
GRIDMODELICA - A MODELING AND SIMULATION FRAMEWORK
FOR THE GRID

Kaj Nyström, Peter Aronsson and Peter Fritzson Linköping University
Department of Computer and Information Science

Sweden

Abstract
Simulation of complex models is a computationally expensive task. With the advent of grid com-
puting, modelers can gain access to vast amounts of cheap computational power. This has however
up until now required quite some effort to be put into specially written simulations in Fortran or C
and also in the deployment of the simulation on the grid; a set of interconnected computers behav-
ing as one single computational resource from an end-user perspective. We propose a framework
called GridModelica for transparently creating and deploying simulations in the high level model-
ing language Modelica on computational grids. The first step in this framework is taken with the
application GridParamSweep which demonstrates how easily parameter studies can automatically
be performed in a grid environment.
Keywords: GridModelica, OpenModelica, Grid Computing, Modelica, parameter sweep

Introduction
One of the greatest problems with modeling and
simulation today is the high computational costs as-
sociated with simulation of complex models. Many
simulations require the computer to solve systems
with many hundreds of thousands of equations,
which can take quite some time even on power-
ful workstations. With the application GridParam-
Sweep we take the first step towards putting the
power of grid computing in the hands of modelers
in order to minimize time- and cost consumption for
simulating complex models.

Already today, lots of complex simulations are run
on high performance computers and clusters and
even on computational grids. To the best of our
knowledge though, these models are almost without
exception specially written in Fortran, C or similar
languages. While these languages can provide high
performance, if sufficiently well written, they do not
really comply with the needs of today’s modelers.

Instead we use the mathematical modeling language
Modelica [1, 2] which combines the power of mod-
ern solvers written in Fortran or C with a high level
of abstraction, object orientation and reuse. This,
in combination with the computational power of the
grid will provide a cheap high-performance platform

for complex simulations.
To achieve the goal of providing the possibility of
transparently running simulations on the grid we
propose a framework calledGridModelica. Grid-
Modelica will be both a language extension of the
Modelica modeling language and a modeling and
simulation toolkit, which enables modeling and sim-
ulation targeting the grid. As a first example we
study how automated parameter studies can be per-
formed in this framework. Such problems can be
used for instance in parameter design optimization
to find the optimal set of parameters for a given
model. These examples are suitable for execution on
the grid due to the nature of the problem with many
independent simulations. These simulations can be
executed on different computers with no communi-
cation between them, resulting in little overhead.

Modelica

In this paper the model intended for simulation is
specified in the mathematical modeling language
Modelica [1], which allows acausal modeling of
heterogeneous systems spanning many different do-
mains, such as for example electrical, mechanical
and thermo fluid problems. Modelica is object ori-
ented which allows for a high level of reuse and or-



dering of objects into hierarchies.
The modelica model can be either written by hand
or specified using a graphical model editor as pic-
tured in Figure 2. Either way, the result is an tex-
tual model which can be compiled into an executable
which in turn can be run independently of the mod-
eling environment, making it very suitable for grid
deployment.

The Grid

A computational grid is an interconnected set of
computers which together work as a single compu-
tational unit from an end-user perspective. A defini-
tion from the book “The Grid” [3] is “a hardware
and software infrastructure that provides depend-
able, consistent, pervasive, and inexpensive access
to high-end computational capabilities”. The word
“grid” is borrowed from the electrical power grids,
a much used analogy in grid computing. The idea is
that when you plug in for example your toaster to an
electrical outlet, you do not care where the electri-
cal power you are using is produced. You just plug
in an use it. A computational grid is meant to work
in the same way. You do not care about where your
job is executed. You just submit your job and then
eventually fetch your results. The grid middleware
takes care of the rest. A schematic sketch of the grid
is pictured in Figure1.
We would like to point out that using the grid is
not yet as simple as using the electrical power grid.
However a lot of development is still going on in the
area of grid middleware and improvements are con-
stantly being made. In the GridModelica project we
use the Nordugrid middleware [4] which is closely
related to the de facto standard the Globus toolkit
[5]. The Nordugrid middleware has been deployed
on both the Nordugrid testbed and the Swegrid [6]
computational grid, both of which have been used
successfully with the GridParamSweep application.
The Nordugrid currently (2004-05-15 13:45 CET)
encompasses 2327 processors on 35 different sites,
providing from one to 644 processors each. The
sites are distributed throughout ten different coun-
tries all over the world but concentrated to Scandi-
navia. Resources are shared with local users as the
cluster managers sets the priorities which means that
normally, only idle processors are used by the grid,
thus exploiting a resource which would otherwise
have been wasted.

Application


Grid

Middleware


grid node


grid node


grid node


grid

node


grid node


Internet


The Grid


Figure 1: Component sketch: The grid

The grid has a hetrogeneous nature, spanning multi-
ple administrative domains. This means that it is not
an entirely stable environment, at least not as stable
as a single computer of which the user has total con-
trol. There are as yet no guarantees that your job
will not be canceled or receive very low priority on
behalf of local users or even other grid users. The
applications using the Grid should be aware of this
so that the appropriate action, for example resubmis-
sion or compensation can be taken.

The Application
The parameter studies performed is as stated be-
fore a good example of a task which is easily paral-
lelizable on the grid since the different simulations
can be made independent of each other. Parameters
sweeps can also fairly easily be extended using op-
timizer routines so that a models parameters can be
optimized for a given criterion, increasing the use-
fulness of parameter studies.
As for the application itself, the user can specify
model parameters, the range and the step size use.
The job will then be submitted to the grid for exe-
cution and the results will be returned to the user at
his request when the jobs have finished. The result-
ing plot can be viewed with the plotting utility of the
users choice. Job monitoring is supported automat-
ically through the Nordugrid middleware, both in
detailed format about every job and as an overview
through the grid monitor depicted in figure3.



Figure 2: The MathModelica graphical model editor from MathCore Engineering [9]

Figure 3: The Nordugrid Grid Monitor



Example Timesteps N.of parameter values Exec. time, single Exec. time, Nordugrid.

DCMotor, 40 eqns 10000 10 0.5m 10m
DCMotor, 40 eqns 10000 100 4m 175m
DCMotor, 40 eqns 1000000 10 7m 29m
DCMotor, 40 eqns 1000000 100 68m 200m

Twoloops, 1016 eqns 1000 10 35m 24m
Twoloops, 1016 eqns 1000 100 330m 75m
Twoloops, 1016 eqns 10000 10 423m 59m
Twoloops, 1016 eqns 10000 100 4229m 560m

Table 1: Time to execute different parameter studies on the Nordugrid compared to a single machine.

What is done in the application is in short this:

1. Initialization of the environment, including set-
ting up of the Nordugrid proxy and credentials
for accessing the grid.

2. Generation of submission and result retrieving
scripts.

3. Generation of Extendend Resource Job Spec-
ification, XRSL-file. The XRSL-file specifies
the nature of the job, such as files which should
be included, command line arguments and the
estimated resources required.

4. Compilation of the Modelica model

5. Merging of results into comprehensible format.

What the user essentially has to do is first to write
the model in question, using a text editor or a vi-
sual tool such as MathModelica depicted in Figure
2. The user also has to specify the parameters, the
range to investigate and the step size in a simple and
straightforward text file.
Some additional software is required for usage:

1. A modelica compiler, such as the OpenModel-
ica compiler [10, 11] or Dymola [12].

2. A C-compiler, for example gcc.

3. The Nordugrid toolkit [4]

4. Certificates authorizing usage of the appropri-
ate grid resources.

GridParamSweep can be downloaded from the Grid-
Modelica Project homepage [7].

Results and Conclusions
Not surprisingly the grid proves very well suited for
this type of applications, especially if the job itself
is fairly complex. As we are dealing with indepen-
dent tasks, the speedup compared to doing the same
job on one workstation is almost proportional to the
number of steps in the parameter sweep. We have
successfully tested different models generating sys-
tems with up to a thousand equations. The num-
ber of processors used are roughly equivalent to the
number of steps in the parameter sweep. Exact re-
sults are found in table1. The first example is the
circuit depicted in figure2 and the second example
is from the Modelica Multibody library [8].
Standalone simulations in table1 were conducted
on a Pentium III 1.8 Ghz with 512 Mb of RAM.
Grid simulations in table1 are averages from five
simulation runs per test case, conducted on the Nor-
dugrid in five consecutive days, 2004-07-14 2004-
07-19 between 10.00 and 14.00. It is important to
note that execution time may vary greatly with the
current load of the grid. Some jobs may be placed
in queue, some may receive low priority and some
may be scheduled for execution on a comparatively
slow cluster node. Even so, results show that all but
the smallest parameter studies of simulations bene-
fits from grid deployment. As the overhead for job
submission is fairly large the greatest speedup com-
pared to single machine execution are found when
the job is fairly complex. The DCmotor model
proves too small for efficient grid execution.
It should be noted that the Twoloops model with its
1016 equations is by no means a large model. Tests
of the GridParamSweep application have been car-
ried out on models consisting of way beyond 20000
equations, producing over 3GB of data with no scal-



ing problem whatsoever.

Discussion
The most serious problem encountered in this study
was the large overhead for submitting jobs to the
grid, limiting its usefulness to fairly complex sim-
ulations. This is not really that surprising since most
grid jobs today are extremely computationally ex-
pensive physics simulations and data analysis jobs.
Their normal execution time may very well exceed
12 hours and if that is the case, an overhead of half
a minute per job submission is really not a problem.
The average overhead for each job submission varies
with the grid load and the connection speed of the
submitting machine but never exceeded 60 seconds
in our measurements. This overhead is however not
quite cumulative with the number of jobs since the
major part of this delay normally is due to the grid
manager program and on the assigned grid node
rather than on the submitting workstation, leaving
the user free to submit the next job rather than wait
for the previous one to start it’s execution. Recent
grid middleware development has reduced this over-
head and further improvement can also be expected
as the number of smaller grid jobs increases. It is
also possible to reduce the overhead significantly by
manual tuning of the grid submission procedure, for
example avoid checking some grids that are known
to be slow or not operational.
This overhead still means though that grid execu-
tion is not so useful for small simulations spanning
few parameter steps. It is difficult to give estima-
tions on when a job should be submitted to the grid
and not since so many factors are involved which af-
fect the execution time and the overhead. What can
be clearly stated is that simulation of complex mod-
els no longer requires a top-of-the-line workstation
closely at hand. Instead, the huge amount of spare
cycles the grid has to offer can be used.
Another problem which is far more difficult to solve
is the problem of moving data. The Twoloops exam-
ple with 10000 time steps produces approximately
257 MB of data. When executing on a single ma-
chine, moving the data is of course not an issue since
the data is produced directly on the workstation in
question. When executing the job on a grid node
however, the data is produced somewhere else. A
high speed network is thus quite useful for retriev-

ing the data efficiently. In our test runs, we used a
mere 5 Mbit non dedicated ethernet connection to
the internet. This means that a significant decrease
in data retrieval time should be obtained with a bet-
ter internet connection.
The presentation of the raw results presents a bit of
a problem. In general, the user is interested in how
the behavior of a variable x varies with time depend-
ing on how a parameter p is chosen. In the dcmotor
in Figure 2, one would perhaps be interested in the
rotation angle of the inertia in relation to what value
is chosen for R on the resistor. This means that or-
dinary 2d plots are not always sufficient to present
the whole result, at least not if the number of param-
eter values studied is large. The plot will have to
be extended to three dimensions using some simple
Matlab commands.
In conclusion, grid computing indeed has a lot to
offer the modeling community in conjunction with
high level modeling languages such as Modelica.
Many of the typical jobs submitted to the grid to-
day are different types of simulations but they are
to a great extent specially written in C or Fortran
and adapted for the grid by hand which is a diffi-
cult and time consuming task. High level modeling
in GridModelica should considerably facilitate the
process of cheaply simulating computationally ex-
pensive tasks in the future.

Future work in GridModelica
We would like to emphasize that this is by no
means a complete grid simulation environment yet
but merely an example of how the grid can transpar-
ently be used by modelers even though the grid is
still comparatively young.
There are quite a number of other improvements to
the GridParamSweep application that could be con-
ceived. A few of them we have considered are:

• Integration with the OpenModelica compiler in
order to make the application completely open
source.

• Multiple submissions of the same job in order
to reduce chances of a total job failure. At least
one instance of the same job should always ex-
ecute successfully.

• Automatic adaptive job submission, which
could greatly reduce overhead.



• Clustering of smaller jobs into one job, thus in-
creasing the applications usefulness for smaller
jobs by reducing the number of submissions
that has to be done.

• Better checking of job termination and acting
accordingly. If a job seems to have failed, an
immediate resubmission should be done.

Some of these may eventually make their way into
the GridModelica framework but it is actually not
likely that they will be implemented in the Grid-
ParamSweep application.
Future work on the GridModelica framework will
further facilitate simulation deployment on the grid
and will also include features such as language ex-
tensions for high level parallelization, internal auto-
matic parallelization and job scheduling for the grid.

Related Work
There are a number of other tools for conducting pa-
rameter studies, some even in parallel though none
has to our knowledge yet been adapted for compu-
tational grids. Two applications that treat Model-
ica models are the MOPS framework [13] and the
Distributed Parameter Study application [14]. They
have in common that they enable distributed param-
eter studies but they also require direct access to the
computational nodes, for example via rsh, which the
grid for security reasons does not allow. They also
require considerably more setup on the remote com-
puting nodes. This makes them perhaps more re-
liable to use but also less powerful and more ex-
pensive due to the necessary investment in hard-
ware compared to parameter sweeps performed on
the grid.
Automatic parallelization of Modelica models can
also be performed on a per-model basis on a much
more fine grained level as done by Peter Aronsson
[15]. This approach will in the future be merged
into GridModelica, adding low level parallelization
to the framework.

References
[1] Fritzson P.Principles of Object-Oriented Mod-

eling and Simulation with Modelica 2.1.
Wiley-IEEE Press, 2004.

[2] Elmqvist H, Mattson S-E, Otter M.Modelica-
A Language for Physical System Modeling, Vi-
sualization and Interaction. In Proceedings of
the IEEE Symposium on Computer Aided Cib-
trol System Design, Hawaii, USA, August 22-
27 1999.

[3] Foster I, Kesselman C, editors.The Grid -
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1998.

[4] The Nordugrid Virtual Organization. http://
www.nordugrid.org.

[5] The Globus Alliance. http://www.globus.
org.

[6] The Swegrid Computational Resource. http:
//www.swegrid.se.

[7] The GridModelica homepage. http:
//www.ida.liu.se/labs/pelab/
modelica/GridModelica.html.

[8] Otter M, Elmqvist H, Mattson S-E.The new
Modelica Multibody Libraryproceedings of
the Modelica 2003 conference, November 3-4
2003, Linköping Sweden.

[9] MathCore Engineering. http://www.
mathcore.com.

[10] The OpenModelica project. http:
//www.ida.liu.se/~pelab/modelica/
OpenModelica.html.

[11] Fritzson P, Aronsson O, Bunus P, Engel-
son V, Johansson H, Karström A, Saldamli
L. The Open Source Modelica Project. In
Proceedings of the 2nd International Mod-
elica Conference, Munich Germany, 18-
19 2002.http://www.ida.liu.se/~pelab/
modelica/OpenModelica.html.

[12] Dynasim. http://www.dynasim.com.

[13] Joos H-D, Looye G, Moormann D.Design of
Robust Inversion Control Laws using Multi-
Objective OptimizationAIAA Guidance and
Control Conference, Montreal, Canada, 2001.

[14] Engelson V, Fritzson P.A Distributed Simula-
tion EnvironmentProceedings of SIMS 2002
conference.

http://www.nordugrid.org
http://www.nordugrid.org
http://www.globus.org
http://www.globus.org
http://www.swegrid.se
http://www.swegrid.se
http://www.ida.liu.se/labs/pelab/modelica/GridModelica.html
http://www.ida.liu.se/labs/pelab/modelica/GridModelica.html
http://www.ida.liu.se/labs/pelab/modelica/GridModelica.html
http://www.mathcore.com
http://www.mathcore.com
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.ida.liu.se/~pelab/modelica/OpenModelica.html
http://www.dynasim.com


[15] Aronsson P.Automatic parallelization if Simu-
lation Code from Equation Based Languages.
Licenciate thesis No. 933, Department of
Computer and Information Science, Linköping
University, Sweden


	Introduction
	Modelica
	The Grid

	The Application
	Results and Conclusions
	Discussion
	Future work in GridModelica
	Related Work

