inner and outer qualifiers is a more common
choice. By referring to an inner instance it is pos-
sible for all outer references to act simply as “point-
ers” to a single object. The use of inner and
outer has an additional advantage (or disadvan-
tage, depending on how strict you need to be) which
is that they can be nested inside each other.

Two immediate examples of the singleton pat-
tern can be found in the Modelica Standard Library.
The first is in the Multibody library. The design of
the library is such that it requires that there is exactly
one instance of the so-called “world” object in the
system to provide a reference coordinate system.
Another example, which exploits the ability to nest
one subsystem (requiring its own internally unique
singleton) inside another subsystem, can be seen in
the StateGraph library [9].

An example where the use of inner and
outer is not currently sufficient is in dealing with
“many to many” interactions. For example, consider
a model of the solar system. Each planet exerts a
gravitational force on all the others. While it is pos-
sible to implement each gravitational force as an in-
dividual component that connects between every
combination of planet instances in a system, it is
more convenient and scalable to have some kind of
(singleton) intermediary component that is somehow
aware of all planet instances and can, within the con-
text of that single model, handle all interactions.
Similar “many to many” requirements can be found
in systems where collisions are possible between
multiple bodies.

2.3 Medium Model Pattern

The medium model pattern is more generally
called the “abstract factory” or “kit” pattern. How-
ever in Modelica the most common use is to repre-
sent medium properties. For this reason the name
“medium model” is used since it is more familiar to
the target audience of this paper having appeared in
previous work [10, 11].

M. Tiller

The Modelica Association 648 Modelica 2008, March 3rd − 4th, 2008

2.3.1 Problem
In a nutshell, the medium model pattern shows

up in models that include multiple configurable types
that must be, in some way, consistent with each
other. As already mentioned, this is something that
occurs often when characterizing the medium of a
given fluid system. The configurable types typically
include (but are not limited to) connector definitions
and some kind of property evaluation model. The
essential point is that many assumptions about a fluid
bind the definition of the connectors and the property
evaluation together (e.g. the number of species). For
example, it would not make sense to combine the
connector a multi-species gas with the properties of
oil.

2.3.2 Solution
As mentioned previously, this approach is called

the “abstract factory” pattern in other languages and
it is usually achieved through abstract methods that
return instances abstract types. The consistency is
assured by the implementation of the abstract fac-
tory. Because Modelica lacks methods or even any
appreciably dynamic object creation, the same effect
is achieved in Modelica using replaceable packages.

By using replaceable packages, it is possible for
models to reference constants and types defined in
the “constraining package” defined or implied in the
replaceable definition. A given “implementation”
(e.g. a specific medium) can then redefine these
types and constants in a consistent way (e.g. so they
all represent the same medium). The following sam-
ple code demonstrates the use of this pattern. First,
an abstract model of the medium must be defined:

partial model AbstractMedium
 constant Integer n “# of Species”;
 connector Fluid
 Pressure p;
 flow MassFlowRate m_dot;
 MassFraction Xi[n-1];
 flow MassFlowRate mXi_dot[n-1];
 end Fluid;

 partial block Properties
 input Pressure p;
 input MassFraction Xi[n-1];
 output SpecificEnergy u;
 output SpecificEnthalpy h;
 end Properties;
end AbstractMedium;

Based on this abstract medium model, component
models can then be written that rely on information
from the medium model but without knowledge of
what specific medium model is being used:

model Component
replaceable package MediumModel =
 AbstractMedium;

 MediumModel.Fluid c;
MediumModel.Properties props(
 p=c.p,X=c.X);

equation
// equations in this component
// can reference the pressure
// at the connector, c.p, or
// properties of the fluid,
// e.g. props.h

end Component;

Finally, an implementation of the medium model can
be created by extending from the abstract medium
model:

package RealMedium
 extends AbstractMedium(nspecies=2);
 redeclare model extends Properties
 equation
 // This model may include things
 // like property calculations or
 // an equation of state.
 end Properties;
end RealMedium;

One usability issue with this pattern is that when

it is used in conjunction with the transport of physi-
cal information or behavior it is somewhat counter
intuitive since the redefinitions of the medium model
are propagated from “top down” when users think, at
least conceptually, that the information should be
propagated through connections. For example, the
Component model in the previous sample code
would need to be instantiated with a modification
specifying the medium model, e.g.
Component comp(
redeclare package MediumModel =
 RealMedium);

whereas most users would expect that “somehow“
the type of medium was dictated by what the instace
was connected to. While this is not an issue with the

Patterns and Anti-Patterns in Modelica

The Modelica Association 649 Modelica 2008, March 3rd − 4th, 2008

pattern in general, it is an important consideration for
language designers and tool vendors.

2.4 Adapter Pattern

2.4.1 Problem
When working with architectures, it is necessary

for the subsystem models to be developed so that
they satisfy the interface prescribed by the architec-
ture. However, there are many cases where the sub-
system model might be developed independently
from an architecture and as a result it does not con-
form to any specific interface. This situation may
come about because the subsystem models were de-
veloped before the architecture or perhaps they were
developed in an architecturally neutral way to avoid
dependence on a particular architecture or to support
multiple architectures.

2.4.2 Solution
In these circumstances, it may be necessary to

develop adaptor components. Such components pro-
vide a mapping from the interface that the subsystem
currently has to the interface that is to be supported.
There are two variations of this pattern. In the first
case, the subsystem is developed independently from
any particular interface. In this case, the develop-
ment of an adapter for the subsystem is a “one time
only” process since other subsystems are unlikely to
share the exact same interface (and if they do, they
should probably be refactored as described in Sec-
tion 3.1).

The other case is where the subsystem has been
developed according to a specific interface (one that
presumably other subsystems satisfy). In this case, a
general adaptor could be constructed that maps one
interface onto another. Such an adaptor could then
be used as an adaptor for multiple subsystems. This
kind of adaptor pattern can also be used to imple-
ment compatibility between comparable interfaces
across different architectures.

The following code fragment shows an example
of how the adaptor pattern is implemented. First, let
us consider the one potential (and greatly simplified)
interface for a vehicle model:

partial model VehicleInterfaceA
 RealOutput vehicle_speed;
end VehicleInterfaceA;

Several vehicle models might be developed using
this interface, e.g.

model Vehicle1
extends VehicleInterfaceA(
 vehicle_speed=…);
end Vehicle1;

model Vehicle2
extends VehicleInterfaceA(
 vehicle_speed=…);
end Vehicle2;

Now consider an alternative vehicle model interface
and system architecture definition:

partial model VehicleInterfaceB
RealOutput v_vehicle;
end VehicleInterfaceB;

partial model ArchitectureB
replaceable VehicleInterfaceB vehicle;
…
end ArchitectureB;

An adaptor between the different interfaces could be
developed as follows:

model VehicleAdaptor_A2B
extends VehicleInterfaceB;
replaceable VehicleInterfaceA vehicle;
equation
connect(vehicle.vehicle_speed,
 v_vehicle);

end VehicleAdaptor_A2B;

Using this adaptor it is possible to build a system that
utilizes ArchitectureB but uses an implementa-
tion of VehicleInterfaceA as follows:

model System
extends ArchitectureB(
 redeclare VehicleAdaptor_A2B(
 redeclare Vehicle1 vehicle));
end System;

2.5 Parametric Behavior Pattern

2.5.1 Problem
In acausal modeling most components tend to

describe the flow of some conserved quantity explic-

M. Tiller

The Modelica Association 650 Modelica 2008, March 3rd − 4th, 2008

itly in terms of the across variables (e.g. i=v*R).
Other components describe the flow of conserved
quantities implicitly in terms of constraints (e.g. an
ideal voltage). However, it is often quite useful to be
able to describe components that describe the flow of
conserved quantities in terms of both implicit and
explicit relations depending on the state of the com-
ponent. The simplest example of such a component
is an electrical diode which either allows no current
(explicit case) or no voltage drop (implicit case).
Another slightly more complicated case would be a
clutch which computes transmitted torque explicitly
in terms of dynamic friction when disengaged or
slipping but computes torque implicitly in terms of a
kinematic relation when locked.

2.5.2 Solution
One “easy” way to describe such behavior is to

compromise on the ideal nature of the behavior. For
example, where an ideal diode might describe the
implicit and explicit behavior using the equations
v=0 and i=0, respectively, a compromise model sac-
rifices the idealization might use the equations
v=G*i and i=v*R, where G is chosen to be very
small (to approximate the v=0 case) and R is chosen
to be very large (to approximate the i=0 case). The
result of this compromise is that the behavior is now
completely explicit in nature. However, another
consequence of this “easy” solution is that the sys-
tem of equations is very likely to be poorly condi-
tioned which means the system will be stiff and slow
to simulate.

A “better” solution (from the modeler’s perspec-
tive at least) is to capture the ideal behavior some-
how. Not only is this possible but it can be a very
elegant and useful way to approach such problems.
The basic premise (which is presented in greater de-
tail in [12]) is to introduce a third variable and de-
scribe the behavior of the original variables in terms
of the third parametric variable. This approach is
frequently used in geometric applications where it is
not possible to use a particular coordinate axis as an
independent variable to describe a line or surface.
The same issue is present, for example, in a diode
where it is not possible to write current explicitly in
terms of voltage nor is it possible to write voltage
explicitly in terms of current. However, it is possible
to write both in terms of a third parametric variable,
e.g.

 off = s<0;
 v = if off then s*unitV else 0;
 i = if off then 0 else s*unitC;

where unitV and unitC are defined as follows:

import Modelica.SIunits.Voltage;
import Modelica.SIunits.Current;
constant Voltage unitV=1;
constant Current unitC=1;

Analysis of this parametric approach shows that
describing this kind of behavior is not simply an is-
sue with the expressiveness of the underlying model-
ing language but with the solution method. While
some basic solution techniques exist to deal with
component models that are either implicit or explicit,
the ability of a component to function in both ways
creates additional complications for the underlying
solver.

One such complication is that switching between
two different sets of equations during a simulation
always brings with it the risk that the differential in-
dex of the system might change. As such, the posed
problem could be a variable index system. In fact, a
clutch model normally leads to a variable index sys-
tem when modeled using the parametric behavior
pattern. However, by understanding this in advance
it is possible to differentiate the equations such that
the index is no longer variable. For this reason, it
would be very useful if investigation into this issue
showed that a general algorithm could be developed
along similar lines. Such an algorithm would most
likely benefit from language features that directly
supported this pattern.

2.6 Perfect Control Pattern

2.6.1 Problem
Physical models typically include sensors and

actuators and these are in turn normally connected to
some kind of control system. One of the burdens
that model developers face is to provide some kind
of actuator control strategy in addition to the base
physical models. In many cases, the model devel-
oper is not particularly interested in the dynamics of
the controller but they need some function in the
model to determine how the actuator will behave and
so therefore implementation of controls is unavoid-
able. Such implementations often take time both to
construct and calibrate and many times they do not
add any significant value to the model.

2.6.2 Solution
It is important to point out that this pattern is

very specific to cases where the model developer
simply wants a very good controller but they don’t

Patterns and Anti-Patterns in Modelica

The Modelica Association 651 Modelica 2008, March 3rd − 4th, 2008

need to be very concerned about how such a control
strategy would actually be deployed or implemented
in hardware. In these specific circumstances, it is
often possible to rely on a “perfect” control strategy
to control the device. For example, consider a sim-
ple SISO plant model defined as follows:

model PlantModel
 input Real u;
 output Real y;
protected
 Real dy = der(y);
equation
 2*der(dy) + dy + 4*y = u;
end PlantModel;

model ClosedLoop
 PlantModel plant;
protected
 Real ybar = max(0,time-2);
equation
 plant.u = 10*(ybar-plant.y);
end ClosedLoop;

model PerfectControl
 PlantModel plant;
protected
 Real ybar = max(0,time-2);
equation
ybar = plant.y;
end PerfectControl;

The simulation results from both types of control

can be seen in Figure 1. The basic idea of this pat-
tern is rather than including an explicit equation for
the command to the system an equation prescribing
the output is used. This equation for the output acts
as an implicit equation for the input. It should be
pointed out that this type of approach is limited to
cases where the plant model is sufficiently invertible.

Despite this limitation, this is a useful pattern that
can be used in conjunction with some surprisingly
complex systems. For example, this approach is the
same approach that is employed to create “back-
ward” drive cycle models (models where the vehicle
speed is prescribed and the system resolves the
torque required to meet the speed profile). In addi-
tion, this same pattern can be used in conjunction
with actuators like clutches and valves.

0 1 2 3 4 5

0

2

4
"Perfect" Response Closed Loop Response

0 1 2 3 4 5
-5

0

5

10

15
"Perfect" Command Closed Loop Command

Figure 1: Example of "Perfect" Control Pattern

3 Anti-Patterns

Patterns are primarily useful for intermediate to
advanced users who, having written some substantial
amounts of code, are able to recognize the emer-
gence of patterns and are interested in understanding
how patterns can help them be more productive (as
well as improve consistency and readability among
project members).

However, Modelica is still a relatively new tech-
nology with many new users. As a result, anti-
patterns are probably at least as important as pat-
terns. The reason is that anti-patterns can help nov-
ices to recognize weaknesses in code they have writ-
ten. As such, anti-patterns are almost immediately
applicable. This section introduces several anti-
patterns and discusses refactoring approaches associ-
ated with each pattern.

This is not to say that anti-patterns only apply to
novice users. Because Modelica improves developer
productivity, it is very easy to write a large volume
of code only to realize in hindsight that some anti-
patterns have developed. As a result, the material in
this section is applicable to a wide range of users.
As such, the material in the anti-patterns section
should be of particular interest to tool vendors since
refactoring typically requires tool support.

3.1 DRY Anti-Pattern

3.1.1 Problem
By far, the most common anti-pattern is the use

of “copying and pasting” model code between mod-
els. While this happens for a wide variety of reasons
most of them are ultimately because users are not
aware of the various mechanisms within Modelica

M. Tiller

The Modelica Association 652 Modelica 2008, March 3rd − 4th, 2008

for code reuse. In software development there is
something known as the “DRY principle” where
DRY is an acronym for “Don’t Repeat Yourself”.
The DRY anti-pattern is one where the DRY princi-
ple has not been followed.

The reason that the DRY principle is so impor-
tant (and which has led to the motto that “redun-
dancy is the root of all evil”) is that redundancy cre-
ates many problems. Not only does it lead to ineffi-
ciency when building models it also means signifi-
cantly more work when maintaining those same
models.

3.1.2 Solution
While this is a very common anti-pattern, the

good news is that Modelica contains a rich supply of
language features to help combat it. The first lan-
guage feature all users should become familiar with
is inheritance (specifically, the extends keyword).
Once developers understand inheritance they should
investigate the architecture pattern (described previ-
ously in this paper) which hinges on the replace-
able and redeclare keywords.

One issue that prevents addressing this anti-
pattern is tool support for refactoring. This mani-
fests itself in several ways. First, it should be possi-
ble for users to change the names of components
and/or classes and be assured that all references that
use those names are also adjusted (ideally even if
they are not even currently loaded). Furthermore,
refactoring of existing code often involves the exer-
cises of identifying commonality between existing
models, composing base classes that contain this
common code and then extending the original mod-
els from the base classes. Without tool support, such
refactoring can be very time consuming.

3.2 Kitchen Sink Anti-Pattern

3.2.1 Problem
Another common anti-pattern is the “kitchen

sink” anti-pattern. There are two variations of this
pattern. For component models, the anti-pattern
manifests itself as component models with too many
equations by lumping several distinct types of behav-
ior together into a single component. For subsystem
models, the anti-pattern manifests itself in diagrams
with an unnecessarily large number of components.

3.2.2 Solution
In both of these cases, a “divide and conquer”

approach is required. For the component variation,
this means building component models that heed

Occam’s Razor, “entia non sunt multiplicanda
praeter necessitatem”. In practical terms, this means
building component models that attempt as much as
possible to describe individual effects (e.g. inertia,
compliance, dissipation, etc).

In the case of subsystem models, refactoring is
typically a matter of nesting some tightly coupled
subset of components into a subsystem of their own.
Again, tool support is an issue here. Simulink has a
very convenient feature to take a group of selected
components and lump them into a subsystem model.
Modelica tool vendors would do well to recognize
the value of such functionality (and users would do
well to remind them).

3.3 Literal Data Overload Anti-Pattern

3.3.1 Problem
Modelica supports a wide range of ways to deal

with data handling. In theory, users can bring data in
from an external database, they could read it from
external files, etc. However, the simplest way to
import data into Modelica models is to enter it liter-
ally (e.g. parameter Real table[:,2] =
[0, 1; 1, 2; 2, 3; …]). While there is
nothing wrong with this per se, it leads very quickly
to the literal data overload anti-pattern. The pattern
is characterized by the tendency of models to rely on
literal data. While this is acceptable for simple com-
ponent models, this creates two problems with more
complex models. The first complication is that en-
tering tables of data is often quite inconvenient. The
second complication is that often times any given
parameter cannot be changed independently. For
example data associated with a given electric motor
might bring together the rotor inertia, internal resis-
tance, bearing friction, etc into a set of parameters.
If a different motor is to be used, it is not simply a
matter of changing a single parameter value but the
entire set must be exchanged for another consistent
set representing a different motor.

3.3.2 Solution
Both issues of entering literal data and parameter

set consistency can be handled by creating records to
represent such parameter sets and including the lit-
eral data only in the context of the record definitions.
In addition, it is advisable to make use of the
choices annotation so tools understand how the
data will be used. The result of such refactoring is
that users will only see opaque references to complex
and/or voluminous data sets rather than vast expres-
sions containing literal data. It is also a advisable to
provide useful descriptions of the data sets so tools

Patterns and Anti-Patterns in Modelica

The Modelica Association 653 Modelica 2008, March 3rd − 4th, 2008

can provide users with clear descriptions of available
choices.

3.4 Parameter Data Overload Anti-Pattern

3.4.1 Problem
The previous anti-pattern addresses some of the

issues associated with models that require large
amounts of data. While the aggregation prescribed
for refactoring reduces the number of individual pa-
rameters a complex system with many components
can still contain large numbers of parameter sets (and
even the aggregations themselves may have an un-
wieldy number of parameters). The result is parame-
ter dialogs that contain large numbers of parameter
values and/or choices. In these cases, further con-
solidation doesn’t make sense (since we do not want
to aggregate data together that is actually independ-
ent or unrelated) as a way to address the overload.

3.4.2 Solution
In cases where aggregation is not an appropriate

remedy the standard annotations for grouping pa-
rameters by tab and group can be utilized. Rather
than aggregate the data, the result of using the tab
and group directives is to organize the data into a
“tree” (i.e. the data is presented in a hierarchy where
the first layer is determined by the tab and the next
layers is determined by group). In particular, com-
mon parameters should be organized such that they
appear in the default tab and less common parame-
ters are assigned to later tabs. Tab labels are also an
important consideration since users should be able to
determine quickly, based on the name, whether they
need to look in a particular tab.

4 Language Implications

Many of the “normal” patterns found in [2] do
not appear in this paper. This is primarily because
Modelica does not include concepts like pointers and
methods which are fundamental to many of the pat-
terns. Furthermore, it has been observed that many
of the traditional patterns in software development
essentially boil down to adding an additional level of
indirection to an abstraction. Since there are very
few ways to express this indirection in Modelica, the
number of patterns is fairly limited.

One of the lingering questions from this discus-
sion is to what extent these patterns (or lack of pat-
terns) represent deficiencies in the language. For the
patterns and anti-patterns that are related to redun-
dant code (i.e. Sections 2.1, 3.1 and 3.2) the lan-

guage is well equipped to address these issues al-
though there are certainly ways that tools can assist
model developers in more effectively utilizing those
language features.

Although the Singleton pattern is being used in
several libraries it is this author’s opinion that the
semantics of the language do not mesh as well with
the pattern and modeler needs. The use of inner and
outer in this way has implications for robust model
checking and the dependency on inner elements is
not easily recognized or represented. In addition, the
“many to many” issue mentioned in Section 2.2.2
requires improved expressiveness in the language.

In the case of the medium model pattern, the in-
ability to express type constraints through physical
connections is a serious limitation in the language
and one that is recognized in the design group.
Hopefully this deficiency will be addressed soon.

Section 2.5.2 discusses how behavior can be de-
scribed parametrically. However, there are many
different ways to “phrase” this kind of behavior and
they cannot necessarily be easily recognized by
tools. Having language elements for describing pa-
rametric relationships could not only bring consis-
tency how such behavior is described but it could
also allow tools to automatically deal with variable
index issues that currently burden developers (equa-
tion differentiation, continuity concerns, finite state
machines, etc).

5 Conclusion

The goal of this paper is to identify common pat-
terns and anti-patterns to help users identify easy
solutions for common problems as well as to prompt
discussions within the Modelica design group on
ways the language can be enhanced to either institu-
tionalize some of the best practices in these patterns
or add language features to eliminate the need for
these patterns.

References

1. Alexander, C., Ishikawa, S., and Silverstein,
M., “A Pattern Language: Towns, Buildings,
Construction”, Oxford University Press,
ISBN 0-19-501919-9, 1977.

2. Gamma, E., Helm, R., Johnson, R. and Vlis-
sides, J., ”Design Patterns: Elements of Re-
usable Object-Oriented Software”, Addison-
Wesley, ISBN 0-201-63361-2, 1994.

M. Tiller

The Modelica Association 654 Modelica 2008, March 3rd − 4th, 2008

3. Brown, J. W., Malveau, R. C. and Mowbray,
T. J., “AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis”, John
Wiley and Sons, ISBN 0-471-19713-0, 1998.

4. Laplante, P. A., Neill, C. J., “Antipatterns:
Identification, Refactoring, and Manage-
ment”, CRC Press, ISBN 0-8493-2994-9,
2006

5. Clauss, C., Leitner, T., Schneider, A. and
Schwarz, P., “Object-oriented Modelling of
Physical Systems with Modelica using De-
sign Patterns”, Fraunhofer Institute, 2000

6. Dominus, M., “Design Patterns of 1972”,
http://blog.plover.com/prog/design-
patterns.html

7. Johnson, R., “Design patterns and language
design”,
http://www.cincomsmalltalk.com/userblogs/r
alph/blogView?entry=3335803396

8. Tiller, M., Bowles, P. and Dempsey, M.,
“Development of a Vehicle Modeling Archi-
tecture in Modelica”, 3rd International Mode-
lica Conference, 2003.

9. Otter, M., °Arz´en, K.-E., Dressler I.,
“StateGraph-A Modelica Library for Hierar-
chical State Machines”, 4th International
Modelica Conference, 2005.

10. Newman, C. E., Batteh, J. J., Tiller, M.,
”Spark-Ignited Engine Cycle Simulation in
Modelica”, 2nd International Modelica Con-
ference, 2002.
http://www.modelica.org/events/Conference
2002/papers/p17_Newman.pdf

11. Elmqvist H., Tummescheit, H., Otter, M.,
“Object-Oriented Modeling of Thermo-Fluid
Systems”, 3rd International Modelica Con-
ference, 2003.

12. Tiller, M. M., “Introduction to Physical
Modeling with Modelica”, Kluwer Aca-
demic Publishers, ISBN 0-7923-7367-7,
2001.

Patterns and Anti-Patterns in Modelica

The Modelica Association 655 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 656 Modelica 2008, March 3rd − 4th, 2008

Comment- and Indentation Preserving Refactoring
 and Unparsing for Modelica

Peter Fritzson, Adrian Pop, Kristoffer Norling, Mikael Blom
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, SE-581 83 Linköping, Sweden
{petfr, adrpo, x06krino, x06mikbl}@ida.liu.se

Abstract
In this paper we present a strategy for comment- and
indentation preserving refactoring and unparsing for
Modelica. The approach is general, but is currently be-
ing implemented for Modelica in the OpenModelica
environment. We believe this to be one of the first un-
parsing approaches that can preserve all user-defined
indentation and comment information, as well as fulfill-
ing the principle of minimal replacement at refactor-
ings.

Keywords: Refactoring, comments, unparsing,, Mode-
lica.

1 Introduction
Integrated programming environments, e.g. InterLisp
[11] and Eclipse [12] provide various degrees of sup-
port for program transformations intended to improve
the structure of programs – so-called refactorings [5]
(see also Section 10).

Such operations typically operate on abstract syntax
tree (AST) representations of the program. Therefore
the program needs to be converted to tree form by pars-
ing before refactoring, and be converted back into text
by the process of unparsing, also called pretty printing
This is supported by a number of environments (Sec-
tion 10).

However, a well-known problem is that of preserv-
ing comments and user-defined indentation while per-
forming refactorings. Essentially all current environ-
ments either loose the comments (except for special
comments that are part of the language syntax and AST
representation), or move them to some other place.
User-defined indentation is typically lost and replaced
by machine-generated standard indentations. This is
accepted by some developers, but judged as unaccept-
able by others. However, if the objective only is to im-
prove indentation, then a semi-automatic indenter can
be used instead (Section 8.3).

Currently Modelica-based tools are handling only dec-
laration comments that are part of the model and are
discarding or moving all the other comments, i.e. the
ones between /* */ and after //…. Such behavior is
highly undesirable from a user perspective and heavily
affects the ease-of-use of code-versioning tools.

A goal for the work presented here is to support
Modelica code refactoring with minimal disruption of
user-defined comments and indentation. In this paper
we present such an approach for unparsing in conjunc-
tion with refactorings.

2 Comments and Indentation
Regard the following contrived Modelica example. It
has one declaration comment which is part of the lan-
guage syntax, and two “textual” comments Itemcomm
and MyComm which would be eliminated by a conven-
tional parser. It is also nicely hand formatted so that the
start positions of each component name in the text are
vertically aligned.
record MODIFICATION "Declaration comment"

 Boolean finalItem; //Itemcomm
 Each /* MyComm */ eachRef;
 ComponentRef componentReg;

end MODIFICATION;

Assume that this is parsed and unparsed by a conven-
tional (comment-preserving) unparser, putting two
blanks between the type and the component name of
each component. The manual indentation would be
lost, and the “textual” comments would be moved to
some standard positions (or be lost):
record MODIFICATION "Declaration comment"

 Boolean finalItem; //Itemcomm
 Each eachRef; /* MyComm */
 ComponentRef componentReg;

end MODIFICATION;

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 657 Modelica 2008, March 3rd − 4th, 2008

3 Refactorings
Below we make some general observations and give
examples of refactorings.

3.1 The Principle of Minimal Replacement

For a refactoring to have minimal disruption on the
existing code, it is desired that it supports the principle
of minimal replacement:

• When replacing a subtree, the minimal subtree that
contains the change should be replaced.

This also has the consequence of minimal loss or
change of comments. For example, if a name (an identi-
fier) is changed, only the identifier node in the tree
should be replaced, not the surrounding subtree.

3.2 Some Examples of Refactorings

Here we mention a few common refactorings. There are
also numerous, more advanced and specialized refac-
torings.

• Component name change. Change name of a com-
ponent name in a record. For example:

record MODIFICATION "Declaration comment"
 Boolean finalItem; //Itemcomm
 Each /* MyComm */ eachRef;
 ComponentRef componentReg;
end MODIFICATION;

The name of the component reference name is cur-
rently componentReg, which is an error. It should
be componentRef. We would like to change the
name both in the declaration and all its uses, thus
avoiding updating all named references by hand,
which would be quite tedious.

• Function name change. Change the name of a func-
tion, both the declaration and all call sites.

• Add record component. Add a new component dec-
laration to record. In MetaModelica, that would also
mean putting an underscore '_' at the correct posi-
tion in all patterns for that record type with posi-
tional matching.

• Add function formal parameter. Add an input or
output formal parameter to a function. The question
is, how much is possible to do automatically? Add-
ing arguments to recursive calls to the function itself
is no great problem, but calls from other functions
can be more problematic since meaningful input
data needs to be provided. This can be handled eas-
ily in those cases a default value can be passed to
the function's new formal parameter.

4 Representing Comments and User-
Defined Indentation

How should information about comments and user de-
fined indentation be represented in the internal (AST)
program representation? There are basically two possi-
bilities for a chunk of code, e.g. a model:

• Tree. The AST representation is the main storage
(the TRUTH). Comments and indentation as extra
nodes/attributes in the AST.

• Text. The text representation, including indentation
and comments, is the main storage (the TRUTH).

The tree approach may seem natural, since the refactor-
ings and the compiler operate on the tree representa-
tion. However, it has some disadvantages:

• Since white space and comments can appear essen-
tially anywhere, between nodes, associated with
nodes, the AST will become cluttered and increase
the required memory usage and complexity of the
tree, perhaps by a factor 2-3.

• The large number of extra nodes in the AST may
complicate code accessing and traversing the tree.

Regarding the text representation we make the follow-
ing observations:

• The text representation exists from the start, since
this is the storage form used in the file system. En-
vironments like Eclipse use text buffers for direct
interaction with the programmer.

• The text representation includes all indentation and
comment information, and is compact.

• The structure of the program in the text representa-
tion is not apparent, and cannot be easily manipu-
lated.

Why not combine the advantages of each representa-
tion, and try to avoid the disadvantages?

• Use the text representation as the basic storage for-
mat including indentation and comment informa-
tion. The text might be conceptually divided into
chunks, where for example each class definition
gives rise to a text chunk.

• Use the tree representation for compilation and
refactoring. Create it when needed and keep it dur-
ing the current session. Create it piece-wise, e.g. for
one class at a time.

• Create a mapping from the tree representation to the
text representation; each node in the tree has a cor-
responding position and size in the text representa-
tion. Create this mapping when needed, for appro-
priate pieces (e.g. class definitions) of the total
model.

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 658 Modelica 2008, March 3rd − 4th, 2008

5 Implementation
The following strategy is used for the implementation

5.1 Base Program representation

The text representation is the TRUTH, the source, and
the AST representation is a secondary representation
derived from the source, used during compilation and
refactoring.

The class information attribute of a class definition
in the AST should be extended, e.g. with the byte start
position (directly addressing within a file), or by a text
chunk corresponding to the text of a class declaration.
A package which contains classes would instead refer
to the definitions of those classes.

Text positions and text sizes of each AST node
should be indirectly associated with each AST node.

5.2 The Parser

The following special considerations need to be ad-
dressed by the parser:

• In order not to clutter the produced AST tree, the
parser produces two trees: a standard AST tree, and
a positioning tree (produced in parallel) with the
same number of nodes, containing text positions and
sizes of each subtree.

• The parser should return the start text position and
text size of each built AST tree. Moreover, if there
are any comments within the AST tree text range, a
list of the start positions and sizes of these com-
ments should be associated with the parallel tree
node.

• The pure AST tree should be clean and not cluttered
with position and comment information.

• As mentioned, a text position tree with the same
number of nodes and children as the AST is created
in parallel to the AST. The positioning tree is only
produced when needed for refactorings or text posi-
tioning, and thrown away when not needed.

For example, a child nr 3 of a node at level 2, will find
its text positions in the parallel tree in the node at level
2 and child nr 3.

5.3 The Scanner

The text position and size of each token is returned to-
gether with the token itself.

5.4 The New Unparser

The new unparser will use a combined strategy as fol-
lows, combining existing text with new text generated
by the tree unparser:

• If there exist already indented text associated with a
node, use this text to produce the unparsing text.

• If there is no existing text, this must be a new tree
node produced by the refactoring tool. Call the tree
unparser to convert this subtree into text that is in-
serted into the final unparsing result.

6 Refactoring Process
The following steps are to performed in this order dur-
ing the actual refactoring:

• Traverse the AST and perform insertion/deletion/
replacement of subtrees.

• For each insertion/deletion/replacement operation,
put each such an operation descriptor in a list, to-
gether with the text position and size of the text of
the subtree to be replaced/deleted etc.

• After traversal, sort these operations according to
text position, and perform the operations in the text
in backwards order (take those at the highest text
position first).

7 Example of Function Name Refac-
toring

The example below is used to illustrate the refactorings
and the used combined tree and text chunk representa-
tion.

All loaded models (including the Modelica pack-
age) reside in an un-named top-level scope that we can
call Top. A model may be a top-level model, but more
typically a package which in turn may consist of sub-
packages:
01 within ParentPackage;
02 package pack
03 function addOne "function that adds 1"
04 input Real x = 1.0; // line comment
05 output Real y; /* multiple
06 line
07 comment */
08 algorithm
09 y := x + 1.0;
10 end addOne;
11
12 class myClass
13 Real y;
14 equation
15 y = addOne(5); // Call to addOne
16 end myClass;
17 end pack;

Line numbers are given to help the reader follow the
example. The position tree constructed by the parser is
given in the appendix as it is quite large. A portion of
the abstract syntax tree is also shown in order to under-
stand the example.

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 659 Modelica 2008, March 3rd − 4th, 2008

A function name refactoring will be applied to the ex-
ample which will change the name of the function
"addOne" to "add1", The refactoring can be per-
formed in the OpenModelica environment by loading
the example and calling the interactive API function:

loadFileForRefactoring("Example.mo");
refactorFunctionName(pack.addOne, "add1");

The compiler will execute the first command by calling
the new parser that also builds the position tree together
with the AST:

(ast,posTree) = Parse.refactorParse(file);

The result of the load command is two trees. The sec-
ond (posTree) is the position tree presented (partly) in
the appendix. The first (ast) is the abstract syntax tree
of the loaded file which is presented also in the appen-
dix entirely. Here is just a overview picture of the AST:

Figure 1. AST of the Example.mo file.

The figure shows that the program has one package
with two public elements which are class definitions.

Actually only two refactoring operations are needed
to implement any refactoring: add and delete or add and
replace.

When refactorFunctionName is called the com-
piler will perform these operations:

7.1 Lookup pack.addOne

Lookup of a class definition is performed by walking
the AST while keeping track of a numbered path in the
tree. To reach the addOne identifier, the path: 1, 6, 1, 1,
1, 5, 2, 1, 1 is applied. The path goes via the following
AST nodes in order to reach the desired class name:
PROGRAM [1] / CLASS [6] / PARTS [1] /
PUBLIC [1] / ELEMENTITEM [1] / ELEMENT

[5] / CLASSDEF [2] / CLASS [1] /
IDENT("addOne") [1].

7.2 Lookup Any Uses of pack.addOne

Lookup of the uses are performed by walking the AST,
keeping track of the scope, while keeping track of a
numbered path. To reach the function call of addOne,
the path: 1, 6, 1, 1, 1, 5, 2, 1, 1 is applied. The path
goes via the following AST nodes:
PROGRAM [1] / CLASS [6] / PARTS [1] /
PUBLIC [2] / ELEMENTITEM [1] / ELEMENT
[5] / CLASSDEF [2] / CLASS [6] / PARTS[1]
/ EQUATIONS [1] / EQUATIONITEM [1] /
EQ_EQUALS [2] / CALL[1] / CREF_IDENT [1]
/ IDENT("addOne") [1].

7.3 Apply the Refactoring to the Actual Text

Now that the paths needed for the minimal refactoring
were discovered in the AST, apply these paths to the
position tree and fetch the positions of the elements at
the end of the paths:

• Function name: IDENT, Start:047, End:053
• Function use: IDENT, Start:313, End:319

The text operations are applied bottom-up because oth-
erwise the character positions of the elements below an
applied operation would change. Ordering of text op-
erations is needed to have them applied in a bottom-up
fashion:

• ReplaceText(file, 319, 313, "add1");
• ReplaceText(file, 53, 47, "add1");
• Close(file);
• (ast, posTree) = // re-parse the file

 Parse.refactorParse(file);

After the file is closed either a reparsing is performed
to load the new AST (as exemplified here) or the refac-
toring operations are perfomed on the tree already in
the memory. Of course the best alternative would be to
perform the refactoring during lookup as we have im-
plemented it in the OpenModelica compiler.

As one can notice the comments stay in place so
there is minimal disruption to the text representation.
This is very valuable from a user point of view but also
for code-versioning tools.

7.4 Calculation of the Additional Overhead

There is not too much overhead for the refactoring both
with respect to memory usage and time spent walking
the tree. In the following table we discuss such over-
head and give specific numbers for needed memory
size and time complexity of the refactoring procedure.

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 660 Modelica 2008, March 3rd − 4th, 2008

Memory overhead Time overhead

Space is required for stor-
ing the position tree. The
size of this space is two
integers (of 4 bytes) for
each AST node. Also the
list of operations to be
applied to the text needs
memory for storing the
paths and the operations
themselves, but this mem-
ory is negligible com-
pared to the AST and po-
sition tree and can also be
freed.

Example: there are about
50 nodes in the example,
which means an addi-
tional memory of ~
50NrNodes x 2Positions x
4Bytes = 400Bytes are
needed for the position
tree. Or course, the posi-
tion tree could be built on
demand and the freed
when memory is needed.

Walking two trees while
performing the refactoring
has a time impact of
NumberOfNodesWalked x
O(1) to walk a node:
O(NrOfNodesWalked).
Walking the position tree
while and applying the
text operations to the file
is negligible compared to
the refactoring operation.

Example: it took about
0.2 seconds to perform the
function name refactoring
for the example file using
the OpenModelica sys-
tem. Refactoring old
graphical annotations of
the Modelica Standard
Library version 1.6 to the
new style graphical anno-
tations took about 9.6 sec-
onds, which is very good
for such a demanding
refactoring.

8 Unparsers/Prettyprinters versus
Indenters

As mentioned previously, an unparser converts an AST
program representation into (nicely indented) text. A
reformatting indentation tool uses another approach, it
operates directly on the text representation to produce a
more nicely indented text.

8.1 Pretty printers/Unparser Generators

An unparser generator produces an unparser from a
specification, a grammar-like description of unparsing
related aspects of the language. A number of systems
mentioned in Section 8 support unparsing or generation
of unparsers from such specifications.

8.2 OpenModelica Tree Unparser

The current OpenModelica version 1.4 unparser is hand
implemented in MetaModelica, recursively traversing
the AST while generating the Modelica text representa-
tion. It can be invoked by the OpenModelica list
command. Comments are currently lost (except for dec-
laration comments).

8.3 Reformatting Indentation in the OpenMod-
elica Eclipse Plugin

A text reformatting indentation tool operates directly
on the text representation, and analyzes the text by a
combination of scanning and piecemeal heuristic partial
parsing to recognize certain combinations of tokens. It
inserts or removes white space in order to produce a
nice indentation, or improve an existing one. Such
mechanisms are typically invoked by the user on a few
lines at a time, and are not completely automatic, the
user is often required to perform the final adjustments.
An advantage with this approach is that comments are
not lost.

This kind of indentation tool is for example avail-
able for a number of languages in their respective
Emacs modes, or as part of Eclipse plugins, e.g. for
C++, Java, and more recently for Modelica in the
OpenModelica MDT Eclipse plugin.

MDT includes support for automatic indentation, as
described here and in [13]. When typing the Return
(Enter) key, the next line is indented correctly. The user
can also correct indentation of the current line or a
range selection using CTRL+I or “Correct Indentation”
action on the toolbar or in the Edit menu.

Indentation can be applied to incomplete code as a
heuristic Modelica scanner is used and the indentation
is based only on the tokens generated by this scanner.
The indenter indents one line at a time. For example,
consider that line four (4) in Figure 2 should be in-
dented. The indenter asks the heuristic scanner to give
tokens from the starting token in backwards direction to
the start of the file until a scope introducer is recog-
nized, which for this particular file is model MoonAn-
dEarth. The reference position of the start of the scope
introducer is computed and line four (4) is indented
from this reference position one indent unit. The inden-
tation result is presented in Figure 2.

Indenting Modelica code is far from trivial when in-
complete (possibly incorrect) code should be indented
correctly. Most of the difficulty comes from Modelica
scopes which are hard to recognize using just a scanner
and some logic behind it. In languages like C/C++ and
Java finding enclosing scopes is very easy as one char-
acter tokens are used for the scope opening and closing:
"{" and "}". In Modelica you need at least two tokens
and much more case analysis to find where a scope
starts and ends. Complications also arise when mixing
if-statements with if-expressions (which was further
complicated by the introduction of conditional declara-
tions in the Modelica language). In this particular case
we implemented a parser emulator that recognizes these
constructs based on scanner tokens delivered back-
wards.

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 661 Modelica 2008, March 3rd − 4th, 2008

Figure 2. Example of code after automatic indentation.

The indenter works well in almost all cases, but
there are cases in which is impossible to find the cor-
rect indentation. For example when the indentation of a
line consisting of "end Name;" is requested and the
scope introducer for Name is not found (that is identi-
fier Name followed backwards by class, model,
package, block, record, connector etc.) then
the indenter fails and returns the indentation of the pre-
vious line.

9 Further Discussion
In this section we address some questions from the re-
viewers:

Question: “A question I have always had is whether
there are any "mistakes" in the grammar that should be
corrected with respect to these issues. Similarly, how
is this handled with the Java tools in Eclipse?”

Answer: The answer to this question highly depends on
the syntactic mistake the user made. For example if an
"end if;" is missing at the end of an equation sec-
tion, but is followed by "end Model;", then such a
mistake can be automatically corrected using a heuristic
parser. However, if an opening scope is missing, i.e.,
model Model (or alternatively an ending scope) there
is no way to know where it should be introduced. There
are a lot of places that can be proposed:

• Just after the enclosing scope starts (after i.e.,
package MyPack introduction) if there exists such
scope or the start of the file if no such scope exists.

• Just after the every existing ending scope of a model
found by going backwards from the end Model;

Right now the Eclipse environment will call the
OpenModelica compiler to parse the file each time the
file is saved. The parsing errors are reported in the
Eclipse environment as a list of errors, but also under-

lined where the error occurs as shown in Figure 3. Of
course if the user selects an entire file and calls the
automatic indentation routine, the indentation will work
correctly if there are no large large grammatical errors
in the file.

Figure 3. Syntax checking.

Question: “Dymola’s pretty printing algorithm does not
appear to be deterministic (it sometimes changes files
for no reason just because they have been re-saved).
Please discuss this deterministic issue and also what
implications the algorithms will have for version con-
trol tools (i.e. avoiding complex or unnecessary
changes since this will complicate "merge" opera-
tions).”

Answer: As exemplified in Sections 3.1 and 7 the dis-
ruption to the actual text is minimal so the code-
versioning tools would have no problem with merging
operations. This was one of our goals when designing
and implementing the refactoring tools presented in the
paper. The algorithms in this paper also apply to Mode-
lica models constructed programmatically because
these can also be viewed as refactorings. In general the
construction of models programmatically is performed
by a visual component diagram editor. The editor will
give commands: addModel(…), addComponent(…),
addConnection(…), etc., to the internal handler of
the textual model (that works on the AST and the posi-
tionTree) which in the case of a file with code format-
ting will minimally disrupt the existing code and add
all the new code correctly indented at the end or in
other appropriate places.

10 Related Work
The term refactoring and its use in a general and sys-
tematic sense was introduced by Martin Fowler et al
[5], also based on earlier work, even though similar

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 662 Modelica 2008, March 3rd − 4th, 2008

code transformation operations were previously avail-
able, e.g. in the InterLisp environment [11].

Early work in interactive integrated programming
environments including unparsing/pretty printing sup-
porting a specific language was done in the InterLisp
system for the Lisp language [11], common principles
and experience of early interactive Lisp environments
are described in [16], a generic editor/unparser/parser
generator used for Pascal (and later Ada) in the DICE
system [9], [10], the integrated Mjölner environment
with mullti-language editing and unparsing support
[17]. None of these approaches preserve comments
when unparsing, except the InterLisp environment
where the comments were already part of the AST
which was just pretty printed with a more readable in-
dentation. However, also in the InterLisp case, all hand
indentation and white space added by the user is lost,
and text style comments (not part of the AST) are also
lost.

Many parser generation systems, e.g. ANTLR [14],
Eli [6], CoCo [15], also support unparsing from the
generated AST, but do not support preservation of
comments and hand-made indentation.

11 Conclusions
We have given a preliminary description of refactorings
together with an approach for comment- and indenta-
tion preserving unparsing. This is currently ongoing
work. Part of the unparser and the refactorings are im-
plemented. A full prototype implementation is expected
to be completed early spring 2008.

12 Acknowledgements
This work has been supported by the Swedish Founda-
tion for Strategic Research (SSF) in the RISE and
VISIMOD projects, by Vinnova in the Safe and Secure
Modeling and Simulation project, and by the Swedish
Research Council (VR).

References
[1] Peter Fritzson, Peter Aronsson, Håkan Lundvall,

Kaj Nyström, Adrian Pop, Levon Saldamli, and
David Broman. The OpenModelica Modeling,
Simulation, and Software Development Envi-
ronment. Simulation News Europe, 44/45, Dec
2005. http://ww.ida.liu.se/projects/OpenModelica

[2] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., Wiley-IEEE Press, 2004.

[3] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proc. of the 4th International Modelica Confer-
ence, Hamburg, Germany, March 7-8, 2005.

[4] The Modelica Association. The Modelica Lan-
guage Specification Version 3.0, September
2007. http://www.modelica.org.

[5] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improv-
ing the Design of Existing Code. Addison
Wesley, June 1999.

[6] Uwe Kastens, William M. Waite, and Anthony
M. Sloane,. Generating Software from Specifica-
tions. ISBN 0763741248. Jones and Bartlett Pub-
lishers. 2007.

[7] William W Pugh; Steven J Sinofsky. A new lan-
guage-independent prettyprinting algorithm.
Ithaca, NY : Dept. of Computer Science, Cornell
University, 1987.

[8] Martin Mikelsons. Prettyprinting in an interactive
programming environment. In Proc. of ACM
SIGPLAN SIGOA symposium on Text manipula-
tion. Portland, Oregon, 1981.

[9] Peter Fritzson. Towards a Distributed Program-
ming Environment based on Incremental Compi-
lation. 161 pages. PhD thesis no 109, Linköping
University, April 13 1984.

[10] Peter Fritzson. Symbolic Debugging through In-
cremental Compilation in an Integrated Environ-
ment, Journal of Systems and Software, 3, pp.
285–294, 1983.

[11] Teitelman, Warren. INTERLISP Reference Man-
ual. Xerox Palo Alto Research Center, Palo Alto,
CA, 1974.

[12] Eclipse website. http://www.eclipse.org. Refer-
enced Nov 2007.

[13] Adrian Pop, Peter Fritzson, Andreas Remar, El-
mir Jagudin, and David Akhvlediani. OpenMode-
lica Development Environment with Eclipse In-
tegration for Browsing, Modeling, and Debug-
ging. In Proceedings of the 5th International
Modelica Conference (Modelica'2006), Vienna,
Austria, Sept. 4-5, 2006.

[14] http://www.antlr.org. ANTLR. Accessed Nov
2007.

[15] Hanspeter Mössenböck, Markus Löberbauer, and
Albrecht Wöß. The Compiler Generator Coco/R.
http://www.ssw.uni-linz.ac.at/coco/. Accessed
Nov 2007.

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 663 Modelica 2008, March 3rd − 4th, 2008

[16] Erik Sandewall. Programming in an Interactive
Environment: The “LISP” Experience, Comput-
ing Surveys, 10:1, Mar. 1978.

[17] J. Lindskov, M. Knudsen, O. Löfgren, Ole Lehr-
mann-Madsen, and Boris Magnusson (Eds.). Ob-
ject-Oriented Environments - The Mjølner Ap-
proach. Prentice Hall, 1993.

Appendix
Here we give (parts of) the generated position tree (posAST) for the code in the example section. The start and
end are given in character offsets. The nodes that have -1 as start/end position do not actually exist in the text, but
they appear in here to have 1-to-1 mapping to the AST definitions.

(Program, (Start: 1, End: 366, {
 (list<Class>, (Start: 23, End: 366, {
 (Class, (Start: 23, End: 366, { (Ident, (Start: 31, End: 35)
 (Boolean Partial, (Start: -1, End: -1) (Boolean Final, (Start: -1, End: -1)
 (Boolen Ecapsulated, (Start: -1, End: -1) (Restriction, (Start: 23, End: 30)
 (ClassDef, (Start: 35, End: 356, {
 (list<ClassPart>, (Start: 38, End: 356, {
 (ClassPart, (Start: 38, End: 356, {
 (list<ElementItem>, (Start: 38, End: 356, {
 (ElementItem, (Start: 38, End: 264, {
 (Element, (Start: 38, End: 264, {
 (Boolean final, (Start: -1, End: -1)
 (Option<RedeclareKeywords>, (Start: -1, End: -1)
 (InnerOuter, (Start: -1, End: -1)
 (Ident, (Start: -1, End: -1)
 (ElementSpecEL5, (Start: 38, End: 264, {
 (Boolean replaceable, (Start: -1, End: -1)
 (Class, (Start: 53, End: 264, {
 (Ident, (Start: 47, End: 53)
 (Boolean Partial, (Start: -1, End: -1)
 (Boolean Final, (Start: -1, End: -1)
 (Boolen Ecapsulated, (Start: -1, End: -1)
 (Restriction, (Start: 38, End: 46)
 (ClassDef, (Start: 53, End: 264, {
 (list<ClassPart>, (Start: 53, End: 264, {
 (ClassPart, (Start: 80, End: 250, {
 (list<ElementItem>, (Start: 80, End: 221, {
 (ElementItem, (Start: 80, End: 100, {
 (Element, (Start: 80, End: 100, {
 (Boolean final, (Start: -1, End: -1)
 (Option<RedeclareKeywords>,(Start: -1, End: -1)
 (InnerOuter, (Start: -1, End: -1)
 (Ident, (Start: 91, End: 92)
 (ElementSpecEL3, (Start: 91, End: 100, {
 (ElementAttributes, (Start: 80, End: 85, {
 (Boolean flow, (Start: -1, End: -1)
 (Variability, (Start: -1, End: -1)
 (Direction, (Start: 80, End: 85)
 (ArrayDim, (Start: -1, End: -1)
 })
 (TypeSpec, (Start: 86, End: 90, {
 (Path, (Start: 86, End: 90, {
 (Ident, (Start: 86, End: 90)
 })
 (Option<ArrayDim>, (Start: -1, End: -1)
 })
 ... // truncated text due to its large size
 }) (Option<String>, (Start: -1, End: -1)
 }) (Info, (Start: -1, End: -1)
 })
 })
 (Within, (Start: 1, End: 7,
 (Path, (Start: 8, End: 22, {(Ident, (Start: 8, End: 22)})
)

P. Fritzson, A. Pop, K. Norling, M. Blom

The Modelica Association 664 Modelica 2008, March 3rd − 4th, 2008

Here is another version of the example with character positions for end and start of a Modelica construct:
[001]within[007] [008]ParentPackage;[022]
[023]package[030] [031]pack[035]
[036] [038]function[046] [047]addOne[053] [054]"function that adds 1"[076]
[077] [080]input[085] [086]Real[090] [091]x[092] [093]=[094] [095]1.0;[099]
 [100]// line comment[115]
[116] [119]output[125] [126]Real[130] [131]y;[133]
 [139]/* multiple
 line
 comment */[221]
[222] [224]algorithm[233]
[234] [237]y[238] [239]:=[241] [242]x[243] [244]+[245] [246]1.0;[250]
[251] [253]end[256] [257]addOne;[264]
[265]
[266] [268]class[273] [274]myClass[281]
[282] [286]Real[290] [291]y;[293]
[294] [296]equation[304]
[305] [309]y[310] [311]=[312] [313]addOne[319](5);[323] [324]// Call to addOne[341]
[342] [344]end[347] [348]myClass;[356]
[357]end[360] [361]pack;[366]

Parts of the abstract syntax tree (AST) of the Example.mo in the example section is presented below. The AST
has exactly the same structure as the position tree.

adrpo@KAFKA /c/home/adrpo/doc/projects/modelica2008/
$ omc +d=dump Example.mo
Absyn.PROGRAM([
 Absyn.CLASS(Absyn.IDENT("pack"),
 false, false, false, Absyn.R_PACKAGE,
 Absyn.PARTS(
 [Absyn.PUBLIC(
 [Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , "function",
 Absyn.CLASSDEF(false,
 Absyn.CLASS(Absyn.IDENT("addOne"),
 false, false, false, Absyn.R_FUNCTION,
 Absyn.PARTS(
 [Absyn.PUBLIC(
 [Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED, "comp",
 Absyn.COMPONENTS(Absyn.ATTR(false, Absyn.VAR, Absyn.INPUT,[]),
 Absyn.PATH(Absyn.IDENT("Real")),
 [Absyn.COMPONENTITEM(
 Absyn.COMPONENT(Absyn.IDENT("x"),[],
 SOME(Absyn.CLASSMOD([], SOME(Absyn.REAL(1.0))))), NONE)]),
 Absyn.INFO("Example.mo", false, 4, 4, 4, 22)), NONE)),
 Absyn.ELEMENTITEM(
 Absyn.ELEMENT(false, _, Absyn.UNSPECIFIED , "component",
 Absyn.COMPONENTS(Absyn.ATTR(false, Absyn.VAR, Absyn.OUTPUT, []),
 Absyn.PATH(Absyn.IDENT("Real")),
 [Absyn.COMPONENTITEM(Absyn.COMPONENT("y",[],
 NONE), NONE)]),
 Absyn.INFO("Example.mo", false, 5, 4, 5, 17)), NONE))]),
 Absyn.ALGORITHMS(
 ALGORITHMITEM(
 ALG_ASSIGN(
 Absyn.CREF(Absyn.CREF_IDENT("y", [])),
 Absyn.BINARY(
 Absyn.CREF(Absyn.CREF_IDENT("x", [])),
 Absyn.ADD,
 Absyn.REAL(1.0)))))],
 SOME("function that adds 1")),
 Absyn.INFO("Example.mo", false, 3, 3, 10, 13))
 ... // truncated text due to its large size
], // end of Absyn.CLASS list
 Absyn.WITHIN(Absyn.IDENT("ParentPackage")
) // end Absyn.PROGRAM

Comment- and Indentation Preserving Refactoring and Unparsing for Modelica

The Modelica Association 665 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 666 Modelica 2008, March 3rd − 4th, 2008

Session 6b

Language, Tools and Algorithms

The Modelica Association 667 Modelica 2008, March 3-4, 2008

The Modelica Association 668 Modelica 2008, March 3rd − 4th, 2008

Sensitivity Analysis of Modelica Applications
via Automatic Differentiation

Elsheikh, Atya1 Noack, Stephan2 Wiechert, Wolfgang1
1 Siegen University, Department of Simulation, {elsheikh,wiechert}@simtec.mb.uni-siegen.de

2 Research Center Jülich GmbH, Institute of Biotechnology 2,s.noack@fz-juelich.de

Abstract

Modeling and simulation of physical systems is, in
general, a complex iterative process. Asserted models
are necessarily based on simplifications, and in many
cases are subject to improvement and optimization. In
this context, a wide range of applications of sensitivity
analysis can assist the modeling process, from param-
eter fitting and optimization through model validation
to statistical analysis and experimental design. These
common methods, among others, drew increasing
attention to a research area of scientific computing, i.e.
Automatic Differentiation (AD) of program code. The
main objective of this work is to compute derivatives
of variables in Modelica models using AD concepts
to assist sensitivity analysis applications. It is shown
how Open Modelica Compiler (OMC) and other
tools simplify the implementation of ADModelica,
a prototype of an AD-based tool for Modelica. As
a proof of concept, an application in the field of
biochemical networks is presented.

Keywords: Sensitivity Analysis, Automatic Dif-
ferentiation, Open Modelica, Biochemical Networks

1 Introduction

AD is a methodology that refers to algorithmic
techniques for semantic augmentation of numerical
programs with additional code for derivative com-
putations [6]. For many reasons, AD is a better
choice over other ways for computing derivatives
such as symbolic differentiation and finite difference
methods. In contrast to symbolic differentiation tools,
an AD tool does not generate the derivative formula
explicitly, but it computes the numerical values of
efficient derivative formulas expressed as a program.
Nevertheless, the derivative values using AD are as
accurate as the values of those generated by symbolic
algebra packages up to machine precision. Further-

more, the results are not affected by any truncation
errors, resulting from numerical differentiation using
divided difference methods.

This work is concerned with AD of Modelica mod-
els. Modelica is essentially targeted towards modeling
complex systems that can be described by differential
algebraic equation (DAE) systems:

F(t,x, ẋ, p) = 0, x(0) = x0(p) (1)

wherex∈Rn, p∈Rm, F : R2·n+m+1 → Rn. Assuming
that ∂F/∂x is non-singular for allp ∈ Rm, and that
∂x/∂ p is smooth enough, sensitivity analysis requires
the sensitivities∂x/∂ p of solution variables with re-
spect to perturbations in the parameters. These can be
calculated by solving the original DAE system (1) and
msensitivity systems:

∂F
∂ ẋ · ∂ ẋ

∂ p + ∂F
∂x · ∂x

∂ p + ∂F
∂ p = 0,

∂x
∂ p(0) = ∂

∂ p(x0(p))
(2)

obtained by explicit differentiation of (1) with respect
to p [14]. Additionally, the sensitivities∂xi/∂x j

of certain variablesxi with respect to other specific
variablesx j might be needed.

This paper presents first experiences with a prototype
of a tool, ADModelica, that augments Modelica mod-
els with Modelica code for computing certain sensi-
tivities, with minimal user efforts. Aiming at the full-
support of Modelica language constructs, we imple-
mented a first version, which supports most basic con-
structs of Modelica. The rest of the paper is structured
as follows. Section 2 introduces basic terminologies
and algorithmic aspects of AD. The Generalization of
the introduced concepts into the Modelica framework
is clarified in Sect. 3. Section 4 presents the ADMod-
elica tool and briefly discusses some design and imple-
mentation issues. In Sect. 5, applications in the field
of Biochemical Engineering using a special library is

Sensitivity Analysis of Modelica Applications via Automatic Differentiation

The Modelica Association 669 Modelica 2008, March 3rd − 4th, 2008

presented. Finally, conclusions are presented and fu-
ture work is discussed in Sect. 6.

2 Introduction to Automatic Differ-
entiation

Many techniques such as numerical differentiation
or computer algebra methods are used to compute
derivatives. However, AD has proved to be superior
over other ways for obtaining derivatives in terms of
computational efficiency, numerical precision and dis-
cretization parameters. ADIC [2] and ADIFOR [1] are
examples of a wide range of AD tools for differentiat-
ing C and Fortran programs respectively. In this sec-
tion, some basic terminologies of AD are introduced.

2.1 Basic Concepts

Formally, given a program P that computes a function:

f : x∈ Rn → y∈Rm

with n inputs andm outputs, a new codeP′ is sought
to compute the Jacobianf ′ = ∂y/∂x. The following
terms are commonly used in the context of AD:

• Independent variablesare program input vari-
ables with respect to which derivatives are
sought.

• Dependent variablesare output variables whose
derivatives are desired.

• A derivative objectrepresents some derivative in-
formation, such as a vector of partial derivatives
(∂z/∂x1, ...,∂z/∂xn)T of a variablezwith respect
to a vectorx = (x1,x2, ...,xn)T .

• Any program variable with which a derivative ob-
ject is associated is called anactive variable.

2.2 Algorithmic Aspects of AD

The key concept behind AD is that every computa-
tion, no matter how complex it is, is executed on a
computer as a sequence of a limited set of elemen-
tary operations, such as addition and multiplication,
and intrinsic functions, such as sine and cosine. The
derivative of each of these elementary operations can
be computed by applying the chain rule to combine
the local partial derivatives of each executed operator.
An AD tool operates by systematic application of the
chain rule on the numerical code. For example, let

a(x) and b(x) be intermediate values that depend on
an independent variablex, and letc := f (a,b). Then
by using the chain rule,∇xc the derivative of the de-
pendent variablec with respect tox is computed as:

∇xc :=
∂ f
∂a

·∇xa+
∂ f
∂b

·∇xb (3)

The chain rule is associative. Ify := f (g(x)), ∂y/∂x
can be computed by forwardly accumulating the
derivatives (i.e.∂ f/∂g and ∂g/∂x) in the computa-
tional path from the independent variable(s) (eg.x)
to the dependent variable(s) (eg.y). By exploiting the
associativity of the chain-rule, the augmented program
is generated to evaluatef (x) and the partial derivatives
of f simultaneously.

2.3 Why AD for Modelica?

AD is naturally implemented by Modelica compilers
to provide partial derivatives of functions for solving
the DAE index problem [12]. A DAE system of high
index is transformed into a solvable ODE system by
differentiating some equations selected by Pantelides’s
algorithm [13]. Here, AD is chosen for the fundamen-
tally different task of calculating sensitivities of solu-
tion variables, motivated by the following reasons:

• DAE systems are represented in Modelica by us-
ing components and connectors; internal formu-
las in components and models may be imple-
mented with loops and many branches. There-
fore, it makes sense to utilize existing tools and
concepts of handling DAE systems, used by mod-
elica compilers, for generating derivative formu-
las.

• For a Modelica model that computes a DAE Sys-
tem (1), a lot of common sub-expressions in
F, ∂F/∂x and ∂F/∂ p arise. In many cases,
these common sub-expressions need not to be re-
evaluated if these partial derivatives are computed
using AD.

• Compiler techniques used for reducing the di-
mension of a generated DAE system, can be
adopted by AD for reducing the number of equa-
tions needed to be differentiated , instead of blind
differentiation of all equations, as the DAE sys-
tem (2) suggests [4].

3 Differentiating DAE Systems

Assignments (eg.x := f (y,z)) are the main elemen-
tary units of procedural languages, whereas declara-

A. Elsheikh, S. Noack, W. Wiechert

The Modelica Association 670 Modelica 2008, March 3rd − 4th, 2008

tive equations (eg.f (x(t),y(t),z(t)) = 0) constitute the
main building units of Modelica. While an assignment
is a relation between inputs (a collection of values)
and one output, an equation is a relation between sev-
eral variables, that needs to be fulfilled concurrently.
This conceptual difference has vital consequences on
the way derivatives can be generated for DAE sys-
tems, namely, AD techniques for classical languages,
such as C/FORTRAN, are not necessarily applicable
for equation-based languages.

3.1 Example

Consider the DAE System

Ȧ =−v, A(0) = A0

Ḃ = v, B(0) = B0

v = vmax· A
A+k ·

Ik
B+Ik

(4)

describing the dynamics of a chemical reaction, in
which a chemical substance with concentrationA =
A(t) is converted to another chemical substance with
concentrationB = B(t). v = v(A,B, t) stands for re-
action rate andvmax, k and Ik stand for enzymatic pa-
rameters. The first two ordinary differential equations
represent balance equations, whereas the third equa-
tion describes the reaction rate using the well-known
Michaelis-Menten Kinetics [7]. The sensitivities of
x = (A,B,v)T w.r.t. parametersp = (vmax,k, Ik)T can
be computed as in (2) by adding the following equa-
tions:

Ȧp =−vp, Ap(0) = 0
Ḃp = vp, Bp(0) = 0
vp = ∂

∂ p f (A,B,vmax,k, Ik)
(5)

to (4), where

f (A,B,vmax,k, Ik) = vmax·
A

A+k
· Ik
B+ Ik

(6)

vp = ∇pv = (
∂v

∂vmax
,

∂v
∂k

,
∂v
∂ Ik

)T (7)

andAp,Bp are similar tovp. Given thatJp = I3 (Iden-
tity matrix of size 3), i.e.:

∇pvmax := (1,0,0)T ;
∇pk := (0,1,0)T ;
∇pIk := (0,0,1)T ;

(8)

(5) can be easily implemented in Modelica with the
help of arrays. Notice that := stands for assignments.

3.2 Utilizing Common Sub-expressions

Given that the values ofA(t) andB(t) are known for
a time pointt, v(t) and vp(t) can be computed from
the DAE systems (4) and (5). The third equation
vp = ∂ f/∂ p in the DAE system (5) consists of three
equations of similar algebraic structure. Excessive re-
evaluation of common sub-expressions arising inv and
vp can be avoided by dividing the equationv= f in the
DAE system (5) into a set of binary assignments using
the Abstract Syntax Tree (AST) ofv as shown in Fig.
1. The gradient ofv(t) is computed by forward accu-
mulation of the gradients of the intermediate variables
obtained by differentiating each assignment instead of
direct differentiation of the algebraic formula. An im-
plementation for the DAE systems (4) and (5) looks as
follows:

Ȧ =−v
∂
∂ t ∇pA =−∇pv

Ḃ = v
∂
∂ t ∇pB = ∇pv

u1 := vmax·A;
∇pu1 := ∇pvmax·A+vmax·∇pA;

u2 := A+k;
∇pu2 := ∇pA+ ∇pk;

u3 := u1 ·u2;
∇pu3 := ∇pu1 ·u2 +u1 ·∇pu2;

u4 := B+ Ik;
∇pu4 := ∇pB+ ∇pIk;

u5 := Ik/u4;
∇pu5 := (∇pIk ·u4− Ik ·∇pu4)/u2

4;
v := u3 ·u5;

∇pv := ∇pu3 ·u5 +u3 ·∇pu5;

(9)

In this way, common sub-expressions are evaluated
only once, and hence less arithmetic operations are
needed. The assignments can be implemented in Mod-
elica with the help of thealgorithmconstruct.

3.3 Limitations

While optimizing common sub-expressions works
well for AD of classical procedural languages, this
may not be the case with equation-based languages.
For example, in the DAE system (4),v(0) can be
computed by considering the available values ofA(0)
andB(0). Then,v(0) is used to compute subsequent
values ofA andB, and hence forth. That is, at each
iteration, A(t) and B(t) are used to computev(t).
In other words, the valuesv(t) depends on A(t) and
B(t). By this way, computingv(t) from A(t) andB(t)

Sensitivity Analysis of Modelica Applications via Automatic Differentiation

The Modelica Association 671 Modelica 2008, March 3rd − 4th, 2008

Figure 1: Abstract Syntax Tree (AST) ofv = f

in (9) does not change the dependency of variables.
However, in general, an equation can be divided into a
set of binary operations if the output variable depends
on the variables arising in the left hand side of all
intermediate assignments.

Additionally, the dimension of the rewritten DAE sys-
tem increases according to the way the Modelica com-
piler handles local variables. If intermediate results of
local variables are always stored, this exhausts extra
storage and computation time. Note that, the number
of local variables can be reduced by reusing local vari-
ables. For example, there is no need to introduce new
local variablesu4 andu5 if u1 andu2 are used instead.
Moreover, excessive use of thealgorithmsection may
disable some optimization methods for reducing the
dimension of a DAE system and hence worsen the per-
formance. Finally, side effects implied by the enforced
order of sub-expressions evaluation result in slightly
different results for state variables.

4 Automatic Differentiation of
Modelica Code

ADModelica is a prototype of a source-to-source AD
tool that strives to support Modelica programs. The
source-to-source approach employs a combination of
classical- and equation-based compiler techniques to
transform a program source code into a new source
code that computes the derivatives. This section gives
a quick overview of the implementation of ADModel-
ica.

4.1 Possible Approaches

There are three levels, on which AD of (implicit) DAE
systems can operate:

1. Library level: All library units (i.e. components
and connectors) are differentiated independently
to generate another library that additionally com-
putes parameter sensitivities of variables. Each
component is augmented with code for deriva-
tives.

2. Flat Model Level: The source code is given as
(or transformed into) pure equations, represented
by elementary Modelica’s constructs, rather than
physical formulation with components and con-
nectors. Sensitivity Equations are added in a new
Modelica model.

3. Generated C-code level: The generated C-code
is differentiated.

In [4], the above approaches are discussed in more de-
tails. The adopted approach is based on differentia-
tion on the flat model level. The current supported in-
put models, are namely those, which flattened models
have pure mathematical formulation. Particularly, in-
put models with components, connectors and arrays
with equations expressed asfor-loops are supported.
However, some control constructs in Modelica, such
asif, while and others, are not yet supported. As a re-
mark, AD of such classical languages constructs is a
well-know problem and has been successfully handled
[6].

4.2 Overview of ADModelica

Figure 2 shows the corresponding Modelica imple-
mentation of the DAE system (9). The user specifies
the independent variables. If not specified, all parame-
ters are considered as independent variables. To every
variablev of type Real an array representing the gradi-
ent of that variableg_v is associated. The array’s size
represents the number of independent variables. Each
entry of the array represents the derivative ofv with re-
spect to an independent variable. To each active vari-
able, a gradient is associated. ADModelica follows a
conservative strategy that considers all variables and
parameters active. In that case, non-interesting param-
eters have the zero gradients.

4.3 Design and Implementation

Implementing an AD tool from scratch, supporting
a wide set of Modelica grammar, would be an ex-

A. Elsheikh, S. Noack, W. Wiechert

The Modelica Association 672 Modelica 2008, March 3rd − 4th, 2008

Figure 2: Implementation of the DAE system (4) and
its Sensitivity Equations (5)

pensive and error-prone process. Therefore, existing
tools and software are utilized by ADModelica, par-
ticularly OMC [5]. OMC allows communication with
other tools through the CORBA interface. Figure 3
shows the main steps performed to generate a Mod-
elica model that computes additional required deriva-
tives. These steps are summarized as follows:

• Flattening: A high-level model is transformed to
a model with pure mathematical equations, using
the Open Modelica Compiler (OMC). ADModel-
ica makes use of the CORBA interface, offered
by OMC.

• Transforming to intermediate format: The
ModelicaXML parser [15] parses an input model
to an easy-to-handle format, in which the AST
representation of the equations are implicitly in-
herited. The ASTs are extracted into intermediate
format in Java classes.

• Analyzing: The dimension of the generated DAE
system is reduced by removing alias equations
(s.a.x = y andx+y = 0) [9]. The computational
path between variables is computed [3, 8].

• Differentiating: The ASTs of the derivatives are
computed. A conservative strategy is to differ-
entiate all equations. However, it is enough to

Figure 3: The Architecture of ADModelica

differentiate all equations laying in all Strongly
Connected Components (SCCs) of the computa-
tional path from the independent variable(s) to
the dependent variable(s).

• Unparsing: The differentiated model is gener-
ated with additional code for derivatives.

• Visualizing ASTs: Producing graphs of the
ASTs was proven to be useful during the course
of development, for finding potential semantical
mistakes.

5 Application

Modeling the dynamics of metabolic reaction net-
works has a wide spectrum of applications. Special
attention has been paid to modeling biochemical
systems with Modelica [11]. In general, the pa-
rameters expressing the characteristics of enzymatic
reactions (eg. reaction rate, enzyme activation/inhi-
bition constants, etc.) are one of the largest source
of uncertainty in modeling metabolic networks, and
are not necessarily known. Their values might be
estimated by fitting them to measured data, resulted
from stimulus-response experiments [16]. Estimating
the correct values of parameters can reveal hidden
information about the system. However, even in that
case, the asserted model alone does not explain the
underlying behavior.

Understanding the functions of enzymatic reactions
within a metabolic network can be achieved by
measuring changes to directed perturbations of certain
parameters (eg. quantity of a certain enzyme). While

Sensitivity Analysis of Modelica Applications via Automatic Differentiation

The Modelica Association 673 Modelica 2008, March 3rd − 4th, 2008

Figure 4: A dynamic Metabolic Network

this can be experimentally difficult or impractical,
it is easier to quantify the effect of these changes
using a validated model [17]. This can be achieved
by computing the sensitivities of reaction rates and
concentration to parameters∂ r/∂ p and ∂c/∂ p, and
the sensitivities of reaction rates to concentration of
metabolites∂ r/∂c. Using these sensitivities, the well
known quantities of Metabolic Control Theory, i.e.
the concentration and flux control coefficientsCM and
CF , can be calculated [10, 7].

In Figure 4, a dynamic metabolic network model
including reactions of the tricarbon acid cycle is
shown. The network has been implemented using a
specialized library for biochemical networks, making
use of many object-oriented features of the Modelica
language. Various classes (e.g. Enzyme, Metabolites,
Reactions) are the main common objects. Objects
are connected via interfaces for potential variables
(e.g. concentrationc) and flux variables (e.g. reaction
rate r). The dimension of the corresponding DAE
system of the flattened model is 690. The number of
non-trivial equations is 182. It takes few milli-seconds
to simulate the network using Dymola (Dynasim AB,
Sweden). The model was differentiated w.r.t. 64

independent variables, 49 of which are parameters
corresponding to enzymatic characteristics and 15
concentrations variables. The dimension of the
generated DAE is 12,270. It takes about 35 seconds
to get the network and corresponding sensitivities
simulated.

Investigations on the dynamics of metabolic network
models mostly follow a system perturbation starting
from a stationary state. In this example, the network
is stimulated by a pulse of the input metabolite PEP.
Results show that responses of following metabolite
pools are very fast (e.g. PYR) or delayed (e.g. AC-
COA). Especially in the case of the output metabo-
lite LYS the concentration change is rather low in the
given time frame. The results are used to identify some
model parameters, which show a higher sensitivity in
the instationary case directly after system perturbation,
as well as others, which generally do not have any sig-
nificant influence on the corresponding flux.

6 Summary and Future Work

This work shows that AD is a natural choice for com-
puting sensitivities of solution variables for Modelica
models. ADModelica is a prototype of a source-to-
source AD tool for the Modelica language. It follows
the flat model approach, as it is easy to implement be-
cause it does not consist of high-level language con-
structs. ADModelica utilizes OMC by using CORBA
communication. Potential improvements of ADMod-
elica can be achieved by making more use of OMC.
OMC access a lot of facilities that can be utilized by
ADModelica. Examples involve, but are not limited
to:

• Symbolic manipulation of algebraic equations

• An intermediate format for computational graphs
for DAE systems

• Utilizing the Dependency Flow Graph (DFG) of
variables for decomposing a large resorted DAE
system in Block Lower Triangular (BLT) format
into smaller DAE systems

These facilities are used for optimizing common sub-
expressions, reducing the number of equations needed
to be differentiated and computing sensitivities of
variables w.r.t. other (non input) variables. Although,
these are partially implemented by ADModelica, it is
certainly better to rely on the reliable well-maintained

A. Elsheikh, S. Noack, W. Wiechert

The Modelica Association 674 Modelica 2008, March 3rd − 4th, 2008

and continuously growing OMC.

acknowledgment.This research is funded by German
Ministry of Education and Research (BMBF) within
the Sysmap project.

References

[1] C. H. Bischof, P. Khademi, A. Mauer, and
A. Carle. Adifor 2.0: Automatic Differentiation
of Fortran 77 Programs. IEEE Computational
Science & Engineering, 3(3):18–32, Fall 1996.

[2] C. H. Bischof, L. Roh, and A. Mauer.ADIC
— An Extensible Automatic Differentiation Tool
for ANSI-C. Software: Practice and Experience,
27(12):1427–1456, 1997.

[3] F. E. Cellier. Continuous System Modeling.
Springer Verlag, 1991.

[4] A. Elsheikh and W. Wiechert. Automatic Sensi-
tivity Analysis of DAE-Systems Generated from
Equation-Based Modeling Languages.submit-
ted to 5th International Conference on Automatic
Differentiation, Bonn, Germany, 11-15 August
2008.

[5] P. Fritzson, P. Aronsson, P. Bunus, V. Engelson,
L. Saldami, H. Johansson, and A. Karström. The
Open Source Modelica Project. InProceedings
of The 2nd International Modelica Conference,
pages 297–306, Munich, Germany, March 2002.

[6] A. Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differenti-
ation. Number 19 in Frontiers in Appl. Math.
SIAM, Philadelphia, PA, 2000.

[7] R. Heinrich and S. Schuster, editors.The Regu-
lation of Cellular Systems. Springer, 1996.

[8] A. Leitold and K. M. Hangos. Structural Solv-
ability Analysis of Dynamic Process Models.
Computers & Chemical Engineering, 25:1633–
1646, 2001.

[9] C. Maffezzoni, R. Girelli, and P. Lluka.
Generating Efficient Computational Procedures
from Declarative Models. Simul. Pr. Theory,
4(5):303–317, 1996.

[10] K. Mauch, S. Arnold, and M. Reuss. Dy-
namic Sensitivity Analysis for Metabolic Sys-
tems.Chem. Eng. Sci., 52:2589–2598, 1997.

[11] E. L. Nilsson and P. Fritzson. A Metabolic Spe-
cialization of a General Purpose Modelica Li-
brary for Biological and Biochemical Systems.
In Modelica2005, the 4th International Modelica
Conference, pages 85–93, Hamburg, Germany,
March 2005.

[12] H. Olsson, H. Tummescheit, and H. Elmqvist.
Using Automatic Differentiation for Partial
Derivatives of Functions in Modelica. InMod-
elica2005, the 4th International Modelica Con-
ference, pages 105–112, Hamburg, Germany,
March 2005.

[13] C. C. Pantelides. The Consistent Initializa-
tion of Differential-Algebraic Systems.SIAM
Journal on Scientific and Statistical Computing,
9(2):213–231, Mar. 1988.

[14] L. Petzold, S. T. Li, Y. Cao, and R. Serban. Sen-
sitivity Analysis of Differential-Algebraic Equa-
tions and Partial Differential Equations.Com-
puters & Chemical Engineering, 30:1553–1559,
2006.

[15] A. Pop and P. Fritzson. Modelicaxml: A Mod-
elica XML Representation with Applications. In
Proceedings of The 3rd International Modelica
Conference, pages 419–429, Linköping, Swe-
den, November 2003.

[16] S. Wahl, M. Haunschild, M. Oldiges, and
W. Wiechert. Unravelling the Regulatory Struc-
ture of Biochemical Networks Using Stimulus
Response Experiments and Large-scale Model
Selection. InIEEE Proceedings Systems Biology,
volume 153, pages 275–285. IEEE Computer So-
ciety, 2006.

[17] W. Wiechert. Validation of Metabolic Models:
Concepts, Tools, and Problems. In B. Kholo-
denko and H. Westerhoff, editors,Metabolic En-
gineering in the Post Genomic Era, chapter 11.
Horizon Bioscience, 2004.

Sensitivity Analysis of Modelica Applications via Automatic Differentiation

The Modelica Association 675 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 676 Modelica 2008, March 3rd − 4th, 2008

Synchronous and asynchronous events in Modelica: proposal for an im­
proved hybrid model

Ramine Nikoukhah1 Sébastien Furic2

 1 INRIA Rocquencourt BP 105, 78153 Le Chesnay Cedex, France

2 LMS­Imagine, 7 place des Minimes, 42300 Roanne, France
 ramine.nikoukhah@inria.fr furic@amesim.com

Abstract

The event synchronism in Modelica has been a subject
of contradictory interpretations. An interpretation in­
spired by Scicos formalism [2] has been shown to
provide desirable properties. In this interpretation, all
independent events are assumed asynchronous; that
includes events generated by the sample keywords.
But in analogy with the way multi­rate systems are
modeled in Simulink, it is desirable also to consider
sample generated events as synchronous. In this pa­
per, we propose a special treatment for the keyword
sample to overcome this dilemma.

Keywords: Modelica, Scicos, synchronism, real­time
code generation

1. Introduction

In [1], it is argued that all Modelica events should be
considered asynchronous unless they are derived ex­
plicitly from a single event. This is in contrast to Dy­
mola’s implementation where all events are con­
sidered potentially synchronous, by default. In Dy­
mola, simultaneity is interpreted as synchronism. In
[1] it is shown that the asynchronous point of view not
only leads to the generation of more efficient code but
it can also allow for separate compilation of isolated
modules.
It may be argued that with the asynchronous point of
view, non­deterministic behavior becomes an issue.
But the problem of non­determinism here is not worse
than in the fully synchronous context because the
reason for non­determinism in hybrid systems is the
finite precision of the numerical solver. Indeed, it is
not more nondeterministic to assume that two events:
time > 3 and x < 2, where x is a continuous time vari­
able, are asynchronous than assuming that they are
potentially synchronous.

Asynchronous means that even if the two events occur
(in theory) at exactly the same time, one is considered
to occur just before or after. In the synchronous con­
text, the formalism considers also the case of the two
events happening simultaneously and treats it differ­
ently. However in practice, since events such as x < 2
are detected by the zero­crossing mechanism of the
numerical solver, there is very little chance that two
events be detected simultaneously even if theoretically
they are simultaneous. So in the synchronous context,
the non­determinism is even worse: not only there are
three possible outcomes in the presence of two zero­
crossing events but the user is lead to believe that it
can count on simultaneous detection when in most
cases the result is completely unpredictable.

The sample generated events, even though not pro­
duced by the zero­crossing mechanism during the
simulation, should naturally be considered as inde­
pendent and thus asynchronous as well. But this goes
against the usual practices in Modelica where syn­
chronism is often implicitly assumed. In this paper we
propose a very special interpretation of the sample
keyword which not only leads to models in accord
with our asynchronous framework but assures syn­
chronism among sample generated events.

2. Asynchronous framework

In the asynchronous interpretation of the Modelica
specification, two events are considered synchronous
only if they can be traced back to a single event
source. For example in the following model:

when sample(0, 1) then
 d = pre(d) + 1;

end when;

when d > 3 then
 a = pre(a) + 1;

Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid Model

The Modelica Association 677 Modelica 2008, March 3rd − 4th, 2008

end when;

the event d > 3 is synchronous with the event
sample(0, 1). The former is the source of the latter.
But in

der(x) = x ;

when sample(0, 1) then
 d = pre(d) + 1;

end when;

when x > 3 then
 a = pre(a) + 1;

end when;

the two events are not synchronous. There is no
unique source of activation at the origin of these
events. So these events are considered asynchronous
even if the two events are activated simultaneously;
even if we can prove mathematically that they always
occur simultaneously.
The basic assumption is that events detected by the
zero­crossing mechanism of the numerical solver (or
an equivalent mechanism used to improve perform­
ance) are always asynchronous. So even if they are de­
tected simultaneously by the solver, by default they
are treated sequentially in an arbitrary order.

3. Special case of sample construct

Under the asynchronous assumption, and by treating
the sample keyword as a macro, the following pro­
gram:

model M
 Boolean b;

 ...

equation
 b = sample(0, 1);

 when f(b) then
 ... g(b)...

 end when;

 ...

end M;

can be expanded as follows:

model M
 discrete time Integer k(start=0);

 Boolean b;

 ...

equation
 when time >= k then
 k = pre(k) + 1;

 end when;

 b = false;

 when change(k) and f(true) then

 ... g(true)...

 end when;

 ...

end M;

This means that we are lead to assume that different
sample statements generate asynchronous events (we
also lose periodicity information contained in the ar­
guments of the sample). For example, in the model:

when sample(0, 1) then
 b = a;

end when;
when sample(0, 1) then
 a = b + 1;

end when;
the variables a and b are evaluated in an arbitrary or­
der and no algebraic loop is detected..
Dymola on the other hand assumes that all events are
synchronous. In particular it assumes that all the
equations in both when clauses in this example may
have to be satisfied simultaneously. That is why Dy­
mola finds an algebraic loop in this example.
This seems reasonable; however Dymola also finds an
algebraic loop in:

when sample(0, 1) then
 b = a;

end when;
when sample(0.5, 1) then
 a = b + 1;

end when;
when clearly no algebraic loop exists in this model.

4. Periodicity information

The periodicity information may not be very useful
for simulation but it is precious for real­time code
generation. It is a lot easier to generate embedded
code for a discrete­time system when the system is
periodic and all the timing information is available

R. Nikoukhah, S. Furic

The Modelica Association 678 Modelica 2008, March 3rd − 4th, 2008

during the code generation process. Consider for ex­
ample the following system, which represents a con­
tinuous time plant with a discrete­time failure detector
and a reconfigurable controller. Different components
of the detector/controller mechanism run at different
frequencies; we say then that the system is multi­rate.

Consider now the problem of hard real­time code gen­
eration for this mechanism, which contains three basic
frequencies with periods 0.1, 0.5 and 0.35. The events
corresponding to these three clocks are synchronized
at different time instants. In general there could be 7
different situations for which static code generation
must be performed but in this particular case only 5
situations come up. The important information to note
here is that the system will function in a fully periodic
way and the timing of all the situations can be com­
puted in advance thanks to information on the periods
(and offsets if any) of the clocks. It turns out that in
this case, the overall period is 3.5; the timings of dif­
ferent event situations are illustrated below:

To model such a system in Modelica, it is common
practice to assume synchronism of independent

sample sources (this is done in particular, by de­
velopers of the Modelica Standard Libraries) and rep­
resent each clock by an independent sample state­
ment.
But in the asynchronous point of view adopted by us,
following the replacement of the sample macros with
the corresponding Modelica code as presented previ­
ously, the clocks become asynchronous. In this frame­
work, it is necessary to use a single clock and derive
the other clocks by sub­sampling; otherwise the beha­
vior of the system will not correspond to the desired
behavior.

5. Synchronous sample

We have seen that on one hand it is desirable to con­
sider all independent events to be asynchronous and
on the other hand, it is convenient to force, depending
on their arguments, sample generated events as syn­
chronous.
The type of synchronism considered here has nothing
to do with the way Dymola enforces synchronism but
it is rather close to Simulink’s way of handling multi­
rate systems and Scicos’ SampleClk blocks. The idea
is to synthesize a basic clock at a precompilation
phase so that all the synchronous clocks defined by
sample statements can be obtained by sub­sampling
the basic clock. The computation of the parameters of
this basic clock is straightforward, see [3] for details.
Here is a simple example:

when sample(0, 2) then
 <expr1>;

end when;
when sample(0, 3) then
 <expr2>;

end when;
The periods involved in this case are 2 and 3; the peri­
od of the basic clock is obtained by computing the
greatest common divisor of 2 and 3, which is 1. The
overall period in this case is 6, so one way the pre­
compiler could modify the code is as follows:

when sample(0, 1) then
 k = mod(pre(k) + 1, 6);

 if k == 0 then
 <expr1>;
 <expr2>;

 elseif k == 2 or k == 4 then

10 Hz sampling

Observer output

Sliding window

2 Hz

FFT computation

Fault Dection

350 msec

Controllers

Only one active

Period = 3.5

Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid Model

The Modelica Association 679 Modelica 2008, March 3rd − 4th, 2008

 <expr1>;

 elseif k == 3 then
 <expr2>;

 end if;
end when;

This way of sub­sampling clocks have already been
introduced in the Modelica specification (see for ex­
ample the fast sample, slow sample example on page
81 of [6]).
Going back to our code now, we see that it contains a
single sample keyword so it is a synchronous code
(assuming no when constructs are present in the rest
of the model). The sample construct can now be ex­
panded as previously described. This construction in
Scicos is referred to as a periodic construction. For
example going back to the detector/controller model
from the previous section, the period of the basic
clock would be 0.05 (the greatest common divisor of
0.1, 0.5 and 0.35) and the periodic solution would
look like the following. Note that the modulo counter
counts from 0 to 69 because the period is 3.5 and the
basic clock’s period is 0.05.

An alternative procedure consists of constructing a
vector of time instants where events occur over a
single period (in this case [0,2,3,4]) and generate
events using independent event sources corresponding
to time instances which, modulo 6, are mapped to the
elements of this vector.
This construction can be more efficient for simulation
but the periodic solution has the advantage of yielding
a synchronous code. For the detector/controller ex­
ample, the non­periodic (asynchronous) construction
looks like the following. To keep the diagram simple

we have only drawn two of the activation links out of
possible 7 (actually 5 in this particular case).

Periodic solutions are also desirable for real­time code
generation because the embedded code can be driven
by a hardware fixed frequency clock.

6. Implications of the proposal

By admitting that the asynchronous assumption on in­
dependent event generators is the correct interpreta­
tion, if the special treatment proposed for the sample
keyword is not used, most discrete­time models in use
won’t operate properly. The reason is that, despite
some recommendations in the language specification,
synchronism of independent sample sources is as­
sumed by library developers (in particular, by de­
velopers of the Modelica Standard Libraries). This
practice, mostly driven by analogy with other prac­
tices frequently encountered in Simulink­based mod­
eling, conflicts with the asynchronous assumption
made in our hybrid model.
To impose synchronism among various discrete­time
models, instead of relying on the usage of identical
sample keywords, synchronization signals should be
used. This issue has been discussed in [5] where activ­
ation signals have been introduced.
Even though the use of activation signals is a power­
ful modeling mechanism that should be considered in
future Modelica, for the special case of periodic event
clocks, the treatment of the sample keyword as pro­
posed in this paper avoids the need for there usage. In­
deed, by assuming this treatment, backward compatib­
ility for discrete­time models would be guaranteed.
The precompilation phase makes the necessary modi­

R. Nikoukhah, S. Furic

The Modelica Association 680 Modelica 2008, March 3rd − 4th, 2008

fications that assure the synchronization of isolated
models that are related to each other simply because
they include identical sample keywords. The back­
ward compatibility is also assured in the case of
multi­rate systems (when non identical sample
keywords are present in the model)..

7. Conclusion

We have proposed to interpret the sample keyword in
Modelica in a special manner in such a way as to as­
sure synchronism between these keywords yet staying
within the asynchronous framework proposed in [1].

The implementation consists of isolating the sample
keywords in the flat Modelica model. If only one such
keyword is present, then it is transformed as explained
in the paper. If more than one sample is present in the
model, the necessary clock computations are per­
formed and all the sample constructs are replaced by
conditional statements driven by a single sample, as
illustrated on an example in the paper. This sample is
then transformed as in the previous case.
Beside backward compatibility (no Modelica model
needs to be altered), allowing the usage of independ­
ent sample keywords to model synchronous multi­rate
systems provides valuable information for real­time
code generation. However some issues remain to be
solved with this approach, especially the way sample
constructs are translated at the type level (they prob­
ably can not be abstracted away during type computa­
tion since the public information they carry may inter­
fere with compatibility checks of models).
Using Modelica for real­time embedded code genera­
tion has great potentials. Unlike most code generation
environments, in Modelica the execution semantics
can be broken up into very fine grains and manipu­
lated symbolically. In most cases this means that real­
time code can be obtained without having to use pree­
mption. This issue will be examined in a future paper.

References

[1] Nikoukhah, R., "Hybrid dynamics in Modelica:
Should all events be considered synchronous",
in Proc. EOOLT Workshop at ECOOP'07, Ber­
lin, 2007.

[2] Campbell, S. L., Chancelier, J. Ph., and
Nikoukhah, R., “Modeling and Simulation in
Scilab/Scicos”, Springer, 2005.

[3] Caspi, P., Curic, A., Maignan, A., Sofronis, C.
and Tripakis, S., "Translating Discrete­Time
Simulink to Lustre”, in Embedded Software,
Lecture Notes in Computer Science, Springer,
2003.

[4] Otter, M., Elmqvist, H. and Mattsson, S. E.,
“Hybrid Modeling in Modelica based on the
Synchronous Data Flow Principle”, CACSD’99,
Aug; 1999, Hawaii.

[5] Nikoukhah, R., “Extensions to Modelica for ef­
ficient code generation and separate compila­
tion”, in Proc. EOOLT Workshop at ECOOP’07,
Berlin, 2007.

[6] Modelica Association, “Modelica ­ A Unified
Object­Oriented Language for Physical Systems
Modeling. Language Specification, version
3.0”, 2007, available from www.modelica.org.

Synchronous and Asynchronous Events in Modelica: Proposal for an Improved Hybrid Model

The Modelica Association 681 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 682 Modelica 2008, March 3rd − 4th, 2008

Support for Dymola in the Modeling and Simulation
of Physical Systems with Distributed Parameters

 Farid Dshabarow François E. Cellier, Dirk Zimmer

 ABB Turbo Systems AG ETH Zürich
 Switzerland Switzerland

 Farid.Dshabarow@CH.ABB.Com {FCellier,DZimmer}@Inf.ETHZ.CH

Abstract

This paper introduces a new Modelica library for
modeling and simulation of systems with distributed
parameters in one space dimension. The resulting
partial differential equations of either the parabolic
or hyperbolic types are being converted to sets of
ordinary differential equations using either the
method of lines or the finite volume approach. Some
simple examples serve to document the utilization of
the new library.

Keywords: Distributed Parameter Systems, Nu-
merical PDEs, Method of Lines, Finite Volume
Method

1 Introduction

1.1 History of General-purpose PDE Solvers

Lumped parameter systems have been successfully
modeled and simulated using general-purpose simu-
lation software for several decades. With the advent
of Modelica, it has become unnecessary to model
and simulate any physical systems with lumped pa-
rameters using either general programming lan-
guages, like C++, or special-purpose simulation lan-
guages, like Adams or Spice. Modelica is capable of
converting any lumped parameter model of a physi-
cal system to executable code that is as efficient in
its execution as the best manually coded spaghetti
programs of the past. Modelica can also successfully
compete with special-purpose simulation codes, like
Spice or Adams, in the simulation of electronic cir-
cuits [5] and multi-body systems [15].

The modeling and simulation of distributed pa-
rameter systems using general-purpose simulation
software has not been as successful. In the 70s and
early 80s, a number of general-purpose simulation
codes, like FORSIM VI [4], were developed for the
purpose of modeling and simulating at least some

classes of systems with distributed parameters.
FORSIM VI, for example, was designed for simulat-
ing parabolic PDEs in one or two space dimensions.
Hyperbolic PDEs could be simulated as well, but the
resulting simulation code was not as efficient. Ellip-
tic PDEs could sometimes be converted to equivalent
parabolic problems using invariant embedding.

Around the same time frame, another program,
ELLPACK [11], was developed that was designed
for solving elliptic PDEs in two or three space di-
mensions. The ELLPACK project was very ambi-
tious, and the code grew rapidly to a size that made
the code difficult to use and maintain. In order to
make ELLPACK easier to use, the designers of the
code developed a preprocessor for translating an ab-
stract model description down to a set of Fortran
subroutine calls. Yet, as new algorithms were added
constantly to the software, maintenance of the pre-
processor became soon too difficult. Hence a com-
piler-compiler was developed that could be used to
generate a new version of the preprocessor from an
abstract description thereof. Yet in spite of all of
those efforts, the resulting simulation programs were
highly inefficient at run time.

Whereas one of the primary mantras of modeling
and simulation environments is to be able to protect
the user from having to fully understand the numeri-
cal properties of the underlying solver algorithms,
this demand could never be fully satisfied when deal-
ing with PDEs. The run-time efficiency of the result-
ing simulation code depends too heavily on the cho-
sen discretization method, and no logic was found
that could relieve the user from having to make hard
choices manually.

Sometimes codes like ELLPACK have been
used to quickly try out different combinations of al-
gorithms and compare them with each other. In this
way, the user could more quickly determine, which
combination of algorithms might work best. How-
ever, once this decision has been reached, the final
code nevertheless had to be hand-coded, because the

Support for Dymola in the Modeling and Simulation of Physical Systems with Distributed Parameters

The Modelica Association 683 Modelica 2008, March 3rd − 4th, 2008

real problems were not limited to the PDE solvers
themselves, but more often than not were related to
how the code dealt with complex geometries, i.e.,
how physical boundary conditions were converted to
boundary conditions that the PDE solver could make
use of [14].

For all of these reasons, the use of general-
purpose simulation software for the simulation of
distributed parameter systems became unfashionable
again. The researchers dealing with these types of
systems simply gave up, and most of today’s simula-
tion codes are specially designed codes for very
small classes of problems only.

1.2 A Renaissance for General PDE Solvers

One technique that has proven to be more robust
than other approaches is the finite element method
[9]. The success of this technique is based on its
ability for dealing effectively with complex geome-
tries. Originally developed for simulating elliptic 2D
and 3D problems, finite element methods have
quickly also been adapted to the discretization of
parabolic and hyperbolic PDEs [12].

FEMLAB is a general-purpose numerical PDE
solver based on the finite element method. FEM-
LAB was developed in recent years for the simula-
tion of multi-physics applications. The code is capa-
ble of simulating models involving multiple PDEs
[13].

FEMLAB started out as a MATLAB toolbox.
Yet, its developers learnt quickly the same truth that
the ELLPACK developers had learnt before them: a
general-purpose PDE solver becomes soon unman-
ageable without a preprocessor capable of interpret-
ing an abstract model definition. They also learnt
that they needed to offer CAD support for entering
the device geometry.

FEMLAB was more successful than ELLPACK,
in part, because the computers have meanwhile be-
come faster, and in part, because they were less am-
bitious in the sense that they didn’t insist on incorpo-
rating each and every algorithm that has ever been
developed for the numerical solution of PDEs.

FEMLAB has recently changed its name to
COMSOL. This software represents currently the
gold standard of general-purpose numerical PDE
solvers for multi-physics applications.

1.3 A Role for Modelica?

Modelica has become the de facto standard for mod-
eling and simulation of physical systems with

lumped parameters. Does it have a role to play in
numerical PDEs also?

Modelica, or rather its implementations, such as
Dymola, offer not much that is unique or special
w.r.t. their simulation engine. The only feature
worth mentioning in this respect is a fairly robust
root solver (discontinuity handler). The true power
of Modelica lies in its ability to deal with differential
and algebraic equations (DAEs) in a very flexible
and truly object-oriented manner.

Today’s numerical PDE solvers, including
COMSOL, offer numerically advanced algorithms,
but are very primitive w.r.t. their user interface. The
complexity and elaboration of the user interface is at
approximately the same level that the Continuous
System Simulation Languages (CSSLs) were prior to
the advent of the CSSL standard [2].

Would a language like Modelica have made a
big impact in the 1960s, had it been available? The
answer to this question is no. The computers of
those times were far too small and too slow to ade-
quately host a language like Modelica. The re-
searchers of those days dealt with much simpler
models, models that could be handled by the tools
available to them, not because they lacked a better
understanding of physics, but simply, because their
computers couldn’t handle more complex models.

Are distributed parameter problems structurally
simpler than lumped parameter problems? The an-
swer to that question is also no. Physics in general
deals with 3D fields, and lumped parameter models
are simply abstractions of distributed parameter
problems.

If we wish to bend a pipe, we first heat up the
area where the pipe is to be bent. If we were to
simulate the physics of bending a pipe, we would
have to solve a 3D distributed parameter problem
with one PDE describing the heat diffusion problem
and another PDE describing the mechanical stresses
and strains within the material. These PDEs would
furthermore have to be solved in a geometry that
changes over time as a function of the numerical so-
lution of the two PDEs.

Researchers aren’t currently simulating such
processes, they aren’t dealing with partial differential
and algebraic equations (PDAEs) yet, because the
computers of today are too small and too slow to
adequately handle such problems.

Yet, it is not too early to ponder about the lan-
guage constructs and numerical algorithms that will
be needed in support of such endeavors, once the
computers shall have advanced to a level, where they
can deal with such models effectively and efficiently.

F. Dshabarow, F. Cellier, D. Zimmer

The Modelica Association 684 Modelica 2008, March 3rd − 4th, 2008

2 PDELib for 1D Numerical PDEs

Since the Standard Modelica Library doesn’t offer
any support yet for modeling distributed parameter
systems, we decided to take a first, and very modest,
step towards the much larger and more grandiose
aim outlined in the introduction.

To this end, we revisited some of the programs
of the past, in particular FORSIM VI, and decided to
re-implement some of the algorithms and capabilities
offered by FORSIM VI in a Modelica experimental
library. The results of that effort are being presented
in this paper.

In order to keep things simple, we decided to
limit the tool to the numerical solution of parabolic
and/or hyperbolic PDEs in a single space dimension,
the class of 1D numerical PDEs.

Since 1D PDEs are solved on a straight line be-
tween point A and point B, the geometry plays no
role yet in these problems. The spatial discretization
is straightforward; finite elements aren’t needed or
even useful yet for the spatial discretization; and the
resulting simulation code can still be simulated fairly
efficiently and rapidly using almost any half-way
suitable numerical algorithm.

The aim of the project was to create an experi-
mental tool that can be used to study some properties
of numerical PDEs that haven’t received much cov-
erage yet in the open literature.

One of the numerical problems to be studied is
the propagation of discontinuities through a 1D hy-
perbolic PDE. Such discontinuities cause a new
class of numerical problems. Once the discontinuity
has reached the boundary condition of the PDE, it
can no longer be isolated in time. At any moment in
time, the discontinuity exists somewhere within the
spatial domain covered by the PDE. Thus, tradi-
tional event handling cannot be used to deal with this
type of discontinuities.

A structural problem to be studied concerns the
numerical solution of 1D PDAEs. Can Modelica
help in translating a 1D PDAE into a simulation code
that can be simulated effectively and efficiently?

Two algorithms were implemented in the first
official release of PDELib: the method of lines [6],
and a dialect of the finite volumes approach [10].

3 Method of Lines

Given the 1D diffusion equation:

The method of lines discretizes the spatial deriva-
tives, while keeping the temporal derivatives con-
tinuous. In a first approximation, we may write:

Plugging Eq.(2) into Eq.(1), we find:

In this way, we have converted a PDE into a stiff set
of ODEs that can now be simulated using any off-
the-shelf stiff ODE solver, such as DASSL.

The method of lines is fairly easy to implement.
The chosen approximation is third order accurate. If
the user wishes to use a more accurate approximation
formula, this can be done easily.

Care must be taken in a correct implementation
of the boundary conditions. As the discretization
approaches the boundary, biased discretization for-
mulae in place of central formulae must be used in
order not to make use of grid points outside the
simulated domain.

The approach works fairly well, especially in the
case of parabolic PDEs such as the diffusion equa-
tion. The spatial discretization of a parabolic PDE
by means of the method of lines leads invariably to a
stiff set of ODEs, but modern numerical ODE
solvers are good at dealing with those.

This is the approach that FORSIM VI took. In
order to relieve the user of having to remember dif-
ferent discretization formulae, FORSIM VI offered a
set of Fortran subroutines for computing spatial de-
rivatives both in the bulk and in the vicinity of the
domain boundaries.

PDELib also hides the details of the discretiza-
tion formulae from the user, but does so using a
Graphical User Interface (GUI) as shown in Fig.1.

Support for Dymola in the Modeling and Simulation of Physical Systems with Distributed Parameters

The Modelica Association 685 Modelica 2008, March 3rd − 4th, 2008

Figure 1: Model of 1D diffusion equation in PDELib

PDELib offers a method-of-lines (MOL) integra-

tor block. This is a vector integrator block that inte-
grates the vector of temporal derivatives, dui /dt
(marked as “R” on the integrator block), into the vec-
tor of states, u (marked as “Var”), while considering
the vector of initial conditions (IC) as well as the left
and right boundary conditions (BCL and BCR).

The blue box computes the spatial derivatives.
In its parameter window, the user can select the ap-
proximation order to be used. Biased formulae of
suitable approximation accuracy automatically re-
place the central formulae in the vicinity of the two
domain boundaries.

The WorldModel box is used to provide general
information, such as the grid width of the spatial dis-
cretization.

Since the diffusion equation with the chosen ini-
tial and boundary conditions has an analytical solu-
tion, that solution is also computed in the block DAN
for comparison.

Simulation results are shown in Fig.2.

Figure 2: Diffusion equation simulation results

Since Dymola hasn’t been designed for simulating
PDEs, there is currently no support for 3D graphics
in Dymola. The graph shows the temperature, u, at
different space locations as a function of time.

The analytical results were superposed with the
simulation results. In the simulation, the space was
discretized into 40 segments of equal size. With 40
segments, the simulation results are still noticeably
different from the analytical results.

The MOL approach is less well suited for deal-

ing with hyperbolic PDEs, because their discretiza-
tion leads to marginally stable ODE systems, rather
than stiff ODE systems. Unfortunately, the numeri-
cal ODE solvers provided with Dymola and most
other ODE simulators are not geared to accurately
integrate marginally stable systems of ODEs.

The numerical condition of the model can some-
times be improved by using upwind discretization
schemes [3]. In these schemes, the spatial deriva-
tives are on purpose computed using biased formulae
also in the bulk. FORSIM VI and PDELib offer op-
tional upwind discretization schemes.

4 Finite Volume Method

Another discretization technique that has been suc-
cessfully applied to numerically simulating hyper-
bolic PDEs is the Finite Volume Method (FVM).
Just like the MOL technique, also the FVM approach
comes in many different variants. Hence it may be
useful to provide a toolkit that enables a user to
compose a FVM from a set of component models.

In one space dimension, the FVM consists in
subdividing the spatial domain into intervals, also
called cells or finite volumes. The integral of the
unknown function, u, is approximated over each of
these cells at each time step. Let us denote the ith
cell by:

The average value of the function u over this cell

is then:

How can we estimate the value of Ui? Consider-

ing the mass conservation law, we note that the aver-
age within the cell can only change due to fluxes at
the boundaries, assuming that neither source nor sink

F. Dshabarow, F. Cellier, D. Zimmer

The Modelica Association 686 Modelica 2008, March 3rd − 4th, 2008

is present in the cell. Mass conservation can be ex-
pressed mathematically in the following form:

where f denotes the flux function. The change of
total mass inside the cell equals the flux entering the
cell minus the flux leaving it.

Let us integrate Eq.(6) over time from t to t+Δt
and divide the equation by Δt and Δx. We obtain:

Plugging Eq.(5) into Eq.(7), we obtain:

where:

is the average flux over one time step.

We can reinterpret Eq.(8) as a discrete approxi-
mation of a differential equation:

Using this simple trick, we have reduced also the

FVM to a Continuous-Time/Discrete-Space (CTDS)
method.

How do we approximate the average flux? Dif-
ferent approximations have been proposed. A simple
approximation is the upwind flux:

i.e., the average flux across a border between cells
during one integration step is proportional to the av-
erage value of u in the upwind cell.

5 Examples

In the following section of the paper, some of the
models currently available as examples in PDELib
are shown.

5.1 Linear Advection Equation

The advection equation is one of the simplest PDEs
to be found. Given a constant speed, c, the linear
advection equation can be written as:

This problem was encoded using the MOL approach
with the initial condition:

and with the boundary condition:

applied at the left boundary of the domain. The
MOL model is shown in Fig.3.

Figure 3: MOL model of linear advection equation

Some simulation results are shown in Fig.4.

Figure 4: MOL simulation of linear advection equation

Support for Dymola in the Modeling and Simulation of Physical Systems with Distributed Parameters

The Modelica Association 687 Modelica 2008, March 3rd − 4th, 2008

The same problem was also solved using the FVM
technique with upwind flux computation. The model
is shown in Fig.5.

Figure 5: FVM model of linear advection equation

This model generates the simulation results shown in
Fig.6:

Figure 6: FVM simulation of linear advection equation

The index of the FVM solution is off by two seg-
ments due to the ghost cells used in this approach for
computing the solution in the vicinity of the domain
boundary [8].

5.2 Burger’s Equation

The inviscid Burger´s equation is the non-linear PDE

If we choose as initial condition:

and as boundary conditions:

the problem has the analytical solution:

The MOL implementation of Burger´s equation
is shown in Fig.7.

Figure 7: MOL model of Burger’s equation

Some simulation results are shown in Fig.8.

Figure 8: MOL simulation of Burger’s equation

The results look excellent, but they are deceiv-

ing. The simulation here used 20 segments. Using
10 segments, the numerical results start deviating
from the analytical results after only 0.2 seconds of
simulated time. With 20 segments, the simulation
results are more accurate, but the numerical simula-
tion turns unstable after roughly 0.6 seconds. The
more segments are being used, the faster the simula-
tion becomes numerically unstable.

An FVM implementation of Burger´s equation is
shown in Fig.9.

Figure 9: FVM model of Burger’s equation

F. Dshabarow, F. Cellier, D. Zimmer

The Modelica Association 688 Modelica 2008, March 3rd − 4th, 2008

In this example, the FVM implementation uses a
Lax-Friedrichs flux together with Local Double
Logarithmic Reconstruction (LDLR) [1,7,10].

Some simulation results are shown in Fig.10.

Figure 10: FVM simulation of Burger’s equation

The FVM simulation remains numerically stable

independent of the number of cells in use. Unfortu-
nately, the results obtained are less accurate than us-
ing the MOL approach. The indices are again off by
two because of the ghost cells.

6 Conclusions

What have we accomplished? We have been able to
create an experimental library that enables experi-
enced analysts to quickly try out different combina-
tions of algorithms that can be used for the simula-
tion of 1D parabolic and hyperbolic PDEs. Yet, we
have failed in our aim to protect the user from having
to understand the numerical properties of PDE
solvers.

We chose a mathematical rather than a physical
interface to our library, because it makes the tool
more flexible and more general in its applicability.
However, it was precisely that decision that made us
fail in our endeavor of delivering a tool to the end
user that can be applied blindly and reliably. This
simply cannot be done at a mathematical level.

Yet, this is not a major problem. Modelica, due
to its object-oriented philosophy, is good at informa-
tion hiding. In the future, we shall be able to place a
physical layer on top of the mathematical layer that
offers solutions to particular subsets of PDEs, just as
COMSOL does. Each physical module then decom-
poses its models internally into a combination of
modules programmed at the mathematical layer.

We chose a blocks philosophy for our library.
Each mathematical model is composed as a block
diagram. In the long run, this decision will prove to
have been a mistake. We shall need to learn to trust
Modelica to make the right causality decisions for

us. Otherwise, we shall never be able to solve
PDAEs.

We had made the same mistake initially in the
design of MultiBondLib [15], our multi-bond graph
library. Initially, we formulated holonomic con-
straints between bodies using blocks from the Blocks
library. If we use an adder:

Figure 11: Adder of the Blocks library

from the Blocks library, we force Modelica to com-
pute y = u1 – u2, but maybe the correct causality
ought to be u2 = u1 – y. By using blocks from the
Blocks library, we are tying Modelica’s hands un-
necessarily, which may lead to situations, where
Modelica can no longer find a solution to the prob-
lem.

Yet for the time being, the decision to program
PDELib using blocks rather than models helped us
restrict the sources of errors. During the initial phase
of the research, the phase of determining the most
suitable numerical algorithms, the use of blocks may
be a good thing.

Finally, Dymola doesn’t offer any support yet
for 3D graphics. Although it is possible to export
simulation results to MATLAB and produce 3D
graphics using that software, this is a hassle. Dyna-
sim should develop a 3D graphics package that can
be used to plot vectors of variables against time. The
package should furthermore be tied to the 3D View
Control window to give the users an opportunity to
look at their 3D graphs from different angles.

References

[1] Artebrant, H., Schroll, J., Limiter-free Third Or-
der Logarithmic Reconstruction. SIAM Journal
on Scientific Computation 28 (2006) 359-381

[2] Augustin, D.C, Fineberg, M.S., Johnson, B.B.,

Linebarger, R.N., Sansom, F.J., Strauss, J.C.: The
SCi Continuous System Simulation Lanugage
(CSSL). Simulation 9 (1967) 281-303

[3] Carver, M.B., Hinds, H.W.: The Method of Lines

and the Advective Equation. Simulation 31
(1978) 59-69

[4] Carver, M.B., Stewart, D.G., Blair, J.M., Se-

lander, W.N.: The FORSIM VI Simulation Pack-

Support for Dymola in the Modeling and Simulation of Physical Systems with Distributed Parameters

The Modelica Association 689 Modelica 2008, March 3rd − 4th, 2008

age for the Automated Solution of Arbitrarily De-
fined Partial and/or Ordinary Differential Equa-
tion Systems. Atomic Energy of Canada, Ltd.,
Chalk River, Ontario, 1978

[5] Cellier, F.E., Clauß, C., Urquía, A.: Electronic

Circuit Modeling and Simulation in Modelica. In:
Proceedings of the Sixth Eurosim Congress on
Modelling and Simulation, Ljubljana, Slovenia
(2007) Vol. 2, 1-10

[6] Cellier, F.E., Kofman E.: Continuous System

Simulation. Springer-Verlag, New York, 2006

[7] Díaz López, J.: Shock Wave Modeling for Mode-
lica.Fluid Library Using Oscillation-free Loga-
rithmic Reconstruction. In: Proceedings of the
5th International Modelica Conference, Vienna,
Austria (2006) Vol.2 641-649

[8] Dshabarow, F.: Support for Dymola in the Mod-

eling and Simulation of Physical Systems with
Distributed Parameters. MS Thesis, ETH Zu-
rich, Switzerland, 2007

[9] Hughes, T.J.R.: The Finite Element Method: Lin-

ear Static and Dynamic Finite Element Analysis.
Dover Publications, 2000

[10] LeVeque, R.J.: Finite Volume Methods for Hy-

perbolic Problems, Cambridge University Press,
2002

[11] Rice, J.R., Boisvert, R.F.: Solving Elliptic Prob-

lems Using ELLPACK. Springer-Verlag, New
York, 1984

[12] Thomée, V.: Galerkin Finite Element Methods

for Parabolic Problems, 2nd Edition. Springer-
Verlag, Berlin, 1997

[13] van Schijndel, A.W.M.: Modeling and Solving

Building Physics Problems with FemLab. Build-
ing and Environment 38 (2003) 319-327

[14] Wu, Q.M., Cellier, F.E.: Simulation of Bipolar

High-voltage Devices in the Neighborhood of
Breakdown. Mathematics and Computers in
Simulation 28 (1986) 271-284

[15] Zimmer, D., Cellier, F.E.: The Modelica Multi-

bond Graph Library. In: Proceedings of the 5th
International Modelica Conference, Vienna,
Austria (2006) Vol. 2, 559-568

Farid Dshabarow received his MS
degree in computer science from the
Swiss Federal Institute of Technol-
ogy (ETH) Zurich in 2007. He is
now working at ABB Turbo Sys-
tems, where he deals with gas dy-
namics simulations in turbochargers

and software for calculating and visualizing tur-
bocharger characteristics.

François E. Cellier received his BS
degree in electrical engineering in
1972, his MS degree in automatic con-
trol in 1973, and his PhD degree in
technical sciences in 1979, all from the

Swiss Federal Institute of Technology (ETH) Zurich.
Dr. Cellier worked at the University of Arizona as
professor of Electrical and Computer Engineering
from 1984 until 2005. He recently returned to his
home country of Switzerland. Dr. Cellier's main sci-
entific interests concern modeling and simulation
methodologies, and the design of advanced software
systems for simulation, computer aided modeling,
and computer-aided design. Dr. Cellier has authored
or co-authored more than 200 technical publications,
and he has edited several books. He published a text-
book on Continuous System Modeling in 1991 and a
second textbook on Continuous System Simulation
in 2006, both with Springer-Verlag, New York.

Dirk Zimmer received his MS degree
in computer science from the Swiss
Federal Institute of Technology
(ETH) Zurich in 2006. He gained
additional experience in Modelica and
in the field of modeling mechanical
systems during an internship at the

German Aerospace Center (DLR) in 2005. Dirk
Zimmer is currently pursuing a PhD degree with a
dissertation related to computer simulation and mod-
eling under the guidance of Profs. François E. Cellier
and Walter Gander. His research interests focus on
the simulation and modeling of physical systems
with dynamically changing structure.

F. Dshabarow, F. Cellier, D. Zimmer

The Modelica Association 690 Modelica 2008, March 3rd − 4th, 2008

Session 6c

Thermodynamic Systems & Applications

The Modelica Association 691 Modelica 2008, March 3-4, 2008

The Modelica Association 692 Modelica 2008, March 3rd − 4th, 2008

Simulation of Peak Stresses and Bowing Phenomena
during the Cool Down of a Cryogenic Transfer System

Hubertus Tummescheit†, Kristian Tuszynski† , Philipp Arnold‡

Modelon AB†, Ideon Science Park, SE-22370 Lund, Sweden
Linde Kryotechik AG‡, CH-8422 Pfungen, Switzerland

Hubertus.Tummescheit@modelon.se, Kristian.Tuszynski@modelon.se

Abstract

An extension for cryogenic systems to the AirCondi-
tioning Library by Modelon was used to analyze the
cool down of a cryogenic transfer system where
Linde Kryotechnologie in Pfungen, Switzerland was
the main contractor. Simulation was used early in the
design process to make sure that the system was well
designed for a number of cool-down scenarios. Early
detection of problematic parts of the system for some
cool-down sequences lead to changes in the piping
design. Simulation was also used to assess the maxi-
mum thermal stresses during cool down and deter-
mine suitable mass flow rates. Proper cool-down se-
quences were established iteratively with the help of
a combined simulation of the cryogenic two-phase
flow, the heat conduction in solid structures and the
resulting thermal stresses. The two main problems to
avoid during cool down are (1) excessive thermal
stresses in thick-walled components, and (2) bowing
of pipes with liquid cryogen in the lower part of a
long, horizontal pipe with gaseous cryogen above.
Two similar systems where considered, one for liq-
uid hydrogen, the other for liquid oxygen. Dymola
and Modelica were choosen for the project due to the
good multi-domain and multi-physics capabilities,
and the availability of model libraries that covered a
large part of the problem.
Keywords: Cryogenics, two-phase flow, transient
thermal stress simulation

1 Introduction

The Indian Space Research Organization, ISRO, is
building and commissioning a new cryogenic engine
test rig in their Liquid Propulsion Test Centre in Ma-
hendragiri, Tamil Nadu. The system under investiga-
tion is the cryogenic transfer system for the cryo-
genic fluids hydrogen and oxygen, used to transfer
cryogen from tankers into the run-tanks and from
both tankers and run tanks to the test objects. The

system is designed for a wide range of pressures and
flow rates which leads to a rather complex overall
structure of pipes, valves and measurement equip-
ment. Simulations of the system cool down was used
early in the design process to validate the design –
here the main issue is to avoid bowing of dead-end
pipes – and to find improvement potential from an
operational point of view. Simulation was also used
later on to establish suitable cool-down flow rates
and valve sequences that fulfill the two main require-
ments: use as little cryogen as possible for cool down
while not exceeding the maximum allowed thermal
stresses.
Obtaining the desired mass flow rates in a transient
two-phase flow system throughout the system is very
difficult because of the enormous change in densities
between gaseous and liquid cryogen: the density ra-
tio can be up to 1:1000. During the filling of the sys-
tem with liquid, deviations between local mass flow
rates and controlled rates at a valve with one-phase
inlet conditions can be large. In the situations when
the control valve is inside the two-phase region, ac-
tual mass flow rates can not be controlled at all.

2 Modeling of thermal stress in
cylindrical bodies

The model for thermal stress is based on a radial dis-
cretization of cylindrical geometries both for pipes
and valves. For the bowing phenomenon, also a tan-
gential discretization and, if necessary an axial one
are added. The energy balance of a cylindrical slice
of the pipe is based on the Fourier equation with a
central difference approximation of the temperature
gradient and takes the temperature dependence of the
heat capacity and thermal conductivity into account.
Stresses are computed separately for the stress intro-
duced through temperature gradients and the me-
chanical stress due to the pressure inside the pipe.
The stress vectors are summed to compute a total
equivalent stress. The equivalent stress reaches its

Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic Transfer System

The Modelica Association 693 Modelica 2008, March 3rd − 4th, 2008

maximum value either on the inside of the cylinder
or on the outside of the cylinder. The ratio of the
maximum equivalent stress and the yield stress is the
stress ratio.

The Fourier equation is given by [7],

i

 i

∂T i

∂ t
Cpi

∂Cpi

∂ t
T i

= Ai⋅T i−1Bi⋅T iC i⋅T i1

(1)

Where i = 2, 3.. Nr-1 and Nr is the discretization
number of the material in radial direction. The two
remaining elements are given by the boundary condi-
tions.

The calculation of the Fourier coefficients, A, B and
C for a radial discretization is shown in equation (2).

Ai=
rir i−1

r i r i−ri−1ri1−r i−1

Bi=
ri1r i

r i r i1−r iri1−r i−1

C i=−Ai−Bi

(2)

The axial heat conduction in the material is assumed
to be negligible.

To obtain the thermal stress distribution, three stress
components in tangential (Ө), radial (r) and axial (z)
directions are calculated. The general stress equa-
tions are given by

 = E⋅
1−r 2⋅

[r 2r i
2

r o
2r i

2∫ri

ro

T r  r dr∫ri

r
T r  r dr−T  r ⋅r 2]

r = E⋅
1− r2⋅

[r 2−r i
2

r o
2r i

2∫ri

ro T r  r dr−∫ri

r
T r  r dr]

 z = E⋅
1−

⋅[2
r o

2r i
2∫ri

ro T r  r dr−T r ]
(3)

where E is the Young modulus, α the linear expan-
sion coefficient and υ the Poisson ratio.

By only calculating the thermal stress at the inner
and outer points of the wall (the maximum stress of a
pipe is always at one of these points) the equations
can be simplified as:


i=

E1⋅1

1−1
⋅[Tm−T  r i]


o=

EN r⋅N r

1−N r 
⋅[Tm−T r o]

 z
i=

E1⋅1

1−1
⋅[Tm−T  r i]

 z
o=

EN r⋅N r

1−N r 
⋅[Tm−T r o]

r
i=0,  r

o=0

(4)

Where Tm is the mean temperature of the material
and 1 and Nr refer to the innermost and outermost ra-
dial discretizations respectively.

The effective stress according to Von-Mises theory
results in (from [7]):

eff =
2 z

2 r
2− ⋅ r ⋅ zr⋅ z

(5)

The stress-ratio is defined as the ratio of effective
stress to yield stress of the material:

ratio=
 eff

Y
(6)

The two different problems analyzed later in the pa-
per need different discretizations.

1. The thermal stress analysis from cool-down
requires a two-dimensional model with radi-
al and axial discretizations to capture the lo-
cal thermal stresses along the pipe.

2. The bowing problem requires axial and tan-
gential discretizations to capture the differ-
ent deformations on the top and bottom of a
pipe where the bottom is filled with boiling
liquid and the top is filled with saturated gas.

Both cases were captured with a single model with
all 3 discretizations, where the ones that were not
needed were set to one element.

H. Tummescheit, K. Tuszynski, P. Arnold

The Modelica Association 694 Modelica 2008, March 3rd − 4th, 2008

3 Flow modeling

For the two-phase flow in the pipes, a standard finite
volume method assuming homogeneous equilibrium
flow was used as described in [2] and [3]. Due to the
partially violent transients, a dynamic momentum
balance has been used for some of the simulations.
Heat transfer needs to take into account the „sub-
cooled boiling” regime, which is important towards
the end of the cool down and is present during a
large fraction of the overall cooldown time. Pressure
drop models are from the standard literature like [4].
Properties for oxygen were implemented according
to [1], hydrogen properties according to [8], and the
results were compared to RefProp by NIST which
contains the same property models.

The main trade-off that has to be taken into account
is between minimal cryogen consumption for cool-
down and a minimal cool down time. The mass flow
is restricted by an upper limit, usually determined by
the maximum allowable thermal stress, and a lower

limit. The lower limit is defined by the „non-strati-
fied flow” condition. A stable phase separation with
liquid flow on the bottom of the pipe and gaseous
flow above it results in differences in the heat trans-
fer rate of about one order of magnitude. They may
lead to faster cooldown on the bottom of the pipe,
which may lead to bowing. The limit for stratified
flow conditions for cryogens has been investigated in
[9].
It could be argued that a homogeneous equilibrium
model does not capture the physics of the cool down
flow sufficiently accurate. For the main focus of the
study, the thermal stress in the thick-walled compo-
nents, it is not necessary to predict the flow and the
flow-regime exactly (appart from avoiding stratified
flow conditions), and therefore we do not believe
that a non-homogeneous flow would improve the
quality of the results in a way that would justify the
much higher model complexity.

4 Low temperature properties

Both the thermal conductivity and the heat capacity
of metal pipes go to 0 at 0 degrees Kelvin. This has a

number of surprising effects when the temperatures
are approaching the lower limits (ca. 20 K for liquid
hydrogen and ca. 80 K for liquid oxygen): the cold
parts of metal pipes and valves almost insulate the
remaining warmer parts from the cryogen, effective-
ly slowing down the last part of the cool down.
Fortunately detailed data for metals used in cryo-
genic transfer systems is publicly available from
NIST (National Institute for Standards and Technol-
ogy) via their web-based database, see [8].

Figure 1: Flow rate which predicts non-strati-
fied flow conditions for pipeline fluid qualities
below95% (liquid and gas phase assumed saturated
at boiling point), from [9].

Figure 2: Thermal conductivity for steel 316L
as a function of temperature.

Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic Transfer System

The Modelica Association 695 Modelica 2008, March 3rd − 4th, 2008

5 Thermal stress results

For the evaluation of thermal stresses, a 10 m long
pipe with ca 150 mm diameter (DN 150) and ca 8
mm wall thickness, material stainless steel 316 for
oxygen and 304 for hydrogen, directly downstream
of an open-close valve that opens completely in 2
seconds is investigated. The results for pipes give a
good understanding for the situation of the complete
system as they demonstrate well the differences
caused by the different cryogen properties The up-
stream properties are:

1. Liquid oxygen of 0.5 MPa at 91 K.
2. Liquid hydrogen of 0.5 MPa at 21 K.

In both cases, the highest stress is not directly down

3. stream of the valve but a short distance into the pipe,
at a location where the combination of high heat
transfer coefficient and large ∆T results in the com-
bination with the highest heat flow. The longitudinal
discretization is 20 segments, the radial discretiza-
tion 10 segments for pipes.
Different phases of cool down can be clearly dis-
tinguished from the temperature trajectories. The dif-
ference between hydrogen and oxygen cool down is
also striking, but becomes understandable once the
influences of the different thermophysical properties
of the fluids and the metals are taken into considera-
tion. Some of the results are not entirely intuitive,
e.g. that the first part of the pipe has initially lower
temperature than the downstream parts, but is the last
part to be cooled down entirely.

This is explainable from the change of the heat trans-
fer coefficients over time/temperature: obviously the
first part of the pipe is cooled down faster at the be-
ginning, but the combination of a cold wall (metal
conductivity decreases with temperature) and a low
heat transfer coefficient (the beginning of the pipe is
exposed to single phase liquid flow at very low
Reynolds numbers). This fact, combined with further
results omitted here, leads to the result that the cool
down time is independent of the pipe length for pipe
lengths less than 50 m. The differences between oxy-
gen and hydrogen cool down become clear when
looking in more detail at the required energy for the
metal cool down and the available specific enthalpy
differences for cooling in different phases, tabulated
in Table 1. It is obvious that a much larger part of the
cooldown is between gas phase and metal for hydro-
gen, both due to the larger energy content and the
larger temperature difference. The gas phase cool
down has a lower heat transfer coefficient which

Figure 3: Specific heat capacity for steel 316L
as a function of temperature.

Figure 5: Temperature over time with different
phases for a 10m low-pressure pipe during cool
down with a hydrogen mass flow of 0.25 kg/s at
control valve.

Figure 4: Temperature over time with different
phases for a 10m high-pressure pipe during
cool down with an oxygen mass flow of 1.7 kg/s
at control valve.

H. Tummescheit, K. Tuszynski, P. Arnold

The Modelica Association 696 Modelica 2008, March 3rd − 4th, 2008

leads to lower stress peaks in the material. Secondly,
the rapid cool-down with two-phase flow mostly
happens after efficient pre-cooling with cold gas.
Overall and against first intuition, cooling down with
oxygen poses higher risks in spite of the lower tem-
perature difference. Note also the temperature
„bounce-back” of the metal layer in contact with the
hydrogen after the hydrogen in the pipe changes
from two-phase to liquid. This effect is caused by the
drastic drop in heat transfer coefficent in the pres-
ence of much warmer outer layers in the pipe metal.

Material /
phase

Energy content for complete
cooldown (from 318 K to 80 K for
O2, 20K for H2)

Steel 304 101.5 kJ/kg

Steel 316 94.6 kJ/kg

Total ∆h H2 4158 kJ/kg

Total ∆h O2 391.2 kJ/kg

∆h H2 evap 373 kJ/kg

∆h H2 gas 3785 kJ/kg

∆h O2 evap 191.2 kJ/kg

∆h O2 gas 200 kJ/kg

Table 1: Integrated energy content comparison
The largest source of uncertainty in the evaluation of
the stress ratio is the occurrence of the „boiling cri-
sis” in two-phase heat transfer at very high heat flow
rates. Under such conditions, a thin layer of gas at
the metal wall separates the boiling liquid from the
metal by an insulating layer, thus drastically reduc-
ing the heat flow and the resulting thermal stresses.
Correlations for the occurrence of the boiling crisis
for cryogenic fluids are not very reliable, data only
exists for non-cryogenic fluids. In addition, the boil-
ing crisis condition for cryogenic cooling occurs at
(almost) constant temperature of the hot side, which
is different form the usual experiments with rapid
heating and rising temperature on the hot side.

While this means that the exact heat transfer in
the vicinity of the boiling crisis is difficult, the
existing correlations can nonetheless be used to
estimate the highest reasonable heat transfer co-
efficient and thus the worst case scenario for the
thermal stresses in the metal wall. The results in
Figure 6 for a high pressure pipe show that the
combination of worst case assumptions (first
segments of pipe that is subject to two-phase
heat transfer from the start and high coefficinent
of heat transfer) lead to stress ratios close to the
permissible limit. The stress ratio plot in Figure
6 also shows that locations further downstream
are subject to lower stress due to pre-cooling
with cold gas. The stress peaks widen and the
level decreases as the two-phase zone widens
further downstream. A sensitivity study was
conducted with repect to the most important pa-
rameters for the stress calculation, among others,
the heat transfer coefficient, and the result was
that the maximum heat transfer coefficient had a
negligible effect on the stress ratio. For valves,
due to the much thicker metal walls, the stress
ratio exceeds 1.0 locally and for brief times.
Cryogenic valves survive these conditions, but
the high thermal stress leads to local deforma-
tions and „cold hardening”, but is far from val-
ues that would cause complete material failure.
While it is not possible to avoid these conditions
everywhere in the system, the operation of the
plant can be adapted to minimize the number of
times and locations that are subject to the ex-
treme conditions. It was, however, possible to
avoid the severe thermal stress conditions for
valves in the high pressure part of the system.

Figure 6: Stress ration along oxygen pipe di-
rectly after valve without any pre-cooling.

Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic Transfer System

The Modelica Association 697 Modelica 2008, March 3rd − 4th, 2008

6 Pipe Bowing

The calculation of the pipe bending due to the tem-
perature difference at the top and bottom of the pipe,
when filling with cold liquid, is done with the fol-
lowing assumptions:

• Pipes are considered straight,

• The pipes are fixed at the lower end points
with a gliding support at one end to compen-
sate for longitudinal length change,

• Both radial and circumferential heat transfer
is taken into consideration in the wall, axial
heat transfer is neglected due to axial sym-
metry.

The liquid cross section area in the pipe is calculated
according to (1):

Aliq=acos 1−
Lliq

r pipe
r pipe

2 Lliq−r pipe

⋅2⋅r pipe⋅Lliq−L liq
2 (1)

The liquid volume is computed from the mass flow
into the horizontal pipe, assumed to end at a closed
valve. The mass flow into the pipe is taken from a
prior cooldown simulation, at the position of the hor-
izontally connected pipe.

Simulations use two heat transfer coefficients, one
for the part of the wall that is in contact with liquid
and the other for the part that is in contact with the
gas. The gas temperature has very little influence on
the overall result because of the low heat transfer co-
efficient between gas and pipe wall. Due to the boil-
ing liquid underneath it will within short time after
liquid cryogen is at the bottom reach the saturation
temperature.

To calculate the heat transfer to the wall the actual
liquid level is used to find the length of a discretiza-
tion that is covered by liquid (if any) and the heat
transfer is proportional to this value:

Q̇=k liq∗T wall−T liq⋅AHT⋅
Lliq−LDbottom

LDtop−LDbottom

k gas⋅T wall−T gas ⋅AHT⋅1−
Lliq−LDbottom

LDtop−LDbottom


where AHT is the heat transfer area, LDbottom is the
length from the bottom of the pipe to the lower
boundary of a discretization, LDtop is the length from
the bottom of the pipe to the top boundary of a dis-
cretization, kliq is the heat transfer coefficient when in
contact with liquid and kgas is the heat transfer coeffi-
cient when in contact with the gas. Note that the
weighted heat transfer area is a linearization of the
inner pipe area fraction around the middle of a cir-
cumferential section and should thus only be used for
relatively high discretization (16 were considered
sufficient).

When calculating the pipe bending only the length
change at the top (element 4 and 5 in Figure 5) and
bottom (1 and 8 in Figure 5) of the pipe is taken into
consideration. The length change is calculated
through:

 L=L⋅ T wall (4)

where  is the linear expansion coefficient of the
material.

Lift=r−h (5)

r= L/2
sin and sin = z

d (6)

Figure 5: Circumferential discretization of the wall
(defined by user)

7

1

2

3

4 5

6

8

Figure 4: Pipe bending

d
z

α

α

r

L
Lift

h

H. Tummescheit, K. Tuszynski, P. Arnold

The Modelica Association 698 Modelica 2008, March 3rd − 4th, 2008

h= L/2
tan  (7)

(5), (6) and (7) yields,

Lift= L
2
 d

z
− 1

tan
 (8)

If the lift would reach high values of several cen-
timeters, the influence of the lift on the local level
and heat transfer would have to be taken into ac-
count, but such values are outside of the permissible
range anyways.

The worst case encountered in the final modified
version of the plant diagram was for a dead end of
slighly less than 4 m length and a filling time form
empty to full of about 11 minutes. The worst lift was
2.8 cm, a tolerable amount, and the worst case stress
ratio using an equivalent stress from the full three-di-
mensional stress tensor was around 0.45. The length
of the pipe has the worst effect on bowing as it ef-
fects both the geometry and the exposure time, and
dead end pipes longer than 4 m would quickly cause
inacceptable bowing.

7 Computational effort

For cooldown scenarios of the larger plant segments,
the computational effort was very high: for the most
complex segments of the plant cooldown, CPU-times
of 3-4 days were necessary for each simulation case,
and most of the work is spent during the first few
seconds of simulation time. Dymola's version of the
dassl solver only managed to survive the initial time
without error when the option „equidistant output
grid” was switched off. This in turn lead to result
files of around 1GB that could not be handled by
Dymola and made postprocessing very tedious.
Overall, for system simulations of the level of com-
plexity encountered during the cool down simula-
tions, We see the following tool requirements for
large scale system simulations with short periods of
very sharp gradients:

1. A fine grained control over how many vari-
ables are stored and how often they are
stored that does not influence the step-size
control algorithm. Dymola's Dassl is a bad
example of a solver that takes the storage in-
terval into account in a way that lets simula-
tions fail for a small step size to storage in-
terval ratio.

2. Means to influence step size control during
extreme gradients under short time, or set a
minimum step size and get warnings in the

log when the requested accuracy was not
achieved.

3. Improved numerical debugging facilities.
Dymola's current debugging facilities for nu-
merical problems in large models are insuffi-
cient.

8 Conclusions

Modelica is not primarily known for its strength for
modeling partial differential equations, but due to its
suitability for system level simulations, there are sit-
uations in which Modelica and Dymola are an excel-
lent tool even for models that require a full 3-dimen-
sional PDE discretization, under the contraint that
this only works for simple geometries. In particular
the heat conduction equation with its simple struc-
ture can be combined with 1-dimensional two phase
flow for thermal stress calculations. The key advan-
tage is that it is possible to capture the most critical
thermal stress situation within a complex plant with-
out the need to resort to co-simulation, or difficult to
assess assumptions.
This simulation study regarding cool down of a cryo-
genic transfer system was able to achieve a number
of goals, in part because simulation was used already
early in the design process:

1. It was possible to establish design guidelines
regarding dead pipe ends at closed branches
of the network to avoid pipe bowing. The
guidelines were incorporated in later revi-
sions of the design.

2. Flow rates were optimized with respect to
the contradictory goals of minimum cryogen
consumption and avoidance of stratified
flow conditions.

3. Simulation results allowed to devise cool
down sequences that substantially decreased
the thermal stress for all parts in the plant
except the parts closest to the tanker used for
filling.

There are situations in which there is no possibility
to validate simulations against measurements. In
spite of that shortcoming, simulation gives important
insight into system behaviour and even allows to im-
prove both system design and system operation.
Even quantitative analysis is possible to a certain de-
gree when important parameters are well understood
and a careful sensitivity analysis is conducted with
respect to such parameters.
Cryogenic plant simulations, even under the violent
transients that occur during cool down of transfer

Simulation of Peak Stresses and Bowing Phenomena during the Cool Down of a Cryogenic Transfer System

The Modelica Association 699 Modelica 2008, March 3rd − 4th, 2008

lines, can be modeled easily with the cryogenic op-
tion of the AirConditioning Library.

References

[1] Span, R., Multiparameter Equations of
State. An Accurate Source of Thermodynamic
Property Data, Springer, Berlin, 2000.

[2] Tummescheit, H.: Design and Implementa-
tion of Object-Oriented Model Libraries using
Modelica, Dissertation, TFRT-1063-SE, Depart-
ment of Automatic Control, Lund Inst. of Tech-
nology, Lund, Schweden, 2002.

[3] Tummescheit, H., Eborn, J. und Prölß, K.:
AirConditioning – a Modelica Library for Dyna-
mic Simulation of AC Systems, in Proceedings
of the 4th International Modelica Conference,
Hamburg, pp. 185 – 192, 2005.
[4] VDI-Gesellschaft Verfahrenstechnik und
Chemiewesen (Editor), VDI-Wärmeatlas, 9th Edi-
tion, Springer, Berlin, 2002

[5] Versteeg, H. K. and Malalasekera, W., An In-
troduction to Computational Fluid Dynamics – The
Finite Volume Method, Prentice Hall, 1995.

[6] Lemmon, E., The RefProp User manual, version
7.1, Personal communication See also information
on version 7.0 at http://www.nist.gov/srd/nist23.htm
(accessed 2005-11-15).

[7] Fauple J.H., Fisher F.E., Engineering De-
sign-A Synthesis of Stress Analysis and Material
Engineering, Wiley, New York, 1981.

[8] http://Cryogenics.nist.gov. Accessed October
2005.

[8] Younglove, B.A., Thermophysical Properties
of Fluids. I. Argon, Ethylene, Parahydrogen, Ni-
trogen, Nitrogen Trifluoride, and Oxygen, J.
Phys. Chem. Ref. Data, Vol. 11, Suppl. 1, pp.
1-11, 1982.
[9] D.H. Liebenberg, J.K. Novak, F.J. Edes-
kuty: Cooldown of Cryogenic Transfer Systems,
AIAA Paper No. 67-475.

H. Tummescheit, K. Tuszynski, P. Arnold

The Modelica Association 700 Modelica 2008, March 3rd − 4th, 2008

Enhancement of a Modelica Model of a Desiccant Wheel

Andreas Joos∗ Gerhard Schmitz† Wilson Casas
Hamburg University of Technology

Institute of Thermo-Fluid Dynamics‡, Applied Thermodynamics
21071 Hamburg, Germany

Abstract

This paper presents a MODELICA model for a desic-
cant wheel. Desiccant wheels are used in new con-
cepts for air conditioning systems, which can save pri-
mary energy in contrast to conventional systems. This
model is based on a model, which was presented at
the MODELICA Conference 2005 [2], however in this
study the model is improved with a new modeling ap-
proach to represent the wheels rotation. This struc-
tural change made the model faster and able to pro-
duce continuous output in contrast to the one ofCasas
et al., [1, 2]. This was an essential step to enhance
long term simulations of desiccant systems and con-
trol strategies. These simulations are necessary to op-
timize such systems and to evaluate their primary en-
ergy consumption.
Keywords: Modelica; Simulation; Desiccant Wheel;
Air Conditioning; Sorption

1 Introduction

In desiccant air conditioning systems, moist air is de-
humidified by means of a desiccant wheel, see figure 1.
Water vapor is absorbed by desiccant material as hu-
mid air passes through the wheel. Using this tech-
nology, considerable energy savings can be obtained
compared to conventional air conditioning systems. In
[1] a model library has been developed to evaluate the
performance of the desiccant assisted air condition-
ing process, so that different configurations and sys-
tem concepts can be easily realized. Because it is nec-
essary to simulate a period of a year to evaluate an
air-conditioning concept, fast, dynamic models with a
good accuracy are required. All these requirements ar-
gue for MODELICA as modeling language. The main
and most complex component of this library is the

∗email: andreas.joos@tu-harburg.de, Tel:+49 40 42878 3079
†email: schmitz@tu-harburg.de, Tel:+49 40 42878 3144
‡www.tt.tu-harburg.de

Figure 1: Example of an air-conditioning using a des-
iccant wheel

Figure 2: Schema of the old modeling approach [2]

model of the desiccant wheel.
Early approaches for numerical models can be found
in [3, 7, 8]. These model formulations have the disad-
vantage in that they can not handle desiccant materi-
als with discontinuities in their sorption isotherm (e.g.
lithium chloride, LiCl). In [2] a MODELICA model is
introduced to overcome those limitations, see figure 2
for an overview.
This model is discretized in such a way, that a sys-
tem of ordinary differential and algebraic equations is
generated, which can be easily re-configured for dif-
ferent set-up’s. Also new relations for further sorption

Enhancement of a Modelica Model of a Desiccant Wheel

The Modelica Association 701 Modelica 2008, March 3rd − 4th, 2008

isotherms can be provided without much effort. But
due to the modeling approach of the rotation move-
ment of the desiccant wheel through the two airflows,
every half revolution time a state event in the numer-
ical solver is caused. Thereby the maximal step size
of the solver is restricted. This approach is also only
valid, if the change of the boundary conditions of the
desiccant wheel is insignificant in half a revolution cy-
cle. Considering the field of application, this is a rather
academic aspect. Although the user should be aware
of this fact. Another disadvantage is that the model
produces discrete output variables from a continuous
process. To overcome these handicaps a new model
approach of the coated wheel’s movement through the
airflow was developed, implemented and tested. This
approach was developed during the work on [4].

2 MODELICA Model of Casas et al.

The model ofCasas et al.is described in detail in [2].
This section will only give a short overview of the
model and highlight the structural criteria that were
changed in this work. As shown in figure 2 the im-
plementation in MODELICA is based on control vol-
umes for air (AirCV) and for the desiccant material
(wall_A/B), which can exchange heat and moisture.
MODELICA can only handle ordinary differential
equations with respect to time. Therefore the basic
idea of the first approach was a variable transforma-
tion to express the position of the rotating wheel with
respect to the airflows in terms of time instead of an-
gular position. Among the assumptions made in [2],
three are elementary in this approach:

1. The states are not a function of the wheel’s radius:
ϑ ,x 6= f(R).

2. The variation of boundary conditions during half

a rotation is negligible:∂BC
∂ t

∣∣∣
T
2

≈ 0.

3. The angular velocity of the wheelω is constant

during half a period:∂ω
∂ t

∣∣∣
T
2

≈ 0.

Equation (1a) gives the average outlet temperature of
one airstream. To calculate the integral, the tangential
outlet temperature distribution must be known. This
leads to a tangential discretization of the wheel and
a modeling of the the motion of the discrete pieces
through one airflow into the other. To display this
movement the variable transformation from the angle

Air flow I

Air flow II

Wheel Part I

Wheel Part II

t = ti

t = ti + 1
2T

Airflow I connected to
Wheel Part I and

Airflow II connected to
Wheel Part II

Computingϑ̄(t) =
∫ t
ti

ϑ dt

t−ti

ϑOUT = ϑ̄(ti+ 1
2T),

Airflow I connected to
Wheel Part II and

Airflow II connected to
Wheel Part I

Figure 3: Function principle of the model fromCasas
et al.

φ to the timet is introduced, which leads to equa-
tion (1b).

ϑ̄Air,out =
1
π

π∫

0

ϑ(φ ,t,BC(t)) dφ (1a)

with

t =
φ
ω

=
φ ·T
2π

anddt = dφ

leads to

ϑ̄Air,out =
2
T

t0+ T
2∫

t0

ϑ(t,BC(t)) dt (1b)

The advantage of this formulation is, that the wheel
has only to be split in two halves; one for each air flow.
At the end of half a rotation period, the boundary con-
ditions of the two pieces are switched; the wheel has
performed half a revolution. Figure 3 illustrate this be-
havior.

A. Joos, G. Schmitz, W. Casas

The Modelica Association 702 Modelica 2008, March 3rd − 4th, 2008

Another more process engineering oriented point of
view is that the continuous process of the turning
wheel is represented by batch processes, which each
last half a revolution period.
Among the application restrictions mentioned, this
model has two other drawbacks. First it produces dis-
crete output variables from continuous input values in
contrast to the physical process. And second, as will
be pointed out in section 4.2 the models computing
time is quite large, because it causes everyT

2 a state
event.

3 Structure of the new MODELICA

Model

Based on the restriction of applicability and the large
computing times mentioned in section 2, a new mod-
eling structure has been developed. The basic idea in
this approach is not to perform the variable transfor-
mation, but to use equation (1a). To reach this aim, an-
other way to describe the motion of the wheel through
the air flows had to be introduced.
The construct of the air and desiccant material con-
trol volumes is no longer virtually moved through the
air flow by switching the air connectors every half
rotation period. Instead the control volume are lo-
cally fixed and adesiccant fluidwas introduced, which
flows through thedesiccant CV’s in cross flow to air
flow direction.
Therefore the existing control volumes for air and the
desiccant material were used to build a wheel model
with a discretization in axial and tangential direction.
This modeling approach is sketched in figure 4(a). The
black lines on the wheel should hint to the discretiza-
tion. In contrast to figure 3 the air connectors of theAir
CV are attached to the in- and outlet connectors of the
wheel model. Also the desiccant material models are
connected in series to model the rotation by keeping
thedesiccant fluidin a continuously circulating flow.
Figure 4(b) illustrates how theair and thedesiccant
CV’s interact by exchanging heat and moisture for
modeling the (de-)humidifying the air by the sorbens.
These flows are sketched by the double headed arrows
between the two CV’s. Air flows along the cylinder
axis while the solid passes its CV’s in tangential direc-
tion. These two streams are indicated in figure 4(b) by
the arrows near the two CV’s.
For these purposes adesiccant fluidflow had to be in-
troduced in thedesiccant CVand set in relation to the
revolution speed. This mass flow is computed by equa-
tion (2d), which results of the wheel’s mean circumfer-

ential velocity (2a), the conservation of mass (2b) and
the radial passage area (2c). The area is obtained by
dividing the longitudinal half sectionR·L by the axial
discretizationn.

vDF =
R
2
·ω (2a)

with

ṁ= A ·ρ ·v (2b)

and

A =
L ·R

n
(2c)

leads to

ṁDF,i =
L ·R2 ·ω ·ρDF

2·n (2d)

The densityρDF represents the mass of the carrier ma-
terial for the sorbent divided by the volume of the
wheel, thus including its porosity. This definition was
chosen, because the phase equilibrium calculation uses
the loading of the carrier material with the sorbens and
the loading of the sorbens with water.
As mentioned before, the new wheel model was con-
structed by control volumes for air and desiccant mate-
rial. Casas et al.used for their modelAir CV’s with an
axial discretizationn in flow direction. To include as
much of the existing code as possiblemof theair CV’s
are put side by side to get a control volume, which is
discretized in two dimensions. Each stream tube in
this construct can not directly interact with its neigh-
bors. Listing 1 gives some code snippets to illustrate
the implementation in MODELICA.
There arem instances of the modelAirCV, which
are n times discretizedAir CV. EachAirCV has an
HeatConnector and HumidityConnector in
order to couple it with theDesiccant CV. These con-
nectors are united in the two modelsHeat1Dto2D
andHumidity1Dto2D. The function of these two
models is to provide an×mmatrix of heat and humid-
ity flows respectively, so that an Air2D model can eas-
ily be connected to a two dimensional desiccant ma-
terial model to form half a desiccant wheel. Figure 5
shows the twoAir CV’s connected to twoDesiccant
CV’s, which form a closed loop with a circular flow of
thedesiccant fluid.
The Desiccant CV is constructed using an analog
method. Its model name in the library isSMCV_2D.

Enhancement of a Modelica Model of a Desiccant Wheel

The Modelica Association 703 Modelica 2008, March 3rd − 4th, 2008

Air flow I

Air flow II

Des. flow

(a) Complete Wheel

Air CV

Desiccant CV

Heat FlowMoisture Flow

Air flow

Desiccant flow
(b) Detail scheme of one element from the
wheel in fig. 4(a)

Figure 4: Scheme of the new modeling approach

It hasn stream tubes, which are discretizedm times.
The mass flow of the virtual fluid is computed in both
SMCV_2D models by equation (2d). The connectors
between theDesiccant CVonly contain the tempera-
ture and the water loading of thedesiccant fluid. The
reason for this is to avoid initialization problems with
a circular incompressible flow. The disadvantage of
this approach is, that the wheel’s rotation direction is
fixed. But this restriction is also true for the real desic-
cant wheel, which was used for the experimental part.
Another simplification of this model is that the entrain-
ment of air from one air flow to the other is not mod-
eled. So the simulation of fast rotating wheels will lead
to errors. But in their application the wheel’s circum-
ferential speed is small in comparison to the velocity
of the air flows.

Listing 1: Excerpt from the Air CV 2D Matrix model

model Air2D
parameter Integer n = 1 "Axial

Discretization";
parameter Integer m = 1 "Tangential

Discretization";
...

AirCV[m] Air(
each n=n,

...
);
MeanValues Mean(m=m);
Heat1Dto2D HeatMatrix(n=n,m=m);
Humidity1Dto2D HumidityMatrix(n=n,m=m

);
AirSplit Split(m=m);

equation
for j in 1:m loop

connect(Split.Outlet[j], Air[j]
.Inlet);

connect(Air[j].Outlet, Mittel.Inlet
[j]);

connect(Air[j].HeatConnector,
HeatMatrix.Heat1D[j]);

connect(Air[j].HumidityConnector,
HumidityMatrix.Hum1D[j]);

end for;
...

end Air2D;

Air CV

Air CV

Desiccant CV

Desiccant CV

Figure 5: Dymola representation of the new modeling
approach

4 Comparison of the two Models

4.1 Results

The model ofCasas et al.contains sorption isotherms
in the medium model for LiCl, which where validated
with measured values. The steady state results of the
whole wheel were checked against the manufacturer’s
data and the transient simulations against the model of
Rau et al.[5]. These isotherms were also implemented
in the desiccant material CVof the new model. To
validate the implementation the test model shown in
figure 6 was used. This model consists of adesiccant
material CVwhich is connected to anAir CV. The des-

A. Joos, G. Schmitz, W. Casas

The Modelica Association 704 Modelica 2008, March 3rd − 4th, 2008

Air CV

Des. CV

Figure 6: Test model for the comparison with the
isotherm data ofRau et al.

0 50 100 150 200 250 300 350 400
20

40

60

80

time in s

te
m

pe
ra

tu
re

 ϑ
 in

 °
C

This Work Casas et al. Rau et al.

0 50 100 150 200 250 300 350 400
0

0.005

0.01

0.015

0.02

time in s

w
at

er
 c

on
te

nt
 x

 in
 k

g/
kg

This Work Casas et al. Rau et al.

Figure 7: Comparison of a single element of the model
from Casas et al.and the new one

iccant fluid flow is set to zero in this model, so that the
results can be compared to the single blow simulations
done byRau et al.[5] andCasas et al.[1, 2]. Figure 7
shows the results of the three models. It is obvious
that the sorption isotherms implementation in the new
model is equivalent to the model ofCasas et al.. In this
aspect it is adequate, because the mathematical imple-
mentation of those isotherms was already adapted to
the use in MODELICA.

For all results, which are discussed below, models
were used, which contain an instance of a whole des-
iccant wheel model and sources and sinks for the air
flows. One of those test configurations is presented in
figure 8, in this case with the new model.

The accuracy of the new model depends on the tan-
gential discretizationm. The behavior of thedesic-
cant material CVapproaches that of the real wheel as
the computational grid is refined, viz. the more dis-

Figure 8: Test model for comparisons of the whole
wheel model, here with the model form this work

0 5 10 15 20 25 30
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

tangetial Discretization m

st
an

da
rd

iz
ed

 te
m

pe
ra

tu
re

 Θ
 /

w
at

er
 c

on
te

nt
 X

water content air flow I
water content air flow II
temperature air flow I
temperature air flow II

Figure 9: Influence of the tangential discretization to
the accuracy

crete control volumes are instantiated in flow direc-
tion of thedesiccant fluid. Figure 9 shows standard-
ized outlet temperaturesΘ and water contentsX of the
two air flow through the desiccant wheel model. They
are plotted against the tangential discretizationm. The
reference value is the corresponding simulation result
from a calculation withm= 50. The values were com-
puted from the steady state results from a step response
after 5000 s. It can be seen, that atm = 8 the rela-
tive error is smaller±2%. Later the consequences on
the CPU time will be discussed, but it can be seem
from table 1, that depending on the required accuracy
mshould be chosen as 5 or 8.
Figure 10 shows a detail view on the step response of
an outlet temperature of three test models, one with
the desiccant wheel formCasas et al.and two with
wheel models from this work with different numbers
of tangential CV’s. The complete simulation time was

Enhancement of a Modelica Model of a Desiccant Wheel

The Modelica Association 705 Modelica 2008, March 3rd − 4th, 2008

50 60 70 80 90 100
47

47.5

48

48.5

49

49.5

time in s

te
m

pe
ra

tu
re

 ϑ
 in

 ° C

 Casas et al.
this work m = 8
this work m = 50

Figure 10: Comparison of complete the model from
Casas et al.and the new one

5000 s. The new model produces continuous output
variables in respect to the solver step-size in contrast to
the discrete output of the old one. The model with the
tangential discretization ofm= 8 has a slightly larger
deviation from the one withm= 50 than the model of
Casas et al.. But as will be shown in the next section,
it has a remarkable advantage concerning computing
times. And compared with measurement errors, the
accuracy is sufficient.

4.2 Computing Time

The computing times discussed in this section corre-
spond to calculations on one core of an Genuine In-
tel(R) CPU T2300 @ 1.66 GHz on a laptop with 1 GB
RAM.
Figure 11 shows a comparison in computing time be-
tween the previous approach and the new model. The
old model has no tangential discretization, but has
to modify theconnect statement between the air
flows an the wheel’s control volumes every half period.
Whereas the new one needs to be divided in at least
five to eight parts (m in fig. 11) per control volume to
produce good output values. This leads to the behavior
presented in the plot. The old model produces at every
half revolution time an event while switching the sides,
which wastes computing time while reinitialization of
the equation system. This leads to the nearly linear
characteristic consisting of numerous small steps. The
new model contains a multiple (∼ m times) of equa-
tions compared the the old one, so the computing time
for one step is much higher, but due to the model struc-
ture time steps larger than half the revolution time are
possible. In highly dynamic regions, like the begin-
ning of the plot in figure 11, the computational effort

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

time in s

C
P

U
 ti

m
e

in
 s

 Casas et al.
this work m = 5
this work m = 8
this work m = 10

Figure 11: Impact of tangential discretizationm on
computing time, compared with the model from [2]

is high, but due to the large time steps in regions with
small gradients, the overall computing time is lower
for the new model with a tangential discretization of
m = 5,8 and 10 for simulation times larger than 300
seconds in this example.
This behavior is expected to lead to a large decrease in
computing time, especially at long time simulations of
air-conditioning systems.
Table 1 gives an overview of the equations, which are
created by the different test models, so the number of
equations is a little larger than in the stand alone wheel
model. The table also shows the computational time of
the test model for a simulation time of 5000 s. Due to
the above mentioned effect of the state events during
the simulations ofCasas et al.’s model, the new model
with m = 5 is nearly 20 times faster even though it
consists of about 10 times the number of equations. In
this case with the old wheel’s test model 4166 state
events occurred during simulation time.

5 Summary and Outlook

Because of the enhancement of the desiccant wheel
model fromCasas et al.a MODELICA model could
be created, which combines good accuracy with ac-
ceptable computing times. It was successfully used in
further work ofApplied Thermodynamics, like [4, 6],
as the heart of a library for desiccant systems. Sev-
eral simulation of complete climate periods were per-
formed as well as studies concerning different con-
trol strategies of those systems. For the analysis of
control strategies the models were exported to Mat-
lab/Simulink to find and optimize control parameters.

A. Joos, G. Schmitz, W. Casas

The Modelica Association 706 Modelica 2008, March 3rd − 4th, 2008

Table 1: Number of equations and CPU time of the
test model against the tangential discretizationm

m No. of equations CPU timea in s

1 1681 ∼ 1
2 3043 ∼ 4
5 7129 20
8 11215 48

10 13939 78
15 20749 186
20 27559 289
30 41179 810
50 68419 2154

Casas et al. 1184 827

aFor a simulation time of 5000 s in Dymola using Dassl

Especially for this part it was very helpful, that the new
model no longer produces discrete output. It was also
possible to adapt the model parameters in such a way
that data from existing air conditioning systems could
be recomputed.

Nomenclature

Latin Symbols

A Area
L Length
m Tangential discretization
ṁ Mass flow
n Axial discretization
R Radius
t Time
T Period
v Velocity
x Water content
X Standardized water content

Greek Symbols

ϑ Temperature
Θ Standardized temperature
ρ Density
φ Angle
ω Angular Velocity

Abbreviations and Subscripts

BC Boundary condition
CV Control Volume
DF Index fordesiccant fluid
i Index for i-th element

References

[1] Casas, Wilson:Untersuchung und Optimierung
sorptionsgestützter Klimatisierungsprozesse. PhD
thesis, TU Hamburg-Harburg, 2005.

[2] Casas, Wilson, Katrin Proelss, and Gerhard
Schmitz:Modeling of desiccant assisted air con-
ditioning systems. In Proceedings of the 4th Inter-
national Modelica Conference, volume 2, pages
487–496. Modelica Association, 2005.

[3] Casas, Wilson and Gerhard Schmitz:Nume-
rische Untersuchungen an einer sorptionsge-
stützen Klimaanlage. In VDI Fortschrittliche
Energiewandlung- und Anwendung, volume 1594
of VDI-Berichte, 2001.

[4] Joos, Andreas:Untersuchung und Optimierung ei-
nes solargestützten Heiz- und Klimatisierungssys-
tems für ein Einfamilienhaus. Master’s thesis, TU
Hamburg-Harburg, Institut für Thermofluiddyna-
mik, 2006.

[5] Rau, J. J., S. A. Klein, and J. W. Mitchell:Char-
acteristics of lithium chloride in rotary heat and
mass exchangers. Int. Journal of Heat and Mass
Transfer, 34(11):2703–2713, 1991.

[6] Schmitz, Gerhard, Wilson Casas, and Andreas
Joos: Entwicklung eines thermisch betriebenen
Klimatisierungssystems für Ein- und Zweifamili-
enhäuser, December 2006. Institute of Thermo-
Fluid Dynamics, Hamburg University of Techno-
logy.

[7] Simonson, C.J. and Robert W. Besant:Heat and
Moisture Transfer in Desiccant Coated Rotary
Energy Exchangers: Part I. Numerical Model.
HVAC&R Research, 3(4):325–340, 1997.

[8] Zheng, W. and W.M. Worek:Numerical simula-
tion of combined heat and mass transfer processes
in a rotary dehumifier. Numerical Heat Transfer,
23:211–232, 1993.

Enhancement of a Modelica Model of a Desiccant Wheel

The Modelica Association 707 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 708 Modelica 2008, March 3rd − 4th, 2008

Real-Time HWIL Simulation of Liquid Food Process Lines
Magnus Gäfverta Tomas Skoglundb

Hubertus Tummescheita Johan Windahla

Hans Wikander c Philip Reuterswärda

aModelon AB
Ideon Science Park, SE-223 70 Lund, Sweden

magnus.gafvert@modelon.se

bTetra Pak Processing Systems
Ruben Rausings gata, SE-221 86 Lund, Sweden

tomas.skoglund@tetrapak.com

 cAvensia Innovation AB
Gasverksgatan 1, SE-222 29 Lund, Sweden

Abstract

This paper describes a newly developed Modelica
and Dymola based solution for hardware-in-the-loop
(HWIL) simulation in the food processing industry.
The solution has been evaluated for potential larger
scale deployment into the operational processes of
Tetra Pak Processing Systems. The solution consists
of a real-time enabled model library for liquid food
processing, which is compiled into a process
simulator using Dymola, and custom developed
software for communication between the process
simulator and a production PLC control system using
industry standard OPC protocols.

Keywords: physical modeling and simulation;
hardware-in-the-loop; liquid food processing;
process simulation; real-time simulation

1 Introduction

Dynamic simulation of liquid food process lines, e.g.
pasteurization lines in dairies, see Figure 1, has
already been practiced in a systematic way by means
of the FoodProcessing library (FP), see Figure 2.
This Modelica [1] and Dymola [2] based dynamic
model library developed for in-house use has
previously been reported in [3] (Skoglund, 2003), [4]
(Skoglund and Dejmek, 2006) and [5] (Skoglund,
2007). Besides the fundamental laws of
conservation, e.g. mass and energy, the model library

addressed particular characteristics of liquid food
process lines. For example dynamic propagation of
fluid properties was considered due to the need of
simulating start-up and shut-down with fluid
changes, which are occurring frequently in the
addressed applications.
Within the operations of Tetra Pak Processing
Systems, the FoodProcessing library was used to
simulate many processes with their control system as
a tool for development or improvement. Simulation
was also used as a means for trouble shooting.

Figure 1. A typical dairy process-line for
pasteurization.

In the regular delivery process of Tetra Pak’s order
handling, food processing units are functionally
tested by running them with water before they are
shipped to the customers. This is carried out to
secure high quality of the equipment. The test cannot

Real-Time HWIL Simulation of Liquid Food Process Lines

The Modelica Association 709 Modelica 2008, March 3rd − 4th, 2008

be carried out before the machine is manufactured,
which leads to the need of extra time before delivery.
The test itself also requires costly test places with
water, steam, electricity, compressed air and drain
available. Also, water has different properties
compared to the liquid food that will eventually be
processed by the unit which means that the test result
may deviate from real plant performance.
To enable shorter delivery time at a lower cost,
alternatives to this functional test were investigated.
One of the alternatives is to run real-time hardware-
in-the-loop (HWIL) simulation where the real PLC
(Programmable Logic Controller) control system is
connected and run with the process model. Since the
process model enables simulation with not just
water, but real fluid models the HWIL simulation
may also, in some cases, be more realistic.
Furthermore, often the normal water test does not
include special equipment (centrifugal separators or
equipment upstream/downstream) due to practical
problems. For simulation, this limitation does
seldom exist. In simulation it is also possible to
monitor virtually any dynamic variable in the system
without the need for sensors, which may be of great
help to quickly understand and resolve issues.
Furthermore HWIL simulation enables other possi-
bilities, e.g. as a test, validation, and verification tool
in PLC software development, and operator training
[6] (De Prada et al., 2003) and [7] (Bäckman and
Edwall, 2005).
This article describes:

• How the model library was adapted for real-
time simulation

• How a communication program was
developed as a link between the PLC and the
simulator.

The work was carried out as a project with Tetra Pak
Processing Systems and Modelon.

2 The “FoodProcessing” library

Since the start of the development of the
“FoodProcessing” (FP) library [3] (Skoglund, 2003)
much more work was spent to address characteristics
of liquid food process lines. Thus Skoglund et al.
(2006) [8] described a way to handle fluid transitions
in heat exchangers that leads to thermal transients. A
model for axial-dispersed plug flow (ADPF) was
also described [9] (Skoglund and Dejmek, 2007) and
extended to model first-order reaction kinetics [10]
(Skoglund and Dejmek, 2007). Figure 2 shows the
FoodProcessing library in the Modelica tool Dymola.

The library has since been used to configure many
process lines and to investigate various performance
issues, e.g. product losses. Thus the development of
a mixing zone was simulated for product filling and
emptying in a commercial UHT line for milk
sterilization [11] (Skoglund & Dejmek, 2007). The
result was compared with measured data.

Figure 2. The FoodProcessing library

The library was also used for trouble shooting and
testing new design ideas, both concerning process
design and control algorithm.

3 Real-Time Aspects

The original FoodProcessing library was designed
for high-fidelity desktop simulation with variable-
step high-order solvers and many models were not
suited for real-time simulation. It was decided to
translate and adapt the library into a real-time Food-
Processing library (FPRT). The models in FPRT are
made to simulate robustly with fixed-step solvers
with a computational load that avoids computation
over-runs when executed in real time on standard
PC:s.
One major difficulty is the nonlinear equation sys-
tems that appear from the pressure dynamics for pipe
networks with incompressible fluids. A related diffi-
culty is the effective structural change that valve
closing and opening implies on the equation systems.
The overall system contains stiff modes and requires
implicit methods for numerically stable integration.
The inline integration feature of Dymola is used to

M. Gäfvert, T. Skoglund, H. Tummescheit, J. Windahl, H. Wikander, P. Reuterswärd

The Modelica Association 710 Modelica 2008, March 3rd − 4th, 2008

take advantage of the symbolic reduction and trans-
formation. To reduce the sizes of the resulting equa-
tion systems an explicit integration routine was intro-
duced by inlining Modelica code in some compon-
ents in the library. (The mixed implicit/explicit inline
integration in Dymola does not handle the present
type of models.)
Several numerical tweaks were introduced to in-
crease robustness [12]. Several models have also
been simplified and discretization grids have been
made smaller. The number of dynamic states has
been reduced.

4 HWIL Setup

HWIL simulation is often performed on dedicated
computers with real-time operating systems and ex-
tensive I/O possibilities. In the present application
the solution should be able to run on a standard PC
with Microsoft Windows operating system with Eth-
ernet or automation-bus communication with the
PLC hardware. This means that hard real-time can-
not be ensured. The sampling rate of feedback con-
trol-loops in the food processing applications are in
the range of 100 ms or longer, and sufficient per-
formance can be met with soft real-time.

SimLink

OPC

SndRcv

DDE

SndRcv

SAPI

SndRcv

DDE

SndRcv· · ·

PLC OPC/DDE Server dymosim
Executable

dsmodel
DLL

OPC DDE DDE SAPI

alt.

clients

PLC
H/W

PLC
S/W

alt.

Dymola

compilation

Figure 3. Overview of HWIL setup with SimLink
signal routing application, PLC communication
server, PLC hardware or emulated controller, and
dymosim executable or dsmodel DLL process
simulator.
The HWIL setup consists of a PLC system with con-
trol algorithms and programs, the process simulator,

and a software to route signals between the PLC and
the simulator. See Figure 3.

4.1 PLC System

PLC systems are digital computers for automation
with extensive support for I/O arrangements and bus
communication. The PLC computers host control
programs for sequence control and sampled data
feedback control typically expressed with IEC
61131-3 languages such as ladder diagrams or func-
tion block diagrams.
Tetra Pak work with several suppliers of PLC sys-
tems, such as Rockwell Automation, see Figure 4,
and Siemens, and the HWIL solution must support
them all. Most major systems support the DDE (Dy-
namic Data Exchange) and OPC (OLE for process
control) technologies for interoperability [13,14].

Figure 4. Allen Bradley PLC Controller from Rock-
well Automation.

DDE is an old technology for communication
between multiple applications under Microsoft Win-
dows. OPC is a standard protocol for open con-
nectivity in industrial automation. DDE suffers from
scalability and performance issues, and is more or
less being superseded by newer technology. There-
fore, the communication between the simulator and
the PLC was decided to build mainly on OPC with
DDE as fallback.
OPC is originally designed for communication with
HMI (Human-Machine Interface) units, operator
panels, and enterprise systems with moderate to low
requirements on data bandwidth. The standard has
then evolved to cover a wider class of communica-
tion tasks in industrial automation. OPC supports
synchronous and asynchronous communication and
is highly flexible and scalable. OPC is not primarily
intended for feedback control or communication with
high-bandwidth hard real-time requirements. With a
soft real-time performance of about 400 items at a
rate of about 20-30 ms, or 2000 items at about 100

Real-Time HWIL Simulation of Liquid Food Process Lines

The Modelica Association 711 Modelica 2008, March 3rd − 4th, 2008

ms it is still deemed sufficient for the present HWIL
application.
In HWIL simulation the I/O signals in the PLC are
re-routed from the physical I/O card to memory ad-
dresses associated with OPC items. This means that
the PLC programs must be extended with a simula-
tion mode to support simulated I/O.
Some vendors, such as Rockwell Automation, also
offer emulators for their PLC computers. This makes
it possible to also work with SWIL (software-in-the-
loop) with the same setup.

4.2 Process Simulator

Dymola supports, via the dymosim executable,
stand-alone real-time simulation with DDE commu-
nication. All variables in the model are then avail-
able as DDE items for subscription. The perform-
ance and scalability issues with DDE mean that al-
ternative solutions have also been investigated.
One attractive solution is to use a model DLL (Dy-
namically Linked Library) similar to that used in the
DymolaBlock that enables Dymola models to be
used in MATLAB/Simulink. This means that an ex-
ternal integration routine is used and the model de-
rivatives and outputs are returned by direct function
calls. An SAPI (Simulation Application Program-
ming Interface) for calling the simulation model as a
function was therefore developed together with build
scripts to produce the model DLL. For real-time sim-
ulation the integration routine is a fixed-step explicit
Euler with event management. The direct function
calls means that virtually all communication over-
head is eliminated.

4.3 Signal Routing with SimLink

The number of signals in a HWIL setup may be in
the range of a few ten for small process modules, to
several hundred for large processes. The signals rep-
resent all sensor and actuator values that logically
connects the process with the PLC, but may also in-
clude values from “virtual sensors” that are not
available on the real process. The signals may also
represent alarms and warnings from the model com-
ponents, for example to alert the user of operating
points outside the range of validity.
A core component in the HWIL setup is the organiz-
ation and synchronization of the signal routing. The
SimLink software described in the following was de-
veloped for this purpose.
SimLink can be viewed as a coupling panel where
input and output signals from different clients are
connected or linked via a graphical user interface.

SimLink is a Windows application and builds on the
Microsoft .NET Framework and is based on OPC
Core Components and OPC .NET API 2.0. SimLink
is configured by specifying a set of clients, defining
their signals, and then connect the signals by introdu-
cing links, see Figures 5 and 6. The configuration of
clients, signals and links can be saved to a configura-
tion file, that later can be loaded into the application.
This makes it easy to maintain different configura-
tion setups. The configuration file contains all in-
formation of the setup, and is stored in a human
readable XML format.

Figure 5. The Links view displays details on signal
links and offers a convenient user interface for con-
necting clients.

Figure 6. The Clients view gives an overview of con-
figured clients and signals. Signals can be monitored
and manipulated in run mode.

When the setup is finished, the next step is to con-
nect to the clients. The application then makes sure
that it has valid connections to all clients and that

M. Gäfvert, T. Skoglund, H. Tummescheit, J. Windahl, H. Wikander, P. Reuterswärd

The Modelica Association 712 Modelica 2008, March 3rd − 4th, 2008

they are ready to send and receive signals. After con-
necting, the application is ready to go into run mode,
and this is done by clicking the play-button. In run
mode, SimLink is listening to all signals sent to the
clients from external applications and internally
routes them through the links to clients connected to
the receiving applications. Run mode is ended by
clicking the stop-button.
SimLink currently supports the client types listed in
Table 1. Figures 7 – 9 shows the properties dialogs
for the DDE, OPC, and SAPI client types.

Table 1. SimLink client types.
Client type Description
DDE Connects to programs that support

Windows DDE.
OPC Connects to programs with an OPC

server
SAPI DLL The simulation model resides in a

DLL that is loaded into the client.
The client contains the simulation al-
gorithms and communicates with the
model through a direct function API
(SAPI).

Internal Signal sink for testing purposes.
Trigger Signal source that generates output

signals at a specific rate.

Figure 7. Properties for DDE client.

Figure 8. Properties for OPC
client.

Figure 9. Properties for SAPI
client.

The SimLink OPC client is to date verified to sup-
port PLC systems from Rockwell Automation and
Siemens.

5 Process Examples

The process line that was chosen for the evaluation
of the real-time HWIL simulation was a custom
designed commercial processing module for dairy
pasteurization1, see also Figure 1. Figure 10 shows
the top-level model diagram (flow chart) as
configured by using the library FPRT.
The process consists of a balance tank, a plate heat
exchanger for pre-heating and pasteurization, a de-
aerator, a homogenizer, holding cell, steam-powered
hot-water unit, and pumps, valves, and sensors being
monitored and controlled by the PLC system. The
process supports a number of operating modes, e.g.,
start-up, production, cleaning, and hibernation,
which have different flow configurations.

1 Tetra Therm Lacta, designed and manufactured by Tetra
Pak Processing Systems.

Real-Time HWIL Simulation of Liquid Food Process Lines

The Modelica Association 713 Modelica 2008, March 3rd − 4th, 2008

I_II_III_IV_V
Top...
0.2 ...

BTD

L=1.7...

 D=DPipe1
fa...

L=6.57...

 D=DPipe4
false

L=8.1...

 D=DPipe5
fal...L=0.6...

 D=DPipe3
fa...

W

M2

WHz

LKH-...

L=...
 D...Pi...

Drain1

SC2

FT
5

m
...

LE65
cm

Tp
...

Tp
...

NC
=...

V
103

V1...

valve_...L=...
 D=DPi...
f...

L=0...
 D

=D
Pip

...
f...

NC=tr...

V99

 D
=0

.0
...

L=
14

m

HC
15

sn=
1

n...

Act 10=...

V122

 D=0.0...

L=213 m

SPHC285s

n=1 n...

L=
4.

6...
 D

=D
Pipe

2
fa

...L=6....
 D

=D
Pipe

8
f...

L=6...
 D

=D
Pip

...
f...

NC
=t

...

V
104

NC=...

V114 Tp...

L=3
m

 D
=D

Pipe
...

fa
...

L=10 m

 D=DPipe...
fa...

L=15 m

 D=DPipe12
fal...

V
102

V
120

AlroxOption

Homo...

W

TT...
C

TT...
CL=0...

 D=DPip...
f ...

L=3...
 D

=D
Pip

...
f...

L=0....

 D
=D

Pip
...

f...

OP
1

d=0....

V
1...

S...
val

...
Tpi

...

Tpi...

L=0...
 D

=D
Pip

...
f...

L=0....
 D

=D
Pip

...
f...

L=0...
 D

=D
Pip

...
f...

L=2....

 D=DPip...
f...

L=4.57...

 D=DPipe17
false

L=
1.

70
...

 D
=D

Pipe
18

false

L=9.5...

 D=DPipe19
fal...

L=9.7...

 D=DPipe20
fal...

V
115

Supply
PT

87
kPa

PT
83

kPa

RT

RT AO_TIC52

AO_LIC65

AO_M2_...
M2_M9_...

V104

V114

V99

V115

V102

V103

V122V120A

TT71
C

PT
86

kPa

AO_PC1...

FLOW_...

TE64_MV

TE71_...

FT05_MV

LE65_MV

TE43_MV

PT83_...

PT87_MV

PT86_MV

Bus_I...

bus

0
6...3...

8e5
Scalin...

k=1...

gain

V120B

Tpi...

NC...

V...V112_...

OP
2

d=
0....

TI06
C

val...
V2...

L=
1

m
 D

=0
....

Pipe
...

fa
...

V152_PC

sw itch1

const

k=6...

AO

DO

DI AI

Figure 10. Flow diagram of the process line used to
evaluate real-time HWIL simulation. The model is
built in a hierarchy. The figure shows the top level
view.

Figures 11 and 12 show the PLC operator panel that
is used to control and monitor the process.

Figure 11. An overview picture of the PLC operator
panel.

6 Results

The described HWIL solution is being evaluated
both from a business perspective and a technical
perspective. Technically, the presented solution
seems to fulfil all given requirements. There have
been a number of minor issues that have been
resolved, but the core solution design and
architecture has shown to be sound, scalable, and
extensible.

Figure 12. PLC operator panel showing the perform-
ance of a PID controller regulating a simulated pro-
cess.

A HWIL simulation setup was prepared for the
process module described in Section 5 with its
production PLC system from Rockwell Automation
(hardware and software). A number of evaluations
were arranged where the HWIL testing procedure
was compared with the traditional water testing
described in Section 1. The tests were built on cases
from water testing of actual units delivered to
customers and now in production. The models and
PLC programs were rigged with a set of faults from a
database and testing personnel then performed an
HWIL testing to see if these faults would be
identified. The protocols from this HWIL testing
reported all or most problems also found in water
testing, and then some additional that was not found
in water testing. The results so far indicate that
HWIL simulation may indeed replace water testing
and also result in better test coverage.
One comment from the de-briefing of the test
personnel was that the simulated process was lacking
the noises, sounds, vibrations, and other sensory
information that is used by humans to monitor the
process and detect deviations. Still, the overall
impression was that the simulator had advantages
over water testing. The SimLink software was
extended with alarm/alert functionality to support
emulated sensory information from the simulation
model. A component can, for example, trigger a
boolean signal to indicate that the fluid media is
boiling. On the real process this might have been
detected by noise. In SimLink this triggers an alarm
that alerts the user of the abnormal situation.
The HWIL setup was also in parallel used for testing,
validation, and verification in development of new
PLC control software. The HWIL setup has proven

M. Gäfvert, T. Skoglund, H. Tummescheit, J. Windahl, H. Wikander, P. Reuterswärd

The Modelica Association 714 Modelica 2008, March 3rd − 4th, 2008

to be very useful to find and identify issues and bugs
at an early stage.
There have been some problems with robustness of
the simulation at complex mode switches. Possibly,
this will lead to some re-design of the fundamental
models of the fluid dynamics. For example, the
current models are designed for uni-directional flow,
even though back-flow may occur in transients and
mode switches.

7 Conclusions

Experiences from the presented solution indicate that
the Modelica based HWIL technology may contrib-
ute significantly and in a wide range of operations in
a business organization like Tetra Pak Processing
Systems. Parts of a larger evaluation effort have been
performed and indicate that expensive and time-con-
suming water testing may be replaced by simulation.
Application of the HWIL solution for software de-
bugging has also been done successfully.
Large parts of the FP library have been adapted for
real-time simulation with the evaluated process mod-
ule. Remaining parts will be adapted as HWIL simu-
lation is introduced for other process modules.
The SimLink program was designed and developed
for general HWIL simulation with PLC systems in
the process industry. It has been continuously im-
proved during the work described in this paper and
has now become a stable and feature complete core
component in the HWIL simulation environment.

References

[1] Modelica Association,
http://www.modelica.org

[2] Dynasim AB, http://www.dynasim.se
[3] Skoglund, T. Simulation of Liquid Food

Processes in Modelica. Proceedings of the 3rd

International Modelica Conference 2003, 51-
58. Linköping, Sweden, November 3-4, 2003,
Organized by the Modelica Association and
Linköping University, Sweden. Available at
http:// www.modelica.org .

[4] Skoglund, T. and Dejmek P. A model library
for dynamic simulation of liquid food process
lines. Proceedings of FOODSIM 2006, 5-12,
Naples, Italy, June 15-17, 2006, Organized by
EUROSIS.

[5] Skoglund, T. Dynamic Modelling and
Simulation of Liquid Food Process Lines.

Lund, Sweden: Doctoral thesis, Department of
Food Technology, Engineering and Nutrition,
Faculty of Engineering, LTH, Lund
University, 2007.

[6] De Prada, C., Merino, A., Pelayo, F., Acebes,
F., Alves, R. A simulator of Sugar Factories
for Operator Training, AfoT 2003, II
International Workshop on Information
Technologies and Computing Techniques for
the Agro-Food Sector, Barcelona, Spain,
November 27-28, 2003, Monograph CIMNE
No-86.

[7] Bäckman, J., Edvall, M. Using Modelica and
Control Systems for Real-time Simulations in
the Pulp. Proceedings of the 4th International
Modelica Conference, March 7-8, 2005, pp.
579-583, Hamburg University of Technology
(TUHH), Germany. Organized by the
Modelica Association and TUHH. Available
at www.modelica.org

[8] Skoglund, T., Årzén, K-E. and Dejmek, P.
Dynamic object-oriented heat-exchanger
models for simulation of fluid property
transitions. International Journal of Heat and
Mass Transfer, 2006, 49, pp. 2291-2303.

[9] Skoglund, T. and Dejmek, P. A dynamic
object-oriented model for efficient simulation
of fluid dispersion in turbulent flow with
varying fluid properties. Chemical
Engineering Science, 2007, 62, pp. 2168-2178

[10] Skoglund, T. and Dejmek, P. A dynamic
object-oriented model for efficient simulation
of microbial reduction in dispersed turbulent
flow. Journal of Food Engineering, 2008, 86,
pp. 358–369.

[11] Skoglund, T. and Dejmek, P. Fuzzy
traceability – A process simulation derived
extension of the traceability concept in
continuous food processing. Trans IChemE
Part C, Food and Bio products Processing,
2007, 85 (C4) pp. 354-359.

[12] Tummescheit, H. Design and Implementation
of Object-Oriented Model Libraries using
Modelica, Doctoral thesis, Lund University,
2002.

[13] Iwanitz, F., Lange, J., OPC Fundamentals,
Implementation, and Application, 3rd Ed.,
Hüthig Verlag Heidelberg, 2006.

[14] The OPC Foundation.
http://www.opcfoundation.org

Real-Time HWIL Simulation of Liquid Food Process Lines

The Modelica Association 715 Modelica 2008, March 3rd − 4th, 2008

The Modelica Association 716 Modelica 2008, March 3rd − 4th, 2008

Session 6d

Mechanical Systems & Applications

The Modelica Association 717 Modelica 2008, March 3-4, 2008

The Modelica Association 718 Modelica 2008, March 3rd − 4th, 2008

Automatic Model Conversion to Modelica

for Dymola-based Mechatronic Simulation

Tamás Juhász, M. Sc. and Ulrich Schmucker, Dr. Sc. techn.

Fraunhofer Institute for Factory Operation and Automation, Magdeburg, Germany

Tamas.Juhasz@iff.fraunhofer.de and Ulrich.Schmucker@iff.fraunhofer.de

Abstract

Virtual product development allows us to recognize
and evaluate the characteristics of a new product on
the basis of simulation at an early stage without hav-
ing to build a physical model. Currently the most,
widely spread commercial CAE systems do not offer
direct support to external dynamic simulation appli-
cations. Conversely, dynamic simulation of a de-
tailed model is required to maintain good correlation
between the behaviour of the real product and its
virtual counterpart. In this paper it will be presented,
that using a partially automated workflow a conven-
ient Modelica model translation can be achieved
from the output of a mechanical CAD system, allow-
ing the final model to be extended independently
with new elements from other simulation domains,
considering Dymola-based multi-domain simulation.
A .NET-based integrated tool for mechatronic model
editing and online / offline visualization support us-
ing advanced 3D (and stereo) techniques will also be
emphasized in this article.

Keywords: Pro/Engineer, Mechatronics, Collision,
Modelica, Dymola Simulation, Stereo, 3D Visualiza-
tion

1 Introduction

Virtual engineering offers a completely new aspect
of product development, as thereby all sections of
the product life cycle can be independently analyzed
and in parallel continuously optimized in the virtual
world. Simulation makes the practical verification of
the desired behaviour possible in early development
stages.

It is very cumbersome to manually create a paramet-
ric simulation model representing a complex product
that has been designed in a CAD system. Addition-
ally it is often the case that in machine production a
family of component parts with varying parameters
has to be designed repeatedly. Nevertheless the
product planning is usually an iterative practice:

some internal model parameters must be fine-tuned,
according to model assessment or verification proc-
esses. This implies that an automated model conver-
sion is highly demanded in order to accomplish a
good workflow. The designing engineer can inspect
the behaviour of the given virtual product by utiliz-
ing a dynamic simulation of that. For a convenient
iterative workflow a solution have to be provided to
automate the conversion between the standard output
format of the source CAD system and the input for-
mat of the target simulator.

In this article it will be presented that using Robot-

Max, our .NET-based mechatronic model authoring
and visualization application mechanical CAD data
from the widely-spread Pro/Engineer CAD environ-
ment can be imported, new mechatronic components
can be added, thus multi-domain Modelica models
can be generated and the results of the Dymola-based
multi-domain simulation can be visualized in a con-
venient way, even in 3D stereo using various 3D
technologies, for example by exploiting autostereo
monitors, polarizer- or liquid crystal shutter glasses.

2 Translation from CAD data to

Modelica models

We have interposed an own developed tool into the
design workflow to achieve automated conversion to
Modelica models from a Pro/E CAD model assem-
bly (e.g. for mechanics: geometry, mass / inertia pa-
rameters, joints).

Similar work has been done in [1], but using the
AutoCAD Mechanical Desktop system, and a differ-
ent, shallower structure of Modelica models. Our
approach allows a 3rd party to extend the mechanical
model with additional elements from other engineer-
ing domains in such a way that a designer can still
change / fine tune parameters in the CAD environ-
ment (and re-export the mechanical model), without
sacrificing the extra work that another expert might
have already done within the other model domains,
where there might be connections to the previous
mechanical model.

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 719 Modelica 2008, March 3rd − 4th, 2008

2.1 Basic steps of the translation process

There is a large amount of commercial and non-
commercial applications (e.g.: “3D_Evolution” or
“TransMagic”) available on the market offering na-
tive conversion between common standard (STEP,
IGES) and other well-known (AutoCAD, CATIA,
Inventor, Pro/Engineer, SolidWorks, Unigraphics,
etc.) CAD data formats. Thus without subsequent
restrictions it is assumed our source data is available
in the format that our CAD system (Pro/Engineer) is
able to import.

The translation from a CAD source file to Modelica
description needs the following basic steps:

- Assuming the CAD model has already been im-
ported into Pro/Engineer, you can export the hier-
archy and geometry information of the actual
model to VRML files simply through a click over
the File menu “Save as…” command. Note that in a
general case you get a main hierarchy file and the
geometries of the subsequent parts in separate
.WRL files. Geometry information is essential if
you want to model collision between the parts dur-
ing the simulation (see section 3.1 for further in-
formation).

- SimMechanics is a single-domain extension of the
Simulink environment developed by MathWorks,
and can be used for modelling and simulation of
mechanical systems. Under Pro/Engineer environ-
ment the freely available Pro/E-to-SimMechanics
plug-in [2] lets you export the given CAD assembly
to a single (so called “Physical Modeling XML”)
descriptor file, which is invented to ease the gen-
eration of SimMechanics models out of Pro/E data
in an automated way. The result XML file contains
global hierarchy-, constraint- and physical parame-
ter information (inertia-tensors, masses, etc.), but
no geometries at all.

- We developed an application (it is called Robot-

Max) the core logic of which processes the afore-
mentioned XML descriptor file matching with
VRML hierarchy/geometry files, thus generating an
internal multibody model out of the CAD informa-
tion. In RobotMax the internal (original) model can
be extended interactively with various electrome-
chanical elements (e.g.: with parametrical motors
from a model library: see section 4.1) to form a
more complex mechatronic (multi-domain) model.
Finally, our tool is able to export its final mecha-
tronic model to Modelica models using the built-in
conversion module, and on demand by the same
time it propagates the geometry to DXF format
mesh files, in order to use those as visualizing
shapes in Dymola environment.

2.2 Building a draft hierarchy out of XML in-

formation

A single “Physical Modelling XML” file enumerates
all parts (= XML bodies) in the original root CAD
assembly (= XML subsystem) from which it was
created. The special RootGround part represents a
fixed point in the environment. Each normal XML
rigid body entry contains information about the
physical parameters (mass, inertia, surface area, vol-
ume, etc.) of the given Pro/E part and has at least
two coordinate frames in World space: the one that
defines the location of the centre of gravity (CG) of
the rigid body, the other that shows the origin trans-
formation of the body’s geometry (CS1). XML bod-
ies can carry any number of additional frames (CS2,

CS3 …), which all have a unique integer ID: these
unique numbers are used by us to find the corre-
sponding parts between joints.

As it was mentioned before, the XML file also con-
tains information about joints, which represent the
constraints of the original CAD assembly. Each
XML joint (Ji) has two integer IDs that are uniquely
referencing two different frames (these are named
“Base” and “Follower” in a SimMechanics model).

The special weld joints are used to mount two rigid
parts together with no degrees of freedom left be-
tween those. There can also be a series of primitive
joints between two frames, representing various de-
grees of rotational / translational freedom between
those parts. In the hierarchy this always implies the
following sequence: “Follower” � “J1” � … �
“JN” � “Base”, where “a � b” shows that “a” is the
child of “b” in the hierarchy (i.e. it inherits all trans-
formation from that). Using the XML Joints’ frame
references you could build a skeleton (a draft hierar-
chy) of XML bodies. Unfortunately this does not
imply automatically that the final hierarchical model
is also ready: the geometries of the possibly colliding
(but point-sized so far) bodies are still missing at this
point.

In CAD systems it is quite often the case that more
parts in an assembly share the same name (you can
imagine a “template” part that has been used many
times as a building element). On the contrary, in case
of the target language Modelica, the variable names
must be unique inside each model. Via translating
the mechanical CAD information, a single, pure me-
chanic Modelica model has to be generated first.
This initial model contains only the parametrical
bodies and the mechanical joints, which are con-
nected by “connect” Modelica clauses. All exported
bodies and joints must have an individual, unique
instance name.

T. Juhász, U. Schmucker

The Modelica Association 720 Modelica 2008, March 3rd − 4th, 2008

As the auto-generation of VRML and XML files are
independently done, the partially auto-generated
names inside the result files (e.g.: “Obj01”, “Obj02”
vs. “Obj”, “Obj-1”) will neither be globally unique
nor match each other. In order to find the corre-
sponding entities both in VRML and in XML do-
mains, you have to follow a sophisticated procedure.
This is in the most cases inevitable, because there are
usually less XML bodies than actual VRML geome-
tries. You must know which geometries form to-
gether a single rigid body, if you want to have a con-
sistent collision handling during the simulation.

2.3 Matching hierarchies in XML and VRML

domains

All VRML geometry nodes have a homogenous
transformation matrix (which can arise derived from
their respective parents, recursively), from which
you can derive their global pose (position and orien-
tation) in the 3D world. This derived 4x4 matrix is
also used to transform the local vertices of a given
VRML shape into the global (World) coordinate sys-
tem during rendering, for example. Fortunately the
same pose information is also included in XML file
with CS1 frame of the XML bodies.

First you have to search for matching the position of
all CS1 frames (extracted from XML) with an origin
frame location from VRML geometries being just
imported. If there are more bodies having the same
CS1 frame position, you continue filtering the “can-
didates” by differences in CS1 frame orientation.
Assuming there are still more than one parts with the
same global pose in CS1 (which is blissfully a rare
case), you can compare the names of the XML bod-
ies and VRML shapes (namely just their prefixes:
e.g.: “Obj01” will match with “Obj” or “Obj-1”) to
find the highly demanded single positive match. It is
hardly imaginable that there are more parts in the
CAD assembly with exactly the same pose and
name. This should indicate that there is an error in
the source CAD plan.

It is often the case, that there are subsequent levels in
the VRML geometry hierarchy: in this case these
child shapes are to be merged into the same higher
level geometry.

After assigning the VRML geometry to the corre-
sponding XML bodies, the final, pure mechanic mul-
tibody model can be finally generated. For this sake,
the necessary physical parameters (masses, locations
of CG frames, inertia tensors) have to be substituted
into the final Modelica actors’ parameters.

3 Expanding the standard Modelica

library

The Modelica Standard Library is a standardized and
free package that is developed together with the
Modelica language by the international Modelica
Association [8]. The Mechanics Multibody Library
(MML) is a package in the main library providing 3-
dimensional mechanical components to model me-
chanical systems in a convenient way.

The MML does not include support for rigid body
collision handling. Handling contacts between me-
chanical objects can be very important in many dis-
ciplines of mechatronic simulation (e.g.: robot ma-
nipulating tasks).

3.1 Collision Handling

We extended the MML library with support for colli-
sion handling using a spring and damper material
model, suggested by the article [3], but based on
more robust Bullet collision library in our recent im-
plementation. We discussed the details of our im-
plementation in [4]. In this section it will be pre-
sented what sort of new Modelica components have
been developed for this purpose.

The basic World model in MML represents a global
coordinate system fixed in 3D space origin. The be-
haviour of the basic World model has been extended
via inheritance: from the original base model a Colli-

sion Manager (CM) subclass has been inherited that
is responsible for collision handling in simulation of
multibody systems.

The standard Modelica implementation of rigid bod-
ies (see BodyShape component in MML) needed also
to be extended to handle collision (via communica-
tion with the CM). Our Actor class encapsulates the
physical kinematic- (pose, velocity and acceleration),
dynamic- (mass, location of centre of gravity and
inertia tensor) and material- (stiffness and restitution)
parameters (also initial values of those) of a rigid
body. Note that actors don’t have any geometry in-
formation.

The Shape class extends the Mode-

lica.Mechanics.MultiBody.Visualizers.Advanced.Sha

pe class, offering 3D visualization possibilities in
Modelica environment. Each Shape instance must
connect to a single actor with a respective 4x4 trans-
form of local origin of the geometry. These objects
represent the geometry of the rigid body they con-
nect to. The Collider class is the subclass of Shape,
which can serve the collision geometry of that part.
In order to ease the export to Modelica, these classi-

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 721 Modelica 2008, March 3rd − 4th, 2008

fications of new shape classes make handling of ge-
ometry orbicular from both the aspect of Modelica
and RobotMax, our CAD translator application.

For online, real time visualization support (see sec-
tion 5.3) each Shape instance has a 7 component
pose vector (3D position + a quaternion orientation)
simply assigned by their local origin frame’s pose.
There is a pre- allocated P pose matrix (dimensions:
7 by N) reserved for the N shape objects, stored in a
shared memory. The shared memory is implemented
in a C++ class, is compiled to a DLL and it offers C
interfaces to Modelica. The columns of P are up-
dated every simulation step by the respective shapes’
poses using the external C function invocation set-

Pose() from the Shape instances’ Modelica source.

The singleton Collision Manager instance stores in-
formation about the positions, orientations, angular-
and linear velocities of all Colliders existing in the
global collision set. At the initial phase of the simu-
lation each Collider instance reports the CM its ge-
ometry, which cannot change during the simulation.
The CM updates the external collision forces on each
colliding shape in each simulation step. These shape
instances propagate the external collision force
through their connectors to the respective actor in-
stances.

Unfortunately the Modelica language specification
being used at the development time (it was version
2.2.1) did not allow having a collection containing
polymorphic references to the instances of a user
defined class (i.e. abstract models) themselves: our
Modelica arrays can contain only basic data types.
This introduces a little performance loss: the CM has
to store duplicated information in separate arrays
about the positions, orientations, angular- and linear
velocities of all shapes existing in the global colli-
sion set.

Some shapes can be individually excluded from col-
lision handling via disabling their collision flags (for
example in draft motion tests). On the other hand,
sometimes it is desired (usually for simplified mod-
els) to allow also pairs of bodies to constantly inter-
penetrate each other during the simulation, without
any internal tension or force between them. For this
purpose the user of the extended library can assign a
matrix to the CM containing the IDs of unwanted
collider pairs.

There is a permanent bidirectional communication
between the colliders and the collision manager. The
external collision response forces and -torques that
are calculated and responded by the CM, act together
on the given actors automatically as it was told be-
fore. This is due to the behaviour of bidirectional
Modelica “connect” equations.

The Modelica standard has a well-designed interface
to external software modules [5] (e.g.: Fortan or
ANSI C: sometimes allowing more powerful algo-
rithm implementation). Accordingly, we were not
confined to implement the whole collision manager
class in pure Modelica. For the algorithmic core
functionality of collision detection and -response
calculation the C interface could be used:

For each supported collider shape type a C++ class
had to be implemented, having parameters similar to
their Modelica counterparts. These classes are in-
stantiated at the initial phase of simulation: as soon
as a Modelica Collider is initiated, the corresponding
C++ constructor is invoked from Modelica code,
through our C interface wrapper.

In each simulation step the C++ part of the CM up-
dates the pose of all C++ shapes via their Modelica
counterparts’ pose, and invokes the main method to
query the actual collision forces and -torques for all
active geometry in the scene. In the background the
free Bullet library [7] is being used to query collision
information among our rigid bodies (these are being
treated as independent ones, no joint-constraints are
introduced here). The penetration checking function-
ality of Bullet is done the following way:

For each pair of shape types, a certain collision algo-
rithm is assigned, by using an internal dispatcher.
The collision detection library part of Bullet can re-
trieve contact points between any triangular geome-
try types (for some concave-convex case the primi-
tive geometry types – such as sphere or cylinder –
need to be tessellated to triangles). The used algo-
rithms are a modified version of the GJK algorithm
[6] with the EPA - Expanding Polythope Algorithm
for convex-convex cases, and GIMPACT for the
cases involving concave geometry.

Our pair-wise collision response calculation method
(spring and damper technique: dependent on penetra-
tion velocity, relative motion of colliding parts, ma-
terial stiffness- and restitution parameters) is dis-
cussed in [4]. A single invoke on the external C++
library can solve the collision response for the whole
system at once, thus the external forces on the Mode-
lica colliders can be updated in each simulation step.

3.2 Abstract joint models allowing domain inde-

pendency

Our purpose is to simulate articulated multibody
mechatronic systems having multiple rigid bodies
connected by joints. The original test CAD models,
which we seized to test our conversion process, have
either no motor information, or this information is

T. Juhász, U. Schmucker

The Modelica Association 722 Modelica 2008, March 3rd − 4th, 2008

not accessible from the outside (i.e. cannot be ex-
ported from) the CAD system. This implies that in
RobotMax all XML joints will be converted first to
abstract ones by default (prismatic, revolute and
spherical joints, or serial combination of those are
supported in the entire system). Note that spherical
joints (allowing 3 rotational degrees of freedom in
their coupling centre point) are always passive: they
cannot be actuated in the original manner.

We implemented abstract joint models in Modelica
for prismatic and revolute joints, which are exactly
the pure mechanical constraints, representing the
allowed single degree of translational or rotational
freedom between their 3D frame connectors. These
abstract joint models have a one dimensional ‘Drive’
flange, as you can see on Figure 1:

Figure 1: Abstract model of a revolute joint

If the ‘Drive’ flange connector is not connected from
the outside in the container Modelica model, an ab-
stract joint will be equivalent to an ideal, free joint.
On the contrary, connecting a motor’s drive part to
the drive flange of these joints makes actuated joints
in the final mechatronic model. For the details please
refer to section 4.2.

Using this abstraction we could decouple the pure
mechanical model from other electromechanical
components: these can be exported to a separate top-
level Modelica model.

4 Adding electromechanical compo-

nents to the internal model in Ro-

botMax

Our goal is to support the simulation of the dynamic
behaviour of the product being designed in the
source CAD system. Assuming you have a CAD
model of an industrial robot having a few joints that
should be actuated by motors, you could easily ask
what kind of motors should be applied in order to
achieve a pre-defined speed along the desired path of
the tool centre point, or to stay below the maximal
allowed positioning error.

Unfortunately, we can’t seize so far any description
of the possibly occurring electromechanical compo-
nents from the Pro/E CAD system, which we could
embed automatically into the final mechatronic
model at the end of the conversion process.

You can say that the requirement of having motors in
an articulated multibody system is more than desir-
able. Without such elements you could not simulate /
verify the active dynamic behaviour of a moving
virtual structure.

4.1 The Motor Library in RobotMax

We developed an XML-based extensible Object Li-
brary that can contain parametric components of any
modelling domain. The special modelling domain of
electromechanical components (motors) will be em-
phasized in this section. For example the Motor Da-
tabase inside the Object Library contains motor
classes (e.g.: DC motors or induction machines) as
entries.

Every class in the library has an absolute path refer-
ence to the Modelica implementation of the model
represented by it. These classes enumerate their pa-
rameters, which all must have a unique name (refer-
ring to their respective variables in the Modelica
model). Each parameter must also have a type (Float,
Integer, String, etc.) and a Boolean flag indicating
whether its actual value is editable by the user. For
example changing the gear ratio parameter in a final
motor instance is still allowed. A general parameter
can also have a physical unit (like ‘Ohm’ or ‘kg·m2’:
one should use SI standard units, unless it is not
specified here differently), minimum / maximum
limits and a descriptive comment optionally.

Figure 2: An example entry in our motor library

Figure 2 shows a screenshot of our library’s browser
dialog displaying the parameters of our DC perma-
nent magnet motor class. The user can also edit here
the highlighted gear ratio, before it will be inserted to
the internal model in RobotMax.

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 723 Modelica 2008, March 3rd − 4th, 2008

The instances of a class are enumerated in the library
after each class declaration, defining the actual / ini-
tial values for each parameter in all occurring in-
stances. The instances must have a global unique ID
(a primary key along that column), which is always
required in a relational database (e.g.: during search-
ing).

4.2 Our actuated joint models in Modelica

For the most mechatronic simulation purposes one
has to set continuous reference values of the active
joints in the system (defining position, velocity or
acceleration parameters of those) in order to make
the parts follow a pre-defined trajectory. A well-
designed controller should be introduced that mini-
mizes the error between the actual and the reference
values of each joint in every single moment.

We implemented 1-1 parametrical, translation- and
rotation based drive model in Modelica (for pris-
matic- and revolute joints, respectively), which con-
tain a separated control- and actuator part, and is de-
coupled from the given joints’ mechanical part.
Figure 3 shows our general model for an actuated
joint:

Figure 3: The schema of our joint drive subsystem

The general “jointDrive” actuator model has a re-
placeable motor and gear component. If a component
is declared replaceable in Modelica it means that one
can transparently exchange the implementation of
this part with another model, unless the given exter-
nal connector interfaces are kept intact.

As it was told before, the pure mechanical model
was exported to a separate Modelica text file. As
long as the names of the joint entries are not chang-
ing, we will find the way to connect the respective
‘Drive’ connectors in both models. Thus the user can
experiment with fine-tuning the motor parameters
and simulate the new model without the need to redo
the CAD / XML conversion process from the begin-
ning again.

5 Simulation and visualization

The workflow presented so far had been finally ex-
tended with a motion planning task, which can be
carried out right before the Modelica export step, in
order to define a continuous-time function in a con-
venient way for each joint’s path.

5.1 Defining motions and simulating the model

RobotMax – our .NET-based CAD translator / envi-
ronment editor application – offers keyframe-based
motion planning and has built-in support for inverse
kinematics that was used in the following example to
model a palette manipulating motion with an indus-
trial robot model. The user can also fine-tune the
motion by interactively adjusting the values of the
selected servos.

The following image sequence shows the three basic
steps of the CAD to SIM process (in Pro/E � Ro-
botMax � Dymola order), presented so far:

Figure 4: The Dymola simulation of an industrial
robot-arm designed in Pro/Engineer and converted

by RobotMax using the presented workflow

T. Juhász, U. Schmucker

The Modelica Association 724 Modelica 2008, March 3rd − 4th, 2008

5.2 Creating test scenarios in RobotMax

The Scene Editor in RobotMax can be used to create
various static / dynamic scenarios, allowing testing
the interaction between the actual virtual product
(that is being designed in CAD) and its environment,
which is usually modelled separately or is sometimes
simply neglected. For example a bumpy road can be
added to the 3D world in case of testing a new car
suspension assembly. VRML geometry can be im-
ported, or the user can create new static / dynamic
objects from primitives with the interactive tools in
RobotMax. The parameters (materials, dimensions,
positions, etc.) are interactively changeable (in case
better precision is needed, can be set also manually)
and the modifications can be undone, thus allowing
an iterative approach of testing with various scenar-
ios. Multiple viewports and various alignment tools
are helping you to make the test setup as precise (and
as informative) as possible.

5.3 Problem of online visualization

The Dymola simulator [9] being used in our project
has a 3D viewer (animation) support for multibody
models containing 3D geometry, but has a limited
functionality and is not user friendly enough.

If you want to visualize the simulation results from a
3rd party application while Dymola is running in the
background, the poses of the various geometries
have to be gathered and transmitted to the viewer
application online. Although Dymola stores the out-
put of a simulation in a file (in Matlab® format), this
file is exclusively locked: thus no other application
can read from that file until the simulation finishes.
Another solution had to be found to access pose in-
formation during the simulation.

5.4 Visualization in RobotMax

Our idea to transfer data to a viewer was to query it
from the shared memory containing the P matrix of
actual shape-poses (see section 3.1). On a viewer
side there is usually no need to update the pose of the
objects after each solver step (e.g.: a step size of 1
ms would lead to 1000 frames/second required re-
fresh rate). The problem can be turned around: you
can retrieve (poll) the actual pose of any shape from
the shared memory at a desired, smaller frequency
(e.g.: 50 Hz).

The RobotMax has all functionalities a modern 3D
viewer application requires, with multiple orthogonal
or perspective viewports, interactive camera setup

and built-in support for advanced 3D visualization
techniques – including real 3D methods such as auto-
stereo (for monitors with lenticular lens layer), time-
interleaved (for liquid crystal shutter goggles), spec-
tral-interleaved (for red-cyan anaglyph spectacles) or
dual output (for two projectors and polarizer glasses)
– representing the actual internal model in 3D. For a
broader overview of these techniques please refer to
the article [10].

If the user switches RobotMax to online visualization
mode, it polls the pose information for each shape
continuously and updates the viewports with the pre-
set frequency only.

In order to be able to inspect the simulation results
multiple times, there is a support for offline visuali-
zation, of course. A simulation output file can be
parsed by an external application only after it has
been completely written and released by Dymola. In
offline visualization mode RobotMax invokes Dy-
mola with the generated Modelica models (according
to the process described in Section 2) and waits for
the lock of the result file to be released.

The sequences of samples of each simulation signal
are stored in this file, including input / output vari-
ables, state variables and their derivatives. In Ro-

botMax after parsing all the exported signals into
memory, the signals belonging to the world trans-
formation matrices are used to setup a keyframe
animation, which can be sought and played back
from a desired position at the desired speed.

Figure 5: anaglyph mode 3D visualization, screenshot

On Figure 5 a screenshot can be seen that was taken
in RobotMax showing the red-cyan spectral-
separated anaglyph stereo image of the previous in-
dustrial robot-arm example at initial pose at the very
beginning of the simulation.

Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation

The Modelica Association 725 Modelica 2008, March 3rd − 4th, 2008

6 Conclusion and future work

A highly automated, convenient conversion work-
flow from Pro/Engineer CAD data to multi-domain
Modelica simulation models has been presented in
this paper. The relevant online / offline visualization
methods – with advanced 3D techniques within the
same integrated tool used for model translation –
were also discussed here. For a schematic overview
of the presented workflow see Figure 6.

V
R
M
L

g
e
o
m
e
tr
y

o
ff
lin
e
 v
iz
.

getPose

se
tP
os
e

 XM
L

Dymola

Pro/Engineer

RobotMax

Parts Assembly

Pro/E-to-SM

PlugIn

Shared

Memory
Modelica

models o
n
lin
e
 v
iz
.

.mat

CM

Figure 6: schematic process overview

In our future implementation we will use the
Pro/ToolKit API to directly access data of other,
newly added components in Pro/Engineer WildFire
3, such as springs, dampers and motors, and translate
these elements also into the final Modelica models.
Using this interface the functionality of the Pro/E-to-
SimMechanics plug-in can be completely replaced
later by our implementation.

There is a free Modelica library – called BondLib,
available at [11] – for bond-graph represented analog
electronic circuits, including a full implementation of
Spice models. The presented CAD conversion proc-
ess can be generalized to introduce complex models
of electrics / electronics domain, to be converted to
Modelica. We will investigate the possibilities to
introduce OrCAD layout plans and P-Spice models
into our virtual mechatronic workflow.

In the next version of our RobotMax tool we will
implement a 2D Plot functionality to be able to in-
spect simulation signals as 2D curves in a given
viewport. Our collision response calculation in tan-
gential space (which is currently very simplified) has
to be improved to achieve more realistic friction
forces and –torques between contacting bodies.

References

[1] Engelson, V.; Bunus, P.; Popescu, L.;
Fritzson, P.: “Mechanical CAD with Multi-
body Dynamic Analysis Based on Modelica
Simulation”; In Proceedings of the 44th Scan-
dinavian Conference on Simulation and
Modeling (SIMS-2003), September 18-19,
2003, Västerås, Sweden

[2] MathWorks: SimMechanics Translators:
http://www.mathworks.com/products/simme
chanics/description5.html

[3] Otter, M.; Elmqvist, H.; Díaz López, J.:
”Collision Handling for the Modelica Multi-
Body Library”; In Proceedings of the 4th In-
ternational Modelica Conference, March 7-8,
2005, Hamburg, pp. 45-53

[4] Juhasz, T.; Konyev, M.; Rusin, V.;
Schmucker, U.: ”Contact Processing in the
Simulation of CLAWAR”; In Proceedings of
10th CLAWAR International Conference,
16-18 July 2007, Singapore, pp. 583-590.

[5] Fritzson, P.: “Principles of Object-Oriented
Modeling and Simulation with Modelica
2.1”, Wiley Press 2004, ISBN 0-471-471631,
pp. 311-322.

[6] Gilbert, E. G.; Johnson, D. W.; Keerthi, S.
S.: ”A Fast Procedure for Computing the
Distance between Complex Objects in Three-
Dimensional Space”; In IEEE Trans. Robot-
ics and Automation 4 (Vol2), April 1988, pp.
193-203.

[7] Bullet 3D Collision Detection Library:
http://www.bulletphysics.com/Bullet

[8] Modelica Association –
http://www.modelica.org

[9] Dynasim AB: Dymola 6 –
http://www.dynasim.com/index.htm

[10] Juhasz, T.; Vajta, L.: “The Role of 3D Simu-
lation in the Advanced Robotic Design, Test
and Control”, International Journal of Ad-
vanced Robotic Systems – Cutting Edge Ro-
botics 2005, ISBN 3-86611-038-3; pp. 47-61.

[11] Cellier, F.: BondLib – Modelica library:
http://www.modelica.org/libraries/BondLib

T. Juhász, U. Schmucker

The Modelica Association 726 Modelica 2008, March 3rd − 4th, 2008

Modelica Implementation of the Skateboard Dynamics

Ivan I. Kosenko1, Alexander S. Kuleshov2
1 Moscow State University of Tourism and Service, Department of Engineering Mechanics,

Glavnaya str., 99, Cherkizovo-1, Moscow reg., 141221, Russia
2 Lomonosov Moscow State University, Department of Mechanics and Mathematics,

Leninskie Gory, Main Building of MSU, Moscow, 119991, Russia

Abstract

In the present paper analysis and simulation are per-
formed for a simplest model of a skateboard. We sup-
pose that the rider control is absent during the motion.
Equations of motion of the model are presented and
their stability analysed in brief.
Modelica implementation of the skateboard dynamics
is described as well. Its main featured outlined, and
the verification procedures explained. It is pointed out
the skateboard can behave in dynamical sense likewise
the known example of the rattleback.
Keywords: skateboard; nonholonomic constraints;
normal form; contact models, dynamical verification

1 Introduction

Nowadays the skateboarding, the art of riding on a
skateboard, is one of the most popular sports. Nev-
ertheless serious researches concerning dynamics and
stability of a skateboard are almost absent. At the
late 70th – early 80th of the last century Mont Hub-
bard [1, 2] proposed two mathematical models de-
scribing the motion of a skateboard with the rider. To
derive equations of motion of the models he used the
principal theorems of dynamics. In our paper we give
the further development of the models proposed by
Hubbard to have an additional possibility to verify the
engineering solutions for this type of a vehicle.
Simultaneously to give the further move in field of
the sportswear appliances development we created and
verified a dynamical model of the skateboard. The
model was developed on Modelica, and it is easy to
improve it in different directions to be able to inves-
tigate the regular riding technique or the interesting
tricks performed by the experts while the skateboard-
ing shows.
The skateboard typically consists of a board, two
trucks and four wheels, see Figure 1. The modern

Figure 1: The Skateboard Side View

boards are usually from 78 to 83 cm long, 17 to 21 cm
wide and 1 to 2 cm thick. The most essential elements
of a skateboard are the trucks, connecting the axles to
the board. Angular motion of both the front and rear
axles is constrained to be about their respective non-
horizontal pivot axes, thus causing a steering angle of
the wheels whenever the axles are not parallel to the
plane of the board, see Figure 2. The vehicle is steered
by making use of this kinematic relationship between
steering angles and tilt of the board. In addition, there
is a torsional spring, which exerts a restoring torque
between the wheelset and the board proportional to the
tilt of the board with respect to the wheelset, Figure 3.
We denote the stiffness of this spring byk1.

Figure 2: The Skateboard Top View

Modelica Implementation of the Skateboard Dynamics

The Modelica Association 727 Modelica 2008, March 3rd − 4th, 2008

Figure 3: The Skateboard Front/Rear View

2 The Problem Formulation.
Equations of Motion.

We assume that the rider, modeled as a rigid body, re-
mains perpendicular with respect to the board. There-
fore, when the board tilts throughγ, the rider tilts
through the same angle relative to the vertical. Let us
introduce an inertial coordinate systemOXYZ in the
ground plane. LetFR= a is a distance between two
axle centersF andR of a skateboard. The position of
a lineFR with respect to theOXYZ-system is defined
by X andY coordinates of its center and by the angle
θ between this line and theOX-axis, see Figure 4.

Figure 4: The Basic Coordinate Systems.

The tilt of the board causes the rotation of front wheels
clockwise throughδ f and the rotation of rear wheels
anticlockwise throughδr , Figures 2, 4. The wheels of
a skateboard are assumed to roll without lateral slid-
ing. This condition is modeled by constraints, which
may be shown to be nonholonomic

Ẏcos(θ−δ f)−Ẋ sin(θ−δ f)+
1
2

aθ̇cosδ f = 0,

Ẏcos(θ+δr)−Ẋ sin(θ+δr)−
1
2

aθ̇cosδr = 0.
(1)

Under these conditions velocities of a pointsF andR

will be directed horizontally and perpendicularly to the
axles of wheels and there is a pointP on the lineFR
which has zero lateral velocity. Its forward velocity we
denote byu. It may be shown, that (see e. g. [1] – [6])

u =−aθ̇cosδ f cosδr

sin(δ f +δr)
,

FP =
asinδ f cosδr

sin(δ f +δr)
, θ̇ =−usin(δ f +δr)

acosδ f cosδr
. (2)

Using results obtained in [5, 6] we conclude that the
steering anglesδ f andδr are related to the tilt of the
board by the following equations

tanδ f = tanλ f sinγ, tanδ f = tanλ f sinγ, (3)

whereλ f andλr are the fixed angles which the front
and rear axes make with the horizontal, Figure 1. Us-
ing constraints (3) we can rewrite equations (1) as fol-
lows

Ẋ=ucosθ+
(tanλ f − tanλr)

2
usinγsinθ,

Ẏ=usinθ− (tanλ f − tanλr)
2

usinγcosθ.
(4)

Expressions (2) become

FP=
atanλ f

tanλ f +tanλr
, θ̇=−(tanλ f +tanλr)

a
usinγ.

(5)
Suppose that the board of the skateboard is located on
the distanceh above the lineFR. The length of the
board is also equal toa. The board center of mass is
located in its center. As to the rider we suppose that
the rider center of mass is not located above the board
center of mass, but it is located over the central line
of the board on a distanced from the front truck. Let
l be the height of the rider center of mass above the
point P. Other parameters for the problem are:mb is
the mass of the board,mr is the mass of the rider;Ibx,
Iby, Ibz are the principal central moments of inertia of
the board;Irx, Iry, Irz are the principal central moments
of inertia of the rider. We introduce also the following
parameters:

Ix = Ibx+ Irx, Iy = Iby+ Iry, Iz = Ibz+ Irz.

It can be proved, see [5], that the variablesu and γ
satisfy the following differential equations

(
A+(C−2D)sin2 γ+K sin4 γ

)
u̇+(

C−3D+3K sin2 γ
)

uγ̇sinγcosγ+
B

(
γ̈cosγ− γ̇2sinγ

)
sinγ = 0,

Eγ̈+
(
D−K sin2 γ

)
u2sinγcosγ+

k1γ− (mbh+mr l)gsinγ+
B(u̇sinγ+uγ̇cosγ)cosγ = 0.

(6)

I. I. Kosenko, A. S. Kuleshov

The Modelica Association 728 Modelica 2008, March 3rd − 4th, 2008

Here A, . . ., E, K are functions of the parameters,
namely

A = mb +mr ,
E = Ix +mbh2 +mr l2,

B =
mbh

2
(tanλ f − tanλr)+

mr l
a

((a−d) tanλ f −d tanλr) ,

C =
mb

4
(tanλ f − tanλr)

2+

Iz
a2 (tanλ f + tanλr)

2+
mr

a2 ((a−d) tanλ f −d tanλr)
2 ,

D =
(tanλ f + tanλr)

a
(mbh+mr l) ,

K =
(tanλ f + tanλr)

2

a2

(
Iy +mbh2 +mr l

2− Iz
)
.

Thus, equations (4–6) form the closed DAE system for
the skateboard motion.

3 Stability of the Skateboard
Straight-Line Motion

Equations(6) have a particular solution

u = u0 = const, γ = 0, (7)

which corresponds to a uniform straight-line motion of
the skateboard. The stability conditions of this partic-
ular solution have the following form [1]-[6]:

Bu0 > 0, Du2
0 +k1− (mbh+mr l)g > 0. (8)

From the first condition of (8) we can conclude that
the stability of motion (7) depends on its direction. If
one direction of motion is stable the opposite direc-
tion is necessary unstable. Such a behavior is peculiar
to many nonholonomic systems. First of all, we can
mention here the classical problem the rattleback mo-
tion (aka wobblestone or celtic stone, see e. g. [7]-[9]).
In this problem the stability of permanent rotations of
a rattleback also depends on the direction of rotation.
Suppose that the coefficientB is positive,B > 0. Then
for u0 > 0 the skateboard moves in “stable” direction,
and foru0 < 0 it moves in “unstable” direction. When
u0 = 0 the skateboard is in equilibrium position on the
plane. The necessary and sufficient condition for sta-
bility of this equilibrium have a form [1]-[6]:

k1− (mbh+mr l)g > 0. (9)

Assuming that condition (9) holds, let us consider the
behavior of the system near the equilibrium position.
Solving equations (6) with respect to ˙u and γ̈ and as-
suming thatu, γ and γ̇ are small, we can write equa-
tions of perturbed motion taking into account the terms
which are quadratic inu, γ andγ̇ as follows

u̇ =
BΩ2

A
γ2, γ̈+Ω2γ =−Buγ̇

E
, (10)

where we introduce the following notation

Ω2 =
k1− (mbh+mr l)g

E
.

Note, that the linear terms in the second equation of
the system (10) have a form which corresponds to
a normal oscillations. For investigation of nonlin-
ear system (10) we reduce it to a normal form [10].
To obtain the normal form of the system (10) first of
all we make a change of variables and introduce two
complex-conjugate variablesz1 andz2 such that

γ =
z1−z2

2i
, γ̇ =

z1 +z2

2
Ω, u = z3.

In variableszk, k = 1,2,3 the linear part of the system
(10) has a diagonal form and the derivation of its nor-
mal form reduces to separating of resonant terms from
the nonlinearities in the right-hand sides of the trans-
formed system (10). Finally, the normal form of the
system (10) may be written as follows

ż1 = iΩz1−
B

2E
z1z3,

ż2 = −iΩz2−
B

2E
z2z3,

ż3 =
BΩ2

2A
z1z2.

Introducing real polar coordinates according to the for-
mulae

z1 = ρ1(cosσ+ i sinσ) ,
z2 = ρ1(cosσ− i sinσ) ,
z3 = ρ2

we obtain from the system (10) the normalized system
of equations of perturbed motion which is then split
into two independent subsystems:

ρ̇1 =− B
2E

ρ1ρ2, ρ̇2 =
BΩ2

2A
ρ2

1, (11)

σ̇ = Ω. (12)

Terms of order higher than the second in (11) and those
higher than the first inρk, k = 1,2 in (12) have been
omitted here.

Modelica Implementation of the Skateboard Dynamics

The Modelica Association 729 Modelica 2008, March 3rd − 4th, 2008

In theε-neighborhood of the equilibrium position the
right-hand sides of equations (11) and (12) differ from
the respective right-hand sides of the exact equations
of perturbed motion by quantities of orderε3 andε2

respectively. The solutions of the exact equations are
approximated by the solutions of system (11–12) with
an error ofε2 for ρ1, ρ2 and of orderε for σ over time
interval of order 1/ε. Restricting the calculations to
this accuracy, we will consider the approximate system
(11–12) instead of the complete equations of perturbed
motion.
Equation (12) is immediately integrable, and we obtain

σ = Ωt +σ0.

System (11) describes the evolution of the amplitude
ρ1 of the board oscillations and also the evolution of
the velocityρ2 of a the skateboard straight-line mo-
tion. One can see that this system has the first integral

Eρ2
1 +

A
Ω2 ρ2

2 = An2
1, (13)

wheren1 is a constant, specified by initial conditions.
We will use this integral for solving of the system (11)
and for finding the variablesρ1 andρ2 as functions of
time: ρ1 = ρ1(t), ρ2 = ρ2(t). Expressingρ2

1 from the
integral (13) and substitute it to the second equation of
the system (11) we get

ρ̇2 =
B

2E

(
Ω2n2

1−ρ2
2

)
. (14)

The general solution of equation (14) has the following
form:

ρ2(t) =
Ωn1

(
1−n2exp

(
−BΩn1

E t
))

(
1+n2exp

(
−BΩn1

E t
)) , (15)

wheren2 is a nonnegative arbitrary constant. Now, us-
ing the integral (13), we can find the explicit form of
the functionρ1(t) in the following way

ρ1(t) = 2n1

√
An2

E

exp
(
−BΩn1

2E t
)

1+n2exp
(
−BΩn1

E t
) . (16)

Let us consider the properties of the solutions (15),
(16) of system (11) and their relations to the properties
of the skateboard motion. System (11) has an equilib-
rium position

ρ1 = 0, ρ2 = Ωn1. (17)

These particular solutions can be obtained from gen-
eral functions (15–16) if we suppose in that functions

n2 = 0. An arbitrary constantn1 can be both positive
and negative. The positive values of this constant cor-
respond to the skateboard straight-line motions with
small velocity in “stable” direction and the negative
ones do in “unstable” direction. Indeed, if we linearize
equations (11) near the equilibrium position (17) we
get

ρ̇1 =− B
2E

Ωn1ρ1, ρ̇2 = 0.

Thus, forn1 > 0 the equilibrium position (17) is stable
and forn1 < 0 it is unstable.
Evolution of the functionsρ1 and ρ2 gives the com-
plete description of behavior of a skateboard with
small velocities. Let us suppose, that at initial in-
stant the system is near the stable equilibrium position
(n1 > 0) and ρ2(0) ≥ 0, i. e. n2 ≤ 1. The case of
n1 > 0, n2 > 1 is similar to the case ofn1 < 0, n2 < 1,
which will be investigated below. These initial con-
ditions correspond to the situation correspond to the
skateboard to take the small velocity

ρ2(0) = Ωn1
1−n2

1+n2

in the “stable” direction at initial instant. Then in the
course of time the “amplitude”ρ1 of the board oscilla-
tions decreases monotonically from its initial value

ρ1(0) =
2n1

1+n2

√
An2

E

to zero, while the velocity of a skateboardρ2 increases
in absolute value. In the limit the skateboard moves
in stable direction with a constant velocityΩn1, see
Figure 5–6.

Figure 5: Evolution of the Amplitudeρ1 of the Board
Oscillations in Time for the Casen1 > 0, n2 ≤ 1.

Suppose now that at initial instant the system is near
the unstable equilibrium positionn1 < 0. Suppose

I. I. Kosenko, A. S. Kuleshov

The Modelica Association 730 Modelica 2008, March 3rd − 4th, 2008

Figure 6: Evolution of the "Velocity"ρ2 of the Skate-
board in Time for the Casen1 > 0, n2 ≤ 1.

again, that at initial instantn2 < 1, i. e. ρ2(0) < 0.
The casen1 < 0, n2 > 1 is similar to the casen1 > 0,
n2 < 1 which was considered above. These initial con-
ditions correspond to the situation if at initial instant
the skateboard takes the small velocity

ρ2(0) = Ωn1
1−n2

1+n2

in “unstable” direction. In this case the limit of the
system motions is the same as forρ2(0) ≥ 0 but the
evolution of the motion is entirely different. For

0 < t < t∗ =
E ln(n2)
BΩn1

the absolute value of the oscillation “amplitude”ρ1

increases monotonically and the skateboard moves in
unstable direction with decreasing velocity. At the in-
stantt = t∗ the velocity vanishes and the oscillation
“amplitude” ρ1 reaches its maximum absolute value

ρ1(t∗) = n1

√
A
E

.

When t > t∗ the skateboard already moves in stable
direction with an increasing absolute value of its ve-
locity and the oscillation amplitude decreases mono-
tonically. Thus whenρ2(0) < 0 during the time of
evolution of the motion a change in the direction of
motion of the skateboard occurs, see Figure 7–8. The
similar nonlinear effects, like the change of the mo-
tion direction, were observed earlier in other problems
of nonholonomic mechanics, for example in a clas-
sical problem of dynamics of the rattleback [7]-[9]).
Thus, we describe here the basic features of the sim-
plest skateboard model dynamics, proposed in [1, 2]
and developed by us.

Figure 7: Evolution of the Amplitudeρ1 of the Board
Oscillations in Time for the Casen1 < 0, n2 ≤ 1.

Figure 8: Evolution of the "Velocity"ρ2 of the Skate-
board in Time for the Casen1 < 0, n2 ≤ 1.

4 Implementation and Experimental
Validation

Evidently an analytic modeling and a numeric simula-
tion may be useful to predict the dynamical properties
of the sports equipment, the skateboard in our case. To
verify a possibility of the behavior described above,
i. e. an asymmetry property of stability depending on
the rider relocation on the board, an attempt was un-
dertaken to create the model of this device, see Fig-
ure 9.
To achieve the goal announced we used an approach
and components applied earlier to the one else sports
appliance: the snakeboard [11]. However, we have a
serious differences with the snakeboard model now.
First, we used a spheroids of different shapes instead
of ideal disks. That seems more natural and allows
to consider as a wheels more plausible models of the
elastic bodies rolling in future. The main current dif-

Modelica Implementation of the Skateboard Dynamics

The Modelica Association 731 Modelica 2008, March 3rd − 4th, 2008

Figure 9: The Skateboard Model Animation

ference is that we applied the Hertz model and its
volumetric modification for the contact of the wheel
and the floor [12]. This made it possible to avoid en-
tirely an application of the compliances artificially in-
troduced to the snakeboard model in [11].
The wheelset model, see in Figure 10 its visual model,
thus equipped by the objects of a simple revolute
joint classFixedJoint instead of the joint model
SpringJoint with elastic compliance along its axis.
The joint connects the wheel with the shaft of the
wheelset axis.

Figure 10: The Wheelset Visual Model

We saw above that in difference with the snakeboard
an axis of the joint connection of the board and the

wheelset is not vertical and allows the rider an effec-
tive possibility to maneuver along the road. Besides to
ensure the stable riding the manufacturers frequently
equip their skateboards by an elastic connections the
wheelset axle and the board. Such a construct includes
two springs of a high stiffness. An example of the
so-called "Seismic" truck invented by D. Gesmer and
M. Haug [13] see in Figure 11. The whole skateboard
visual model including the spring elements is shown
in Figure 12.

Figure 11: The Truck with Springs

Figure 12: The Skateboard Visual Model

The visual model of the spring connection see in Fig-
ure 13. Here tne sideA of a particular spring ele-
ments,Spring1 andSpring2 , is connected with the
wheelset axle model, while theB-sides of these objects
merge to one point producing one total effort. Further
the modelSpring is a usual spatial spring element re-
sisting both the compression and the stretch. Its Mod-
elica code has the following easy to read form:

I. I. Kosenko, A. S. Kuleshov

The Modelica Association 732 Modelica 2008, March 3rd − 4th, 2008

model Spring
extends Constraint;
//undeformed spring length
parameter SI.Length l;
//spring stiffness
parameter Real c;
//fixed point on Body A
parameter SI.Position[3] rA ;
//fixed point on Body B
parameter SI.Position[3] rB;
//fixed point on Body A in abs. syst.
SI.Position[3] RA;
//fixed point on Body B in abs. syst.
SI.Position[3] RB;
SI.Length[3] RAB;
SI.Length deltal;

equation
RA = InPortA.r + InPortA.T*rA;
RB = InPortB.r + InPortB.T*rB;
OutPortA.P = RA;
OutPortB.P = RB;
RAB = RB - RA;
deltal = sqrt ((RAB -

l*RAB/ sqrt (RAB*RAB))*
(RAB - l*RAB/ sqrt (RAB*RAB)));

OutPortB.F = -c*deltal*RAB/
sqrt (RAB*RAB);

OutPortB.M = zeros (3);
end Spring;

Figure 13: The Spring Connection Visual Model

Let us continue a description of the skateboard visual
model in Figure 12. It is quite natural for the rider to
be included into the vehicle dynamics. In our case the
rider reduced simply to the cylinder standing perpen-
dicular to the board top surface and being connected

to it rigidly, by the constraint of the classRigid .
A various numeric experiments performed with the
skateboard model under consideration. In particular,
to verify the dynamic effect of the stability of mo-
tion asymmetry, being similar to the stability asym-
metry of the rattleback rotation, the cylinder playing
a role of the rider motionlessly standing on the board
was shifted to the right away from the board masscen-
ter. In this case according to results outlined above if
one pushes the whole skateboard to the right then the
skateboard will keep this motion all the time of simu-
lation. Otherwise, if one directs an initial skateboard
velocity to the left then soon the skateboard would
stop its translatory motion and then will start it to the
right direction thus demonstrating instability of the left
translatory motions, see the board masscenter velocity
x-coordinate depending on the time in Figure 14 and
the corresponding 2D-plot of the board masscenterx-
coordinate itself in Figure 15.

Figure 14: The Skateboard Velocity

Figure 15: The Skateboard Position

Remark that the skateboard model built up turned out
to be quite effective dynamic “toy” allowing to sim-

Modelica Implementation of the Skateboard Dynamics

The Modelica Association 733 Modelica 2008, March 3rd − 4th, 2008

ulate the skateboard roll overs, tumbling, jumps, and
bouncing over the road. It is clear to simulate a con-
trol of such motion the rider model has to be far more
complicated.

5 Conclusions

An analytic analysis and numeric experimentation per-
formed on the skateboard dynamics allow us to have
simultaneously several conclusions:

• The analytic analysis results showing acceptable
consistence with the numeric simulations of the
models created using the physical oriented ap-
proach still remains an effective tool to investi-
gate the skateboard dynamics.

• On the other hand the model itself can be veri-
fied reliably enough using the proper constructed
analytical tools.

• Modelica turned out to be useful instrument in
field of sporting and more wider in field of biome-
chanical applications.

And finally the nearest plans for the future work are
about to investigate the complicated types of the skate-
board motion including in particular the jumps.

6 Acknowledgement

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, projects 05-01-
00308-a, 05-08-65470, 05-01-00454, 07-01-00290,
SS-6667.2006.1.

References

[1] Hubbard M., Lateral Dynamics and Stability of
the Skateboard // Journal of Applied Mechanics,
1979, Vol. 46, pp. 931–936.

[2] Hubbard M., Human Control of the Skateboard //
Journal of Biomechanics, 1980, Vol. 13, pp. 745–
754.

[3] Kuleshov A. S., Mathematical Model of the
Skateboard // Proceedings of XXIV Int. Symp.
on Biomechanics in Sports, Salzburg, Austria,
2006, Vol. 2, pp. 715–719.

[4] Kuleshov A. S., Mathematical Model of a Skate-
board with One Degree of Freedom // Doklady
Physics, 2007, Vol. 52, No. 5, pp. 283–286.

[5] Kremnev A. V., Kuleshov A. S., Nonlinear Dy-
namics and Stability of a Simplified Skateboard
Model, 2007.
http://akule.pisem.net/
Kuleshov2.pdf

[6] Österling A. E. MAS 3030. On the Skateboard,
Kinematics and Dynamics. School of Mathemat-
ical Sciences. University of Exeter. UK. 2004.
http://akule.pisem.net/
theSkateboard.pdf

[7] Lindberg R. E., Longman R. W. On the Dynamic
Behavior of the Wobblestone // Acta Mechanica,
1983, Vol. 49, pp. 81–94.

[8] Bondi H. The Rigid Body Dynamics of Unidirec-
tional Spin // Proceedings of the Royal Society of
London, Series A, 1986, Vol. 405, pp. 265–274.

[9] Garcia A., Hubbard M. Spin Reversal of the Rat-
tleback: Theory and Experiment // Proceedings
of the Royal Society of London, Series A, 1988,
Vol. 418, pp. 165–197.

[10] Bruno A. D. Local Method in Nonlinear Dif-
ferential Equation — Springer–Verlag: Berlin,
1989.

[11] Kosenko I. I., Loginova M. S., Obraztsov Ya. P.,
Stavrovskaya M.S. Multibody Systems Dynam-
ics: Modelica Implementation and Bond Graph
Representation // Proceedings of the 5th Inter-
national Modelica Conference, arsenal research,
Vienna, Austria, September 4–5, 2006, pp. 213–
223.

[12] Kosenko I. I., Alexandrov E. B. Implementation
of the Hertz Contact Model and Its Volumetric
Modification on Modelica // Submitted to Mod-
elica’2008 Conference.

[13] Gesmer D., Haug M. Skateboard truck assembly.
1993.
http://www.freepatentsonline.
com/5263725.pdf

I. I. Kosenko, A. S. Kuleshov

The Modelica Association 734 Modelica 2008, March 3rd − 4th, 2008

Design and validation of an annotation-concept
for the representation of 3D-geometries in Modelica

Thomas Hoeft1 Christoph Nytsch-Geusen1, 2
1Fraunhofer Institute for Computer Architecture and Software Technology

Kekuléstraße 7, 12489 Berlin, Germany
2University of Arts Berlin, Hardenbergstraße 33, 10623 Berlin, Germany

christoph.nytsch@first.fraunhofer.de

Abstract

Simulation models of complex technical systems
need beside the description of their physical behav-
iors also a representation of their 3-dimensional ge-
ometry and topology. Up to now, the Modelica lan-
guage specification [1] includes only rules for 2D-
primitives in form of specialized annotations. Start-
ing from this point, this paper illustrates the design
and validation of an advanced annotation-concept for
embedded 3D-geometries in physical models. The
basic idea consists in the combination of specialized
3D-annotions for classes and objects with a standard-
ized description of 3D-geometries and topologies.
Therefore the X3D-standard [2] is used by the au-
thors. Based on the founded similarities and parallel-
isms in the object-oriented concept of Modelica and
the node concept of X3D an annotation concept for
the embedding of the 3D-geometries was designed.
Further an extension for the Modelica-simulator
MOSILAB [3] in form of a 3D-editor plug-in was
developed for the generation of X3D/Modelica-
scenes and the validation of the new annotation con-
cept. Finally the annotation-concept was evaluated in
a simulation use case, where the physical model of a
simplified Pool-Billiard game [4] was combined with
its 3D-geometry description.
Keywords: 3D-annotation concept; X3D; 3D-
representation of physical models; 4D-animation

1 Introduction

Up to now the Modelica language specification does
not comprise means of expressions for code inte-
grated description of 3D-geometries. The first fun-
damental analysis and conceptual work in this direc-
tion was done by [5]. Two alternative ways were
discussed by the author for the integration of 3D ob-
ject information in Modelica:

1. Definition of a basic set of “graphical classes”,
which make a representation of primitive 3D ob-
jects (e.g. Triangle, Sphere) and position opera-
tions with this objects (e.g. Translation, Rota-
tion) in user defined physical models possible.

2. Direct integration of the 3D object information
as “graphical annotations” into the physical
models self.

Further the embedding of external graphical formats
like STL, VRML or DXF in Modelica models as
annotations information was shortly discussed in this
paper.
The Modelica-simulator Dymola [6] supports with
an additional software component the visualization
of 3D-objects, mainly for the MultiBody-Library.
For this, external definitions of 3D-shapes via dxf-
files are utilized.
In our approach for a model integrated representation
of 3D objects, we have introduced Extensible 3D
Graphics (X3D) - an open international standard for
3D on the Web and the official successor of VRML -
into the Modelica language as a new annotation-type.
We think this approach offers a number of important
advantages:
• X3D represents a sophisticated (and international

accepted) concept for complex and hierarchical
structured 3D-scenes, which fits well to the ob-
ject-oriented Modelica language concept.

• The prototype-concept of X3D allows an effi-
cient integration in the object-oriented concept
of Modelica.

• The annotation concept of Modelica supports the
X3D integration by adding the 3D-geometrical
information as X3D-strings on class level or ob-
ject level. Modelica-tools, which don’t under-
stand those X3D-annotations, are not bothered.

• The use of X3D in Modelica classes enables a
simple export of the 3D representation of a
physical model as a X3D-scene.

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 735 Modelica 2008, March 3rd − 4th, 2008

2 Annotation concept for 3D-object
representation in Modelica

For the integration and validation of X3D in the
Modelica language we have done following three
steps:
1. Design of an annotation concept for the repre-

sentation of 3D-geometries in Modelica
This comprises
• the definition of the language subset of X3D,

which is necessary for the representation of
3D-objects in Modelica,

• the definition of the annotation syntax for
X3D information,

• the Modelica class definition of a set of 3D-
primitives as a base for complex 3D-scenes,

• the rules to instantiate this 3D-classes in
physical models and

• a syntax for the coupling between the X3D
object attributes and the Modelica variables
for 3D-animated simulation experiments.

2. Development of a 3D-editor for the generation
and validation of Modelica models, which
contain 3D-objects, described in X3D
This comprises
• the definition of a set of 3D-base objects and

their attributes, which shall be supported by
the editor,

• the design and the implementation of the
construction interface for 3D-scenes and

• the integration of the 3D-editor in the MOSI-
LAB-IDE [3] as a plug-in.

3. Evaluation of the annotation-concept with the
help of a use case
The analyzed system model and its graphical
representation
• have to have a nontrivial recursive hierarchi-

cal structured geometry and
• have to include static and animated sub-

components.

2.1 Graphical representation in X3D

The X3D specification uses a hierarchical node con-
cept by the use of the XML-Syntax. A single node is
described by its node type and a number of fields
(node attributes). Each field has to be declared with
one of the 26 X3D data types. The following simple
X3D-scene, composed of a blue and a red ball, ex-
plains the main features of X3D for our use in the
context with Modelica. In a first step, a reusable pro-

totype Ball is defined with the ProtoDeclare node.
The first subnode, named ProtoInterface, contains
the field declarations, for which values can be set
during the instantiation of the prototype:
<X3D profile="Immersive">
 <Scene>
 <ProtoDeclare name="Ball">
 <ProtoInterface>
 <field accessType="initializeOnly"
 name="radius" type="SFFloat" value="1.0"/>
 <field accessType="initializeOnly"
 name="diffuseColor" type="SFColor"
 value="0.8 0.8 0.8"/>
 <field accessType="initializeOnly"
 name="translation" type="SFVec3f"
 value="0.0 0.0 0.0"/>
 ...
 </ProtoInterface>

The second subnode, named ProtoBody, defines the
functionality of the prototype. The three-dimensional
geometry of the ball is described by the node for the
X3D-primitive Sphere and its optical appearance
(diffuseColor, transparency …) by the Material-
node. The ball position and orientation is defined by
the Transform-node with the fields translation and
rotation. Further, the code snippet shows some con-
nections between a nodeField of a subnode within
the ProtoBody-node and a declared protoField of the
ProtoInterface-node. This concept makes the access
to these quantities possible during the instantiation of
the prototype:

 <ProtoBody>
 <Transform>
 <IS>
 <connect nodeField="translation"
 protoField="translation"/>
 ...
 </IS>
 <Shape>
 <Sphere>
 <connect nodeField="radius"
 protoField="radius"/>
 </Sphere>
 <Appearance>
 <Material>
 <connect nodeField="diffuseColor"
 protoField="diffuseColor"/>
 ...
 </Material>
 </Appearance>
 </Shape>
 </Transform>
 </ProtoBody>
 </ProtoDeclare>

In the second step, the both objects ballBlue and
ballRed with the prototype Ball are instantiated,
whereas the radius value is set on the typical size for
a billiard ball (2.65 cm) and the diffuseColor value is
set on the RGB-values for blue and red. The red ball
is displaced from the origin at 25 cm by setting the
value of the transform field:

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 736 Modelica 2008, March 3rd − 4th, 2008

 <ProtoInstance name="Ball">
 <MetadataString name="ballBlue"/>
 <fieldValue name="diffuseColor"
 value="0.0 0.0 1.0"/>
 <fieldValue name="radius" value="0.0265"/>
 </ProtoInstance>

 <ProtoInstance name="Ball">
 <MetadataString name="ballRed"/>
 <fieldValue name="diffuseColor"
 value="1.0 0.0 0.0"/>
 <fieldValue name="radius" value="0.0265"/>
 <fieldValue name="translation"
 value="0.25 0.0 0.0"/>
 </ProtoInstance>
 </Scene>
</X3D>

Figure 1 shows the visualization of this short X3D-
scene. As the example illustrates, X3D has not a real
object-oriented concept, but the ProtoDeclare-node
with its ProtoInterface and ProtoBody subnodes has
strong parallelism to the object composition in Mod-
elica.

Figure 1: Simple X3D-scene with two balls

2.2 Physical behavior in Modelica

The Modelica model of the ball describes its physical
behavior with simplified equations of motion of a
concentrated mass. Up to now, the model has not a
representation of its three-dimensional geometry:
import Modelica.SIunits;
...
model Ball
 parameter SIunits.Mass m = 0.2;
 parameter Real f_r = 0.05 “friction coeffient”;
 SIunits.Length x, y;
 SIunits.Velocity v_x, v_y;
equation
 m * der(v_x) = - v_x * f_r; der(x) = v_x;
 m * der(v_y) = - v_y * f_r; der(y) = v_y;
end Ball;

2.3 Integration of X3D in Modelica

Annotations in Modelica can be used as containers
for additional information, which have no influence
on the modeled physical behavior of a model class.
Well known examples are the definitions of graphi-
cal 2D-objects for the model icons or the model
documentation in form of embedded html-Code.
In our concept we have defined a new type of anno-
tations, which contains parts of X3D-scenes as
strings and give a Modelica-model a representation
of its 3D-geometry. These annotations are labeled by
a new element, named Object3D and can be used for
classes and objects:
Use in the class context:
model ClassName
 annotation(Object3D(x3d="X3D-String”))

 ...

end ClassName;

Use in the object context:
model ClassName
 ...
 ClassType objectname
 annotation(Object3D(x3d="X3D-String”));
 ...
end ClassName;

At first, based on this syntax, we have defined a set
of Modelica basic types for the 3D-modeling in the
package BasicBodies:
• Sphere3D,
• Cone3D,
• Box3D,
• Cylinder3D,
• Point3D,
• PolyLine3D.
As an example, the following code shows the im-
plementation of the basic type Sphere 3D:
package BasicBodies
 model Sphere3D annotation(Object3D(x3d = "
 <ProtoDeclare name=\" Sphere3D\">
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" radius\" type=\" SFFloat\"
 value=\" 1.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" transparency\" type=\" SFFloat\"
 value=\" 0.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" diffuseColor\" type=\" SFColor\"
 value=\" 0.8 0.8 0.8\"/>
 <field accessType=\" initializeOnly\"
 name=\" translation\" type=\" SFVec3f\"
 value=\" 0.0 0.0 0.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" rotation\" type=\" SFRotation\"
 value=\" 0.0 0.0 1.0 1.0\"/>
 </ProtoInterface>

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 737 Modelica 2008, March 3rd − 4th, 2008

 <ProtoBody>
 <Transform>
 <IS>
 <connect nodeField=\" translation\"
 protoField=\" translation\"/>
 <connect nodeField=\" rotation\"
 protoField=\" rotation\"/>
 </IS>
 <Shape>
 <Sphere>
 <connect nodeField=\" radius\"
 protoField=\" radius\"/>
 </Sphere>
 <Appearance>
 <Material>
 <connect nodeField=\" diffuseColor\"
 protoField=\" diffuseColor\"/>
 <connect nodeField=\" transparency\"
 protoField=\" transparency\"/>
 </Material>
 </Appearance>
 </Shape>
 </Transform>
 </ProtoBody>
 </ProtoDeclare>"));
 end Sphere3D;
end BasicBodies;

The other basic 3D-types are described in a similar
manner. Starting from these basic types, the configu-
ration of complex 3D-models in Modelica can take
place.

2.4 Coupling of the physical and geometrical
model description

The decisive connection between the variables of the
physical model and field-values of its X3D-
representation is realized by the introduction of the
annotation-element coupling. The syntax is defined
as follows:

model ClassName
 annotation(Object3D(x3d="X3D-String”,
 coupling(protoFieldName1={v1,v2,0.0},
 protoFieldName2={v3}, ...)))
 ...
end ClassName;

At this, protoFieldName stands for the field in the
3D-representation, which shall be updated dynami-
cally during the simulation (e.g. the object position
or its size or color) and v1, v2, v3 the corresponding
Modelica variables. Thus, a physical model can have
a number of coupled protoFields.
The next code piece shall illustrate this coupling
concept with the help of the ball example in para-
graphs 2.2 and 2.3. For this purpose, the ProtoInter-
face definition of the X3D description is integrated
as an annotation on the class level, because this in-
formation concerns only the class interface. The Pro-
toDeclare node is omitted, because this information
is implicit contained in the Modelica class-name it-
self:

...
import BasicBodies3D;
...
model Ball annotation(Object3D(x3d="
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" radius\" type=\" SFFloat\"
 value=\" 0.0265\"/>
 ...
 <field accessType="initializeOnly"
 name=\" translation\" type=\" SFVec3f\"
 value=\" 0.0 0.0 0.0\"/>
 </ProtoInterface>"),
 coupling(translation={x,y,0.0});

The representation of the 3D-geometry of the class
Ball takes place by the instantiation of the basic 3D-
type Sphere3D as an object within the class:

 BasicBodies3D.Sphere3D ball
 annotation(Object3D(x3d="
 <ProtoBody>
 <ProtoInstance
 name=\" BasicBodies3D.Sphere3D\">
 <MetadataString name=\" ball\"/>
 <connect nodeField=\" radius\"
 protoField=\" radius\"/>
 ...
 <connect nodeField=\" translation\"
 protoField=\" translation\"/>
 </ProtoInstance>
 </ProtoBody>")));
 parameter SIunits.Mass m = 0.2;
 parameter Real f_r = 0.05 “friction coeffient”;
 SIunits.Length x, y;
 SIunits.Velocity v_x, v_y;
equation
 m * der(v_x) = - v_x * f_r; der(x) = v_x;
 m * der(v_y) = - v_y * f_r; der(y) = v_y;
end Ball;

3 Use case Pool-Billard game for
validating the annotation concept

In the use case, which shall validate our annotation
concept for embedded 3D-geometry representations,
we have used a model of a simplified Pool-Billiard
game with three balls and one hole [4]. This simula-
tion model suits well to the problem, because its ge-
ometry is hierarchical structured and includes static
(table) and dynamic sub-components (billiard balls).

3.1 Modeling process

In the first step, a leg model (class TableLeg) from
the billiard table shall be configured from the three
submodels bottom (type Cylinder3D), adapter (type
Cone3D) and shaft (type Cylinder3D):
import BasicBodies.*
...
model TableLeg annotation(Object3D(x3d="
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" bottom.height\" type=\" SFFloat\"
 value=\" 0.025\"/>

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 738 Modelica 2008, March 3rd − 4th, 2008

 <field accessType=\" initializeOnly\"
 name=\" bottom.radius\" type=\" SFFloat\"
 value=\" 0.125\"/>
 ...
 <field accessType=\" initializeOnly\"
 name=\" translation\" type=\" SFVec3f\"
 value=\" 0.0 0.0 0.0\"/>
 <field accessType=\" initializeOnly\"
 name=\" rotation\" type=\" SFRotation\"
 value=\" 0.0 0.0 1.0 0.0\"/>
 </ProtoInterface>"));

Cylinder3D bottom annotation(Object3D(x3d="
 <ProtoInstance name=\" Cylinder3D\">
 <MetadataString name=\" bottom\"/>
 <connect nodeField=\" radius\"
 protoField=\" bottom.radius\"/>
 <connect nodeField=\" height\"
 protoField=\" bottom.height\"/>
 ...
 <IS>
 <fieldValue name=\" translation\"
 value=\" 0.0 -0.4 0.0\"/>
 </IS>
 </ProtoInstance>"));

Cone3D adapter annotation(Object3D(x3d="
 <ProtoInstance name=\" Cone3D\">
 ...
 </ProtoInstance>"));

 Cylinder3D shaft annotation(Object3D(x3d="
 <ProtoInstance name=\" Cylinder3D\">
 ...
 </ProtoInstance>"));
end TableLeg;

Figure 2 shows the visualization of the previous de-
fined 3D-representation of the TableLeg model class.

Figure 2: 3D-representation of the TableLeg model

On the next hierarchy level the submodels for the
billiard table model are instantiated from two prede-
fined model classes (TableLeg, Border) and from
two 3D basic types classes (Box3D, Cylinder3D).
The model class BillardTable includes the submod-
els for the plate, the borders, the legs and the hole.
Figure 3 shows the visualization of this table model.

model BillardTable annotation(Object3D(x3d="
 <ProtoInterface>
 <field accessType=\" initializeOnly\"
 name=\" hole.height\" type=\" SFFloat\"
 value=\" 0.081\"/>
 <field accessType=\" initializeOnly\"
 name=\" hole.radius\" type=\" SFFloat\"
 value=\" 0.15\"/>
 ...
 </ProtoInterface>"));
 parameter SIunits.Length width,length;

 Box3D plate annotation(Object3D(x3d="
 <ProtoInstance name=\" Box3D\">
 <MetadataString name=\" plate\"/>
 <fieldValue name=\" size\"
 value=\" 2.54 0.08 1.27\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 0.0 1.0 0.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.0 0.0 0.0\"/>
 </ProtoInstance>"));

 Border borderUp annotation(Object3D(…));
 Border borderDown annotation(Object3D(…));
 Border borderLeft annotation(Object3D(…));
 Border borderRight annotation(Object3D(…));

 Cylinder3D hole annotation(Object3D(x3d="
 <ProtoInstance name=\" Cylinder3D\">
 ...
 <connect nodeField=\" height\"
 protoField=\" hole.height\"/>
 <connect nodeField=\" radius\"
 protoField=\" hole.radius\"/>
 <IS><fieldValue name=\" translation\"
 value=\" 1.26 0.0 -0.635\"/></IS>
 </ProtoInstance>"));

 TableLeg legDownLeft annotation(Object3D(x3d="
 <ProtoInstance name=\" TableLeg\">
 <MetadataString name=\" legDownLeft\"/>
 <fieldValue name=\" translation\"
 value=\" -1.06 -0.375 0.5\"/>
 </ProtoInstance>"));

 TableLeg legDownRight annotation(Object3D(…));
 TableLeg legUpLeft annotation(Object3D(…));
 TableLeg legUpRight annotation(Object3D(…));
end BillardTable;

Figure 3: 3D-representation of the BillardTable model

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 739 Modelica 2008, March 3rd − 4th, 2008

The class SystemModel integrates the static table
model and the three physical ball models. The physi-
cal model of the simplified Pool-Billiard game shall
be drafted only roughly in this paper. A detailed de-
scription is given in [4]. The implementation of this
example was realized with the language extension
for Modelica for model structural dynamics from the
GENSIM project [7, 8]. The different events of a
billiard game (reflections, collisions) and a varying
number of balls can be efficiently described with the
concept of object-oriented statecharts and object dy-
namics:

...
model SystemModel
 annotation(Object3D(...));
 parameter Integer n_balls = 3;
 parameter Real v_x, v_y;
 parameter Real d_balls = 0.0572;
 parameter Real d_holes = 0.15;
 Point p[n_balls];

 dynamic Ball bw annotation(Object3D(x3d="
 <ProtoInstance name=\" Ball\">
 <MetadataString name=\" bw\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 1.0 1.0 1.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.8 0.066 -0.2\"/>
 </ProtoInstance>"));

 dynamic Ball bb annotation(Object3D(x3d="
 <ProtoInstance name=\" Ball\">
 <MetadataString name=\" bb\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 0.0 0.0 0.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.6 0.066 -0.2\"/>
 </ProtoInstance>"));

 dynamic Ball bc annotation(Object3D(x3d="
 <ProtoInstance name=\" Ball\">
 <MetadataString name=\" bc\"/>
 <fieldValue name=\" diffuseColor\"
 value=\" 0.0 0.0 1.0\"/>
 <fieldValue name=\" translation\"
 value=\" 0.4 0.066 -0.2\"/>
 </ProtoInstance>"));

 BillardTable t(width = 1.27, length = 2.54)
 annotation(Object3D(x3d="
 <ProtoInstance name=\" BillardTable\">
 <MetadataString name=\" t\"/>
 </ProtoInstance>"));

 event Boolean disappear_bw(start = false);
 event Boolean collision_bw_bb(start = false);
 ...
equation
 disappear_bw =
 if((p[1].x-0.0)^2+(p[1].y-0.0)^2)^0.5<d_holes
 then true else false;
 collision_bw_bb =
 if((p[2].x-p[1].x)^2+(p[2].y-p[1].y)^2)^0.5
 <d_balls then true else false;
 ...
statechart
 state SystemSC extends State;
 State startState(isInitial=true);
 State Playing, GameOver;

 transition Playing->Playing
 event disappear_bw action
 disconnect(bw.p,p[1]); remove(bw);
 bw:=new Ball(d=d_balls, width=t.width,
 length = t.length,
 x(start = 1.27/2.0),
 y(start = 0.6));
 connect(bw.p,p[1]);
 end transition;

 transition Playing->Playing
 event collision_bw_bb action
 v_x := bw.v_x; v_y := bw.v_y;
 bw.v_x := bb.v_x; bw.v_y := bb.v_y;
 bb.v_x := v_x; bb.v_y := v_y;
 end transition;
 end SystemSC;
 end SystemModel;

Figure 4 illustrates the complete system model with
the static and dynamic model parts.

Figure 4: 3D-representation of the SystemModel

3.2 Simulation experiment

Figure 5: Simulation experiment for the Pool-Billiard
game over 4 seconds.
Figure 5 shows the positions of the white and the
black ball during a simulation period of 4 seconds.

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 740 Modelica 2008, March 3rd − 4th, 2008

After 0.2 seconds, the white ball collides with the
black ball. After 1.0 second, the black ball is re-
flected twice in a short time period on the top side on
the billiard-table and both balls collide again be-
tween its reflections. After 2.3 and 2.5 seconds the
balls reflect on the left border. At 2.95 seconds the
white ball drops into the hole. At the end, the white
ball is set again on its starting position.
Figure 6 to Figure 9 show the 4D-animation of the
same simulation experiment. Because the calculated
x- and y-coordinates of both ball models are con-
nected with their 3D-representations by the annota-
tion-element coupling (compare with paragraph 2.4),
a 4D-animation (3 space coordinates plus the time)
of the experiment can be automatically generated.

Figure 6: Simulation experiment at time=0 seconds

Figure 7: Simulation experiment at time=0.2 seconds

Figure 8: Simulation experiment at time=2.3 seconds

Figure 9:Simulation experiment at time=2.95 seconds

4 Development of a 3D-Model editor

For the validation of the previous described annota-
tion concept for 3D-geometries in Modelica, a 3D-
model editor is being developed by the authors. This
editor supports the definition of 3D-scenes and gen-
erates the Modelica-code with the embedded X3D-
description. Because the editor is implemented as a
plug-in for the graphical user interface of the simula-
tion tool MOSILAB [3], the 3D-modeling works
close together with the other modeling features of the
MOSILAB-IDE (compare with Figure 10).

Figure 10: 3D-model editor as plug-in for the simula-
tion tool MOSILAB .

5 Conclusions

The new designed annotation-concept for the
representation of 3D-geometries in Modelica, based
on the X3D-standard, offers a number of advantages
and new perspectives:
• An integrated description of the equation based

physical behavior and a corresponding represen-
tation of the 3D geometry in a unitary Modelica-
model is an excellent precondition for an effi-
cient communication between the physical and
the geometrical model aspects.

• The use of X3D and its ProtoDeclare-concept
fits well to the object-oriented concept of Mode-
lica.

• 3D-objects, based on Modelica standard types,
can be added directly to the physical models and
could be connected by the coupling-annotation
element.

• The modeling process of complex 3D-scenes can
take place recursively on a multitude of hierar-
chical layers, because each Modelica/X3D-class
can be reused on the next hierarchy-level (see

Design and Validation of an Annotation-Concept for the Representation of 3D-Geometries in Modelica

The Modelica Association 741 Modelica 2008, March 3rd − 4th, 2008

the modeling process of the billiard table in
chapter 3.1).

• The use of the standard X3D-format for the
modeling of the 3D-geometries within the Mode-
lica language enables the import and export of
3D-scenes from/to X3D.

• Future works will focus on a closer integration
of the 3D-editor in the simulation tool MOSI-
LAB.

References

[1] Modelica Association Modelica - A Unified
Object-Oriented Language for Physical Sys-
tems Modeling. Language Specification,
Version 3.0, September 2007.

[2] Brutzman D. and Daly L. X3D: Extensible
3D Graphics for Web Authors. The Morgan
Kaufmann Series in Interactive 3D Technol-
ogy, 2007.

[3] MOSILAB-Homepage:
http://www.mosilab.de

[4] Nytsch-Geusen C. The use of the UML
within the modelling process of Modelica-
models. EOOLT´2007, 1st International
Workshop on Equation-Based Object-
Oriented Languages and Tools, Berlin 2007.

[5] Engelson V. 3D Graphics and Modelica – an
integrated approach. Linköping Electronic
Articles in Computer and Information Sci-
ence. Linköping universitet, 2000.

[6] Dymola-Homepage: http://www.dynasim.se
[7] Nytsch-Geusen C. et al. MOSILAB: Devel-

opment of a Modelica based generic simula-
tion tool supporting model structural dynam-
ics. Proceedings of the 4th International
Modelica Conference, TU Hamburg-
Harburg, Hamburg, 2005.

[8] Nytsch-Geusen C. et al. Advanced modeling
and simulation techniques in MOSILAB: A
system development case study. Proceedings
of the 5th International Modelica Confer-
ence, Arsenal Research, Wien, 2006.

T. Hoeft, C. Nytsch-Geusen

The Modelica Association 742 Modelica 2008, March 3rd − 4th, 2008

