
3DSHU�SUHVHQWHG�DW�WKH�0RGHOLFD�:RUNVKRS�������2FW�����������������/XQG��6ZHGHQ�

$OO�SDSHUV�RI�WKLV�ZRUNVKRS�FDQ�EH�GRZQORDGHG�IURP
KWWS���ZZZ�0RGHOLFD�RUJ�PRGHOLFD�����SURFHHGLQJV�KWPO

:RUNVKRS�3URJUDP�&RPPLWWHH�
�� 3HWHU�)ULW]VRQ��3(/$%��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ��FKDLUPDQ�RI�WKH�SURJUDP�FRPPLWWHH��
�� 0DUWLQ�2WWHU��*HUPDQ�$HURVSDFH�&HQWHU��,QVWLWXWH�RI�5RERWLFV�DQG�0HFKDWURQLFV�

2EHUSIDIIHQKRIHQ��*HUPDQ\�
�� +LOGLQJ�(OPTYLVW��'\QDVLP�$%��/XQG��6ZHGHQ�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�

:RUNVKRS�2UJDQL]LQJ�&RPPLWWHH�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�
�� 9DGLP�(QJHOVRQ��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ�

3��%XQXV��9��(QJHOVRQ��3��)ULW]VRQ�
0HFKDQLFDO�0RGHOV�7UDQVODWLRQ��6LPXODWLRQ�DQG
9LVXDOL]DWLRQ�LQ�0RGHOLFD�
0RGHOLFD�:RUNVKRS������3URFHHGLQJV��SS����������



Mechanical Models Translation, Simulation and
Visualization in Modelica

Peter Bunus, Vadim Engelson, Peter Fritzson
PELAB, Programming Environment Laboratory

Department of Computer and Information Science,
Linköping University, SE-581 83, Linköping, Sweden

{petbu,vaden,petfr}@ida.liu.se

ABSTRACT
Modeling and simulation have become central to all disciplines of engineering and science. In a

comprehensive modeling and simulation environment, it is desirable to integrate models specified in
different modeling formalisms and to extend modeling language constructs to support multi-domain
and multi-formalism modeling integrated with powerful visualization capabilities. This paper is
concerned with the design of a complete integrated environment that combines the powerful
mechanical model design of various CAD packages with the structuring mechanisms of object oriented
modeling languages including a mathematical and logical behavior representation. We present an
integrated environment for simulation of multi-domain models which has been implemented using
Modelica as a standard model representation. The user can work with mechanical models designed
with AutoDesk’s Mechanical Desktop, extend the corresponding Modelica model in various ways, and
analyze the simulation results in a high performance interactive visualization environment.

Introduction

Modelica is a new language for hierarchical object-
oriented physical modeling, which is developed
through an international effort. The language unifies
and generalizes previous object-oriented modeling
languages. Modelica is intended to become a de facto
standard. The language has been designed to allow
existing and future compilers to generate efficient
simulation code automatically with the main objective
to facilitate exchange of models, model libraries, and
simulation specifications. It allows defining
simulation models modularly and hierarchically by
combining various formalisms expressible in the more
general Modelica formalism. The multi-domain
capability of Modelica gives the user the possibility to
combine electrical, mechanical, hydraulic,
thermodynamic, etc. model components within the
same application model. Interaction between system
components, which are often complex and difficult to
analyze, can be easily studied.

In order to automate the design of mechanical
models, CAD tools can be utilized. We have focused
on adding the ability to easily interface the Modelica
simulation environment with a wider variety of CAD
systems. At the first stage we have focused on
achieving full integration with widely accepted
mechanical CAD solutions like SolidWorks and
Mechanical Desktop. In this paper we present a
translator implementation from AutoDesk’s
Mechanical Desktop to Modelica, which extracts
geometric and parametric information from an
existing designed mechanical model and produces a

corresponding set of Modelica class instances with
connections between them.

AutoDesk’s Mechanical Desktop 4 is an
integrated package of advanced 3D modeling tools
and 2D drafting and drawing capabilities, that help
the modeler to conceptualize, design, and document
a mechanical product. Our comprehensive integrated
environment consists of a CAD tool, a simulation
environment, like Dymola or MathModelica, and a
visualizer that provides online dynamic display of
the assembly (during simulation) or offline (based
on saved state information for each time step).

The developed integrated environment allows
designers and engineers to build very quickly a
virtual prototype which enables them to identify
design flaws that would previously only have been
found after building costly and time consuming
physical prototypes. The combined mechanical
design environment enhanced with simulation
capabilities given by the Modelica simulation
environment emphasizes the concept of functional
design. In Modelica it is possible to specify arbitrary
control algorithms for mechanical and mechatronic
models. In that way it is possible to model and
simulate both control an mechanical aspects of the
desired mechanical application. Through simulation
of the complete mechatronic system, the designer
can predict how his mechanical subsystem will
interact with the other subsystems. The dynamics of
mechanical and/or control systems is also
documented by plots of system variables completing
in that way the realistic animation of the visualizer.
Given an initial mechanical design, the user can
modify this design (based on the simulated results)



in order to improve the functional performance of the
mechanical assembly.

Figure 1 represents a general view of our
integrated environment for design, simulation and
visualisation of mechanical models. In order to create
such an environment we have combined a typical
CAD environment with an equation based simulation
environment with enhanced visualization capabilities.
First the user will define the mechanical model in
his/her favourite CAD package using, maybe standard,
predefined component library models. The result of
this operation usually is a static wire-frame model
without any dynamic capabilities. A plug-in to the
CAD package extracts from the drawing the geometry,
mass, inertia and constraints information, translating
them to a simulation language source code. This code
is combined with other code fragments (e.g. control
systems), simulated, and the output can be visualised
as a data plot of the system variables and/or as a 3D or
2D dynamic model animation. The 3D visualisations
are scenes that display the geometry of the parts in
motions prescribed by the simulation results. The
graphical user interface of the CAD model and the
output visualisation capabilities of the simulation
environment make it easy to describe and modify
model geometry as well as examine analysis results at
the same time. More implementation details of the
integrated environment will be given in the remainder
of the paper.
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Mechanical
Model Design

Standard
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Figure 1. Functional structure of the integrated
environment

In this paper, we first give a brief introduction to the
overall design of the developed simulation
environment. At the same time, we examine the
implementation details of the developed translator. A
brief overview of the Modelica language is also given
with an emphasis on the modular and hierarchical
facilities of the language. The Modelica Multi Body
System Library (MBS) is briefly presented together
with a simple modeling and simulation example. We
will also present some principles of the developed
translator implementation. The use of the translator is
demonstrated on several examples. We conclude with
an overview concerning further development based on
the integrated design and simulation environment.

The Modelica Modeling Language

Modelica is a new language for hierarchical object-
oriented physical modeling which is developed
through an international effort [Fritzson and
Engelson 1998; Elmqvist et al. 1999].

Compared to other modeling languages available
today, Modelica offers four important advantages
from the simulation practitioner point of view:
• Acausal modeling based on ordinary differential

equations (ODE) and differential algebraic
equations (DAE). There is also, ongoing
research to include partial differential equations
(PDE) in the language syntax and semantics
[Saldamli and Fritzson 2000].

• Multi-domain modeling capability, which
provides the user with the possibility to
combine electrical, mechanical, thermodynamic,
hydraulic etc., model components within the
same application model.

• A general type system that unifies object-
orientation, multiple inheritance, and templates
within a single class construct. This facilitates
reuse of components and evolution of models.

• A strong software component model, with
constructs for creating and connecting
components. Thus the language is ideally suited
as an architectural description language for
complex physical systems, and to some extent
for software systems.

The reader of the paper is referred to [Modelica
Association 1999a] and [Modelica Association
1999b] for a complete description of the language
and its functionality from the perspective of the
motivations and design goals of the researchers who
developed it. Those interested in shorter overviews
of the language may wish to consult [Fritzson and
Engelson 1998] or [Elmqvist et al. 1999].

Two environments employing the declarative
equation based programming paradigm and
Modelica language will be extensively discussed in
this paper: MathModelica [Jirstrand et al. 1999] and
Dymola with Modelica support.

The dynamic simulation capabilities of the
language has been demonstrated many times in the
literature by modeling and simulating heat
exchangers  [Mattsson 1997], automatic gear boxes
[Otter et al 1997] or hydraulic systems [Ferreira et al
199], [Tummescheit and Eborn 1998]. The
advantage of such a modeling language is that the
user can concentrate on the logic of the problem
rather than on a detailed algorithmic implementation
of the simulation model. In order for declarative
equation based modeling languages to achieve
widespread acceptance, associated programming
environments and development tools must become
more accessible to the user.



Related Work
In this part of the paper, we briefly survey some of the
commercial virtual prototyping packages available
which are most closely related to our developed
environment.

VisualNastran 4D from MSC Working Knowledge
provides an integrated environment for motion and
FEA (Finite Element Analysis) simulation and
complete suite of tools for the development and
communication of physics-based virtual prototypes.
Constraints and drivers can be defined by numeric or
equation input in the formula editor, or with tabular
data.

ADAMS, standing for Automatic Dynamic
Analysis of Mechanical Systems developed by
Mechanical Dynamics Inc., provides a fully integrated
virtual prototyping environment. In addition to the
powerful modeling and visualization capabilities
includes an analysis engine called ADAMS/Solver
which converts an ADAMS model to equations of
motion, and then solves the equations, typically in the
time domain. ADAMS/Solver can resolve redundant
constraints, handle unlimited degrees of freedom, and
perform static equilibrium, kinematic, and dynamic
analyses.

Dynamic Designer/Motion and Simply Motion,
two other products from Mechanical Dynamics Inc.,
provides a full integration with Mechanical Desktop.
Simply Motion written also in AutoDesk’s ARX
development language extends the design automation
capabilities of Mechanical Desktop to include realistic
3D dynamic motion simulation. Simply Motion
anticipates the mechanical designer needs and
automatically updates the motion data. Through a
browser called IntelliMotion Browser, the user can
add joints, springs and input motion to the mechanical
model.

DADS, standing for Dynamic Analysis and Design
System available from LMS International Inc.
(CADSI), performs assembly, kinematic, dynamic,
inverse dynamic and preload analysis. It incorporates
advanced numerical methods to solve Differential
Algebraic Equations (DAE) using both implicit and
explicit solvers.

The primary limitation of these environments is
the difficulty of integrating multi-domain simulation
in the same environment. Usually an interface to other
popular simulation tools, like MATLAB and Simulink,
is provided, but this solution does not offer too much
flexibility. We have identified two major needs for a
virtual prototyping system:

• The need to integrate multi-domain simulation
in the same environment.

• The generation of quality documentation
coupled to the design and code.

In the following pages, we detail our proposed
procedure for avoiding the current limitations of the
software in this area.

MBS (Multi Body System) Library in
Modelica

The equation-based foundation of the Modelica
language enables simulation in an extremely broad
range of scientific and engineering areas. Some of
the model libraries include application areas such as
mechanics, electronics, hydraulics and pneumatics.
The MBS (Multi Body System) library has been
developed in [Otter 1995], and an overview can be
found in [Otter et al. 1996]. We briefly present the
multi-body system library together with a simple
modeling examples.

A distinguishing feature of mechanical multi-
body systems is the presence of joints, which impose
different type of kinematic constrains between the
various bodies of the system. Kinematic constraints
are enforced between the kinematic variables of two
bodies. These constraints express the conditions for
relative translation or rotation of the two bodies
along or around a body fixed axis, and imply the
relative sliding of the two bodies which remain in
constant contact with each other. However, in
Mechanical Desktop it is possible to define a relative
distance when specifying the mates between two
bodies.

In order to correctly simulate a mechanism, it is
necessary to have a closed kinematic chain with one
link fixed. When we say that one link is fixed, we
mean that it is chosen as a frame of reference for all
other links, i.e., that the motion of all other points on
the linkage will be measured with respect to this
link, thought of as being fixed. The CAD
environment has the possibility of specifying which
part of the kinematic chain will be fixed. Later, in
the translation phase, this fixed part will be
connected with an instance of the InertialSystem
class.

An instance of the Inertial class defines the
global coordinate system and gravitational forces
(the inertial frame). All parameter vectors and
tensors are given in the home position of the multi-
body system with respect to the inertial frame. One
instance of class Inertial must always be present
for every multi-body model. All other objects are in
some way connected to the inertia system, either
directly or through other objects.

Every basic mechanical component from the
MBS library has at least one or two interfaces to
connect the element rigidly to another mechanical
elements.

An example of the MBS library usage is shown
by the following modeling examples.

Our first modeling example consists of a mass
hanging on a spring in a gravity field. When the
spring-mounted body is disturbed from its
equilibrium position, its ensuing motion in the
absence of any imposed external forces is termed
free vibration. However, in the real world, every
mechanical system posses some inherent degree of



friction which will act as a consumer of mechanical
energy. Therefore, we should add to our system a
viscous damper for the purpose of limiting or
retarding the vibration.

A schematic diagram of our system under
consideration is shown in Figure2.
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body1 = [0, -0.2, 0]

Figure 2. Schematic diagram of the damped free
vibration mass system

The Modelica code for the model considered above is
shown below:

import "library/mbs/mbscom.mo";
import "library/mbs/mbs1.mo";
import "library/drive/drivep1.mo";

model DFVmass

  parameter Real c = 300;
  Inertial inertial;
  PrismaticS prismS1 (n=[0,-1,0]);
  BoxBody body1(r=[0,-0.2,0],Width=0.2,

       Height=0.2);
  Spring spring3D (c=c);
  Damper damper3D(d=2);

  equation
connect(inertial.b, prismS1.a);
connect(prismS1.b,  body1.a);
connect(prismS1.a,  spring3D.a);
connect(spring3D.a, damper3D.a);
connect(spring3D.b, damper3D.b);

  connect(body1.a,    spring3D.b);

end DFVmass;

As we have seen from the previous example, a
simulation model that uses the MBS library consists of
an inertial system (an instance of Inertial class)
and different mechanical components connected
together with the connect statement. The statement
connect(v1,v2) expresses coupling between
variables. These variables are called connectors and
belong to the connected objects. Each connection
specifies interaction between components. A
connector should contain all quantities needed to
describe the interaction. This gives a flexible way of
specifying topology of physical systems described in
an object-oriented way using Modelica.

A distinguishing feature of multi-body systems is
the presence of joints, which impose different types of

kinematic constrains between the various bodies of
the kinematic chain. The motions between links of
the mechanism must to be constrained to produce
the proper relative motion, those chosen by the
designer for the particular task to be performed.

A Prismatic joint has been introduced in order to
produce the relative motion in the Y-direction. The
relative motion direction is specified by the
parameter vector n=[0,-1,0] which is the axis of
translation resolved in frame a.

Mechanical Desktop
In the above we have explored how a simple
simulation is expressed with the help of the
Modelica language and the Multi-Body library. Now
we can take a look how typical design of a multi-
body system is done in our target CAD environment
and what facilities are offered by this environment.

AutoDesk’s Mechanical Desktop, like other
typical CAD/CAM systems supports modeling the
geometry of parts and static assemblies of parts. The
assemblies can be built combining two or more
parts, or parts grouped in subassemblies. Like part
features, parts and subassemblies act like building
blocks. Each solid component (a rigid body) is
modeled as a separate part which can be saved in a
separate document and later externally referenced to
the assembly. In an assembly model, these parts are
put together in order to form a complete model.
Mechanical Desktop builds individual parts and
subassemblies into an assembly. Using externally
referenced parts into an assembly creates a truly
parametric assembly design. Changes to an external
reference can be made from within the assembly or
in the original file.

Mechanical Desktop has the possibility to
automate the design and revision process by using
parametric geometry, which controls relationships
among design elements and automatically adjusts
models and drawings as they are refined.

The assembly document defines the mobility
between the parts of an assembly. After parts or
subassemblies have been created, constraints are
applied to position them relative to one another.
Each time when a constraint is applied to a part,
some degrees of freedom are eliminated. After the
parts have been assembled and constraints have been
applied an interference checking can be performed
and mass calculations can be performed on parts to
insure that they are structurally sound.

The Mechanical Desktop offers the following
mate types:
• AMMATE - Mate constraint. Causes a plane or

axis on one part to be coincident with a plane,
point, or axis on another part in a specified
direction. Removes a translational or rotational
degree of freedom.



• AMFLUSH - Flush constraint. Make two planes
coplanar with their faces aligned in the same
direction.

• AMINSERT - Insert constraint. Aligns center
points and planes of two circles in a specified
direction. Removes translational degrees of
freedom. Used to constrain a bolt in a hole, for
example.

• AMMANGLE – Angular Constraint. Specifies an
angle between two planes, two vectors, or a
combination of a plane and a vector.

The links of the designed mechanism have been
connected together in some manner in order to
transmit motion from the driver (input link) to the
follower (output link). The joints between the links are
also called (kinematic) pairs, because each joint
consist of a pair of mating surfaces, two elements, one
matting surface or element being part of each of the
joined links as it is shown in Figure 3.
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Figure 3. Two links connected together by two
coincident plane/plane mates and the corresponding

joint from the MBS library

Each time when we apply a constraint to a part, some
degrees of freedom are eliminated. The number of
degrees of freedom determines the movement of a part
in various directions; the more constraints applied, the
less the part can move. At the beginning, we have
applied a mate constraint mate1 which cause plane
pl1 from part P1 to be coincident with plane pl2
from part P2. The mate constraint mate1 has
eliminated a translational degree of freedom on axis X
and two rotational degrees of freedom: one around
axis Y and the other one around axis Z. Applying the
second constraint mate2 by constraining plane pl2’
to be coincided with plane pl1’  we have eliminated
a translational degree of freedom of axis Y and the
rotational degree of freedom around axis X. The
rotational degree of freedom around axis Z have been
already eliminated by the first applied mate constraint.
In conclusion, our assembly will have only one degree
of freedom, namely a translational degree of freedom
on axis Z.

The Mate constraint has the following available
options:
• Two planes coplanar with their normals aligned in

opposite directions (facing each other).

• An axis planar with a plane.
• Two axes that share the same direction and

slope (collinear).
• A point that lies on an axis.
• Two coincident points.
• A sphere, cylinder, or cone tangent to a plane or

to other spheres, cylinders, and cones.
The translator will gather the information about the
mate constraints applied to the two parts and will be
translated to a corresponding joint object from the
MBS library. In our example the translated joint will
correspond to a prismatic joint which only permits a
relative sliding motion and therefore is often called a
sliding joint. This type of joint only has a single
degree of freedom.

Any invalid combinations of mates are
automatically rejected by the Mechanical Desktop so
the possibility of translating to an incorrect joint is
eliminated already during the design phase. Each
valid combination of mates will be translated to a
combination of joints, which resides in the multi-
body library. Table 1 lists the names of the lower
joints, together with the number of translational and
rotational degrees of freedom [Shigley 1995], and
their correspondents from the MBS library. All other
joint types are called higher pairs. They are
combinations of the basic joints and are not listed in
Table 1.

Pair Tr. and
Rot. DOF

Nr. of
DOF

Relative
motion

MBS name

Revolute 1rot 1 Circular RevoluteS
Prismatic 1tr 1 Linear PrismaticS
Cylindric 1rot; 1tr 2 Cylindric CylindicalS
Sphere 3rot 3 Spheric SphereCardanS
Flat 3tr 3 Planar PlanarS

Table 1. Lower joints

Translator Implementation

The translator was implemented as a plug-in to
AutoDesk’s Mechanical Desktop by using a
provided application development tool, AutoDesk
Mechanical Application Programming Interface
(MCAD API) [AutoDesk 1999b]. The MCAD API
provide a direct and unified access mechanism for
AutoCAD and Mechanical Desktop geometry
making possible in that way to translate the
geometrical, mass, inertia and constraint information
to source code in Modelica. From the AutoCAD
point of view, our translator is an ObjectARX
application. An ObjectARX application is a dynamic
link library (DLL) that shares the address space of
AutoCAD and makes direct function calls to
AutoCAD. It is possible to add new classes to the
ObjectARX. The ObjectARX entities created are
virtually indistinguishable from the built-in
AutoCAD entities. The ObjectARX protocol can be
extended by adding functions at runtime to existing
AutoCAD classes [AutoDesk 1999a].
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Figure 4. The path from a Mechanical Desktop static model to a dynamic system visualization

The overall architecture of our virtual prototyping
environment and how the developed translator is
integrated in this environment is shown in Figure 4.

A mechanical model designed and fully
constrained in the Mechanical Desktop Environment
serves as a starting point in the virtual prototyping.
The models are saved in the DWG format, which
contains all the information related to the geometrical
properties of the parts and information related to the
mechanical assembly like mates and constraints.

The geometry of each part is exported to the STL
file format [3Dsystems, 2000]. At the same time, mass
and inertia of the parts are extracted together with
mates information from the mechanical assembly. The
translator will use this information to generate a
corresponding set of Modelica class instances with
connections between them. This automatically
generated Modelica file is processed by a simulation
environment like Dymola or MathModelica. In
contrast to other virtual prototyping environments
presented in the related work chapter, our environment
creates readable Modelica code so the programmer
can combine it with other code fragments and modify
it if necessary. For instance, the simulation code can
be enhanced by adding other components from other
Modelica libraries or by adding externally defined C
code. In that phase electrical, control or hydraulics
components can be added to the generated mechanical

model, providing in that way a multi-domain
simulation.

By default, only the gravity force is applied to
the translated model. The translated CAD model
models a set of dynamic equations of motion.
Therefore, the simulation can predict the mechanism
response to a given set of initial conditions or force
(or torque) load, which might be function of time.
External functions can be specified by adding an
instance of ExtForce class from the MBS library.

The results of the simulation can be visualized as
2D plotting of the simulation variables or as a 3D
dynamic animation of the mechanical assembly with
the MVIS (Modelica VISualizer) and OpenGL based
interactive visualization tool [Engelson 2000].
Compared to the similar translator developed for
SolidWorks [Larson 1999], the main improvement
of the Mechanical Desktop to Modelica translator is
the possibility of visualizing the simulation result
inside the CAD editor (marked in Figure. 5 as the
arrow which connects the Modelica execution with
the Mechanical Desktop assembly drawing). This is
usually combined with visualization of variables in
the 2D Graph viewer incorporated in the simulation
environment.

The overall system will produce a dynamic
multi-body system simulation in time domain for the
evaluation of the dynamic interaction between



several parts of the mechanical system or between the
mechanical assembly and the attached controller. This
is very useful in optimizing the mechanical
components geometry, and leads to a good deal of
confidence when it comes the time to go from
drawings to fabricating the equipment. Simulating a
couple of scenarios with mechanical rigid body
models and inspecting animations and numerical
results has validated our approach.

More details will be given next about the MVIS –
Modelica Interactive Visualization Tool and about the
geometric data translation between the CAD system
and the simulation environment together with a brief
description of the STL geometry export format.

MVIS
Modelica Interactive Visualization Tool

The integrated environment includes a 3D viewer that
provides online dynamic display of the assembly
(during simulation) or offline (based on the saved state
information for each step).

This tool loads the corresponding STL file for each
part and optimizes is for rendering. After that,
rendering is performed by OpenGL library functions.
During optimization, the vertices positioned very close
are merged together. Optimized STL code is stored in
a binary file for future use.

The user can alternatively use the pop-up menu
system, keyboard shortcuts, or a command string in
order to control various options. We found that the
following options (that can be turned on and off)
should be available, and we have implemented them:
• Rotating the camera in 2 degrees of freedom

(DOF), moving the camera in three DOF,
zooming in and out.

• Using perspective and orthographic projections.
• Parts are displayed as a wire-frame, lighted or

hidden, with or without a shadow.
• Vectors (forces, velocities, etc.).
• Application specific environment (road for car

simulation, or an airport for flight simulation).
• Planned and actual trajectory (mission) of some

parts.
• Synchronization of animation with machine

clock.
• Starting, stopping, continuing animation,

steeping forward and backward.
• Targeting camera center of view on a particular

part, so that camera follows the part all the time
• Rotating camera together with the target part

Geometric Data Translation. The STL
File Format.

Geometry information is saved in a separate STL file
for each mechanical part using the export
capabilities of the Mechanical Desktop environment.
STL files are used for representation of 3D surfaces.
The surface is tessellated or broken down logically
into a series of small triangles (facets). Each facet is
described by its normal vector and three points
representing the vertices (corners) of the
triangle.[3DSystems 2000]. The resolution of the
mesh created by these triangles can be controlled by
the AutoCAD system variable FACETRES. Our
translator uses the STL ASCII format for translating
the geometry information. The syntax for an ASCII
STL file is as follows:

solid
...
facet normal 0.00 0.00 1.00
  outer loop

vertex  2.00  2.00  0.00
vertex -1.00  1.00  0.00
vertex  0.00 -1.00  0.00

  endloop
endfacet
...
endsolid

 In future, the environment will be able to support
other geometry formats, for instance VRML.



A Double Pendulum Model Translation
and Simulation
The next part of the paper reports direct modeling
experience with the implemented translator by
showing a simple modeling and simulation example.

In the following, we analyze the simulation of a
simple mechanical double pendulum with the purpose
of validating our environment and showing its basic
capabilities. The model of the pendulum (Figure 5)
was designed and fully constrained in Mechanical
Desktop.

BASE

ARM1

ARM2

RevoluteS rev1

RevoluteS  rev2

Figure 5. Double Pendulum model, designed and
constrained in Mechanical Desktop

At the start, the first link of the pendulum has an angle
q (w.r.t the vertical axis) and the initial velocity is 0.

First, based on the extracted mass and inertia
related information, three instances of the BodyME
class will be created: BASE, ARM1, ARM2. In
addition to the normal Body class, this class includes
information how to position the object for the purpose
of visualization with the MVIS tool. A complete
description of the BodyME class can be found in
[Larsson 1999]. Then, based on the assembly
constraint information the type of joints will be
identified.

The translator will automatically create a revolute
joint when two components share a line/line and a
plane/plane assembly constraint and the line/line is
oriented along the normal of the plane/plane. In the
design of the presented pendulum we have used the
AMINSERT command in order to create the assembly
constraint between the two circular faces of the
connecting part of the pendulum. AMINSERT will
constrain the parts by making the selected edges or
faces share the same axis, while forcing their faces to
be coplanar. The same type of mate was used to
constrain the first part of the pendulum with the
support cylinder. The automatically translated revolute
joint will allow the corresponding two parts of the

pendulum to rotate relative to each other about a
common axis. It will remove all three translational
degrees of freedom and two rotational degrees of
freedom from the part is attached to.

Then coordinate translation components (class
Bar) are added between the connection points. The
kinematic diagram of the pendulum under
consideration is shown in Figure 6.

Inertial I

Bar BASE_bar BodyME BASE

RevoluteS rev1

Bar ARM1_bar BodyME ARM1

RevoluteS rev2

Bar ARM2_bar BodyME ARM2

Figure 6. Kinematic diagram of the pendulum
under consideration

The translator will automatically generate the
connections between the class instances. The
following connections will be generated as a result
of the assembly mechanical design structure:

connect(I.b, BASE.a)
connect(I.b, BASE_bar.a);
connect(BASE_bar.a, rev1.a);
connect(rev1.b, ARM1.a);
connect(rev1.b, ARM1_base.a);
connect(ARM1_base.s, rev2.a);
connect(rev2.b, ARM2.a);
connect(rev2.b, ARM2_bar.a);

Up to this point, we have automatically generated
the Modelica simulation code for the given
mechanical design. After the translation phase the
user can easily add the first revolute joint a rotary
motion generator attached to its available rotational
degree of freedom by editing the generated code. At
this phase, multi-domain simulation can be
integrated with the mechanical model by connecting
it with other domain simulation models. The
simulation environment allows the user to couple
various physical domains in one simulation.

The added visualization capabilities are very
important both for engineering interpretation and for
design reviews. Data variable plots and animation of
the mechanical system make it even easier to spot
trends and region of interest.
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Figure.7 CAD integration with the MathModelica environment

Our environment will, in the future, be fully integrated
with the MathModelica environment. MathModelica
is an integrated problem-solving environment (PSE)
for full system modeling and simulation [Jirstrand et
al. 1999; Jirstrand 2000]. The environment integrates
Modelica-based modeling and simulation with graphic
design, advanced scripting facilities, integration of
code and documentation, and symbolic formula
manipulation provided via Mathematica. Import and
export of Modelica code between internal structured
and external textual representation is supported by
MathModelica. The environment use extensively the
principles of literate programming [Knuth 1984] and
integrates most activities needed in simulation design:
modeling, symbolic processing, transformation and
formula manipulation, storage of simulation models,
version control, input and output data visualization,
storage and generation of documentation.
Mathematica [Wolfram 1996] is an interpreted
language and integrates several features into a unified
integrated environment: numerical and symbolic
calculations, functional, procedural, rule-based and
graphical programming. Also the language
incorporates many features of traditional mathematical
notation and the goal of the language is to provide a
precise and consistent way to specify computations.

Mathematica is divided into two distinct parts: the
computer algebra engine (“kernel”) that receives and
evaluates all expressions sent to it and the user
interface (“front-end”). The front-end provides the
program interface to the user and is concerned with
such issues as how input is entered and how
computation results are displayed to the user.
Mathematica’s front-end documents are called
notebooks [Wolfram 1996]. They combine text,
executable commands, numerical results, graphics,
and sound in a single document. A notebook provides
the users with a medium in which they can document
their solution along side the computation itself.

A functional structure diagram of the CAD
integration with the MathModelica environment is
given in Figure 7. A translator will extract all the

necessary information from the CAD system
generating a mechanical Modelica model, geometry
related information and other related information of
the mechanical model. This information will be
processed by a Mathematica notebook generator
which outputs a MathModelica notebook. The
generated notebook is processed by the
MathModelica simulation environment using the
incorporated simulation engine, 2D plotting of the
system variables are generated together with a
realistic animation of the mechanical system under
consideration.

The advantages of such a development chain for
virtual prototyping are:
• Early detection of mechanical design flaws.
• High quality generated code.
• High quality documentation generation which is

coupled to the design and code.
• Reduced time for design validation and

implicitly reduced development time.
• Multi-domain modeling is made possible.
• The possibility to handle information about a

product’s entire life cycle, from the design
phase to the manufacturing phase.

SUMMARY AND FUTURE WORK.
The objective of the work presented herein was to
demonstrate that the integration of a typical
CAD/CAM system and an equation based
simulation environment can produce a feasible
virtual prototyping environment with an enhanced
flexibility compared to other traditional
commercially available environments. The main
advantage of our environment is that the multi-
domain simulation is made possible in the same
environment.

The improved CAD integration provides the
users with a more intuitive and sound way of
constructing and verifying large, moving assemblies.
In that way designers can take into account the
dynamic nature of the problem and simulate the
entire mechanical assembly, rather than visualize a



static part or a small subassembly, resulting in more
accurate modeling and design solutions

Commercially available MBS simulation packages
like ADAMS or Working Model 3D cannot be directly
used for modeling the motion of mechanical systems
with attached controllers. To solve this problem we
propose a methodology based on the utilization of
possibilities available from both Mechanical Desktop
and Modelica. The efficiency of the proposed
methodology has been illustrated by the modeling and
simulation of the motion of a simple pendulum. The
integration of Mechanical Desktop and Modelica
enabled us to prove that our design concept of a
mechanical system can fulfill the functional
specification. The control algorithms can be tested in
parallel with the mechanical design of the systems.

The combination of two environments, the CAD
modeling environment and the simulation
environment, in effect, collapse the phase of coding.

In the future, we shall concentrate on the following
tasks:

• A complete integration of the CAD
translators to the MathModelica environment
• Better collision detection handling and
visualization of forces and effects of collisions.
• Automatic output of the force data to finite
element analysis (FEA)  packages for structural
analysis and other applications.
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