
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

M. Otter, H. Elmqvist, J. Dı́az López
Dynasim AB, Sweden; DLR Oberpfaffenhofen, Germany
Collision Handling for the Modelica MultiBody Library
pp. 45-53

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Collision Handling for the Modelica MultiBody Library
Martin Otter2, Hilding Elmqvist1, José Díaz López1

1Dynasim AB, Lund, Sweden, {Elmqvist, Jose.Diaz}@Dynasim.se
2DLR Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany, Martin.Otter@DLR.de

Abstract

The Modelica MultiBody library is extended with
collision handling. It is demonstrated how to use this
new feature. Different implementations are explained
based on parametric surfaces, on surfaces described
by algebraic constraints, and on surface descriptions
by primitives and triangles using the collision
package SOLID 3.5. Furthermore, the response
calculation by a resultant contact force and torque is
discussed.

1 Introduction

Modeling of contacts between mechanical objects is
important in many disciplines such as wheel han-
dling for vehicle dynamics, robot gripping, CAM
modeling, etc. The Modelica.Mechanics.MultiBody
library [13] is extended with support for collision
handling. The user interface and the implementation
variants are discussed in the next sections.
Describing collisions between mechanical bodies is
still a difficult topic. The solution can be divided into
two main steps:
(1) Collision detection of surfaces, determining fea-
tures such as shortest distances, penetration depths
and contact normal vectors. Several software sys-
tems are available for this task, e.g., SWIFT [6],
ODE [16] or SOLID [2][3]. This is also an important
part of CAD and FEM systems. Fast real-time solu-
tions are mainly driven by the game industry due to
their particular needs [5][16].
(2) Calculation of the contact response. Several
quite different approaches are in use:
(2a) The response is computed in an idealized way
using impulses based on an impact law such as Pois-
son’s hypothesis: relating the impulses of the com-
pression and decompression phase of an impact to
each other, see, e.g., [15][10][5]. The main advan-
tage is that only few constants are needed to describe
the impact law and that the integrator step size is not
influenced by the response calculation because it is

performed in an infinitely small time instant. The
disadvantages are that such idealized impact laws are
only valid for stiff collisions and that the constants of
the impact law cannot be computed by material
properties of the colliding bodies, i.e., they must be
determined by measurements. Furthermore, it is
quite involved to compute the new initial conditions
after an impact in a robust way, especially if several
surface contacts are present at the same time instant.
In the latter case either no or infinitely many solu-
tions may exist using impulse descriptions. For a
physically meaningful response there are cases
where multiple impacts have to be applied one after
each other whereas also cases are present where they
must be applied altogether (for a more thorough dis-
cussion, see [5], pp. 256 – 264).
(2b) The response is computed by a simple elastic
spring/damper element. E.g., the spring force is just
proportional to the penetration depth. The advan-
tages of this approach are its simplicity and that it
can be used for stiff and soft contacts. This approach
works also reasonably well if several contact points
are present at the same time instant. The disadvan-
tage is that the integrator step size is reduced signifi-
cantly in the contact phase in order to catch the rap-
idly changing contact forces and torques. A neces-
sary and harder task is to determine experimentally
the spring and damper constants. Those are in conse-
quence only valid in situations close to the experi-
mental conditions. The main reason is that the con-
tact force is not only proportional to the penetration
depth but rather to the contact area and the contact
volume.
(2c) The response is computed by taking into ac-
count the contact area and the contact volume. This
might be performed by a discretization of the contact
area or the contact volume, see, e.g., [8][9]. Contrary
to (2b), the force and torque computation will be
more precise and the material properties, such as the
E-modul and the contraction number ν, can be used
to calculate the spring constants. Furthermore, the
contact torque can be calculated in a reasonable way.
This torque is particularly important for gripping
operations.

Collision Handling for the Modelica MultiBody Library

The Modelica Association 45 Modelica 2005, March 7-8, 2005

(2d) The response is computed for special situations,
e.g., for wheel/road contact [14]. Solutions that are
specialized to a particular contact problem are usu-
ally more precise and practically applicable as the
generic solutions of (2a,b,c).
At the moment, it is not possible to implement the
solution with impulses (2a) in a generic way in
Modelica. For special cases it can be implemented
with the reinit(..) operator. The reason is that an ap-
propriate Modelica language element is missing as
well as the needed symbolic algorithms for the most
general cases. In the European project “RealSim”
basic research was carried out to handle models with
varying index and with dirac impulses. The latter
might be implicitly occurring at switching points
where the number of states, and therefore also the
DAE index, is changing. For certain classes of sys-
tems a reasonable solution method was developed
[11]. Still, the algorithms are in a research stage.
For this reason, in this article only elastic response
actions according to (2b) and (2c) are taken into ac-
count. A specialized solution for wheel/road contact
is already available in the Modelica VehicleDynam-
ics library [1].

2 Users View

In this section the user’s view of the library is shortly
sketched. This view is independent of the implemen-
tation variants discussed in subsequent sections.
Components are provided to handle collisions be-
tween bodies using elastic force/torque laws at con-
tact points. An example is shown in the following
figure where a ball is thrown on a table. The ball first
bounces on the table, then into the wall and finally
rolls on the table.

This example is defined by the Modelica model of
the next figure. In brief, there is a modified Multi-
Body.World component with a new subcomponent
named "collisionHandling". This new object per-
forms collision detection and contact response calcu-
lations. The table is defined by two boxes of the
component “MultiBody.Visualizers.FixedShape”.

The ball is described by a sphere of the component
“FixedShape” together with body properties, such as
mass and inertia. The record “contactData” contains
material constants that are used in the table and
sphere components. No special collision handling
objects are needed. Instead, the existing “Multi-
Body.Visualizers.FixedShape” component has been
modified to optionally detect and treat collisions for
the supported visual shapes shown in the next figure:

For collision detection, shapes "pipe", "gearwheel"
and "spring" are treated as full cylinders. There are
currently limitations for shapes using “*.dxf” files
(AutoCAD R12 descriptions): Only sets of triangles
are supported and only one contact point between
two surfaces is taken into account, although more
contact points might be present for non-convex ob-
jects. Note, all objects can be scaled in the 3 coordi-
nate axes by providing length, height and width of
the shape. E.g., ellipsoids are also supported by de-
fining shapeType="sphere" and appropriate length,
height, and width scaling.
The following new parameters are present in a
FixedShape object:

The collision handling has to be explicitly activated
by setting "contactHandling = true". The effect in

H. Elmqvist, M. Otter, J. Dı́az López

The Modelica Association 46 Modelica 2005, March 7-8, 2005

this case is that the distance between this object and
all other objects that have contactHandling = true is
continuously computed and monitored. When the
distance between two objects becomes zero, an event
is triggered and a contact response is applied.
If two FixedShape objects are rigidly attached to
each other (see, e.g., the two boxes representing the
table in the example above), a contact would perma-
nently be present. To avoid this, all objects are re-
duced in size by a factor of "1 - 1.e-9" for the colli-
sion detection. As a consequence, shapes that are
fixed together, do not lead to an unnecessary contact
response computation.
Parameter “bodyIndex” is a unique Integer identifier
for each “FixedShape” object. For instance, if 4
FixedShape objects with contactHandling = true are
present, they must have bodyIndex = 1, 2, 3, and 4.
Additionally, in the "World" object, parameter
"nContactBodies" has to be set to the number of
FixedShape objects with contactHandling = true. In
the example above, nContactBodies = 4 is required.
There is currently a Modelica language enhancement
under development, in order that this user input is no
longer required since it can be automatically deduced
by a Modelica translator.
The data for the response calculation are provided
via parameter record "contactProperties", see next
figure. It defines material data of the corresponding
surface. The type of response calculation used for all
collisions is defined in the World object: If parame-
ter simpleResponse = true, a linear spring and a lin-
ear damper force acts in contact normal direction.
Additionally, linear rotational damping proportional
to the relative angular velocity is present in contact
normal direction, and a sliding friction force acts in
opposite direction to the tangential sliding velocity at
the contact point. If simpleResponse = false, the con-
tact area is discretized and a resultant force and
torque is computed by summation of appropriate
forces over the contact area. The latter option is cur-
rently under development. More details of the
force/torque calculations are given in section 4.5.

Finally, parameter “edgeRadius” defines how much
the edges of primitive shapes, such as boxes, cylin-
ders etc., are “rounded” with spheres, see left part of

figure below. For “*.dxf” files, a layer of spheres
with radius “edgeRadius” is put on the surfaces to
get a smooth surface description, too, see right part
of figure below. The edge rounding and the “layer of
spheres” is used for collision detection and response
calculation. It is currently not shown in the rendering
(animation). It is recommended to use a non-zero
edgeRadius because the collision detection will be
usually faster and more robust. Still, it is possible to
set edgeRadius=0. The technique of smoothing the
surfaces with spheres is from [3][2].

edgeRadius

edgeRadius

In sublibrary MultiBody.Parts the available body
components have now also optional collision han-
dling support. Furthermore, new body types have
been added, as shown in the next figure:

For example, “BodyEllipsoid” is a part that defines
an ellipsoid by length, width, height and material
properties. From this information, the body proper-
ties (mass, center of mass, inertia tensor) are com-
puted and the rendering and collision handling is
deduced.

3 Applications

In this section some applications of the library are
shown.

3.1 Free Flying Objects

Five different free flying objects are colliding with
each other. The start configuration is shown in the
next figure. The 4 objects on the right are in rest at
the beginning and the sphere at the left side is flying
in the direction of the other objects.

Collision Handling for the Modelica MultiBody Library

The Modelica Association 47 Modelica 2005, March 7-8, 2005

Several collisions between all objects occur after a
few seconds:

This system is defined with the following Modelica
model:

3.2 Collision of triangularized surface
with a table

A simple application of AutoCAD files in the library
is shown in the following example: An AutoCAD
generated pyramid is rotating around his main axis
and falls to a table.

After some time we observe how the trajectory of the
pyramid evolves. Due to friction, the velocity and
angular velocity of the pyramid is permanently re-
duced.

The final position after gliding over the surface is
shown in the next figure

as the pyramid is falling over the edge of the table
with a velocity that is almost zero.

3.3 Gripping

The sequence of images below shows two blue fin-
gers gripping a lying red object (all cylindrical dxf-
defined objects). The fingers are attached with pris-
matic joints to a revolute joint. The lying object is
gripped since it is squeezed between the fingers. Due
to the friction torque between the surfaces, the red
cylinder is elevated after gripping it and rotating the
revolute joint.

H. Elmqvist, M. Otter, J. Dı́az López

The Modelica Association 48 Modelica 2005, March 7-8, 2005

The model of this experiment setup is shown below.
“Horizontal” is the lying red cylinder and “Finger1”
and “Finger2” are the two fingers. This example
shows the important role of the friction torque. If this
feature would not be present in the model, then the
red cylinder would rotate after gripping.

4 Implementation

In this section implementation details and variants
for the collision handling are discussed.

4.1 Central Collision Handling

Since distances and contact response calculations are
needed between any two collision objects, a central
collision handling is present in the modified World
component. In order that this is possible, every colli-
sion object needs a unique Integer identifier. The
surface data, position, orientation, forces and torques
are copied in appropriate arrays using the corre-
sponding Integer identifier as index in these arrays.
Currently, this identifier has to be provided manually
by the user as shown in section 2.
As already mentioned, a Modelica language en-
hancement is under development to get rid of this
unnecessary user input. The current plan is to intro-
duce the new dimension qualifier “each” and the new
operator “uniqueElement(..)” to automatically pro-
vide a unique array index for objects. Examples:
 Real vec[each,5,3];
 Real subvec[5,3] = uniqueElement(vec);
 Real x[each];
 Real xv = uniqueElement(x);

The following rules apply:

(1) If a public array component, A, is declared using
the subscript [each], e.g. Real A[each], it has the
same access restriction as though it were protected
except the "uniqueElement" operator can be applied
to the array. This is the only allowed use of the
uniqueElement operator and the only allowed use of
the array name outside the declared scope.
(2) The size of all array components with declared
size [each] starts at zero and is then increased as fol-
lows. This is performed before size() of the array can
be determined (e.g. to determine the size of other
arrays).
(3) For each use of the uniqueElement(..) operator
the size of the array component is increased by one
and a unique element of the array is referenced.
These new language elements will allow an imple-
mentation where the unique collision object indices
are automatically derived without requiring them
from the user. This feature will be also useful for
other purposes.

4.2 Variant 1: Parametric surfaces

The first implementation variant for the collision
handling uses parametric surfaces. That is, the abso-
lute position vector r to each surface point is de-
scribed as a vector valued function of two parame-
ters, called α and β .

(,)α β=r r

Two tangent vectors eα and eβ are defined by partial
derivatives from which the normal n to the surface
can be computed:

()

()

()

,

,

,

α α

β β

α β

α β
α

α β
β

α β

∂= =
∂
∂= =
∂

= × =

re r

re r

n e e n

Both position and orientation of the surface patch
close to a possible contact point are defined as func-
tions of α and β . The tangential planes of two sur-
faces that are potentially colliding are constrained to
be parallel, i.e., their normal vectors are parallel
(quantities belonging to surface “a” are denoted by
superscript “a”, e.g., ax):

1(,) (,) 0a a a b b bα β λ α β+ ⋅ =n n

Furthermore, the relative position vector of the con-
tact point candidates is constrained to be parallel to
the surface normals:

b a
2(,) (,) (,)b b a a a a aα β α β λ α β− = ⋅r r n

Collision Handling for the Modelica MultiBody Library

The Modelica Association 49 Modelica 2005, March 7-8, 2005

These constraints constitute 6 scalar equations in the
unknown variables 1 2, , , , ,a a b bα β α β λ λ . These
equations are in general nonlinear and have to be
solved per each potential collision point pair. We
may encounter computational problems since multi-
ple solutions may exist. For closed surfaces, at least
4 different solutions exist (closest-closest, closest-
farthest, farthest-closest, farthest-farthest). A feasible
solution must have a positive scalar product between
the surface normal and the relative distance:

(,) () 0a a a b aα β ⋅ − >n r r

For convex surfaces, the solution of the above
nonlinear system of equations, taking into account
the inequality constraints, gives the two closest
points when the bodies are apart. It is possible to
track the correct closest points also for non-convex
surfaces provided good starting values are given for
the unknown variables.
The local coordinate systems at these points as well
as the relative position vector are illustrated below as
rendered by Dymola during animation
.

Certain special surfaces such as ellipsoid, plane and
parabola have been implemented as parameterized
surfaces. It is easy to add other surfaces by defining
corresponding parametric functions.
An example for a non convex parameterized surface
is shown below where a ball is thrown towards left
on a “cosine” surface.

The side view shows the trajectory of one point on
the ball. The ball oscillates forth and back in the

leftmost valley with the fixed point following the
same path.
The major drawback of closed parameterized sur-
faces is the occurrences of singular points. For ex-
ample, every closed surface has at least one singular
point where the calculation of the normal vector fails
because at least one of the tangent vectors becomes
zero. For a sphere, these are the “north” and “south”
pole of the sphere. Therefore, in general it is not pos-
sible to get a robust solution of the non-linear system
of equations. For special cases where it is guaranteed
that the singular points are outside of the operation
region, a parametric surface might be used without
re-parameterization, see, e.g., [12] that demonstrates
collision handling of a CAM. However, for a generic
collision handler, parametric surfaces are difficult to
treat, since singular points require a re-
parameterization of the surface description.

4.3 Variant 2: Algebraic constraint surfaces

An alternative is to describe especially closed sur-
faces with constraint equations

0 ()h= r

For example, a sphere can be defined by
2 2 2() 1h x y z= + + −r

An approximate representation of a box can be made
by

20 20 20() 1h x y z= + + −r

and an approximation to a cylinder can be made by
20 2 2 10() () 1h x y z= + + −r

as shown below.

By choosing higher values of the exponent, the edges
get sharper. It is possible to define cones and pyra-
mids as well by such closed formulas. However, it is
difficult to find the closed formula for arbitrary sur-
faces.
This representation allows the smooth normal to be
calculated as the gradient

()() () , ,
h h h

grad h
x y z

∂ ∂ ∂
= =

∂ ∂ ∂
 
 
 

n r r

It should be noted that there are no singular points
when using this surface representation. Inserting the

H. Elmqvist, M. Otter, J. Dı́az López

The Modelica Association 50 Modelica 2005, March 7-8, 2005

definition of the normals into the same constraint
equations as used in variant 1, and considering the
constraint equations for each surface, 8 scalar equa-
tions in the unknown variables 1 2, , ,a b λ λr r are ob-
tained. Note, that start values are easier to give in
this representation since the position vectors them-
selves are unknowns.
This approach has the advantage to get smooth sur-
face descriptions. The drawback are the highly
nonlinear equations closed to the edges, especially
for high exponents.
In both variant 1 and 2, partial derivatives of func-
tions defining the surfaces are required in the model
code. This can be achieved by a special operator in
the Modelica code and automatic differentiation. For
details see, [12].

4.4 Variant 3: Collision handling with SOLID

As a third variant, the collision detection of shapes
and the computation of the penetration depth be-
tween shapes is performed with the software system
SOLID 3.5 [3][2]. The SOLID software is free for
non-commercial purposes. Commercial use requires
a license. The SOLID software supports collisions
between primitives such as spheres and cylinders, as
well as between complex convex and non-convex
objects described by a set of polytopes (point, line
segment, triangle, tetrahedron, convex polygons, and
convex polyhedrons).
The software provides a good interface to define "re-
sponse functions" that are called when contact hap-
pens. In these response functions, contact forces and
torques could be programmed. The disadvantage of
this interface is that the integrator does not have in-
formation about occurred collisions and reduces the
step-size around a collision only due to the sharp
changes in contact response. Experiments showed
that it is difficult to get a robust solution. In general,
the integrator may stop for a corrector failure. The
reason is that integrators require that the equations
describing the system are continuous with a smooth
first or higher derivative. At a contact point, these
assumptions are not fulfilled and since the changes in
the contact forces and torques are so drastic, it is un-
derstandable that an integrator may fail. This is also
the reason why slight changes in the tolerances of the
integrator or the tolerances of the contact detection
may change the simulation time very significantly.
For this reason, another interface of SOLID is used
to explicitly compute either the distance of two ob-
jects or the penetration depth of two colliding ob-
jects. This allows to compute indicator functions for
the root finder of an integrator, in order that an event

is generated when contact occurs. The solution is
more robust and usually more efficient than the solu-
tion with "response functions".
The main disadvantage is that the calling environ-
ment has to perform all distance function calls by its
own. In the current implementation a brute force
method is used by computing the distances between
all defined objects. The "broad phase" present in the
"response function" interface of SOLID to reduce the
number of distance tests significantly (based on
"axis-aligned-bounding-boxes" approximations of
the objects), is not present with the chosen "root-
finding" approach. This will be improved in the fu-
ture.
The SOLID package uses a generalized version of
the GJK algorithm [7] to compute the distances be-
tween convex polytopes in a finite number of steps
and for other convex surfaces converges globally
with a fast convergence rate. For the penetration
depth calculation an algorithm is used that is based
on similar principles as the GJK algorithm. Details
are described in the book [2].
In order that the two algorithms can be applied, a
"support mapping" of the corresponding surface is
needed. This is a function sA that maps a vector n to
a point on a convex shape A according to:

sA(n) returns a point on the surface of A
such that “n·sA(n) = max(n·r for all r in A)”

This definition is visualized in the next figure for a
cylinder:

The arrow in this figure is vector "n" of the support
mapping. This vector is proposed and changed by the
distance and penetration depth algorithm. The "grey"
shape in the figure above is a plane that is perpen-
dicular to "n" and is moved to the cylinder such that
the plane touches the cylinder. The support mapping
function has to return the coordinates of this touch-
ing point. If this is not unique, one of the points is
returned. For a smooth surface this just means that a
point r on the surface is defined as a function of its
normal n: r = r(n).
Due to this simple basic definition of a convex object
via a support mapping, a user can introduce addi-
tional base shapes in a simple way.

Collision Handling for the Modelica MultiBody Library

The Modelica Association 51 Modelica 2005, March 7-8, 2005

The "penetration depth" algorithm adds in every it-
eration an additional edge to a simplex that defines
the penetration volume. From this simplex, two
points are selected in such a way that both points are
on the surface of the respective shape and the dis-
tance between these two points is as small as possi-
ble. When moving the two collided objects along the
connection line of these two points, until the two
points coincide, then the two shapes are in touching
contact. These two points are reported as result of the
penetration depth calculation. The penetration depth
is then the distance between these two points and the
contact normal is on the connection line along these
two points.
The SOLID interface functions are used in the
World.collisionHandler component that has the fol-
lowing basic structure:
 equation
 // Compute signed distances
 (signedDistance, ...) =
 surfaceDistances(..);

 // Generate event when distance is zero
 for i in 1:nContactPairs loop
 contact[i] = signedDistance[i] < 0.0;
 end for;

 // Contact response calculation
 (frame_a_f, ...) =
 contactForces(contact, ...);

Function “surfaceDistances(...)” returns vector
“signedDistance”. An element of this vector signals
the shortest distance of two objects that are not yet in
contact by a positive value. A negative element char-
acterizes the penetration depth of two objects that are
in contact. The for loop in the code fragment above
triggers events whenever two objects get in contact
and whenever two objects are separating. Finally, the
function “contactForces(...)” is used to perform the
response calculation. It returns the resultant forces
and torques acting at appropriate reference frames of
the corresponding surfaces.

4.5 Response calculation

Contact forces and torques are applied when the rela-
tive distance along the normal vector is negative,
signaling an interpenetration. As already shortly dis-
cussed in section 2, two different response calcula-
tions are provided: The first one uses simple
spring/damper elements. The second one discretizes
the contact area and a resultant response force and
torque is computed by summation of appropriate
forces over the contact area. This more precise calcu-
lation is currently under development. In the follow-
ing, the first option is discussed in some more detail:

The response is computed according to the following
equations:

,

min(, 0)
1

/

1
1

/

n m m n

t min,m
t m n

t min,m

n min,m

n w m n n min,m

n min,m

t t n n

n n

f c s d v

v v
f f

v v

d f

f f

µ

ω ω
τ ω ω

ω ω

τ

= ⋅ + ⋅

 >
= ⋅ ⋅


− < −

= ⋅ ⋅ >



= ⋅ + ⋅
= ⋅

if
else

if
if
else

f e e
τ e

where
fn contact force in normal direction
ft contact force in tangential direction
τn contact torque in normal direction
f resultant contact force
t resultant contact torque
s penetration depth (≤ 0)
vn relative velocity in normal direction
vt relative velocity in tangential direction
ωn relative angular velocity in normal

direction
en unit vector in normal direction
et unit vector in tangential direction

In other words, a linear spring/damper element is
used to compute the force in contact normal direc-
tion. In tangential direction a sliding friction force is
taken into account, if the tangential velocity is larger
as vmin. Below vmin, the friction force is reduced so
that it is zero, when the tangential velocity becomes
zero. Sticking is currently not implemented. For
gripping operations, it is important to take into ac-
count the friction torque. This is accomplished by a
linear rotational damper that is proportional to the
normal force and the relative angular velocity. Fi-
nally, all force and torque parts are summed up re-
sulting in the contact force and torque. Note, if the
normal force would become positive since the damp-
ing part is too large, it is reduced to zero, since a
positive normal force is physically not correct.
For the equations above material constants are
needed, e.g., for the spring and the dampers. How-
ever, only material data for the respective surfaces
are provided. The correct solution would be to apply,
say, (1) a spring/damper element on surface A using
the material constants of surface A, (2) a
spring/damper element on surface B using the mate-
rial constants of surface B and (3) connect the
spring/damper elements of surfaces A and B in se-
ries. Due to the linear dampers, this would result in

H. Elmqvist, M. Otter, J. Dı́az López

The Modelica Association 52 Modelica 2005, March 7-8, 2005

additional differential equations depending on the
number of contact points. To avoid complications
and to enhance efficiency, the following approxima-
tion is used: A resultant spring constant is computed
from the surface data under the assumption of a se-
ries connections of two springs. For all other data,
mean values are used:

()
()
()
()
()

1
2

1
, , ,2

1
2

1
, 2

1
, 2

A B
m

A B

m A B

w m w A w B

m A B

min m min,A min,B

min m min,A min,B

c cc
c c

d d d

d d d

v v v

µ µ µ

ω ω ω

⋅=
+

= ⋅ +

= ⋅ +

= ⋅ +

= ⋅ +

= ⋅ +

5 Outlook

An overview was given, in which way the Modelica
MultiBody library is extended with collision han-
dling. The current stage is already useful for applica-
tions. Development continues to improve the colli-
sion handling:
• Using the “broad-phase” of SOLID to reduce the

number of collision tests significantly.
• Support more than one contact point between

two surfaces. This is important for non-convex
surfaces.

• Optionally, provide a more detailed response
calculation by discretization of the contact area.

• Reduce the limitations of “*.dxf” files.

Acknowledgements

Partial financial support of this work by the Toyota
Motor Corporation is gratefully acknowledged.

References

[1] Andreasson J. (2003): Vehicle Dynamics library.
Proceedings of Modelica’2003, ed. P. Fritzson, pp.
11-18. Download: http://www.Modelica.org/-
Conference2003/papers.shtml/
h28_vehicle_Andreasson.pdf

[2] Bergen G. van den (2004): Collision Detection in
Interactive 3D Environments. Elsevier and Morgan
Kaufmann Publishers.

[3] Bergen G. van den (2003): SOLID 3.5 - User’s
Guide to the SOLID Collision Detection Library.
On the CD of the book of G. van den Bergen [2].

[4] Dynasim (2005): Dymola – Users Manual
(http://www.dynasim.com)

[5] Eberly D.H., and Shoemake K. (2004): Game
Physics. Elsevier and Morgan Kaufmann Publishers.

[6] Ehmann S. H. (2000): SWIFT - Speedy Walking via
Improved Feature Testing. Version 1.0. Download:
http://www.cs.unc.edu/~geom/SWIFT/

[7] Gilbert E.G., Johnson D.W., and Keerthi S.S. (1988):
A fast procedure for computing the distance
between complex objects in three-dimensional
space. IEEE Journal of Robotics and Automation,
4(2), pp. 193-203.

[8] Hasegawa S., and Sato M. (2004): Real-time Rigid
Body Simulation for Haptic Interactions Based on
Contact Volume of Polygonal Objects.
EUROGRAPHICS 2004, ed. M.-P. Cani and M.
Slater, Volume 23, Number 3. Download:
http://eg04.inrialpes.fr/Programme/Papers/PDF/paper
1209.pdf

[9] Hippmann G. (2003): An Algorithm for Compliant
Contact between complexly shaped Surfaces in
Multibody Dynamics. Multibody Dynamics, Jorge
A.C. Ambr´osio (Ed.), IDMEC/IST, Lisbon, Portugal,
July 14. Download: http://www.pcm.hippmann.org/-
doc/eccomas03_hippmann.pdf

[10] Leine R.I., and Glocker C. (2003): A set-valued force
law for spatial Coulomb–Contensou friction.
European Journal of Mechanics A/Solids 22, pp. 193–
216.

[11] Mattsson S.E., Olsson H., and Elmqvist H. (2001):
Methods and Algorithms for Varying Structure
Hybrid DAE Simulation. EC IST Project RealSim
under contract IST-1999-11979, Internal Report 2.2.

[12] H. Olsson, H. Tummescheit, H. Elmqvist (2005):
Modeling with Partial Derivatives of Modelica
Functions and Automatic Differentiation.
Modelica’2005 conference, Hamburg, March 7-8.

[13] Otter M., Elmqvist H., Mattsson S.E. (2004): The
New Modelica MultiBody Library. Proceedings of
Modelica’2003, ed. P. Fritzson, pp. 311-330.
Download: http://www.Modelica.org/Conference-
2003/papers.shtml/h37_Otter_multibody.pdf

[14] Pacejka H.B. (2002): Tyre and Vehicle Dynamics.
Butterworth-Heinemann.

[15] Pfeiffer F., and Glocker C. (1996): Multibody
Dynamics with Unilateral Contacts. John Wiley &
Sons.

[16] Smith R. (2004): Open Dynamics Engine – V0.5
Users Guide. Download from http://ode.org.

[17] Wriggers P. (2002): Computational Contact
Mechanics. John Wiley & Sons.

Collision Handling for the Modelica MultiBody Library

The Modelica Association 53 Modelica 2005, March 7-8, 2005

