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Abstract: Tubes with boiling are common elements of many processes.
They appear in steam generators and refrigerators and many other systems.
The behavior of such systems is complicated and many physical phenomena
are involved. It has for example been observed that different types of
instabilities can occur. In this paper we will discuss modeling of tubes with
boiling. As an application we will discuss an instability phenomenon due to
pressure oscillations that has been observed experimentally in many different
situations. We will first derive a simple analytical model which is able to
capture the oscillations qualitatively. The simple model also gives insight into
the mechanisms that generate the oscillations. A more complicated model
is then built using a recently developed model base library in Modelica. A
comparison between the simple and the complicated model is also given.

1. Introduction

Evaporation of fluids flowing through a tube is common in many processes. It is a key element
in steam generators, refrigerators and many other systems. The physical phenomena during
evaporation is quite complicated. Both the dynamics and fluid property relations are highly
non-linear and key quantities like the dry-out point or the amount of superheat are difficult
to measure. Many factors contribute to making these processes hard to control. It has for example
been observed that different types of flow instabilities/oscillations can occur, see (1, 4, 8).
In this paper we will discuss modeling of tubes with boiling. As an application we will discuss
an instability phenomenon due to pressure oscillations that has been observed experimentally in
different situations, e. g., in (5). Modeling of such systems is usually done by "brute-force", using
CFD code with high discretization. In this paper we take a different approach.

Within the framework of a European collaboration a new modeling language, called Modelica, has
been developed. Modelica is based upon the experiences of the members of the Modelica Design
Group and is aiming at becoming a standard for equation-based continuous-time and hybrid
modeling. As a part of the effort some Modelica base libraries for applications within different
domains have been developed, among these a thermo-hydraulic base library, see (7). This library
is used here to build a discretized model of a boiling tube.

First a simple, low-order analytical model is derived from first principles. The simple model is
able to capture the oscillations that have been observed experimentally. It can also give insight
into the mechanisms that generate the oscillations. Then a more complex model is built using the
thermo-hydraulic base library in Modelica. Simulations of the complex model shows that it gives
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Fig. 1 Distribution of vapor along a heated tube.

results comparable to the simplified model and also close to experimental data. But the complex
model also has a richer behavior. Comparisons between the two models are given.

2. Simple Physical Analysis

When liquid streams through a heated tube it is first heated to the boiling temperature, when
boiling occurs there is a mixture of liquid and gas and finally there is only gas which is heated.
This is illustrated schematically in Figure 1. The heating zone is from 0 to Q1, the boiling zone
from Q1 up to Q1+Q2 and after this point there is no liquid left in the tube. If the flow is sufficiently
fast the liquid does not spend enough time in the tube for all liquid to evaporate and then there
are only two zones. If the flow rate is even higher boiling may not even start.

Two phase flows are quite complicated. Here we will first start with a simplified, homogeneous
model. Let P be the power per unit length supplied to the tube, let m be the mass flow rate, let
hin be the enthalpy of the liquid at the entrance of the tube, hl the liquid enthalpy at boiling
temperature and hc = hv − hl the difference between the enthalpy of the vapor and the liquid.
Moreover let L be the length of the tube and Q1 and Q2 be the length of the heating and boiling
zones. If we assume stationary conditions, a global energy balance gives

m(hl − hin) = PQ1
mhc = PQ2

(1)

The condition for having complete boiling is that Q1 + Q2 < L. Neglecting the enthalpy increase of
the vapor we get

m < mc = PL
hv − hin

(2)

where mc is the critical mass flow rate.

The pressure drop is

∆p = k
2

ρv2 = k
2A2

m2

ρ
(3)

To determine the pressure drop we thus have to calculate the average 1/ρ. To calculate the average
we will consider three separate cases.

Complete Boiling: In this case all phases are present. In (2) it was shown that in steady state
the mass ratio of the vapor in a heated tube is piecewise linear. If we assume that this profile is
a good approximation also in the transient stage we can assume that the volumity, ν = 1/ρ, is an
affine function in the boiling zone, i.e.

ν = ξ
Q2νv + Q2 − ξ

Q2 ν l



where 0 ≤ ξ ≤ Q2 and the origin is at the start of boiling. Hence

1
ρ
= ν = 1

L

(∫ Q1

0
ν ldξ +

∫ Q2

0

(
ν l + ξ νv−ν l

Q2
)
dξ + (L− Q1 − Q2)νv

)
= Q1

L
1
ρl
+ Q2

2L

( 1
ρv
+ 1

ρl

)
+ L − Q1 − Q2

L
1
ρv

(4)

It follows from Equation (1) and Equation (2) that

Q1
L
= hl − hin

hv − hin

m
mc

Q2
L
= hv − hl

hv − hin

m
mc

Introducing x = m/mc into (4) we find that

ρl

ρ
= (1− x) ρl

ρv
+ x

hl − hin

hv − hin
+ x

2
hv − hl

hv − hin

ρl + ρv

ρv

Partial Boiling: In this case there is only a heating zone and a boiling zone. The flow at the
exit of the tube consists of a mixture of both vapor and liquid. We have Q1 < L = Q1 + Q2 and we
get

1
ρ
= ν = 1

L

(∫ Q1

0
ν ldξ +

∫ Q2

0

(
ν l + arξ

νv−ν l

Q2
)
dξ
)

= Q1
L

1
ρl
+ Q2

2Lρl

(
2+ ar

( ρl

ρv
− 1
)) (5)

where ar is the mass fraction of vapor at the tube outlet. Neglecting the energy increase in the
pure vapor phase a global energy balance gives

mar(hv − hl) = PQ2 = P(L− Q1) = mc(hv − hin) −m(hl − hin)
Combining this with Equation (2) we find

ar = mc(hv − hin) −m(hl − hin)
m(hv − hl)

Q2
L
= m

mc

hv − hl

hv − hin
ar = 1− m

mc

hl − hin

hv − hin

Inserting this into (5) we get

ρl

ρ
= x

hl − hin

hv − hin
+ 1

2

(
1− x

hl − hin

hv − hin

)(
2+ hv − hin − x(hl − hin)

x(hv − hl)
ρl − ρv

ρv

)

No Boiling: In the case where there is no boiling we have
ρl

ρ
= ρl

ρl
= 1

Summarizing the different cases we find that the pressure drop is given by

∆p= km2

2A2ρ
= km2

c

2A2ρl
f
( m

mc

)
(6)

where the function f = x2ρl/ρ is given by

f (x) =



x2a3 + x3(a1 + a2

2
(a3 + 1) − a3

)
for 0 ≤ x < 1

x2
(

xa1 + 1− a1x
2

(
2+ 1− a1x

a2x
(a3 − 1))) for 1 ≤ x < 1

a1

x2 for x ≥ 1
a1

(7)
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Fig. 2 The function f (normalized pressure drop) for different ρ l/ρv.

where the coefficients ai are given by

a1 = hl − hin

hv − hin
a2 = hv − hl

hv − hin
a3 = ρl

ρv
(8)

Figure 2 shows that the curve has a negative slope for certain values of the ratio ρl/ρv. When
this occurs the function f will also have non-trivial extrema.

2.1 Conditions for local extrema

As can be seen in Figure 2 the pressure drop function (7) can have negative slope for certain
values of ρl/ρv. The local maximum and minimum will, for reasonable values of ai, always occur
in the partial boiling region, 1 ≤ x < 1/a1. By differentiating the expression for f in this region
and setting it equal to zero we obtain

f ′(x) = 3x2
(a2

1(a3 − 1)
2a2

)
+ 2x

(
1− a1(a3 − 1)

a2

)
+ a3 − 1

2a2
= 0

< 3(xa1)2 + 4(xa1)
( a2

a1(a3 − 1) − 1
)
+ 1 = 0

Solving this equation we find that the local extrema occur at

x1,2 = 2
3a1

(
1− a2

a1(a3 − 1)
)
± 1

a1

√
4
9

(
1− a2

a1(a3 − 1)
)2
− 1

3
(9)

Examining the second derivative shows that it is negative for small x and becomes positive above
x � 2/(3a1), indicating a maximum for the smaller x in (9) followed by a minimum. The condition
for having two separate extrema is

1 ≤ 4
3

(
1− a2

a1(a3 − 1)
)2

a3 ≥ ac
3 = 1+ a2

a1
(4+ 2

√
3) (10)

The solution to this inequality shows that over a certain density ratio, ρl/ρv, the conditions for
local extrema are fulfilled and pressure-drop oscillations can occur. The critical density ratio (10)
depends on a1, a2 and thus on the amount of sub-cooling. Analyzing the case when there is no
sub-cooling (a1 = 0) shows that the pressure drop is strictly increasing and thus there are no
local extrema. For the conditions in Figure 2 the critical density ratio is ρl/ρv = 127.89.



Summarizing we find that if a3 = ρl/ρv fulfills condition (10) then the function f has extrema in
(9) and the slope of f between the extrema is negative. The extrema will coincide if ρl/ρv = ac

3.
The difference x2 − x1 increases with increasing ratio ρl/ρv.

3. Analysis of Oscillations

Having obtained a model for the pressure drop we will now
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Fig. 3 Schematic of a boiling channel.

investigate some interesting dynamical phenomena. Figure 3
shows a schematic diagram of a boiling channel with a surge
tank. This corresponds to the experimental configuration
used in several experiments, see (5).
Let m0 and m denote the mass flow rate in and out of
the surge tank respectively. Let p be the pressure in the
surge tank and p0 the external pressure. The system can be
described by mass and momentum balances. The variables
p and m are chosen as states variables. The equations for
these states are derived from a momentum balance for the
heater tube and a mass balance for the surge tank:

dm
dt

= A
L
(p− p0 − ∆p) = A

L

(
p− p0 − km2

c

2A2ρl
f ( m

mc
))

ρl
dV
dt

= m0 −m

where A is the cross-section of the tube and L is the length
of the tube.
The pressure in the tank is given by the ideal gas law. By
differentiating this equation we get an equation for dp/dt

p(Vt − V ) = p0V0

d
dt−→ dp

dt
(Vt − V ) = p

dV
dt

Solving for dp/dt and eliminating Vt − V we get

dp
dt
= p

Vt − V
dV
dt

= p2

ρl p0V0
(m0 −m)

The system is thus described by the second order differential equation system

dm
dt

= A
L

(
p− p0 − km2

c

2A2ρl
f ( m

mc
)
)

dp
dt
= p2

ρlp0V0
(m0 −m)

(11)

The equilibrium of the equation system (11) is given by

m = m0, p= p0 + km2
c

2A2ρl
f (m0

mc
)

3.1 Normalization

Introduce the time constants

Tma = ρlV0

m0
and Tmo = m0 L

Ap0

which are associated with the mass balance of the surge tank and the momentum balance of the
heating tube respectively. Notice that ρlV0 is the mass of the liquid in the volume V0 and m0 is
the mass flow rate. Similarly, note that m0 L is the momentum of the fluid in the tube and Ap0 is
the force acting on the fluid.
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Fig. 4 Simulated limit cycle of pressure drop oscillations.

By then introducing the scaled time τ defined by

τ =
√

1
TmaTmo

t =
√

Ap0

ρlV0L
t

the equation system becomes
dx
dτ
= α (y − 1− β f (γ x))

dy
dτ
= 1

α
(1− x)y2

(12)

where

α =
√

ρlV0Ap0

Lm2
0

=
√

Tma

Tmo
, β = km2

c

2A2ρl p0
= ∆pc

p0
, γ = m0

mc

and ∆pc is the stationary pressure drop when m = m0 = mc.

If the simplified model (12) is used the system is thus characterized by four parameters only; the
ratios of densities, ρv/ρl, time constants, Tma/Tmo, pressures, ∆pc/p0, and mass flows, m0/mc.

3.2 Linearization

The equilibrium values of the normalized variables are

x = 1

y = y0 = 1+ β f (γ )
If we choose u = ∆m0/m0 as an input the linearized system of equations at the equilibrium is

d
dt

 x

y

 = −α βγ f ′(γ ) α
−y2

0/α 0

 x

y

 + 0

y2
0/α

u

Since the coefficients α , β and γ are positive it follows that the equilibrium is stable if f ′(γ ) is
positive and that it is unstable if f ′(γ ) is negative.

3.3 Simulation

The simple model (11) can easily be coded in Modelica to examine the behavior of the model. The
pressure drop function, f , is given as a Modelica function with four arguments, as seen in the
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code example below:

model evap "Evaporating tube with density-varying pressure drop"
parameter SIunits.Power P(start=800);

...
SIunits.Pressure dp;
SIunits.Pressure p(start=3e5);
SIunits.MassFlow m(start=0.024);

equation
dp = k*mc*mc/(2*A*A*rl)*f(x=m/mc, a3=rl/rv, a1=a1, a2=a2);
der (p) = p*p*(m0 - m)/p0/V0/rl;
der (m) = A/L*(p - pe - dp);

end evap;

With parameters taken from (5) you obtain a similar limit cycle in pressure and mass flow as
observed from their measurements. A phase plot of the limit cycle is shown in Figure 4. The
pressure drop characteristic is drawn with a full line and the pressure in the surge tank is
dashed. The period of the oscillation depends a lot on the volume of the surge tank, V0, which is
not stated in the reference.

4. More Complex Modelica Models

To verify the simplified model we can build a more complex, discretized model and compare the
results. This is done using the Modelica base library for thermo-hydraulic models, ThermoFlow, see
(7, 6). The basic components in this library are lumped and discretized control volumes containing
the balance equations for mass, energy and momentum. Using these standard components, a
system model as in Figure 5 is created with a surge tank and a discretized pipe. The pipe can
be discretized to any degree, in the presented results n = 10 was used, which gave reasonable
results. This complex model can exhibit a much more complicated behavior than the simplified
one.

4.1 One flow, multi-temperature model

To obtain a model similar to the simplified model we use a lumped mass (pressure) balance and a
discretized thermal (enthalpy) balance. In this way there is only one flow through the pipe instead



of n flows between the discretized volumes. Thus we can only obtain the type of pressure-drop
oscillations seen with the simplified model. This mixed model is not available as a component in
the library, but can be obtained by changing some of the basic components. Below are the central
parts of the pipe model; BalanceTwoPort, ThermalModel and FlowModel. Only the essential code
and changes to the classes are given.

For the mixed model to be correct, it is important to keep track of the mean thermal state, used in
the ThermalModel below. It is also important to distribute the flow difference between inlet and
outlet over the discretized energy balances, which can be seen in the BalanceTwoPort. Otherwise
flow changes are concentrated in one section of the pipe, influencing the thermal state in that
section too much.

partial model BalanceTwoPortSingleSpecial
...
SIunits.MassFlowRate dm[1];

equation
...
dm[1] = (mdot[1] - mdot[2])/n;
edot[1] = a.q_conv;
for i in 2:n loop // Interpolated mass flow used for edot

edot[i] = if mdot[1]-dm[1]*(i-1) > 0
then (mdot[1]-dm[1]*(i-1))*h[i-1]
else (mdot[1]-dm[1]*(i-1))*h[i];

end for ;
edot[n+1] = if mdot[2]>0 then mdot[2]*h[n] else mdot[2]*b.h;
for i in 1:n loop

der (M[i]) = dm[1];
der (U[i]) = edot[i] - edot[i+1] - p[1]*der(V[i]) + Q_s[i];

end for ;
end BalanceTwoPortSingleSpecial;

partial model ThermalModelSpecial
replaceable model Medium = StateVariablesSpecial;
extends Medium;

equation
...
for i in 1:n loop // thermal state equations

km[i]* der (h[i]) = kh[1, i]* der (M[i]) + kh[2, i]* der (U[i]);
end for ;
km[n + 1]* der (p[1]) = kp[1]*sum( der (M)) + kp[2]*sum( der (U));
// Mean value of enthalpies in last component, gives mean thermal state
h[n + 1] = h[1:n]*d[1:n]/sum(d[1:n]);

end ThermalModelSpecial;

model FlowModelTwoPortSingleSpecialDyn
...

equation
G_norm[2] = if mdot[2] > 0

then mdot[2]*mdot[2]/d[n+1]/A
else -mdot[2]*mdot[2]/ddown/A;

dG = G_norm[1]-G_norm[2] + dGdown;
// This is the momentum balance equation
L* der (mdot[2]) = dG + (p[1] - pdown)*A - sum(Ploss)/n*L*Dhyd*Pi;

end FlowModelTwoPortSingleSpecialDyn;

Simulating the mixed model gives similar results as the simplified model, see Figure 6. This
verifies that the derivation of the pressure loss in the simplified model is correct. The simulation
results are also qualitatively very close to the experimental results in (5).
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Fig. 6 Pressure drop oscillations with simplified (—) and complex model (– –).

4.2 Fully discretized model

The standard model of a discretized pipe with n mass

Fig. 7 High-frequency oscillations with fully
discretized model.

balances (and flows) can also be used to study the prob-
lem with pressure oscillations. The results are how-
ever slightly different due to discretization effects. Each
time one section of the pipe goes from liquid to two-
phase it generates a small pressure shock wave in the
system. When there are pressure oscillations the phase
of the sections is constantly changing and thus high-
frequency shock waves are generated, superimposed on
the slower pressure oscillations, see Figure 7. These
waves could be mistaken for high-frequency density-
wave oscillations, (8), but are really discretization arte-
facts. One way around this problem would be to use a
so-called moving boundary model, (3), but this has not
been done here.

5. Comparisons

The pressure drop oscillations observed using the simple model from Section 2 are similar in
period and amplitude to the oscillations obtained with the one-flow discretized model. Note that
the shape of the pressure drop curve, and thus the properties of the oscillations, depend very much
on the average media properties used, ρl, ρv, hl, hv and hin. In the complex model the properties
change with the pressure and mass flow into the system, which causes differences in limit cycle
period and amplitude. In Figure 8 the pressure drop characteristic is plotted together with limit
cycles obtained with the one-flow model. The amplitude and damping of the oscillations vary with
the mean flow. This is caused by the energy dynamics which produce a lag in the density changes,
unlike the immediate response of the pressure drop function in the simplified model. The simple
model uses constant, average properties and thus gives the same limit cycle amplitude for all
mass flows within the unstable region.

6. Conclusions

A simplified model of a boiler tube has been derived, assuming equilibrium conditions and a
linear quality profile also during transients. The model gives a closed expression for the pressure
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Fig. 8 Simulation results of the complex model, characteristic obtained from the simplified model. Two limit cycles
for different mean flows, ṁ = 0.15 kg/s (– –) and 0.2 kg/s (- - -).

drop which depends on mass flow through the tube and the ratio of vapor and liquid density.
The simplified model gives insight into how a known instability phenomenon, pressure-drop
oscillations, arises. The simplified model also gives results close to measurements in (5).
The simplified model has also been compared to two different discretized models developed in
Modelica. A one-flow model with lumped mass balance and discretized energy balance and a
fully discretized model. The one-flow model is shown to give more realistic oscillations than the
simplified model. The fully discretized model, however, gives high frequency oscillations due to
discretization effects and is not reliable for studies of pressure-drop oscillations.

The two discretized models was built using a thermo-hydraulic base library in Modelica,
ThermoFlow. The example shows how models for studying a complicated phenomenon can be
built from model library units, and how the library units can be adapted.
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