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1 Introduction

In the life cycle of a product, engineers have to
perform many analysis tasks, from design lay-
out, over system simulation and risk analysis, to
diagnosis during product operation. Most anal-
ysis tools are specialized for just a few of these
analysis tasks. This forces the engineer to work
with a whole tool suite using various model for-
mats (often even different models) for the same
product. But modeling a technical system is a
kind of art — it requires both expert domain
knowledge and the ability to structure a problem
and to find out the appropriate level of abstrac-
tion for it. It is a creative, time-consuming and
expensive task. To increase efficiency in prod-
uct development, it would be desirable to have
analysis tools which reduce the modeling effort
as far as possible, by providing means to reuse
existing models, and by offering multiple ana-
lyzes of a product on the base of a single prod-
uct model.

For programming languages like Java or
Smalltalk, the advantages of object-oriented
concepts are well-known. They can be em-
ployed to support hierarchical structuring of
problems, to allow wide reuse of code, and
maintenance of large and evolving software sys-
tems. The same applies to object-oriented mod-
eling languages. They are especially well-suited
to model complex and multi-domain systems. A
very promising attempt to introduce a coherent
object-oriented modeling language based on the
experience of previous languages is Modelica
[Mod99].�
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In this paper, the experience gathered with the
prototype of a Modelica extension for model-
based diagnosis is presented. The paper starts
with the introduction of the special application
field of model-based diagnosis. Basic principles
are illustrated by the example of their realiza-
tion in the model-based analysis tool RODON.
Its object-oriented modeling paradigm is ex-
plained and compared to modeling in Modelica.
Although both modeling philosophies are very
close to each other, there are some additional
requirements of model-based diagnosis. These
are explained and illustrated by examples.

2 The Model-Based Analysis
Tool RODON

The functional analysis tool RODON is a
model-based simulation, monitoring and diag-
nosis tool which integrates known engineering

Figure 1: A RODON model of car headlamps.



Figure 2: An automatically generated decision tree for model-supported diagnostics by the service.

methods with AI technology (see [Sei97]). It
provides the following analyzes using the same
knowledge base:

� requirements analysis (design layout)� design verification� risk analysis

– fault tree analysis
– failure mode and effect analysis
– sneak circuit analysis
– tolerance analysis� process monitoring� model-supported diagnosis

– decision trees
– diagnostic rules� model-based diagnosis (on or off board)

2.1 Declarative modeling

To build the necessary knowledge base, a tech-
nical system is mapped to a hierarchical model
consisting of a number of functional units which
are connected with each other. The behavior of
each functional unit (component) is described
in terms of physical laws, in the form of con-
straints. A constraint defines a relation between
model variables. Thus, the component behavior
is formulated declaratively, in contrast to many
conventional simulation tools like Simulink or
MatrixX , where all system equations are es-
sentially assignments, and all component ports
have to be either inputs or outputs. The declar-
ative (or non-causal) modeling concept allows
to model component behavior independently of
the context where the component shall be used.

This leads to more simple and flexible model
libraries, which are reusable in many contexts.
At the same time, it remains possible to formu-
late certain constraints as assignments if neces-
sary, for instance in subsystems where a behav-
ior description by signal flow is an appropriate
abstraction.

A declarative modeling approach reflects also
the fact that in physical systems, a steady state
is an equilibrium determined by the interaction
between all components. For instance, model-
ing a complex electrical circuit by signal flow
is nearly impossible. Moreover, if the behav-
ior of one component in the circuit changes
(e. g. in case of a defect), the model had to be
re-designed because of the different signal flow.
This shows that for model-based diagnosis, a
declarative formulation of model behavior is es-
sential.

Risk analyzes as well as diagnostics bene-
fit from the definition of additional behavioral
modes modeling the component behavior in
typical failure states. How behavior modes can
be used in model-based diagnosis will be de-
scribed in Section 2.3.

2.2 Simulation in RODON

In real technical systems, some model parame-
ters may be subject to manufacturing tolerances,
others may be inaccurate because of measure-
ment errors. For diagnostic purposes, it is es-
pecially important that the simulation results of
a model match the behavior of the real system,
because discrepancies are interpreted as defec-
tive behavior. Hence, it is dangerous to define
those uncertain parameters by sharp real num-



Figure 3: A diagnosis: in case that gr-node-2 is disconnect, a leakage current causes the high
beam lamps to shine dimmed, although they are switched off.

bers, more or less arbitrarily, as is usually done
with conventional simulation tools.

To reflect these uncertainties, in RODON the
basic value type is not the real number but the
interval. More precisely, since interval opera-
tions may result in multiple intervals, the values
of RODON variables are represented by interval
sets, and all operations are carried out by inter-
val arithmetics (see [HHKR95], [AH74]).

Since product specifications often contain tol-
erances or ranges, this value representation also
suggests the use of RODON as a tool in require-
ments analysis or design verification.

The simulation algorithm of RODON seeks to
constrict the values of all model variables as
far as possible, without losing any solution. It
bases on a local constraint propagation tech-
nique which was adapted for interval constraint
propagation by E. Hyvönen (see [Hyv91]). The
iterative algorithm starts by assigning undeter-
mined values to all variables except for those
whose values are given by the user (or in case of
diagnosis: where input from the real system is
available). An agenda mechanism is initialized
with a list of all constraints. Now, the problem
solver takes the constraints from the agenda one
by one and evaluates them. If the value of some
variable changes after evaluation, the problem

solver collects all constraints which depend on
this variable and puts them on the agenda again.
They have to be evaluated anew, to propagate
the new value through the system. This itera-
tive process does not stop while the agenda con-
tains constraints, that means, while some values
keep changing (with respect to some accuracy,
which is adjustable by the user). This algorithm
is called local constraint propagation because
changes are propagated through the system by
passing them to the immediate neighbors in the
constraint net.

Local constraint propagation has a number of
advantages. For instance, it allows to solve con-
straint systems which are under- or overdeter-
mined. This is especially important in model-
based diagnosis, where a system has to be
overdetermined in order to allow conclusions
about defective components.

2.3 Model-based diagnosis

Suppose one is given a description of a system,
together with an observation of the system’s be-
havior which conflicts with the way the sys-
tem is meant to behave. The diagnostic prob-
lem is to determine those components of the
system which, when assumed to behave abnor-



mally, will explain the discrepancy between the
observed and correct system behavior [Rei87].

The observed system behavior is given by pro-
cess data, i. e. by a set of values measured by
the real system in operation. A diagnosis starts
with a simulation of the nominal system behav-
ior together with the given process data. The
resulting equation system has to be overdeter-
mined. If it has no solution, a conflict occurs
during local propagation, which means that one
or more components must be defect (i. e. behave
abnormally).

In case of a conflict, RODON analyzes the
conflict and generates hypotheses (candidates)
which may explain the abnormal system be-
havior. A candidate is a minimal set of vi-
olated assumptions, where an assumption can
have a form like ”the component XY behaves
normally”.

For the efficient generation of hypotheses it is
not sufficient to know that a simulation ended
with a conflict. Without additional information
about where the conflict occured candidate gen-
eration would be a search in a gigantic search
space. Simulation by local constraint propaga-
tion provides us with this information. With
each value set, RODON manages the assump-
tions the value set depends on. This is done by
means of a truth-maintenance system (TMS). If
a conflict occurs, RODON is able to backtrack
the assumptions corresponding to the conflict-
ing values. They can be used to narrow the
search space to candidates containing these as-
sumptions.

This diagnostic approach is based on the GDE
(general diagnostic engine) introduced by de
Kleer ([dKW87], [dKW89]). It is characterized
by

� an incremental diagnostic procedure� use of behavioral modes for candidate ver-
ification� a truth-maintenance system (TMS) to
reuse knowledge in multiple contexts� a scalable candidate generator� the ability to diagnose multiple faults as
well as unspecified faults

3 Object-Oriented Modeling
in RODON

The tool goes back to ideas of W. Seibold
[Sei92] in the early 80’s, and has developed
over the past 10 years. From the very begin-
ning, an object-oriented modeling approach was
used to define hierarchies of model component
classes. It agrees with the Modelica philosophy
[Mod99] in central points, namely

� hierarchical modeling� component-oriented modeling� declarative modeling� quantitative modeling� multi-domain modeling� support by object-oriented model libraries

This remarkable similarity suggests the idea to
support Modelica as a modeling language in
RODON. To gain experience for the integra-
tion of Modelica into RODON, we implemented
a prototype of a model representation module,
and combined it with a new version of the
RODON diagnostic engine.

While structure and topology representation of
Modelica models could be adopted without any
changes, the behavior representation had to be
slightly modified.

In the following subsections, we will explain the
alterations made for our application. All exam-
ples are written in the Modelica dialect we cur-
rently use with our prototype implementation.
Its behavior section is fitted to our special needs.
Note that the language specification is not fixed
entirely.

3.1 Modeling behavior modes

Let us start with a simple example model-
ing an electrical wire class with two behav-
ioral modes: the nominal behavior, and the
most common failure modes disconnect, and
shortToGround. An appropriate class hierar-
chy could be the following.

package Rose.Electrical

connector Port



type Current = Interval(unit = "A", quantity = "current");
type Resistance = Interval(unit = "Ohm", quantity = "resistance");
type Voltage = Interval(unit = "V", quantity = "voltage");
type FM = Discrete(min = 0, quantity = "failure mode");

Figure 4: Type definitions in RODON.

Voltage u;

flow Current i;

end Port;

partial model TwoPort

Port p, n;

FM fm (max = 1);

behavior

if (fm==0 | fm==1)

Kirchhoff(p.i, n.i);

if (fm==1) p.i = 0;

end TwoPort;

model IdealWire2

extends TwoPort (fm (max = 2));

protected Interval iGnd;

behavior

if (fm==0 | fm==2) p.u = n.u;

if (fm==2) p.i + n.i + iGnd = 0;

if (fm==2) p.u = 0;

end Wire2;

end Rose.Electrical;

The model TwoPort is a general electri-
cal component providing basic physical laws
for the current in case of nominal behavior
(fm==0) and the failure mode disconnect
(fm==1). The alternative behavior for dif-
ferent behavioral modes is defined using con-
ditional constraints, where the discrete failure
mode variable fm serves as a kind of switch.

The model IdealWire2 extends this base
class by adding a constraint for the voltage (it
is an ideal wire without resistance) as well as
constraints defining the behavioral mode short-
ToGround (fm==2).

Recall that all variables in a RODON model are
represented by sets of values. This is reflected
by the type definitions in Fig. 4. The basic type
Interval has all attributes of the Modelica
type Real, but its value attribute is a set of in-
tervals. Accordingly, the value attribute of the
basic type Discrete is a set of integer values.

An important semantic difference to the equa-
tion section in Modelica is that in our be-

havior section, any variable can participate in
any number of constraints. Our iterative simu-
lation algorithm does not rely on the fact that
the equation system contains exactly the same
number of state variables and equations. It can
handle over- or underdetermined equation sys-
tems easily.

3.2 Modeling alternatives

3.2.1 if-clauses in RODON

The example above illustrated one way to model
alternative behavior by means of a syntacti-
cal element known from Modelica — the if-
clause. However, there are some semantic dif-
ferences between if-clauses in RODON and
Modelica. In RODON, the clause

if (<condition>) <relation>

means that when the problem solver takes this
constraint from the agenda, it checks first the
condition. Only if the condition is decidable
and true, the relation is evaluated, and the con-
sequent value changes are propagated as usual.
This approach allows the use of many if-
clauses in a model without slowing down the
simulation process significantly.

For set-valued variables, logical expressions
have not merely two possible values, but three:
true, false, or undecidable. A condition is de-
cidable if it is either true or false for all combi-
nations of values out of the variable’s value sets.
For instance, consider the constraint

if (2<x & x<5) <relation>

If x has the value set [0 4], there are some
elements of the set for which the condition is
true, but there are other elements in the value
set of x for which it is false. During the itera-
tive propagation process, the value set of x may
be further constricted so that at some moment
in the propagation process, the condition will
have a unique logical value. But at the present
moment, the problem solver cannot know which



logical value that will be.

Note that for set-valued variables, there are
some subtleties when defining correct seman-
tics for conditions. Conditions have to be evalu-
able monotonly, i. e. if a condition has been de-
cided to be true or false once, it must not change
this logical value during propagation. This is
due to the fact that if a condition has once been
true, the corresponding relation has been evalu-
ated, and the resulting value changes have been
propagated further. If later on the condition be-
comes false, we would have to withdraw all val-
ues which depend on the earlier evaluation of
that relation. To keep track of all these depen-
dencies requires a huge effort.

Therefore, only monotonously evaluable condi-
tions are allowed. That means that a condition
like (x subset y), where x and y are in-
terval variables, is not permissible, because it
is true for x=[0 10] and y=[-10 20], but
during the iterative propagation process y may
be constricted to y=[-10 2], which renders
the condition undecidable. An overview of all
permissible logical relations for set-valued vari-
ables is shown in Fig. 5.

Interval x, y;
Real a;
constant Interval s;

x==a x subset s
x!=a x!=s x!=y
x<=a x<=s x<=y
x< a x< s x< y
x>=a x>=s x>=y
x> a x> s x> y

Figure 5: Permissible logical relations for value
sets.

Another topic is the negation of logical expres-
sions, which have a slightly different mean-
ing for sets than for real values. For instance,
the negation of the condition (x==a) is not
(x!=a) but (a

��
x). In general, the relation

x!=y has to be interpreted as x � y== /0.

3.2.2 The or-clause

There are situations where it is desirable to have
another kind of alternative behavior. Consider
the following definition of a piecewise linear
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Figure 6: A piecewise continuous function.

function:

f 	 x 
�
���� x � 2 1

2 � x � 6 x � 1
x � 5 5

(1)

For real-valued variables, this function can be
modeled adequately by means of if-clauses:

if (x<2) y = 1;

if (x>=2 & x<=6) y = x-1;

if (x>6) y = 5;

But for interval-valued variables, the conditions
of these if-clauses may be undecidable, and
the variable y will not be constricted at all
by these constraints, although it is clear that
the range of y is y=[1 5]. For instance, if
x=[1.5 4], the evaluation of a constraint rep-
resenting the equation y � f 	 x 
 should result
in y=[1 3] (see Fig. 6). In this case, not
evaluating the corresponding relations due to
their undecidable conditions x<2 and (x>=2
& x<=6) means waste of information, which
may be crucial in the propagation process.

For such situations the modeling language of
RODON has a disjunction element. By means
of a disjunction, (1) would be modeled like

or ��� x < 2; y = 1; �� x = [2 5]; y = x-1; �� x > 5; y = 4; ���
The equations in the alternative cases of the dis-
junction are evaluated separately, and the result
is the set union of the alternative cases. For set-
valued variables, such a language element is es-
sential.

Another typical example where a disjunction is
useful is the calculation of a discrete indicator



constraint MyQuadraticSpline
Interval x, y;
extends Spline (final degree = 2, periodic = true,

final values = ��� 0.5, 1 � , � 1, 1.5 � , � 1.5, 3 ��� );
end MyQuadraticSpline;

model UseSpline
Interval a, b;

behavior
MyQuadraticSpline(a, b)(periodic = false, boundary = � 1.3 � );

end UseSpline;

Figure 7: An example of a simple constraint class.

value based on a continuous variable. Consider
the following model of an electrical light bulb.

model Bulb extends TwoPort;

Discrete light (max = 2);

parameter Current pNom=20;

parameter Voltage uNom=12.0;

protected

Resistance r;

Power pc;

constant Power pLow=[-0.1 0.1];

constant Power pMedium

= � [-0.3 -0.1][0.1 0.3] � ;
constant Power pHigh

= � [-2 -0.3][0.3 2] � ;
behavior

r = uNom * uNom / pNom;

pc = p.i * (p.u - n.u) / pNom;

if (fm==0) Ohm(p.u, n.u, p.i, r);

if (fm==1) light = 0;

if (fm==0)

or ��� p.i= 0; light = 0; �� pc = pLow; light = 0; �� pc = pMedium; light = 1; �� pc = pHigh; light = 2; ���
end Bulb;

The variable light is an indicator for the
mechanic whether the bulb is off (light=0),
is dimmed (light=1) or bright (light=2).
If by some reason the constraint net is un-
derdetermined so that the consumed power of
the bulb pc=[0.2 1], the mechanic gets
the information light= � 0,1 � , i. e. the bulb
is off or dimmed, which may be an impor-
tant indication. An analogous definition by
means of conditional constraints would result in
light= � 0,1,2 � , i. e. the whole range of this
variable.

3.3 Defining constraint classes

Very much like function classes in Modelica,
RODON allows the user to define constraint
classes. This may be useful for constraints
which are used very often, like Ohm’s law or
Kirchhoff’s law in the electrical domain. But
it is also convenient for constraints which are
laborious to define, e. g. characteristic curves
of engines which are given in table form rather
than in closed form. As for the function classes
in Modelica, constraint classes define an argu-
ment list and provide type checking when the
constraint class is used.

In the example shown in Fig. 7, the constraint
class Spline is a basic constraint class pro-
vided by the RODON modeling language. It
has pre-defined attributes degree, peri-
odic, boundary and values. There are
some other basic constraint classes. Constraint
classes may be parameterized by means of the
usual modification mechanism.

4 Conclusion

The striking correspondence of the modeling
philosophies in Modelica and RODON as well
as the neat class model of Modelica are strong
arguments in favour of Modelica as the future
modeling language of RODON. But there are
some additional requirements caused by our dif-
ferent simulation algorithm and the diagnostic
approach, namely

� basic data type: interval set� multiple behavioral modes� alternative behavior: disjunctions



� alternative behavior: conditional con-
straints, semantics of conditions for set-
valued variables� constraint classes� coping with over- or underdetermined con-
straint nets� simulation by local constraint propagation

A few of them can possibly be met by provid-
ing special libraries. However, our experience
shows that there are features which require an
extension of the Modelica language, or the defi-
nition of a separate dialect for behavior descrip-
tion.
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