MODELICA

Modelica™ - A Unified Object-Oriented
L anguage for Physical Systems M odeling

Tutorial

Version 1.4
December 15, 2000

by the

M odelica Association

Abstract:

This document is atutorial for the Modelica language, version 1.4, which is developed by the Moddica
Association, a non-profit organization with seat in Linkdping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous physical systems. It is suited
for multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace
applications involving mechanical, electrical, hydraulic and control subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described bydifferential, algebraic anddiscrete equations. No particular variable needs to be solved for
manually. A Modelica tool will have enough information to decide that automatically. Modelica is
designed such that available, specialized algorithms can be utilized to enable efficient handling of large
models having more than hundred thousand equations. Modelica is suited and used for hardware-in-the-
loop simulations and for embedded control systems. More information is available at

http://www.M odelica.or g/

Modelica™ is atrademark of the "Modelica Association".

Contents

1. MODELICA AT A GLANCE ... e e 3
2. MODELICA LANGUAGE OVERVIEW.......cu e 8
21 Basic Language EIEMENTS. ..ottt st £ese st e seebeseeneere e 8
2.2 Classesfor Reuse of Modeling KNOWIEAQEcccvieeiiiie ettt s ereeneens 9
2.3 1701 g] 0= ot o] 0 =SS PSSR P ST PUR PRSPPI 11
24 Partial Modelsand INNEMTANCE. ... s £ ere e nnene 13
25 Class Par @MELEN iZALION..........cviveerreeerere ettt r e se e reseer e nnenes sresesreseerennenenreneas 14
2.6 I A Torc Y= g o N = TS 17
27 Repetition, AIGorithms and FUNCLIONScooiiiiiiieee sttt seebe s e sbeseenens 19
28 HYDE IO IMOAEIS ..ottt b e e bt bt b b saeebe e ebese e st sbe e ebeneees 24
29 PRYSICAI FIEIAS. ...ttt ettt b e b e s bt b e £ s ebesbe st st e ne bt b st b e 33
2.10 LiDrary CONSLIUCTIONccitiieiirieiete sttt e ettt b e bt e st b seesbensebeneenenaenes 36
211 0TS T To I @ LU= g A =SSP 40
212 Annotationsfor Graphics and DOCUMENTALION..........cecviirieiriiirereeree e s 42
3. EXAMP LS . e 46
4. CONCLUSIONS ... e e e e e et e e et e e e e e eaaaas 47
5. REFERENCES ... e 47

6. REVISION HISTORY ...t e s 48

Modelica 1.4 Tutorial

1. Modelica at a Glance

To give an introduction to Modelicawe will consider modeling of asimple electrical circuit as
shown below.

=%
Ok=ls
Qo l=cd

@

1

e
2
F0=1

o=
gt
0=

t

The system can be broken up into a set of connected electrical standard components. We have a
voltage source, two resistors, an inductor, a capacitor and a ground point. Models of these
components are typically available in model libraries and by using a graphical model editor we
can define amodel by drawing an object diagram very similar to the circuit diagram shown
above by positioning icons that represent the models of the components and drawing
connections.

A Modelica description of the complete circuit looks like

nodel circuit
Resi stor R1(R=10);
Capacitor C(C=0.01);
Resi stor R2(R=100);
I nductor L(L=0.1);
Vsour ceAC AC,

G ound G
equation
connect (AC. p, Rl.p); /1 Capacitor circuit
connect (Rl1.n, C. p);
connect (C. n, AC. n);
connect (Rl.p, R2.p); /1 1nductor circuit
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G p); /1 Gound

end circuit;

For clarity, the definition of the graphical layout of the composition diagram (here: electric
circuit diagram) is not shown, although it is usually contained in a Modelica model as
annotations (which are not processed by a Modelica translator and only used by tools). A
composite model of this type specifies the topology of the system to be modeled. It specifies the
components and the connections between the components. The statement

Resi stor R1(R=10);

Modelica 1.4 Tutorial

declares acomponent R1 to be of class Resi st or and sets the default value of the resistance, R,
to 10. The connections specify the interactions between the components. In other modeling
languages connectors are referred as cuts, ports or terminals. The language element connect isa
special operator that generates equations taking into account what kind of quantitiesthat are
involved as explained below.

The next step in introducing Modelicais to explain how library model classes are defined.

A connector must contain all quantities needed to describe the interaction. For electrical
components we need the quantities voltage and current to define interaction viaawire. The types
to represent them are declared as

Real (unit="V")
Real (uni t="A")

type Vol tage
type Current

where Real isthe name of a predefined variable type. A rea variable has a set of attributes such
as unit of measure, initial value, minimum and maximum value. Here, the units of measure are
set to be the Sl units.

In Modelica, the basic structuring element is a class. There are seven restricted classes with
specific names, such as model, type (a class which is an extension of built-in classes, such as
Real, or of other defined types), connector (aclasswhich does not have equations and can be
used in connections). For avalid model it isfully equivalent to, e.g., replace the model, and type
keywords by the keyword class, because the restrictions imposed by such a specialized class are
fulfilled by avalid model.

The concept of restricted classes is advantageous because the modeler does not have to learn
several different concepts, but just one: the class concept. All properties of a class, such as
syntax and semantic of definition, instantiation, inheritance, genericity areidentical to all kinds
of restricted classes. Furthermore, the construction of Modelicatrandatorsis simplified
considerably because only the syntax and semantic of a class has to be implemented along with
some additional checks on restricted classes. The basic types, such asReal or | nt eger are built-
intype classes, i.e., they have all the properties of a class and the attributes of these basic types
are just parameters of the class.

There are two possibilities to define a class: The standard way is shown above for the definition
of the electric circuit (model circuit). A short hand notation is possible, if a new classisidentical
to an existing one and only the default values of attributes are changed. The types above, such as
Voltage, are declared in thisway.

A connector classis defined as

connector Pin
Vol t age v,
flow Current i;
end Pin;

A connection connect (Pi n1, Pi n2),with Pi n1 and Pi n2 of connector class Pi n, connects the
two pins such that they form one node. This implies two equations, namely Pi n1.v = Pin2.v

andPinl.i + Pin2.i = 0. Thefirst equation indicates that the voltages on both branches
connected together are the same, and the second corresponds to Kirchhoff’s current law saying

Modelica 1.4 Tutorial

that the currents sum to zero at a node (assuming positive value while flowing into the
component). The sum-to-zero equations are generated when the prefix flow is used. Similar laws
apply to flow rates in a piping network and to forces and torques in mechanical systems.

When developing models and model libraries for a new application domain, it is good to start by
defining a set of connector classes. A common set of connector classes used in all componentsin
the library supports compatibility of the component models. In the Modelica Standard Library
developed together with the Modelica Language, for many domains appropriate connector
definitions are already available.

A common property of many electrical componentsis that they have two pins. This means that it
isuseful to define an "interface” model class,
partial nodel OnePort "Superclass of elenents with two el ectrical pins”
Pin p, n;
Vol t age v;
Current i
equation
V = p.V - n.v,;
0 =p.i +ni
= ;
end OnePort;
that has two pins, p and n, a quantity, v, that defines the voltage drop across the component and a
quantity, i , that defines the current into the pin p, through the component and out from the pinn.
The equations define generic relations between quantities of asimple electrical component. In
order to be useful a constitutive equation must be added. The keyword par ti al indicates that
thismodel classisincomplete. The key word is optional. It is meant as an indication to a user
that it is not possible to use the class asit is to instantiate components. Between the name of a
classand its body it is allowed to have astring. It istreated as a comment attribute and is meant
to be a documentation that tools may display in specia ways.

To define amode for aresistor we exploit OnePort and add a definition of parameter for the
resistance and Ohm’s law to define the behavior:

nodel Resistor "ldeal electrical resistor”
ext ends OnePort;
paranmeter Real R(unit="Chm') "Resistance";
equation
R¥i = v;
end Resi stor;
The keyword parameter specifies that the quantity is constant during a simulation run, but can

change values between runs. A parameter is a quantity which makesit simple for auser to
modify the behavior of a model.

A model for an electrical capacitor can also reuse the TwoPin as follows:

nodel Capacitor "ldeal electrical capacitor”
ext ends OnePort;
paranmeter Real C(unit="F") "Capacitance";
equation
C:der(v) =1i;
end Capacitor;

Modelica 1.4 Tutorial

where der (v) meansthe time derivative of v. A model for the voltage source can be defined as

nodel VsourceAC "Si n-wave vol tage source"”
extends OnePort;
paraneter Voltage VA = 220 "Anplitude";
paraneter Real f(unit="Hz") = 50 "Frequency";
constant Real PI=3.141592653589793;
equation
v = VA*sin(2*PlI*f*tine);
end Vsour ceAC,
In order to provide not too much information at this stage, the constant PI is explicitly declared,
although it is usually imported from the Modelica standard library (see appendix of the Language
Specification). Finally, we must not forget the ground point.
nodel G ound "G ound"
Pin p;
equation
p.v = 0;
end Gound;

The purpose of the ground model istwofold. First, it defines areference value for the voltage
levels. Secondly, the connections will generate one Kirchhoff’s current law too many. The

ground model handles this by introducing an extra current quantity p. i , which implicitly by the
equations will be calculated to zero.

Comparison with block oriented modeling

If the above model would be represented as a block diagram, the physical structure will not be
retained as shown below. The block diagram is equivalent to a set of assignment statements
calculating the state derivatives. In fact, Ohm’s law is used in two different ways in this circuit,
once solving for i and once solving for u.

Fesd ZUM3 Inid

pEas i

] = |

SUMmZ

L +1
o +1 zh

zimln U Fesl Cap
o +1

This example clearly shows the benefits of physically oriented, non-causal modeling compared
to block oriented, causal modeling.

w] ==

Modelica 1.4 Tutorial

ModelicaLibraries

In order that Modelica is useful for model exchange, it is important that libraries of the most
commonly used components are available, ready to use, and sharable between applications. For
this reason, the Modelica Association develops and maintains a growing Modelica Standard
Library. Furthermore, other people and organizations are developing free and commercial
Modelica libraries. For more information and especialy for downloading the free libraries, see
http://www.Modelica.org/library/library.html. Currently, component libraries are available in the
following domains:

* About 450 type definitions, such as Angle, Voltage, Inertia

* Mathematical functions such assin, cos, In

» Continuous and discrete input/output blocks, such as transfer functions, filters, sources.

» Electric and electronic components such as resistor, diode, MOS and BJT transistor.

e 1-dim. trandlational components such as mass, spring, stop.

e 1-dim. rotational components such as inertia, gearbox, planetary gear, bearing friction,
clutch.

* 3-dim. mechanical components such asjoints, bodies and 3-dim. springs.

» Hydraulic components, such as pumps, cylinders, valves.

* Thermo-fluid flow components, such as pipes with multi-phase flow, heat exchangers.

* 1-dim. thermal components, such as hest resistance and heat capacitance.

» Power system components such as generators and lines.

» Power train components such as driver, engine, torque converter, automatic gearboxes.

A screenshot of several examples built by available Modelicalibrariesis given
below:
-~ — ba={0,0,0}

- -
: 3D mechanics “ﬁ;&’
b1=f0,0,0} be={0,0 73,0}

—]&5 : :t—nﬁim—l l__g =z nﬁ?: l . _ load
ri=[0.1.0} TR - R 3 —,____3 i

=M

| e

[=1

=] Iy
_'ﬁ] - T ' staie machines

biz=J0 0 5,0}

control systems

miatar

=4

el
)

05T

=1

Modelica 1.4 Tutorial

2.Modelica Language Overview

Modeling the dynamic behavior of physical systemsimpliesthat oneisinterested in specific
properties of alimited class of systems. These restrictions give a means to be more specific then
is possible when focusing on systemsin general. Therefore, the physical background of the
models should be reflected in Modelica

Nowadays, physical systems are often complex and span multiple physical domains, whereas
mostly these systems are computer controlled. Therefore, hierarchical models (i.e., models
described as connected submodels) using properties of the physical domains involved should
easily be described in Modelica. To properly support the modeler (i.e. to be able to perform
automated modeling), these physical properties should be incorporated in Modelicain such a
way, that checking consistency, like checking against basic laws of physics, can be programmed
easily in the Modelicatranslators. Examples of physical properties are the physical quantity and
the physical domain of avariable. Thisimplies that a suitable representation for physical systems
modeling is more than a set of pure mathematical differential equations.

2.1 Basic Language Elements

The language constructs will be devel oped gradually starting with small examples, and then
extended by considering practical issues when modeling large systems.

Handling large models means careful structuring in order to reuse model knowledge. A model is
built-up from

» basic components such as Real, Integer, Boolean and String

» structured components, to enable hierarchical structuring

e component arrays, to handle real matrices, arrays of submodels, etc
* eguations and/or algorithms (= assignment statements)

* connections

» functions

Some means of declaring variable properties is needed, since there are different kinds of
variables, Parameters should be given values and there should be a possibility to giveinitial
conditions.

Basic declarations of variables can be made as follows:

Real u, y(start=1);
paraneter Real T=1;

Real isthe name of a predefined class or type. A Rea variable has an attribute called st art to
giveitsinitial value. A component declaration can be preceded by a specifier like constant or

parameter indicating that the component is constant, i.e., its derivative is zero. The specifier
parameter indicates that the value of the quantity is constant during simulation runs. It can be

Modelica 1.4 Tutorial

modified when a component is reused and between simulation runs. The component name can be
followed by a modification to change the value of the component or its attributes.

Equations are composed of expressions both on the left hand side and the right hand side likein
the following filter equation.

equation
T*der(y) +y =u

Time derivative is denoted by der ().

2.2 Classes for Reuse of Modeling Knowledge

Assume we would like to connect two filtersin series. Instead of repeating the filter equation, it
Is more convenient to make a definition of afilter once and create two instances. Thisis done by
declaring aclass. A class declaration contains alist of component declarations and alist of
equations preceded by the keyword equation. An example of alow passfilter classis shown
below.

cl ass LowPassFilter

paraneter Real T=1;
Real u, y(start=1);

equation
Tder(y) +vy = u;
end LowPassFilter
The modd class can be used to create two instances of the filter with different time constants and
"connecting” them together as follows

class FilterslnSeries
LowPassFilter F1(T=2), F2(T=3);

equation
Fl.u = sin(tine);
F2.u = Fl.vy;

end FilterslnSeries;

In this case we have used a modification to modify the time constant of the filtersto T=2 and
T=3 respectively from the default value T=1 given in the low-pass filter class. Dot notation is
used to reference components, like u, within structured components, like F1. For the moment it
can be assumed that all components can be reached by dot-notation. Restrictions of accessibility
will beintroduced later. The independent variable is referenced astime. It isavailablein all
classes without declaration.

If the FiltersinSeries model is used to declare components at a higher hierarchical level, it is till
possible to modify the time constants by using a hierarchical modification:
nodel ModifiedFilterslnSeries
FiltersinSeries F12(F1(T=6), F2(T=11, k=2)); // alternative 1

FilterslnSeries F34(Fl1. T=6, F2.T=11, F2.k=2); [/ alternative 2
end ModifiedFilterslnSeries;

The class concept is similar as in programming languages. It is used for many purposesin
Modelica, such as model components, connection mechanisms, parameter sets, input-output

Modelica 1.4 Tutorial

blocks and functions. In order to make Modelica classes easier to read and to maintain, special
keywords have been introduced for such special uses, model, connector, record, block,
function, type and package. It should be noted though that the use of these keywords only apply
certain restrictions, like records are not allowed to contain equations. However, for avalid
model, the replacement of these keywords by class would give exactly the same model behavior.
In the following description we will use the specialized keywords in order to convey their
meaning.

Records

It is possible to introduce parameter sets as records which is arestricted form of class which may
not have any equations:
record FilterData

Real T;
end FilterData,;

record TwoFilterData
FilterData F1, F2;
end TwoFil t er Dat a;

nodel ModifiedFilterslnSeries?2
TwoFi | terData TwoFilterDatal(F1(T=6), F2(T=11));

FilterslnSeries F12=TwoFi |l ter Dat al;
end ModifiedFilterslnSeries2;

The modification F12=TwoFi | t er Dat al IS possible since all the components of
TwoFilterDatal (F1, F2, T) are presentinFilterslnSeries. Moreabout type
compatibility can be found in section 4.4.

Packages

Class declarations may be nested. One use of that is maintenance of the name space for classes,
i.e., to avoid name clashes, by storing a set of related classes within an enclosing class. Thereisa
special kind of classfor that, called package. A package may only contain declarations of
constants and classes. Dot-notation is used to refer to the inner class. Examples of packages are
given in the appendix of the Language Specification, where the Modelica standard package is
described which is always available for aModelica tranglator.

Information Hiding

So far we have assumed all components to be accessible from the outside by dot-notation. To
develop librariesin such away is abad principle. Information hiding is essential from a
maintenance point of view.

Considering the FiltersinSeries example, it might be a good ideato just declare two parameters
for the time constants, T1 and T2, the input, u and the output y as accessible from the outside.
The realization of the model, using two instances of model LowPassFilter, is a protected detail.
Modelica alows such information hiding by using the heading protected.

10

Modelica 1.4 Tutorial

nmodel FilterslnSeries2
paraneter Real T1=2, T2=3;
i nput Real u;
out put Real v;

prot ect ed
LowPassFilter F1(T=T1l), F2(T=T2);

equation
Fl1.u = u;
F2.u = Fl.vy;
y = F2.y;
end FilterslnSeries2;
Information hiding does not control interactive environments though. It is possible to inspect and
plot protected variables. Note, that variables of a protected section of aclass A can be accessed
by a class which extends class A. In order to keep Modelica simple, additional visibility rules
present in other object-oriented languages, such as private (no access by subtypes), are not used.

2.3 Connections

We have seen how classes can be used to build-up hierarchical models. It will now be shown
how to define physical connections by means of arestricted class called connector.

We will study modeling of asimple electrical circuit. Thefirst issueis then how to represent pins
and connections. Each pin is characterized by two variables, voltage and current. A first attempt
would be to use a connector as follows.

connector Pin

Real v, i;
end Pin;

and build aresistor with two pinsp and n like
nodel Resi stor
Pin p, n; /1 "Positive" and "negative" pins.
paranmeter Real R "Resistance”;

equation
Rp.i = p.v - n.v;
ni =p.i; /1 Assume both n.i and p.i to be positive

/1 when current flows fromp to n.
end Resi stor;

A descriptive text string enclosed in " " can be associated with a component like R. A comment
which is completely ignored can be entered after //. Everything until the end of the lineis then
ignored. Larger comments can be enclosed in /* ... */.

A simple circuit with series connections of two resistors would then be described as:

nodel FirstCircuit
Resi stor R1(R=100), R2(R=200);

equation
Rl.n = R2.p;
end FirstCircuit;

11

Modelica 1.4 Tutorial

The egquation R1.n = R2.p represents the connection of pin n of R1 to pin p of R2. The semantics
of this equation on structured componentsis the same as

Rl.n.v R2.p.v
Rl.n.i R2. p.i

This describes the series connection correctly because only two components were connected.
Some mechanism is needed to handle Kirchhoff’s current law, i.e. that the currents of al wires
connected at a node are summed to zero. Similar laws apply to flows in a piping network and to
forces and torques in mechanical systems. The default rule isthat connected variables are set
equal. Such variables are called across variables. Real variables that should be summed to zero
are declared with prefix flow. Such variables are also called through variables. In Modelicawe
assume that such variables are positive when the flow (or corresponding vector) isinto the
component.

connector Pin

Real v;

flow Real i;
end Pin;

It is useful to introduce units in order to enhance the possibility to generate diagnostics based on
redundant information. Modelica allows deriving new classes with certain modified attributes.
The keyword typeis used to define anew class, which is derived from the built-in data types or
defined records. Defining Voltage and Current as modifications of Real with other attributes and
a corresponding Pin can thus be made as follows:

type Voltage = Real (unit="V")
type Current = Real (unit="A")
connector Pin

Vol t age v;

flow Current i;
end Pin;

nodel Resi stor
Pin p, n; /1 "Positive" and "negative" pins.
paranmeter Real R(unit="0Ohnf') "Resistance";

equation

Rp.i = p.v - n.v;

p.i + n.i = 0; /1 Positive currents into conponent.
end Resi stor;

We are now able to correctly connect three components at one node.

nodel SinpleCircuit
Resi stor R1(R=100), R2(R=200), R3(R=300);

equation
connect (RL. p, R2.p);
connect (R1L. p, R3.p);
end SinpleCircuit;

connect is aspecial operator that generates equations taking into account what kind of variables
that are involved. The equations are in this case equivaent to

12

Modelica 1.4 Tutorial

Rl.p.v R2. p.v;
Rl. p.v R3. p. v;
i R2.p.i

+ 11

Rl:p. + R3.p.i = 0;

In certain cases, amodel library might be built on the assumption that only one connection can
be made to each connector. There is a built-in function car di nal i t y(C) that returns the number
of connections that has been made to a connector c. It is also possible to get information about
the direction of a connection by using the built-in function di r ect i on(c) (provided cardinality(c)
== 1). For a connection, connect(cl, c2), direction(cl) returns -1 and direction(c2) returns 1. The
cardinality and direction operators can be, e.g., used to build alibrary of bond graph components.

2.4 Partial Models and Inheritance

A very important feature in order to build reusable descriptions isto define and reuse partial
models. Since there are other electrical components with two pins like capacitor and inductor we
can define a generic component with one electrical port!, model OnePort, having two pins as a
base for al of these models.
partial nopdel OnePort
Pin p, n;
Vol tage v "Vol tage drop";

equati on
VZ p.V - Nnv;
p.i +n.i =0;

end TwoPi n;

Such apartial model can be extended or reused to build a complete model like an inductor.

nodel I nductor "ldeal electrical inductance"
ext ends OnePort ;
paraneter Real L(unit="H') "Inductance";
equation
L*der (i) = v;
end | nduct or;
The facility is similar to inheritance in other languages. Multiple inheritance, i.e., several

extends statements, is supported.

The type system of Modelicais greatly influenced by type theory (Abadi and Cardelli 1996), in
particular their notion of subtyping. Abadi and Cardelli separate the notion of subclassing (the
mechanism for inheritance) from the notion of subtyping (the structural relationship that
determines type compatibility). The main benefit is added flexibility in the composition of types,
while still maintaining a rigorous type system.

Inheritance is not used for classification and type checking in Modelica. An extends clause can

Y In the Modelica Standard Library model OnePort is a component where the current flowing into the first pin is the
same as the current flowing out of the second pin, where as model TwoPin isacomponent where this assumption
does not necessarily hold, e.g., because the component consistsinternally of anon-trivial electrical circuit.

13

Modelica 1.4 Tutorial

be used for creating a subtype relationship by inheriting all components of the base class, but it is
not the only meansto create it. Instead, a class A is defined to be a subtype of class B, if class A
contains al the public components of B. In other words, B contains a subset of the components
declared in A. This subtype relationship is especially used for class parameterization as
explained in the next section.

Assume, for example, that a more detailed resistor model is needed, describing the temperature
dependency of the resistance:

nodel TenpResi stor "Tenperature dependent electrical resistor”
ext ends OnePort;

paranmeter Real R(unit="0Chm") "Resi stance for ref. Tenp.";
paranmeter Real RT(unit="0hn!degC")=0 "Tenp. dep. Resistance.";
paranmeter Real Tref(unit="degC")=20 "Ref erence tenperature.”;
Real Tenp=20 "Actual tenperature”;

equation

v = p.i*(R + RT*(Tenp-Tref));
end TenpResi stor;
It is not possible to extend this model from the ideal resistor model Resi st or discussed in
Chapter 2, because the equation of the Resi st or class needs to be replaced by a new equation.
Still, the TenpResi st or iSasubtype of Resi st or becauseit contains all the public components
of Resi stor.

2.5 Class Parameterization

We will now discuss a more powerful parameterization, not only involving values like time
constants and matrices but also classes. (This section might be skipped during the first reading.)
Assume that we have the description (of an incomplete circuit) as above.

nodel SinpleCircuit
repl aceabl e Resistor R1(R=100), R2(R=200), R3(R=300);

equation
connect (R1L. p, R2.p);
connect (R1L. p, R3.p);
end SinpleCrcuit;

Assume we would like to utilize the parameter values given for R1.R and R2.R and the circuit
topology, but exchange Resistor with the temperature dependent resistor model, TempResistor,
discussed above. This can be accomplished by redeclaring R1 and R2 as follows.
nodel RefinedSinpleCGrcuit
Real Tenp;
extends SinpleCircuit(
redecl are TenpResistor RL(RT=0.1, Tenp=Tenp),

redecl are TenpResi stor R2);
end RefinedSinmpleCrcuit;

Since TempResistor is a subtype of Resistor, it is possible to replace the ideal resistor model.
Vaues of the additional parameters of TempResistor and definition of the actual temperature can
be added in the redeclaration:

redecl are TenpResistor RL(RT=0.1, Tenp=Tenp);

14

Modelica 1.4 Tutorial

Thisisavery strong modification of the circuit model and there is the issue of possible
invalidation of the model. For this reason, such modifications have to be marked by the keyword
redeclar e. Furthermore, the model developer has to explicitly allow such type of modification
by declaring a component as replaceable: -

repl aceabl e Resi stor R3(R=300);

It isalso possible to state that a parameter is frozen to a certain value, i.e., is not a parameter
anymore:

Resi stor R3(final R=300);

and can therefore no longer be changed by a modification (including a redeclaration). In some
situations it may be necessary that the basic constraining type is different from the default type,
for example,
nodel SinpleCircuit
repl aceabl e Resistor R1(R=100) extends OnePort;

repl aceabl e Resi stor R2(R=200) extends OnePort;
Resi st or R3(R=300);

equation
connect (R1. p, R2.p);
connect (RL. p, R3.p);
end SinpleCircuit;

Here, the resistors R1 and R2 can be replaced by any electrical component which is a subtype of
model OnePort, asin the following redeclaration:
nodel RefinedSinpleCircuit?2

extends SinpleCircuit(redeclare Capacitor RL(C=0.001));
end RefinedSinmpleCrcuit?2;

To use another resistor model in the model SimpleCircuit, we needed to know that there were
two replaceable resistors and we needed to know their names. To avoid this problem and prepare
for replacement of a set of models, one can define areplaceable class, ResistorModel. The actual
classthat will later be used for R1 and R2 must have Pins p and n and a parameter R in order to
be compatible with how R1 and R2 are used within SimpleCircuit2. The replaceable model
ResistorModel is declared to be a Resistor model. This means that it will be enforced that the
actual classwill be a subtype of Resistor, i.e., have compatible connectors and parameters.
Default for ResistorModel, i.e., when no actual redeclaration is made, isin this case Resistor.
Note, that R1 and R2 arein this case of class ResistorModel.

nodel SinpleCircuit?2
repl aceabl e nodel Resi storMdel = Resistor;

prot ect ed
Resi st or Model R1(R=100), R2(R=200);
Resi stor R3(final R=300);

equation
connect (RL. p, R2.p);
connect (RL. p, R3.p);
end SinpleCircuit?2;

Binding an actual model TempResistor to the replaceable model ResistorModel is done as
follows.

15

Modelica 1.4 Tutorial

nodel RefinedSinpleCrcuit2 =
Sinpl eCircuit2(redecl are nodel ResistorMdel = TenpResistor);

Another case where redecl arations are needed is extensions of interfaces. Assume we have a
definition for aTank in amodel library:

connector Stream

Real pressure;

fl ow Real vol uneFl owRat e;
end Stream

nmodel Tank
paranmeter Real Area=1;
repl aceabl e connector TankStream = Stream
TankStream Inlet, Qutlet;
Real |evel;

equation
/1 Mass bal ance.
Area*der (Il evel)
Qutlet. pressure
end Tank;

We would like to extend the Tank to model the temperature of the stream. This involves both
extension to interfaces and to model equations.

connector Heat Stream
extends Stream
Real tenp;

end Heat Stream

I nl et.vol umeFl owRate + Qutl et. vol uneFl owRat e;
I nlet.pressure;

nodel Heat Tank
extends Tank(redecl are connector TankStream = Heat Strean;
Real tenp;

equation
/'l Energy bal ance.
Area*Level *der(tenp) = Inlet.vol uneFl owRate*Inlet.tenp +
Qutl et.vol umreFl owRat e*Qut | et . t enp;
Qutlet.tenp = tenp; [/ Perfect mxing assuned.
end Heat Tank;

The definition of HeatTank above is equivalent to the following definition (which has been
automatically produced by a Modelicatrandlator).

nodel Heat TankT
paraneter Real Area=1;

connector TankStream
Real pressure;
fl ow Real vol uneFl owRat e;
Real tenp;

end TankStream

TankStream I nlet, CQutlet;
Real |evel;
Real tenp;

equation

16

Modelica 1.4 Tutorial

Area*der(level) = Inlet.volumeFl owrRate + Qutl et. vol uneFl owRat e;
Qutlet.pressure = Inlet.pressure;
Area*| evel *der(tenp) = Inlet.voluneFl owRate*Inlet.tenp +

Qutl et.vol umreFl owRat e*Qut | et . t enp;
Qutlet.tenp = tenp;
end Heat TankT;

Replaceabl e classes are also very convenient to separate fluid properties from the actual device
where the fluid is flowing, such as a pump.

2.6 Matrices and Arrays

An array variable can be declared by appending dimensions after the class name or after a
component name.

Real [3] position, velocity, acceleration;
Real [3, 3] transfornmation;
Real [3, 2, 10] table;

or

Real position[3], velocity[3], acceleration[3], transfornmation[3, 3];
Real tabl e[3, 2, 10];

It isalso possible to make a matrix type

type Transformation = Real [3, 3];
Transformation transfornmation;
The following definitions are appropriate for modeling 3D motion of mechanical systems.
type Position = Real (unit="ni);
type Position3 = Position[3];

type Force = Real (unit="N");
type Force3 = Force[3];

type Torque = Real (unit="N.ni);

type Torque3 = Torque[3];
It is now possible to introduce the variables that are interacting between rigidly connected bodies
in afree-body diagram.

connect or MsCut
Transformation S "Rotation matrix describing frame A"
" with respect to the inertial franme";

Position3 ro "Vector fromthe origin of the inertial”
" frane to the origin of frane A";
fl ow Force3 f "Resultant cut-force acting at the origin"

" of frame A";
flow Torque3 t "Resultant cut-torque with respect to the"
" origin of frame A";
end MosCut;

Such a definition can be used to model arigid bar as follows.

nodel Bar "Massless bar with two nmechanical cuts.”
MosCut a b;
par amet er Position3 r = {0, 0, 0}
"Position vector fromthe origin of cut-frane A"

17

Modelica 1.4 Tutorial

"to the origin of cut-frame B";

equation
/1 Kinematic relationships of cut-frame A and B
b.S = a.§

b.rO0 = a.r0 + a. S*r;

/'l Relations between the forces and torques acting at
11 cut-frane A and B
zeros(3) = a.f + b.f;
zeros(3) = a.t + b.t - cross(r, a.f);
/1l The function cross defines the cross product
11 of two vectors
end Bar;

Vector and matrix expressions are formed in asimilar way asin Mathematica and Matlab. The

operators +, -, * and / can operate on either scalars, vectors or two-dimensional matrices of type
Real and Integer. Division is only possible with ascalar. An array expression is constructed as

{expry, expry, ... exprn}. A matrix (two dimensional array) can be formed as

[expri;, expriz, ... €xprin
expra, expra, ... exXpra,
expr ng, €Xpr g, ... €Xpr m)

i.e. with commas as separators between columns and semicolon as separator between rows.
Indexing iswritten as A[i] with the index starting at 1. Submatrices can be formed by utilizing :
notation for index ranges, A[il:i2, j1:j2]. The then and else branches of if-then-else expressions
may contain matrix expressions provided the dimensions are the same. There are several built-in
matrix functions like zeros, ones, identity, transpose, skew (skew operator for 3 x 3 matrices) and
cross (cross product for 3-dimensional vectors). For details about matrix expressions and
available functions, see the Language Specification.

Matrix sizes and indices in equations must be constant during simulation. If they depend on
parameters, it is amatter of "quality of implementation” of the translator whether such
parameters can be changed at simulation time or only at compilation time.

Block Diagrams

We will now illustrate how the class concept can be used to model block diagrams as a specia
case. It is possible to postul ate the data flow directions by using the prefixesinput and output in
declarations. This also allows checking that only one connection is made to an input, that outputs
are not connected to outputs and that inputs are not connected to inputs on the same hierarchical
level.

A matrix can be declared without specific dimensions by replacing the dimension with a colon:
A, :]. The actual dimensions can be retrieved by the standard function size. A general state
space model is an input-output block (restricted class, only inputs and outputs) and can be
described as

18

Modelica 1.4 Tutorial

bl ock St at eSpace
paraneter Real A[:, :],
B[size(A 1), :1,
d:, size(A 2)],
O size(C, 1), size(B, 2)]=zeros(size(C, 1), size(B, 2));

i nput Real u[size(B, 2)];
out put Real y[size(C 1)];
pr ot ect ed

Real x[size(A 2)];

equation
assert(size(A 1) == size(A 2), "Mtrix A nust be square.");
der(x) = A*x + B*u;
y = Cx + Du

end St at eSpace;

Assert is a predefined function for giving error messages taking a Boolean condition and a string
as arguments. The actual dimensions of A, B and C are implicitly given by the actual matrix
parameters. D defaultsto a zero matrix:

bl ock Test St at eSpace
St at eSpace S(A = [0.12, 2; 3, 1.5], B=1[2, 7; 3, 1], C=10.1, 2]);

equation
S.u = {time, sin(tinme)};
end Test St at eSpace;
The block classisintroduced to allow better diagnostics for pure input/output model
components. In such a case the correctness of the component can be analyzed locally which is
not possible for components where the causality of the public variables is unknown.

2.7 Repetition, Algorithms and Functions

Regular Equation Structures

Matrix eguations are in many cases convenient and compact notations. There are, however, cases
when indexed expressions are easier to understand. A loop construct, for, which allow indexed
expressions will be introduced below.

Consider evaluation of a polynomial function

n .
y = sumgc; Xx'
i =0
with agiven set of coefficients ¢; in avector an+1] with &[i] = ¢.;. Such a sum can be expressed
in matrix form as a scalar product of the form

a* {1, x, x"2, ... x™n}
If we could form the vector of increasing powers of x. A recursive formulation is possible.

xpowers[1] = 1;
xpower s[2: n+1] = xpower s[1: n] *x;
y = a * xpowers;

19

Modelica 1.4 Tutorial

The recursive formulation would be expanded to

xpowers[1] = 1;
xpower s[2] = xpowers[1]*x;
xpower s[3] = xpower s[2] *x;

%bbmers[n+1] = xpower s[n] *x;
y = a * xpowers

The recursive formulation above is not so understandabl e though. One possibility would have
been to introduce a special matrix operator for element exponentiation asin Matlab (). The
readability does not increase much though.

Matrix equations like
xpower s[2: n+1] = xpowers[1l:n]*x;

can be expressed in aform that is more familiar to programmers by using afor loop:

for i in 1:n loop
xpower s[i +1] = xpowers[i]*x;
end for;

Thisfor-loop is equivalent to n equations. It is also possible to use ablock for the polynomial
evaluation:

bl ock Pol ynom al Eval uat or
paraneter Real a[:];
i nput Real x;
out put Real v;

protected
paraneter Integer n = size(a, 1)-1
Real xpowers[n+1];

equation
xpowers[1] = 1;
for i in 1:n loop
xpower s[i +1] = xpowers[i]*X;
end for;
y = a * xpowers
end Pol ynoni al Eval uat or

The block can be used as follows:

Pol ynomi al Eval uat or pol yeval (a={1, 2, 3, 4});
Real p;
equation
pol yeval . x = tine;
p = polyeval .y;
It isaso possible to bind the inputs and outputs in the parameter list of the invocation.

Pol ynom al Eval uat or pol yeval (a={1, 2, 3, 4}, x=tinme, y=p);

Regular Mode Structures

Thefor construct is also essential in order to make regular connection structures for component
arrays, for example:

20

Modelica 1.4 Tutorial

Conponent conponents[n];
equation
for i in 1:n-1 |oop
connect (conponents[i].Qutlet, conmponents[i+1].Inlet);
end for;

Algorithms

The basic describing mechanism of Modelica are equations and not assignment statements. This
gives the needed flexibility, e.g., that a component description can be used with different
causalities depending on how the component is connected. Still, in some situationsit is more
convenient to use assignment statements. For example, it might be more natural to define a
digital controller with ordered assignment statements since the actual controller will be
implemented in such away.

It ispossible to call external functions written in other programming languages from Modelica
and to use all the power of these programming languages. This can be quite dangerous because
many difficult-to-detect errors are possible which may lead to simulation failures. Therefore, this
should only be done by the ssmulation specialist if tested legacy codeisused or if aModelica
implementation is not feasible. In most cases, it is better to use aModelicaalgorithm whichis
designed to be much more secure than calling external functions.

The vector xvec in the polynomial evaluator above had to be introduced in order that the number
of unknowns are the same as the number of equations. Such a recursive calculation schemeis
often more convenient to express as an algorithm, i.e., a sequence of assignment statements, if-
statements and loops, which allows multiple assignments:

al gorithm
y :=0;
xpower := 1;
for i in 1:n+1 | oop
y :=y + a[i]*xpower;
Xpower = xpower*Xx;
end for;

A Modelicaagorithm isafunction in the mathematical sense, i.e. without internal memory and
side-effects. That is, whenever such an algorithm is used with the same inputs, the result will be
exactly the same. If afunction is called during continuous integration thisis an absolute
prerequisite. Otherwise the mathematical assumptions on which the integration algorithms are
based on, would be violated. An internal memory in an algorithm would lead to a model giving
different results when using different integrators. With thisrestriction it is al'so possible to
symbolically form the Jacobian by means of automatic differentiation. This requirement is also
present for functions called only at event instants (see below). Otherwise, it would not be
possible to restart asimulation at any desired time instant, because the simulation environment
does not know the actual value of the internal algorithm memory.

In the algorithm section, ordered assignment statements are present. To distinguish from
equationsin the equation sections, a special operator, :=, isused in assignments (i.e. given
causality) in the algorithm section. Several assignments to the same variable can be performed

21

Modelica 1.4 Tutorial

in one algorithm section. Besides assignment statements, an algorithm may contain if-then-else
expressions, if-then-else constructs (see below) and loops using the same syntax asin an
eguation-section.

Variables that appear on the left hand side of the assignment operator, which are conditionally
assigned, are initialized to their start value (for algorithmsin functions, the value given in the
binding assignment) whenever the algorithmisinvoked. Dueto thisfeature it isimpossible for a
function or an algorithm section to have a memory. Furthermore, it is guaranteed that the output
variables always have a well-defined value.

Within an equation section of a class, algorithms are treated as a sets of equations. Especiadly,
algorithms are sorted together with all other equations. For the sorting process, the calling of a
function with n output argumentsis treated as n implicit equations, where every equation
depends on all output and on al input arguments. This ensures that the implicit equations remain
together during sorting (and can be replaced by the algorithm invocation afterwards), because the
implicit equations of the function form one algebraic |oop.

In addition to the for loop, there is awhile loop which can be used within algorithms:
whil e condition | oop

{ algorithm}
end whil e;

Functions

The polynomia evaluator aboveis a special input-output block since it does not have any states.
Since it does not have any memory, it would be possible to invoke the polynomial function asa
function, i.e. memory for variables are allocated temporarily while the algorithm of the function
Is executing. Modelica allows a specialization of a class called function which has only public
inputs and outputs, one algorithm and no equations.

The polynomial evaluation can thus be described as:

function Pol ynomni al Eval uat or 2
input Real a[:];
i nput Real x;
out put Real v;

protected
Real Xpower ;

al gorithm
y :=0;
xpower := 1;
for i in 1l:size(a, 1) loop
y :=y + a[i]*xpower;
Xpower = xpower*x;
end for;
end Pol ynom al Eval uat or 2;

A function declaration is similar to a class declaration but starts with the function keyword. The
input arguments are marked with the keyword input (since the causality isinput). The result
argument of the function is marked with the keyword output.

22

Modelica 1.4 Tutorial

No internal states are allowed, i.e., the der- and pre- operators are not allowed. Any class can be
used as an input and output argument. All public, non-constant variables of a class in the output
argument are the outputs of afunction.

Instead of creating a polyeval object as was needed for the block PolynomialEvaluator:
Pol ynom al Eval uat or pol yeval (a={1, 2, 3, 4}, x=tine, y=p);

it is possible to invoke the function as usual in an expression.
p = Polynom al Eval uator2(a={1, 2, 3, 4}, x=tinme);

It isaso possible to invoke the function with positional association of the actual arguments:
p = Polynom al Evaluator2({1, 2, 3, 4}, tinme);

A function can have severa output arguments:

function Circle
i nput Real angl e;
i nput Real radius;
out put Real x;
out put Real v;
al gorithm
X radi us*Model i ca. Mat h. cos(phi) ;
y = radi us*Model i ca. Mat h. si n(phi);
end Circle;

Such afunction is called in the following way:
(x,y) =Crcle(l.2, 2);

i.e., the actual values of al input variables are provided in the list after the function name and the
return values of this function are provided at the |eft hand side of the equal sign enclosed in
parentheses.

External functions

It is possible to call functions defined outside of the Modelica language. The body of an external
function is marked with the keyword ext er nal :
function | og
i nput Real x;
out put Real v;
ext er nal
end | og;

Thereisa"natural™ mapping from Modelicato the target language and its standard libraries. The
C language is used as the least common denominator.

The arguments of the external function are taken from the Modelica declaration. If thereisa
scalar output, it is used as the return type of the external function; otherwise the results are
returned through extra function parameters. Arrays of simple types are mapped to an argument of
the simple type, followed by the array dimensions. Storage for arrays as return valuesis allocated
by the calling routine, so the dimensions of the returned array isfixed. It is possible to specify
exactly the order of the arguments for the external C-function as well as the name of the C-

23

Modelica 1.4 Tutorial

function, to define the allowed dependencies between array dimensions, and to provide internal
work arrays. These features are demonstrated by the following quite complicated function
interface:

function BilinearSanpling
" Slicot function for Discrete-time <--> continuous-time
systems conversion by a bilinear transformation."
i nput Real alpha=1, beta=1;
i nput Real A[;, size(A, 1)], B[size(A, 1), 1],
C[:, size(A, 1)], D[size(C, 1), size(B, 2)];
i nput Boolean isContinuous = true;
out put Real Ares[size(A, 1), size(A, 2)]=A, /!l Ares is in-out
Bres[size(B, 1), size(B, 2)]=B,
CresJsize(C, 1), size(C, 2)]=C,
Dres[size(D, 1), size(D, 2)]=D;
out put Integer info;
prot ect ed
Integer iwork[size(A, 1)]; /1 Work arrays
Real dwork[size(A, 1)];
String c2dstring=if isContinuous then "C" else "D";
ext ernal "C" ab04nd(c2dstring,size(A,1),size(B,2),size(C,1),
alpha,beta,Ares,size(Ares,1),Bres,size(Bres,1),
Cres,size(Cres,1),Dres,size(Dres,1),
iwork,dwork,size(dwork,1),info);
end BilinearSampling;

It is expected that an external C-function is available which has the following prototype:

voi d ab04nd(const char * size t, size_t, size_t, doubl e, doubl e,
doubl e *, size t, doubl e *, size t, doubl e *, size t,
doubl e *, size t, int *, doubl e * size t, i nt *);

and the Modelica translator maps a function call of BilinearSampling to afunction call of the C-
function ab04md. Within Modelica, thisfunction is called as:
par anmet er Real alpha=1, beta=1;
par anet er Real A[:,:] =[O0, 1; 2, 4], B[:,:]=...;
Real Ares[size(A, 1), size(A, 2)], Bres ...;
equation
(Ares,Bres,Cres,Dres,info) = BilinearSampling(alpha,beta,A,B,C,D, true);

More details, especially the exact mapping of the Modelicatypesto C and Fortran 77 types, are
discussed in the appendix of the Modelica Language Specification.

2.8 Hybrid Models

Modelica can be used for mixed continuous and discrete models. For the discrete parts, the
synchronous data flow principle with the single assignment rule is used. Thisfits well with the
continuous DAE with equal number of equations as variables. Certain inspiration for the design
has been obtained from the languages Signal (Gautier, et.al., 1994) and Lustre (Halbwachs, et.al.
1991).

Discontinuous Models

If-then-€l se expressions allow modeling of a phenomena with different expressionsin different

24

Modelica 1.4 Tutorial

operating regions. A limiter can thus be written as
y = if u > HighLinmit then Hi ghLimt
else if u<Lowinit then LowLimt else u

This construct might introduce discontinuities. If thisis the case, appropriate information about
the crossing points should be provided to the integrator. The use of crossing functionsis
described later.

More drastic changes to the model might require replacing one set of equations with another
depending on some condition. It can be described as follows using vector expressions:

zeros(3) = if cond_A then
{ expression_All - expression_Alr,
expressi on_A2l - expression_A2r }
else if cond_B then
{ expression_Bll - expression_Blr,
expression_B2l - expression_B2r }
el se
{ expression_Cll - expression_Clr,
expression_C2l - expression_C2r };

The size of the vectors must be the samein all branches, i.e., there must be equal number of
expressions (equations) for al conditions.

It should be noted that the order of the equations in the different branchesisimportant. In certain
cases systems of simultaneous equations will be obtained which might not be present if the
ordering of the equations in one branch of the if-construct is changed. In any case, the model
remains valid. Only the efficiency might be unnecessarily reduced.

Conditional Models

It is useful to be able to have models of different complexities. For complex models, conditional
components are needed as shown in the next example where the two controllers are modeled
itself as subcomponents:
bl ock Controller
i nput Bool ean sinpl e=true;
i nput Real e;
out put Real v;
prot ected
Controllerl cl(u=e, enabl e=sinple);
Controller2 c2(u=e, enabl e=not sinple);
equation
y = if sinple then cl.y else c2.y;
end Controller;

Attribute enabl e is built-in Boolean input of every block with default equation "enable=true". It
allows enabling or disabling a component. The enable-condition may be time and state
dependent. If enable=false for an instance, its equations are not evaluated, all declared variables
are held constant and all subcomponents are disabled. Special consideration is needed when
enabling a subcomponent. The reset attribute makesit possible to reset all variablesto their Start-
values before enabling. The reset attribute is propagated to all subcomponents. The previous
controller example could then be generalized as follows, taking into account that the Boolean
variable simple could vary during a simulation.

25

Modelica 1.4 Tutorial

bl ock Controller
i nput Bool ean sinpl e=true;
i nput Real e
out put Real vy
prot ect ed
Controllerl cl(u=e, enabl e=sinple, reset=true);
Controller2 c2(u=e, enable=not sinple, reset=true);
equation
y = if sinple then cl.y else c2.y;
end Controller;

Discrete Event and Discrete Time Models

The actions to be performed at events are specified by a when-statement.

when condition then
equati ons
end when;

The equations are active instantaneously when the condition becomestrue. It is possible to use a
vector of conditions. In such a case the equations are active whenever any of the conditions
becomes true.

Specia actions can be performed when the simulation starts and when it finishes by testing the
built-in predicatesinitial() and terminal(). A specia operator reinit(state, value) can be used to
assign new values to the continuous states of amodel at an event.

Let’s consider discrete time systems or sampled data systems. They are characterized by the
ability to periodically sample continuous input variables, cal culate new outputs influencing the
continuous parts of the model and update discrete state variables. The output variables keep their
values between the samplings. We need to be able to activate equations once every sampling.
Thereis abuilt-in function sample(Start, Interval) that is true when time=Start + n*Interval,
n>=0. A discrete first order state space model can then be written as
bl ock Di screteStateSpace

paraneter Real a, b, c, d;

paranmeter Real Period=1

i nput Real u;

di screte output Real vy;

prot ect ed
di screte Real x;

equation
when sanpl e(0, Period) then
X = a*pre(x) + b*u;
y = c*pre(x) + d*u;
end when;
end Di screteStat eSpace;

The special notation pre(x) is used to denote the left limit of the discrete state variable x at an
event instant, whereas variable x aways denotes the right limit.

In this case, the first sampling is performed when simulation starts. With Start > O, there would
not have been any equation defining x and y initially. All variables being defined by when-
statements hold their values between the activation of the equations and have the value of their

26

Modelica 1.4 Tutorial

start-attribute before the first sampling, i.e., they are discrete state variables and may optionally
have the variable prefix discrete. Boolean, Integer, and String variables are aways discrete-time
variables, i.e., these variables change their value only at an event instant.

For non-periodic sampling a somewhat more complex method for specifying the samplings can
be used. The sequence of sampling instants can be calculated by the model itself and kept in a
discrete state variable, say NextSampling. We would then like to activate a set of equations once
when the condition time>= NextSampling becomes true. An alternative formulation of the above
discrete system is thus.

bl ock Di screteStateSpace2
paraneter Real a, b, c, d;
paraneter Real Period=1
i nput Real u;
di screte output Real vy;
protected
di screte Real x, NextSanpling(start=0);

equation
when time >= pre(NextSanpling) then
X = a*pre(x) + b*u;
y = c*pre(x) + d*u;
Next Sanpling = tinme + Period;
end when;
end Di screteStat eSpace?;

The built-in operator edge(v), for discrete-time variable v, is defined as "v and not pre(v)", i.e.,
it istrue at the time instant when v changes its value and otherwise it is false. With this operator
the precise meaning of awhen clause

when condition then

v2 = f1(..);
v3 = f2(..);
end when
can be defined as:
Bool ean b(start = <condition using start val ues>);
equation
b = condition;
v2 = if edge(b) then f1(..) else pre(v2);

v3 if edge(b) then f2(..) else pre(v3);

In other words, at the time instant when b changes its value from false to true, the two equations
are activated. At all other time instants, v2 and v3 hold their previous value. The pre-value of b
at theinitial time is determined by evaluating the condition with the start values of all variables
appearing in this condition. If this evaluates to tr ue, the when-clause equations are not activated
a theinitial time. As sketched in this example, when-clause equations are mapped to equations
which can be sorted together with all other discrete and continuous equations. In order that thisis
possible, there is the restriction that equations in when-clauses do not have the general form
"exprl = expr2", but the restricted form "v1 = expr", i.e., asingle variable or array at the left
hand side of the equality sign. The reason for this restriction becomes apparent in the following
example:

27

Modelica 1.4 Tutorial

Real x, v;
equation
X +y =5
when condition then
2*X +y =7, // error: not valid Mdelica
end when;

When the equations of the when-clause are not activated it is not clear which variable to hold
constant, either x or y. A corrected version of this exampleis:

Real x,vy;
equation
X +y =5
when condition then
y =7 - 2%X; /1 fine
end when;

Here, variable y is held constant when the when-clause is de-activated and x is computed from
the first equation using the value of y from the previous event instant.

When-clauses in equation sections can have only one branch. However, in algorithm sections,
elsawhen branches are possible. Thisis useful, in order to define priorities between discrete
actions, such as:

Bool ean open;

al gorithm
when hl < hnmax then
open : = true;
el sewhen pushbutton then
open : = fal se
end when;

Here, the condition "h1 < hmax" has higher priority as the condition "pushbutton”, if both
conditions become true at the same event instant. Similarly as for when-clauses in equation
sections, the precise meaning of this when-clause in an algorithm can be expressed as:

Bool ean open(start

Bool ean bl (start

Bool ean b2 (start

al gorithm

open : = pre(open);

bl = hl < hmax;

b2 : = pusbutton

if edge(bl) then
open : = true;

el seif edge(b2) then
open : = fal se

end when;

Note, that thisis a conceptual mapping and a Modelicatransator may perform it more
efficiently. In general, all discrete-time variables which are potentially assigned in an algorithm
section (such as variable "open" above) are initialized with their "pre"-value when the algorithm

section is entered, whereas all continuous-time variables which are potentially assigned in an
algorithm section are initialized with their "start"-value.

fal se);
hl.start < hmex);
pushbutton. start);

The condition of awhen-clause may be a vector expression. In this case the when-clause is
activated whenever one of the elements of the vector condition becomes true. Example:

28

Modelica 1.4 Tutorial

nodel vect orwhen
paraneter Real A=1.5, w=6;

Real ul, uz2;
Bool ean bl, b2;
equation

ul = A*Model i ca. Math. sin(wtine);

u2 = A*Mbdel i ca. Mat h. cos(w*tine);

when ul > 0 or u2 > 0 then
bl = not pre(bl);

end when;

when {ul > 0, u2 > 0} then /1l vector condition
b2 = not pre(b2);

end when;

end vect orwhen;

The two when clauses are not equivalent as can be seen when applying the discussed mapping
rule:

bl
b2

if edge(ul > 0 or u2 > 0) then not pre(bl) else pre(bl);
if edge(ul > 0) or edge(u2 > 0) then not pre(b2) else pre(b2);

If the conditions used in if-the-el se expressions contain relations with dynamic variables, the
corresponding derivative function f might not be continuous and have as many continuous partial
derivatives as required by the integration routine in order for efficient smulation. Every change
of such arelation triggers an event in Modelicain order to efficiently and reliably handle such a
discontinuity. Modern integrators have indicator functions for such discontinuous events. For a
relation like v1 > v2, aproper indicator functionisvl - v2.

If the resulting if-then-else expression is smooth, the modeller has the possibility to give this
extrainformation to the integrator in order to avoid event handling and thus enhance efficiency.
This can be done by embedding the corresponding relation in a function noEvent as follows.

y = if noEvent (u > HighLimit) then HighLimt

else if noEvent(u < LowLimit) then LowLimt else u

The noEvent() operator can only be applied in Real equations, but not in Boolean, Integer or
String equations, in order that Boolean, Integer and String variables can change their value only
a event instants, i.e., they are always discrete-time variables. (for the exact formulation of this
restriction, see section 3.4.8 in the Modelica Language Specification).

Synchronization and event propagation

Propagation of events can be done by the use of Boolean variables. A Boolean equation like
Qut. Overfl owi ng = Height > MaxLevel ;
inalevel sensor might define a Boolean variable, Overflowing, in an interface. Other

components, like a pump controller might react on this by testing Overflowing in their
corresponding interfaces

Punping = In. Overfl owi ng or StartPunping;
Del taPressure = if Punping then DP el se O;

29

Modelica 1.4 Tutorial

A connection like
connect (Level Sensor. Qut, PunpController.Iln);
would generate an equation for the Boolean component StartPump
Level Sensor. Qut. Start Punp = PunpController.|n. StartPunp;

For simulation, this equations needs to be solved for PumpController.In.StartPump. Boolean

equations always needs to have avariable in either the left hand part or the right hand part or in
both in order to be solvable.

An event (arelation becoming true or false) might involve the change of continuous variables.
Such continuous variables might be used in some other relation, etc. Propagation of events thus
might require evaluation of both continuous equations and conditional equations.

Ideal switching devices

Consider therectifier circuit of Figure 3. We will show an appropriate way of modeling an ideal
diode.

R ideal diode
1
— Y1 Va
" L—"1 K .
UI.'I lﬂ 1r]| ‘2
_,.a-'-—--.\..
i) [of— R,
e

— \l'=ﬂ
Figure 3. Rectifier circuit

The characteristics of the ideal diode isshown in Figure 4.

1 i 1
(A .
v
"]
> ! -
g=10 v

Figure 4. Characteristics of ideal diode

It isnot possible to writei asafunction of v or vice versa because the ideal characteristics.
However, for such planar curves a parametric form can be used

x =1(9)

y=9(s

30

Modelica 1.4 Tutorial

where sisascalar curve parameter. The ideal diode can then be described as
i
\'

The complete model of theideal diodeisthen

nodel |deal Di ode "ldeal electrical diode"
ext ends OnePort ;
protected
Real s;
equation
i =if s <0 then s else O;
v =if s <0 then O el se s;
end | deal Di ode;

if s <0 then s else 0
if s <0 then O else s;

Thistechniqueis aso appropriate to model ideal thyristors, hysteresis and ideal friction.
Conditional Equationswith Causality Changes

The following example models a breaking pendulum - a simple variable structure model. The
number of degrees-of-freedom increases from one to two when the pendulum breaks. The
example shows the needs to transfer information from one set of state variables (phi, phid) to
another (pos, vel) at an event. Consider the following description with a parameter Broken.

nodel Breaki ngPendul um
paranmeter Real nm=l1l, ¢g=9.81, L=0.5;

par amet er Bool ean Broken

i nput Real u;

Real pos[2], vel[2];

constant Real PI=3.141592653589793;
Real phi(start=PI/4), phid;

equation
vel = der(pos);

if not Broken then

/'l Equations of pendul um

pos = {L*sin(phi), -L*cos(phi)};
phid = der(phi);

nmtL*L*der (phid) + mfg*L*sin(phi) = u;

el se;
/'l Equations of free flying nmass
ntder(vel) = nt{0, -g};
end if;
end Breaki ngPendul um

This problem is non-trivial to simulate if Broken would be a dynamic variable because the
defining equations of the absolute position "pos’ and of the absolute velocity "vel" of the mass
change causality when the pendulum breaks. When "Broken=false", the position and the velocity
are calculated from the Pendulum angle "phi* and Pendulum angular velocity "phid”. After the
Pendulum is broken, the position and velocity are state variables and therefore known quantities
in the mode.

31

Modelica 1.4 Tutorial

As aready mentioned, conditional equations with dynamic conditions are presently not
supported because it is not yet clear in which way atrandator can handle such a system
automatically in an efficient way. It might be that a tranglator pragmais needed to guide the
trandation process. It is possible to simulate variable causality systems, such as the breaking
pendulum, by reformulating the problem into a form where no causality change takes place using
conditional block models:

record Pendul unDat a
paranmeter Real m g, L;
end Pendul unDat a;

partial nodel BasePendul um
Pendul unDat a p;
i nput Real u;
output Real pos[2], vel[2];
end BasePendul um

bl ock Pendul um
ext ends BasePendul um
constant Real PI=3.141592653589793;
out put Real phi(start=PI/4), phid;
equation
phid = der(phi);
p. ntp. L*p. L*der (phid) + p.ntp.g*p.L*sin(phi) = u;

pos = {p.L*sin(phi), -p.L*cos(phi)};
vel = der(pos);
end Pendul um

bl ock Br okenPendul um

ext ends BasePendul um
equation

vel = der(pos);

p. mrder(vel) = p.nm {0, -p.g};
end BrokenPendul um

nodel Breaki ngPendul un?
ext ends BasePendul um(p(m=1, g=9.81, L=0.5));
i nput Bool ean Broken

prot ected
Pendul um pend (p=p, u=u, enabl e=not Broken);
Br okenPendul um bpend(p=p, u=u, enabl e=Broken);
equation

when Broken then
reinit(bpend. pos, pend. pos);
reinit(bpend.vel, pend.vel);

end when;
pos = if not Broken then pend. pos el se bpend. pos;
vel = if not Broken then pend.vel else bpend. vel

end Breaki ngPendul ung;
This rewriting scheme is always possible and resultsin alarger model. It has the drawback that

32

Modelica 1.4 Tutorial

the same physical variable is represented by several model variables. In some cases, such asfor
the breaking pendulum, it is possible to avoid this drawback:

nodel Breaki ngPendul uns
paranmeter Real ne=l, ¢g=9.81;

i nput Bool ean Broken;

i nput Real u;

Real pos[2], vel[2];

constant Real PI=3.141592653589793;
Real phi(start=PI/4), phid;

Real L(start=0.5), Ldot;

equation
pos = {L*sin(phi), -L*cos(phi)};
vel = der(pos);
phid = der(phi);
Ldot = der(L);
zeros(2) = if not Broken then {

/1l Equations of pendul um
ntder (phid) + m*g*L*sin(phi) — u,
der (Ldot)}
el se
/I Equations of free flying mass
m* der (vel) - m*{0, -g};
end BreakingPendulums3;
The trick was to use complete polar coordinates including the length, L and to give a differential
equation for L in the non Broken mode. If the derivatives of some variables are not calculated
during the "not Broken"-phase, the variables "pos" and "vel" can be considered as algebraic
variables. A simulator thus has the possibility to remove them from the set of active state
variables.

2.9 Physical Fields

Modeling of physical fields, such as an environment with fixed temperature and pressure, or an
electrical or agravity field, is possible with the already introduced |anguage el ements. However,
for bigger systems modeling becomes tedious and inconvenient, because lumped physical field
models lead to 1 to n or n to n connections between al n components influenced by afield. For 1
to n connections, Modelica offers a convenient modeling mechanism with the inner and outer
language elements. Basically, these two elements are used in the following way:

nodel Component
outer Real TO; // temperature TO defined outside of Component
Real T;
equation
T=TO;
end Component;

nodel Environment
i nner Real TO; Il actual environment temperature TO
Component cl, c2; /l ¢1.T0=c2.TO=TO
parameter Real a=1;

33

Modelica 1.4 Tutorial

equation
TO = Modelica. Math.sin(a*tine);
end Envi ronnent;

nodel Several Environnents
Envi ronment el(a=1), e2(a=2)

end Several Envi ronnent s
If avariable or acomponent is declared as outer, asin model Component, the actual instanceis
defined outside of the defining class and is determined by searching the object hierarchy
upwards until a corresponding declaration with theinner prefix isfound. In the example this
declaration isfound in model Environment. Therefore, all declarations "outer Real TO" of al
objects and subobjects within Environment are just references to the only "real" instance
declared as "inner Real TO". Thisfeature allows to have several environmentsin parallel, asis
shown in model Several Environments.

Theinner and outer prefixes can be applied to every type of component. It is especialy useful
for connectors, in order to define implicitly physical connections between all objects and their
environment. Assume for example, that the heat flow of all components of an electrical circuit
board to the fixed-temperature environment shall be modeled. This requires to first introduce a
connector for 1-dimensional heat flow:

connect or Heat Cut

Model i ca. Slunits. Tenp_K T "tenperature in [K]";
fl ow Modelica. Slunits. Heat Fl owRate q "heat fl ux";
end Heat Cut ;

All components which generate heat need a reference to the environment heat connector:

nodel Conponent
outer Heat Cut environnment; // reference to environnent
Heat Cut heat; /'l heat connector of conponent

equation
connect (heat, environnent);

end Conponent;

Note, that "outer HeatCut environment" is a reference to the declaration of connector
environment defined outside of this component and that the heat connector of this Component is
connected to the environment connector.

nodel TwoConponent s

Conmponent Conp[2] ;
end TwoConponents;

nodel CircuitBoard
i nner Heat Cut environnent;
Conponent conpil,;
TwoConponent s conp2;

end Ci rcuitBoard;

The components can be used in several levels until the environment of the circuit board is
reached where the "inner" declaration of the heat connector is present. All instances of model
Component which are used inside model CircuitBoard automatically connect their heat flow
connector to the environment connector, i.e., thereisa 1 to n connection of the "inner HeatCut

34

Modelica 1.4 Tutorial
environment" to the heat flow connectors of all components.

In some cases the exact nature of the field is unknown, when the components are defined. In
such a case inner/outer functions can be utilized as demonstrated by the model of a particle
moving in an a-priori unknown gravity field:

A generic gravity field shall be defined by the partial function gravitylnterface

partial function gravitylnterface
i nput Real r[3] "position";
out put Real g[3] "gravity acceleration”;
end gravitylnterface;

where only the interface of the function is defined. Since it isa partia function, this function
cannot be called and can only be used as superclass for other functions, such as:

f unct i on uniformGravity
ext ends gravitylnterface;
al gorithm
g:={0, -9.81, 0};
end uniformGravity;

functi on pointGravity
ext ends gravitylnterface;
par anet er Real k=1;
prot ect ed
Real n[3]
al gorithm
n:=-r/ sqrt (r*r);
g = K/(r*r) * n;
end pointGravity;

Theideaisto utilize the partial function "gravitylnterface" when defining the particle model
which shall movein agravity field

nodel Particle
par anmeter Realm=1;
outer functi on gravity = gravitylnterface;
Real r[3](start = {1,1,0}) "position";
Real v[3](start = {0,1,0}) "velocity";

equation
der(r)=v;
m* der (v) = m*gravity(r);
end Particle;

and to define the function which is actually used to compute the gravity acceleration at an outer
level using an inner function definition:

nodel Compositel
i nner functi on gravity = pointGravity(k=1);
Particle p1, p2(r(start={1,0,0}));
end Compositel;

nodel Composite2
i nner functi on gravity = uniformGravity;
Particle p1, p2(v(start={0,0.9,0}));
end Composite2;

35

Modelica 1.4 Tutorial

nodel system
Conpositel c1;
Conposite2 c2;
end system

As can be seen by this example, different fields of this nature can be handled at the same time.

2.10 Library Construction

Modelica has a sophisticated scheme to handle large model libraries in a convenient and practical
way. Basically, component models are stored in hierarchically structured packages. Example:

package Modeli ca
package Mechani cs
package Rotationa
nodel Inertia /1 Model i ca. Mechani cs. Rotational .l nertia

end Inerti a;
nodel Tor que

end Tor que;
end Rot ati onal
end Mechani cs;
end Modelica

From the outside of package Modelica, components can be accessed via dot-notation, e.g., model
Inertiais uniquely identified as Modelica.Mechanics.Rotational.Inertia.

Name look-up in hierarchically structured classes

Within ahierarchical package (or in genera in any class, such asamodel or a block), the first
part of anameis searched recursively in upper hierarchies until this nameisfound. The rest of
the nameislocated in the hierarchy below this name. For example:

package Modelica

package Bl ocks
package I nterfaces
connector |nPort

end | nPort;
end I nterfaces;
end Bl ocks;

package Mechani cs
package Rotationa
package I nterfaces
connector Fl ange_a

end Fl ange_a;
end I nterfaces

nodel Inertia
Interfaces. Flange_a al; [/ Mbdelica. Bl ocks.Interfaces. Fl ange_a
Mbdel i ca. Mechani cs. Rot ati onal . I nterfaces. Fl ange_a az2;

end Inerti a;

36

Modelica 1.4 Tutorial

nodel Tor que
I nterfaces. Fl ange_a a;
Bl ocks. I nterfaces. InPort inPort; [/ WNbdelica. Bl ocks..

end fb}que;

end Rot ati onal
end Mechani cs;
end Modelica

Both definitions of al and a2 refer to the same connector, namely

M odelica.Mechanics.Rotational .Interfaces.Flange a. In al cases, the first part of the names
(here: "Interfaces’, "Modelica’ and "Blocks") are searched in upper hierarchies until they are
found.

Encapsulated classes and import statement

Copying or moving package Modelica.Mechanics.Rotational from the example above to another
location may not work as expected, because elements of this package may access packages
outside of package Rotational, such as "Blocks.Interfaces.InPort inPort": In the new location a
package "Blocks" ismost likely not available and therefore references to this package cannot be
resolved, leading to an error. To improve this situation, in Modelica 1.4 "self-contained classes"
have been introduced which are defined with the class-prefix encapsulated. The recommended
way to structure libraries is shown in the following example, taken from the Modelica Standard
Library:

encapsul at ed package Modeli ca

encapsul at ed package Bl ocks

package | nterfaces
connector |nPort

end | nPort;
end I nterfaces;
package Conti nuous

nodel | ntegrator
I nterfaces. | nPort inPort;

end I ntegrator;
end Conti nuous
package Exanpl es
encapsul at ed nodel Exanpl el
i nport Mbdel i ca. Bl ocks;
Bl ocks. I ntegrator intl; /1 Mbdelica. Bl ocks. | nt egrat or
Mbdel i ca. Bl ocks. I ntegrator int2;, // error, Mbdelica unknown
end Exanpl el;

end Exanpl es;
end Bl ocks;

encapsul at ed package Mechanics

37

Modelica 1.4 Tutorial

encapsul at ed package Rotati onal
i nport Modelica. Bl ocks. I nterfaces;
nodel Tor que
Interfaces. InPort inPort; // Moddelica.Blocks.Interfaces.|nPort

end Tor que;

end Rotational;
end Mechani cs;
end Model i ca;

The encapsulated prefix stops name look-up from lower to upper hierarchies. As aresult, within
such a"self-contained unit” it is no longer possible to access classes outside of this unit in an
uncontrolled way. Instead, such classes have to be made explicitly available with the import
statement. Consequently, when moving or copying an encapsulated class, at most the import
statements in this class have to be changed, and nothing else. If an encapsulated class does not
contain another encapsulated class, not even import statements have to be changed in such a
situation.

In the example above, the typical usage of the encapsulated prefix is demonstrated. Package
Modelica.Blocksis constructed as a "self-contained unit". Since this unit is aready quite large, it
is further hierarchically structured with subpackages, such as"Interfaces", "Continuous',
"Examples'. These subpackages are not defined as encapsulated, because (1) there are many
dependencies between these subpackages and it is more convenient to access the different parts
of package Blocks directly and because (2) it is not very useful to cut-off parts of this package
and use it somewhere elsg, i.e., the library developer does not see, e.g.,
"Modelica.Blocks.Continuous' as a self-contained unit. On the other hand, the models within the
M odelica:Blocks.Examples subpackage are declared as encapsulated, because a modeller may
wish to copy such an example model out of the library and use or modify it.

Theimport statement can be used in three different variants:

i nport Model i ca. Mechani cs. Rot ati onal ; /'l access by Rotational. Torque
i nport R = Modelica. Mechani cs. Rotational;// access by R Torque
i mport Mbdelica. Mechanics. Rotational.*; [/ access by Torque

In al cases, the first part of the name defined in the import statement is located within the top-
level classes and no hierarchical search in upper hierarchical levelsis performed. Note, that
Import statements are not inherited in order to not introduce hidden dependencies. The third,
"unqualified", form for import statements should be avoided, because, e.g., the later addition of a
model "Gearbox" to package M odelica.M echanics.Rotational may give rise to a name conflict, if
the same name is already used in the user model where this import statement is present.
Therefore, by just getting a new version of the Modelica Standard Library, existing user models
may no longer work. This cannot happen with the first two variants. The "unqualified” variant is
useful, to arrive at the standard notation for some basic mathematical constants and functions,
such as:
nodel Si neVol t ageSour ce

i nport Mbdel i ca. Constants. *; /'l to access Mdelica. Constants. pi

i mport Mbdelica. Mat h. *; /1l to access Mbdelica. Math. sin

extends Mbdelica. El ectrical . Anal og. I nterfaces. OnePort;

paraneter Real A=220 "anplitude";
paraneter Real f=50 "frequency";

38

Modelica 1.4 Tutorial

equation
v = A*sin(2*pi *f*tinme);
end Si neVol t ageSour ce;

Mapping of class namesto namesin thefile system

Classes are usually stored in the file system (or in databases etc.). In order that a Modelica
environment can locate a desired class uniquely in the file system without any additional
information, it is precisely defined how Modelica classes have to be stored. Therefore, when a
referenced class, such as Modelica.Mechanics.Rotational.Inertia, is not yet availablein the
"workspace" of the simulation environment, the tool can locate this class in the file system and
can load it automatically. In order that thisis possible, Modelica classes have to be stored in one
of the following ways:

« Thecomplete classis stored in one file, where the file name is the class name with extension

".mo". Examples:
file . Mbdelica. mo
content: encapsul ated package Mdelica
encapsul at ed package Bl ocks

end.élocks;
end.NbdeIica

file . robot.no
content: nodel robot

end robot;

» Theclassisstored in directories and files, such that

(1) adirectory name corresponds to the name of the class stored in this directory,

(2) every directory has afile package.mo in which at least the exact class declaration is
present, such as "package Modelica end Modelica”,

(3) file names correspond to the class name stored in the file together with the extension
*.mo" and

(4) thefirst statement in afile or in package.mo is a"within name" statement which defines
the full name of the class in the outer hierarchy. Examples:

directory: .../library
/ Model i ca
package. no
/ Bl ocks
package. no
Cont i nuous. np
I nterfaces. nmo
[Exanpl es
package. no
Exanpl el. no
/ Mechani cs
package. no
Rot at i onal . no

filellibrary/ Mdelical/ Bl ocks/ Exanpl es/ package. no:

39

Modelica 1.4 Tutorial

content: w thin Mdelica. Bl ocks;
package Exanpl es "exanpl es of package Model i ca. Bl ocks™
end Exanpl es;

filellibrary/ Mdelical Mechani cs/ Rotational.no
content: w thin Mbdelica. Mechanics;
encapsul at ed package Rotational //Mdelica. Mechani cs. Rot ati onal
package | nterfaces
connect or Fl ange_a;

end Fl ange_a;

end | nterfaces;
nmodel lnertia

end Inerti a;

end Rot ati onal
The top-level classes, such as"Modelica’, are located in al directories defined in the
environment variable MODELICAPATH, which contains a semicolon-separated list of directory
names. For example, the first part of the class name A.B.C (i.e,, A) islocated by searching the
ordered list of directoriesin MODELICAPATH. If no directory contains A the lookup fails. If A
has been found in one of the directories, the rest of the name islocated in A; if that fails, the
entire lookup fails without searching for A in any of the remaining directoriesin
MODELICAPATH.

2.11 Units and Quantities

The built-in "Real" type of Modelica has additional attributes to define unit properties of
variables:

type Real
parameter StringType quantity
parameter StringType unit
paraneter StringType di splayUnit

" "unit in equations”;
" "default display unit";

end.heal

/1 define quantity types

type Force = Real (final quantity="Force", final unit="N');

type Angle = Real (final quantity="Angle", final unit="rad",
di spl ayUni t ="deg")

/1l use the quantity types

Force f1 , f2 (displayUnit="kp");

Angl e al pha, beta(displayUnit="rad");
The quantity attribute defines the category of the variable, like Length, Mass, Pressure. The unit
attribute defines the unit of avariable as utilized in the equations. That is, all equations in which
the corresponding variable is used are only correct, provided the numeric value of the variableis
given with respect to the defined unit. Finally, displayUnit gives the default unit to be used in
tools based on Modelicafor interactive input and output. If, for example, a parameter valueis
input viaamenu, the user can select the desired unit from alist of units, using the "displayUnit"
value as default. When generating Modelica code, the tool makes the conversion to the defined

40

Modelica 1.4 Tutorial

"unit" and stores the used unit in the "displayUnit" field. Similarly, a simulator may convert
simulation results from the "unit" into the "displayUnit" unit before storing the results on file. All
of these actions are optional. If tools do not support units, or a specific unit cannot be found in
the unit database, the value of the "unit" attribute could be displayed in menus, plots etc.

The quantity attribute is used as grouping mechanism in an interactive environment: Based on
the quantity name, alist of unitsis displayed which can be used as displayUnit for the underlying
physical quantity. The quantity name is needed becauseit isin general not possible to determine
just by the unit whether two different units belong to the same physical quantity. For example,

type Torque
type Energy

Real (final quantity="Mment O Force", final unit="Nm);
Real (final quantity="Energy" , final unit="3");

the units of type Torque and type Energy can be both transformed to the same base units, namely
"kg.m2/s2". Still, the two types characterize different physical quantities and when displaying
the possible displayUnits for torque types, unit "J" should not be in such alist. If only aunit
name is given and no quantity name, it is not possible to get alist of displayUnitsin asimulation
environment.

Together with Modelicathe standard package Modelica.Sunits of predefined quantity and
connector typesis provided in the form as shown in the example above. This package is based on
the corresponding SO norm. Thiswill give some help in standardization of the interfaces of
models. The grammar for unit expressions, such as "N.m/s2" is defined in the Modelica
Language Specification and follows an |SO recommendation. Note, that the prefix final defines
that the quantity and unit values of the predefined types cannot be modified.

Conver sion between unitsis not supported within the Modelicalanguage. This simplifiesa
Modelicatrandator considerably, especially because a unit-database with its always incompl ete
collection of unitsis not needed, see e.g. (Cardarelli 1997). As a consequence, the semantics of a
correct Modelicamodel is independent of the unit attributes and the Modelica translator can
ignore them during code generation. Especially, the unit attributes need not be checked for a
connection, i.e., connected variables may have different quantities and units.

Much more support on units and quantities will be given by tools based on Modelica. Thiswill
be considered as "quality of implementation”. An object-diagram editor may, for example,
support automatic unit conversion when two interfaces are connected. As ageneral ruleit will
always be allowed to connect any variable to a variable which has no quantity and unit
associated with it. Furthermore, a Modelica translator may optionally check equations on correct
dimensionality (thiswill produce only warning messages, i.e., code will be produced anyway).
The egquation "f=m*a" would, for example, produce awarning, if "f" isgivenin "N.m" because
then the units are not compatible to each other. The variables in the equations may have non-S|
units. Therefore, for example, the compiler will not detect that "f=m*a" is an error, if the units
"N" for "f", "g" for "m" and "m/s2" for "a" are used. Dimension checking is done by
transforming the "quantity” information into one of the seven base "quantities’ (like "Mass",
"Length™).

Usually, units are associated with types. There are however elements where instances may have a
different unit by redefinition of the quantity type. Example:

type Voltage = Real (final quantity="Voltage", final unit="V");

41

Modelica 1.4 Tutorial

nodel Si neSi gnal
i mport Mbdelica. Constants. *;
i mport Mbdelica. Mat h. *;
i nport Sl =Mbdelica. Slunits;
paraneter Real freq (unit="Hz");
paraneter Sl. Angle phi

repl aceabl e type SineType = Real
paraneter SineType Anplitude;
out put Si neType vy;
equation
y = Amplitude*sin(2*pi*freq*time + phi);
end Si neSi gnal

nodel Circuit
i nport Sl =Mbdelica. Slunits;
Si neSi gnal sig(redeclare SineType = Sl. Vol tage);
Vol t ageSour ce Vsource;

equati on
connect(sig.y, Vsource.in);
end Circuit;
In ablock diagram library thereis agenera sine signal generator. When it is used to generate a
voltage sine for a voltage source, the output of the signal generator should have a unit of "V".
This can be accomplished by having the type of the amplitude and of the output as a replaceable
type which can be changed appropriately when this signal generator is instantiated.

2.12 Annotations for Graphics and Documentation

In addition to the mathematical model with variables and equations, additional information is
needed for example to represent icons, graphical layout, connections and extended
documentation. Graphically representing models as interconnected submodels displayed as
icons, supports their quick understanding. As most contemporary tools provide facilities to build
models graphically, Modelica has language constructs to represent icons, graphical layout and
the connections between submodels.

M odelica supports property lists for the various components. Such lists can be used to store
graphical, documentation and tool related annotations. Each component can have alist
designated by the keyword annotation. The value of such annotations can be according to any
class, i.e., it can be created using a class modification. The strong type checking is abandoned in
this case because of the need for various modeling tools to use different kinds of annotations.
Since such annotation values are normally generated and read by tools, i.e., not directly edited by
humans, there is a reduced need for having redundant type information. However, in order that
graphical and documentation information can be exchanged between tools, a minimum set of
annotation components are specified.

Graphical representation of models

Graphical annotation information is given in three separate contexts:

42

Modelica 1.4 Tutorial

* Annotations associated with a component, typically to specify position and size of the
component.

* Annotations of aclassto specify the graphical representation of itsicon (see above),
diagram, and common properties such asthe local coordinate system.

* Annotations associated with connections, i.e., route, color of connection line, etc.

The example below shows the use of such graphical attributes to define aresistor.

nodel Resi stor
Pin p annotation (extent=[-110, -10; -90, 10]);
Pin n annotation (extent=[110, -10; 90, 10]);

paraneter R "Resistance in [Chnm"

equation
R*p. i

= p.v - nv;
n.i =p.i;

public
annotation (Icon(
Rect angl e(extent=[-70, -30; 70, 30], style(fillPattern=1)),
Text (extent=[-100, 55; 100, 110], string="%ane=9R"),
Li ne(poi nts=[-90, 0; -70, 0]),
Li ne(points=[70, 0; 90, 0])
));
end Resistor;
Theresistor has two pins, and we specify two opposite corners of the extent of their graphical
representation. An icon of the Resistor is defined by arectangle, atext string and two lines. For
the rectangle we specify additional style attributes for fill pattern.

The extent specified for acomponent is used to scale the icon image. Theicon isdrawn in the
master coordinate system specified in the component’s class. Theicon is scaled and tranglated so
the coordinate system is mapped to the region defined in the component declaration.

The attribute set to represent component positions, connections and various graphical primitives
for building icons is shown below. The attribute structures are described through Modelica
classes. Points and extents (two opposite points) are described in matrix notation.

type Point = Real[2]; I {x, vy}
type Extent = Real[?2, 2]; I [x1, y1; x2, y2]

record Coordi nat eSystem /1 Attribute to class
Extent extent;
Poi nt grid;
Poi nt si ze;

end Coor di nat eSyst em

record Pl acenent /1 Attribute for conponent
Extent extent;
Real rotation;

end Pl acenent;

record Style
Integer color[3], fillColor[3]; /1 RGB
Integer pattern, fillPattern, thickness, gradient,
snoot h, arrow, textStyle;
String font;
end Styl e;

record Route // Attribute for connect
Poi nt points[:];
Style style;
String | abel;

end Rout e;

/1l Definitions for graphical elenents
record Line = Route;

record Pol ygon = Route;

record Graphicltem
Extent extent;
Style style;

end Graphicltem

record Rectangle = Gaphicltem
record Ellipse = Gaphicltem

record Text
extends G aphicltem
String string;

end Text;

record BitMp

extends G aphicltem

String URL; /1 Narme of bitmap file
end Bit Map;

Definition of menu lists

repl aceabl e nodel MyResi st or =Resi st or
annot ati on(choi ces(

choi ce(redecl are MyResi stor=lib2. Resistor(a={2})

Modelica 1.4 Tutorial

The graphical unit of the master coordinate system used when drawing lines, rectangles, text etc.
is the baseline spacing of the default font used by the graphical tool, typically 12 points for a 10
point font (note: baseline spacing = space between text lines).

If replaceable models are used, it is convenient in agraphical user environment to present the
user alist of alternative models which can be used for redeclaration. This can be accomplished
with the predefined annotation "choices":

"Resi stor 1"),

choi ce(redecl are MyResistor=lib2. Resistor2 "Resistor 2")));

repl aceabl e Resistor Load(R=2) extends OnePort
annot ati on(choi ces(

choi ce(redeclare |ib2. Resistor Load(a={2}) "Resistor"),

Modelica 1.4 Tutorial
choi ce(redecl are Capacitor Load(L=3) "Capacitor")));

repl aceabl e FrictionFunction a(func=exp) extends Friction
annot ati on(choi ces(
choi ce(redecl are ConstantFriction a(c=1) "Constant Friction"),
choi ce(redecl are Tabl eFriction a(table="...")"Table-Friction"),
choice(r edecl ar e FunctionFriction a(func=exp) "Exp-Friction™))));

The "choices" annotation contains modifiers on choice, where each of them indicates a suitable
redeclaration or modifications of the el ement. The string comments on the choice declaration can
be used as textual explanations of the choices. A graphical user environment could display the
string commentsin alist and after selection of one of the aternatives by the user, the redeclare
statement of the corresponding choice is executed.

This annotation is not restricted to replaceabl e elements but can also be applied to non-
replaceabl e elements, enumerated types, and simple variables. Example:
t ype controllerType=Integer(min=1,max=3)
annot at i on(choices(
choice=1 "P",
choice=2 "PI",
choice=3 "PID"));

nodel test
par anmet er controllerType c;

end test;

test t;

When displaying the parameter menu for model t, a Modelica environment could present not a
value field for parameter c, but a choice selecting menu with the entries "P", "PI" and "PID" as
choices. After the selection, the graphical environment transforms the choice into the Integer
values 1, 2 or 3.Documentation of models

In practical modeling studies, documenting the model is an important issue. It is not only for
writing a report on the modeling work, but also to record additional information which can be
consulted when the model is reused. This information need not necessarily be completely
structured and standardized in the sense that Modelica language constructs are available for all
aspects. The following aspects should typically be recognized:

History information

Major milestones, like creation, important changes, release into public accessibility should be
recorded. Information to store are the author, date and a brief description. This functionality
Is comparable with version control of software, using tools such as SCCSor RCS. If a
specific modeling procedure is used, the mile stones of such a procedure can be recorded in
this part.

References to literature

References to external documents and/or scientific literature for understanding the model, its
context and/or underlying theory should be mentioned here. The format can be like a

45

Modelica 1.4 Tutorial
literature reference list in an scientific article.
Validation information

This concerns the reference (model or measurement data) to which the model is validated and
criteriafor validation. Also the simulation experiments used for the validation should be
mentioned.

Explanation and sketches

A brief text describing the model or device, akind of ‘'manual page’ of the model. Schematic
drawings or sketches can be incorporated for better understanding.

User advice

This extension of the explanation part, concerns additional remarks giving hints for reuse of
the model.

Basic documentation functionality is available in Modelica. This consists of an annotation
attribute Docunent at i on which is further structured into key/text pairs.

annot ati on (Documnent ati on(
keyl = "Text string",
key?2 "Text string”

));

Currently, no further detail on structuring information is given. The information is given as plain
text in the appropriate category. It islikely that companies have their own way of documenting
their models and experiments, so that different ways of filling in the documentation information
are needed. In the Modelica Standard Library, the annotation "info" is used to define the
documentation. For example, the documentation of this package is defined as:

annotation (Docunentation(info ="

<HTM_>

<p>

Package Mbdelica is a standardi zed</ b> and pre-defi ned
package that is devel oped together with the Mdelica | anguage fromthe
Model i ca Associ ation, see

http://ww. Model i ca. or g</ a>.

It is also called Moddelica Standard Library.

It provides constants, types, connectors, partial nodels and nodel
conmponents in various disciplines.</p>

<H'I'i\/i_.>"));
Within the documentation HTM L-tags may be present. When extracting the documentation from

amodel, atool shall store this part of the documentation as HTML-file which can be displayed
by appropriate browsers such as Netscape or Microsoft Explorer in anice way.

3. Examples

Modelica has been used to model various kinds of systems. Otter et.al., 1997 describes modeling
of automatic gearboxes for the purpose of real-time simulation. Such models are non-trivial

46

Modelica 1.4 Tutorial

because of the varying structure during gear shift utilizing clutches, free wheels and brakes.
Mattsson, 1997 discusses modeling of heat exchangers. Class parameters of Modelica are used
for medium parameterization and regular component structures are used for discretization in
space of the heat exchanger. Tummescheit et.al., 1997 discusses thermodynamical and flow
oriented models. Broenink, 1997 describes a Modelica library with bond graph models for
supporting the bond graph modeling methodology. Franke, 1998 models a central solar heating
plant using Modelica. Mosterman et.al., 1998 describes a Petri-Net library written in Modelica
In October 2000, the first workshop on Modelicawith 85 participants took placein Lund,
Sweden. All papers and posters of this workshop are available in pdf-format from
http://www.M odelica.org/modelica2000/proceedings.

4.Conclusions

An overview of the most important language constructs as well as a series of useful modeling
examples has been given for Modelica, version 1.4, which was released in December 15, 2000.
Since thefirst release of Modelica 1.0 in September 1997, all necessary ingredients for modeling and
simulation of industrial applications with Modelica have been devel oped and put together: The
language, libraries, tools and successful applications. More detailed information and the most
actual status can be found at

http://www.M odelica.org/

Therefore, it can be expected that Modelicawill have a significant impact in the modeling and
simulation community in the future. The Modelica Association is very interested to further adapt
the Modelica language to the needs of the end-users and to further develop the Modelica
libraries. Interested simulation professionals who would like to contribute are encouraged and
invited to participate at the design meetings (see the Modelica homepage for details where and
when design meetings take place).

5. References
Abadi M., and L. Cardelli: A Theory of Objects. Springer Verlag, ISBN 0-387-94775-2, 1996.

Broenink J.F.: "Bond-Graph Modeling in Modelica'. ESS97 - European Smulation
Symposium, Oct., 1997.

Cardardli F.: Sientific Unit Conversion. Springer Verlag, 1997.

Carddli L.: "Typesfor Data-Oriented Languages (Overview)", in J. W. Schmidt, S. Ceri and M.
Missikof (Eds.): Advancesin Database Technology - EDBT'88, Lecture Notesin Computer
Science n. 303, Springer-Verlag, 1988.

Carddli L.: "Typeful Programming"”, in E. J. Neuhold and M. Paul (Eds.): Formal description of
Programming Concepts, Springer-Verlag, 1991. Also published as SRC Research Report 45,
Digital Equipment Corporation.

Elmqvist H., F.E. Céllier, and M. Otter: ** Object-oriented modeling of hybrid systems.” In

a7

Modelica 1.4 Tutorial

Proceedings of European Smulation Symposium, ESS93. The Society of Computer Simulation,
October 1993.

Franke R.: “Modeling and Optimal Design of a Central Solar Heating Plant with Heat Storage
in the Ground Using Modelica”, Eurosim '98 Simulation Congress, Helsinki, Finland, April 14-
15, 1998.

Kagedal D.:"A Natural Semantics specification for the equation-based modeling language
Modelica," LiTH-IDA-Ex-98/48, Linkdping University, Sweden, 1998.

Mattsson S.E.: "On Modelling of Heat Exchangers in Modelic&SS97 - European Smulation
Symposium, Oct., 1997.

Mosterman P. J., M. Otter, H. EImqvist: "Modeling Petri Nets as Local Constraint Equations
for Hybrid Systems Using Modelica", Summer Computer Simulation Conference -98 , Reno,
Nevada, USA, July 19-22, 1998.

Otter M., C. Schlegel, andH. EImqvist: "Modeling and Realtime Simulation of an Automatic
Gearbox using ModelicaESS97 - European Smulation Symposium, Oct., 1997.

Tummescheit H., T. Ernst andM. Klose: "Modelica and Smile - A Case Study Applying
Object-Oriented Concepts to Multi-facet ModelingSS97 - European Smulation Symposium,
Oct., 1997.

Tummescheit H., andR. Pitz-Paal: "Simulation of a solar thermal central receiver power
plant”. Proc. 15th IMACS World Congress on Scientific Computation, Modelling and Applied
Mathematics, Vol. 6, Berlin, Germany, pp. 671-676, 1997.

6. Revision history

This section describes the history of the Modelica Language Design, and its contributors. The
current version of this document is available friottp://www.modelica.org/

This document was written together with the Modelica Language Specification 1 as one
document, and in version 1.1 they were revised and separated into two documents.

For Modelica 1.4, the tutorial has been updated with the most important language elements
introduced since version 1.1 and therefore reflects the current status of the Modelica language.
This document was edited by M. Otter and H. Olsson.

Modelica 1.4

Modelica 1.4 was released December 15, 2000. The Modelica Association was formed in Feb. 5,
2000 and is now responsible for the design of the Modelica language.
Contributorsto the Modelica Language, version 1.4

Bernhard Bachmann, University of Applied Sciences, Bielefeld, Germany
Peter Bunus, Linkdping University, Linkdping, Sweden

48

Modelica 1.4 Tutorial

Dag Bruck, Dynasim, Lund, Sweden

Hilding EImqvist, Dynasim, Lund, Sweden

Vadim Engelson, Linkdping University, Sweden

Jorge Ferreira, University of Aveiro, Portugal

Peter Fritzson, Linkdping University, Linkdping, Sweden

Pavel Grozman, Equa, Stockholm, Sweden

Johan Gunnarsson, MathCore, Linkdping, Sweden

Mats Jirstrand, MathCore, Linkdping, Sweden

Clemens Klein-Robbenhaar, Germany

Pontus Lidman, MathCore, Link6éping, Sweden

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Tommy Persson, Linkdping University, Sweden

Levon Saldamli, Link6ping University, Sweden

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Michael Tiller, Ford Motor Company, Detroit, U.S.A.

Hubertus Tummescheit, Lund Institute of Technology, Sweden

Hans-Jurg Wiesmann, ABB Corporate Research Ltd., Baden, Switzerland

Contributorsto the Modedlica Standard Library

Peter Beater, University of Paderborn, Germany

Christoph Claul3, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Michael Tiller, Ford Motor Company, Detroit, U.S.A

Hubertus Tummescheit, Lund Institute of Technology, Sweden

Main Changesin Modedlica 1.4

Removed declare-before-use rule. This simplifies graphical user environments, because
there exists no order of declarations when components are graphically composed
together.

Refined package concept by introducing encapsulated classes and import mechanism.
Encapsulated classes can be seen as "self-contained units": When copying or moving an
encapsulated class, at most the import statements in this class have to be changed and
nothing else.

Refined when-clause: The nondiscrete keyword is removed, equations in when-clauses
must have a unique variable name on the left hand side variable and the exact mapping of
when-clauses to equations is defined. As a result, when-clauses are now precisely defined
without referring to a sorting algorithm and it is possible to handle algebraic loops

between when-clauses with different conditions and between when-clauses and the
continuous-time part of a model. The discrete keyword is now optional, simplifying the

49

Modelica 1.4 Tutorial

library development because only one type of connector is needed and not several types
which do contain or do not contain the discrete prefix on variables. Additionally, when-
clauses in algorithm sections may have elsewhen clauses which simplifies the definition
of priorities between when-clauses

» For replaceable declarations: allowed constraining clauses, and annotations listing
suitable redeclarations. This allows a graphical user environment to automatically built-
up meaningful choice menus.

» Functions can specify their derivative. Thisalows, e.g., the application of the Pantelides
algorithm to reduce the index of a DAE also for external functions.

* New built-in operator "rem" (remainder) and the built-in operators div, mod, ceil, floor,
integer, previously only allowed to be used in when-clauses can now be used
everywhere, because state events are automatically generated when the result value of
one of these operator changes discontinuously ().

» Quantity attribute also for base types Boolean, Integer, String (and not only for Real), in
order to allow abstracted variables to refer to physical quantities (e.g. Boolean
I(quantity="Current") istrueif current isflowing and isfalse if no current is flowing).

» Severa minor enhancements, such as usage of dot-notation in modifications
(eg.:"A x(B.C=1,B. D=2)" isthesameas "A x(B(C=1,D=2));").

+ fina keyword also allowed in declaration, to prevent modification. Example

nodel A

Real Xx[:];

final Integer n=size(x,1);
end A

» Internally restructured specification.

Modelica 1.4 is backwards compatible with Modelica 1.3, with the exception of (1) some exotic
cases where different results are achieved with the removed "declare-before-use-rule" and the
previous declaration order, (2) when-clauses in equations sections, which use the general form
"exprl = expr2" (now only "v=expr" is alowed + some special cases for functions), (3) some
exotic cases where awhen-clause may be no longer evaluated at the initial time, because the
initialization of the when-condition is now defined in a more meaningful way (before Modelica
1.4, every condition in awhen-clause has a "previous" value of false), and (4) models containing
the nondiscrete keyword which was removed.

Modelica 1.3 and older versions.

Modelica 1.3 was released December 15, 1999.

Contributorsup to Modelica 1.3

The following list contributors and their affiliations at the time when Modelica 1.3 was rel eased.

50

Modelica 1.4 Tutorial

H. Elmqvist!,

B. Bachmann?, F. Boudaud®, J. Broenink?, D. Briick, T. Ernst, R. Frank& P. Fritzsoh A.
Jeandé| P. Grozmalf, K. Jusliff, D. K&geddl, M. Klos€, N. Louberé S. E. Mattssoh P. J.
Mostermantt, H. Nilssor, H. Olssoh, M. Otter, P. Sahlif?, A. Schneidéef, M. Tiller™®, H.
Tummescheif, H. Vangheluw®

! Dynasim AB, Lund, Sweden

2 ABB Corporate Research Center Heidelberg
®Gaz de France, Paris, France

“University of Twente, Enschede, Netherlands
®> GMD FIRST, Berlin, Germany

® ABB Network Partner Ltd. Baden, Switzerland
’ Linképing University, Sweden

8VTT, Espoo, Finland

®Technical University of Berlin, Germany

191 und University, Sweden

' DLR Oberpfaffenhofen, Germany

'2Bris Data AB, Stockholm, Sweden

3 Fraunhofer Institute for Integrated Circuits, Dresden, Germany
“DLR, Cologne, Germany

> Ford Motor Company, Detroit, U.S.A.

18 University of Gent, Belgium

Main changesin Modelica 1.3

Modelica 1.3 was released December 15, 1999.

Defined connection semantics for inner/outer connectors.
Defined semantics for protected element.

Defined that least variable variability prefix wins.
Improved semantic definition of array expressions.
Defined scope of for-loop variables.

Main changesin Modelica 1.2

Modelica 1.2 was released June 15, 1999.

Changed the external function interface to give greater flexibility.
Introduced inner/outer for dynamic types.

Redefined final keyword to only restrict further modification.
Restricted redeclaration to replaceable elements.

Defined semantics for if-clauses.

Defined allowed code optimizations.

Refined the semantics of event-handling.

Introduced fixed and nominal attributes.

51

Modelica 1.4 Tutorial

» |Introduced terminate and analysisType.

Main Changesin Modelica 1.1
Modelica 1.1 was released in December 1998.

Major changes:

Specification as a separate document from the rationale.

Introduced prefixes discrete and nondiscrete.

Introduced pre and when.

Defined semantics for array expressions.

Introduced built-in functions and operators (only connect was present in Modelica 1.0).

Modelica 1.0

Modelica 1, thefirst version of Modelica, was released in September 1997, and had the language
specification as a short appendix to the rationale.

52

