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Dynasim AB, Sweden; DLR Oberpfaffenhofen, Germany
Collision Handling for the Modelica MultiBody Library
pp. 45-53

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH



Collision Handling for the Modelica MultiBody Library 
Martin Otter2, Hilding Elmqvist1, José Díaz López1 

1Dynasim AB, Lund, Sweden, {Elmqvist, Jose.Diaz}@Dynasim.se 
2DLR Institute of Robotics and Mechatronics, Oberpfaffenhofen, Germany, Martin.Otter@DLR.de  

 

Abstract 

The Modelica MultiBody library is extended with 
collision handling. It is demonstrated how to use this 
new feature. Different implementations are explained 
based on parametric surfaces, on surfaces described 
by algebraic constraints, and on surface descriptions 
by primitives and triangles using the collision 
package SOLID 3.5. Furthermore, the response 
calculation by a resultant contact force and torque is 
discussed. 

1 Introduction 

Modeling of contacts between mechanical objects is 
important in many disciplines such as wheel han-
dling for vehicle dynamics, robot gripping, CAM 
modeling, etc. The Modelica.Mechanics.MultiBody 
library [13] is extended with support for collision 
handling. The user interface and the implementation 
variants are discussed in the next sections. 
Describing collisions between mechanical bodies is 
still a difficult topic. The solution can be divided into 
two main steps:  
(1) Collision detection of surfaces, determining fea-
tures such as shortest distances, penetration depths 
and contact normal vectors. Several software sys-
tems are available for this task, e.g., SWIFT [6], 
ODE [16] or SOLID [2][3]. This is also an important 
part of CAD and FEM systems. Fast real-time solu-
tions are mainly driven by the game industry due to 
their particular needs [5][16]. 
(2) Calculation of the contact response. Several 
quite different approaches are in use: 
(2a) The response is computed in an idealized way 
using impulses based on an impact law such as Pois-
son’s hypothesis: relating the impulses of the com-
pression and decompression phase of an impact to 
each other, see, e.g., [15][10][5]. The main advan-
tage is that only few constants are needed to describe 
the impact law and that the integrator step size is not 
influenced by the response calculation because it is 

performed in an infinitely small time instant. The 
disadvantages are that such idealized impact laws are 
only valid for stiff collisions and that the constants of 
the impact law cannot be computed by material 
properties of the colliding bodies, i.e., they must be 
determined by measurements. Furthermore, it is 
quite involved to compute the new initial conditions 
after an impact in a robust way, especially if several 
surface contacts are present at the same time instant. 
In the latter case either no or infinitely many solu-
tions may exist using impulse descriptions. For a 
physically meaningful response there are cases 
where multiple impacts have to be applied one after 
each other whereas also cases are present where they 
must be applied altogether (for a more thorough dis-
cussion, see [5], pp. 256 – 264). 
(2b) The response is computed by a simple elastic 
spring/damper element. E.g., the spring force is just 
proportional to the penetration depth. The advan-
tages of this approach are its simplicity and that it 
can be used for stiff and soft contacts. This approach 
works also reasonably well if several contact points 
are present at the same time instant. The disadvan-
tage is that the integrator step size is reduced signifi-
cantly in the contact phase in order to catch the rap-
idly changing contact forces and torques. A neces-
sary and harder task is to determine experimentally 
the spring and damper constants. Those are in conse-
quence only valid in situations close to the experi-
mental conditions. The main reason is that the con-
tact force is not only proportional to the penetration 
depth but rather to the contact area and the contact 
volume. 
(2c) The response is computed by taking into ac-
count the contact area and the contact volume. This 
might be performed by a discretization of the contact 
area or the contact volume, see, e.g., [8][9]. Contrary 
to (2b), the force and torque computation will be 
more precise and the material properties, such as the 
E-modul and the contraction number ν, can be used 
to calculate the spring constants. Furthermore, the 
contact torque can be calculated in a reasonable way. 
This torque is particularly important for gripping 
operations. 
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(2d) The response is computed for special situations, 
e.g., for wheel/road contact [14]. Solutions that are 
specialized to a particular contact problem are usu-
ally more precise and practically applicable as the 
generic solutions of (2a,b,c).  
At the moment, it is not possible to implement the 
solution with impulses (2a) in a generic way in 
Modelica. For special cases it can be implemented 
with the reinit(..) operator. The reason is that an ap-
propriate Modelica language element is missing as 
well as the needed symbolic algorithms for the most 
general cases. In the European project “RealSim” 
basic research was carried out to handle models with 
varying index and with dirac impulses. The latter 
might be implicitly occurring at switching points 
where the number of states, and therefore also the 
DAE index, is changing. For certain classes of sys-
tems a reasonable solution method was developed 
[11]. Still, the algorithms are in a research stage. 
For this reason, in this article only elastic response 
actions according to (2b) and (2c) are taken into ac-
count. A specialized solution for wheel/road contact 
is already available in the Modelica VehicleDynam-
ics library [1]. 

2 Users View 

In this section the user’s view of the library is shortly 
sketched. This view is independent of the implemen-
tation variants discussed in subsequent sections. 
Components are provided to handle collisions be-
tween bodies using elastic force/torque laws at con-
tact points. An example is shown in the following 
figure where a ball is thrown on a table. The ball first 
bounces on the table, then into the wall and finally 
rolls on the table.  

 
This example is defined by the Modelica model of 
the next figure. In brief, there is a modified Multi-
Body.World component with a new subcomponent 
named "collisionHandling". This new object per-
forms collision detection and contact response calcu-
lations. The table is defined by two boxes of the 
component “MultiBody.Visualizers.FixedShape”. 

 
The ball is described by a sphere of the component 
“FixedShape” together with body properties, such as 
mass and inertia. The record “contactData” contains 
material constants that are used in the table and 
sphere components. No special collision handling 
objects are needed. Instead, the existing “Multi-
Body.Visualizers.FixedShape” component has been 
modified to optionally detect and treat collisions for 
the supported visual shapes shown in the next figure: 

 
For collision detection, shapes "pipe", "gearwheel" 
and "spring" are treated as full cylinders. There are 
currently limitations for shapes using “*.dxf” files 
(AutoCAD R12 descriptions): Only sets of triangles 
are supported and only one contact point between 
two surfaces is taken into account, although more 
contact points might be present for non-convex ob-
jects. Note, all objects can be scaled in the 3 coordi-
nate axes by providing length, height and width of 
the shape. E.g., ellipsoids are also supported by de-
fining shapeType="sphere" and appropriate length, 
height, and width scaling.  
The following new parameters are present in a 
FixedShape object:  

 
The collision handling has to be explicitly activated 
by setting "contactHandling = true". The effect in 
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this case is that the distance between this object and 
all other objects that have contactHandling = true is 
continuously computed and monitored. When the 
distance between two objects becomes zero, an event 
is triggered and a contact response is applied.  
If two FixedShape objects are rigidly attached to 
each other (see, e.g., the two boxes representing the 
table in the example above), a contact would perma-
nently be present. To avoid this, all objects are re-
duced in size by a factor of "1 - 1.e-9" for the colli-
sion detection. As a consequence, shapes that are 
fixed together, do not lead to an unnecessary contact 
response computation.  
Parameter “bodyIndex” is a unique Integer identifier 
for each “FixedShape” object. For instance, if 4 
FixedShape objects with contactHandling = true are 
present, they must have bodyIndex = 1, 2, 3, and 4. 
Additionally, in the "World" object, parameter 
"nContactBodies" has to be set to the number of 
FixedShape objects with contactHandling = true. In 
the example above, nContactBodies = 4 is required. 
There is currently a Modelica language enhancement 
under development, in order that this user input is no 
longer required since it can be automatically deduced 
by a Modelica translator. 
The data for the response calculation are provided 
via parameter record "contactProperties", see next 
figure. It defines material data of the corresponding 
surface. The type of response calculation used for all 
collisions is defined in the World object: If parame-
ter simpleResponse = true, a linear spring and a lin-
ear damper force acts in contact normal direction. 
Additionally, linear rotational damping proportional 
to the relative angular velocity is present in contact 
normal direction, and a sliding friction force acts in 
opposite direction to the tangential sliding velocity at 
the contact point. If simpleResponse = false, the con-
tact area is discretized and a resultant force and 
torque is computed by summation of appropriate 
forces over the contact area. The latter option is cur-
rently under development. More details of the 
force/torque calculations are given in section 4.5. 

 
Finally, parameter “edgeRadius” defines how much 
the edges of primitive shapes, such as boxes, cylin-
ders etc., are “rounded” with spheres, see left part of 

figure below. For “*.dxf” files, a layer of spheres 
with radius “edgeRadius” is put on the surfaces to 
get a smooth surface description, too, see right part 
of figure below. The edge rounding and the “layer of 
spheres” is used for collision detection and response 
calculation. It is currently not shown in the rendering 
(animation). It is recommended to use a non-zero 
edgeRadius because the collision detection will be 
usually faster and more robust. Still, it is possible to 
set edgeRadius=0. The technique of smoothing the 
surfaces with spheres is from [3][2]. 

edgeRadius

edgeRadius

 

In sublibrary MultiBody.Parts the available body 
components have now also optional collision han-
dling support. Furthermore, new body types have 
been added, as shown in the next figure:  

 
For example, “BodyEllipsoid” is a part that defines 
an ellipsoid by length, width, height and material 
properties. From this information, the body proper-
ties (mass, center of mass, inertia tensor) are com-
puted and the rendering and collision handling is 
deduced. 

3 Applications 

In this section some applications of the library are 
shown. 

3.1 Free Flying Objects 

Five different free flying objects are colliding with 
each other. The start configuration is shown in the 
next figure. The 4 objects on the right are in rest at 
the beginning and the sphere at the left side is flying 
in the direction of the other objects. 
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Several collisions between all objects occur after a 
few seconds: 

 
This system is defined with the following Modelica 
model: 

 

3.2 Collision of triangularized surface 
with a table 

A simple application of AutoCAD files in the library 
is shown in the following example: An AutoCAD 
generated pyramid is rotating around his main axis 
and falls to a table.  

 
After some time we observe how the trajectory of the 
pyramid evolves. Due to friction, the velocity and 
angular velocity of the pyramid is permanently re-
duced. 

 
The final position after gliding over the surface is 
shown in the next figure 

 
as the pyramid is falling over the edge of the table 
with a velocity that is almost zero. 

3.3 Gripping 

The sequence of images below shows two blue fin-
gers gripping a lying red object (all cylindrical dxf-
defined objects). The fingers are attached with pris-
matic joints to a revolute joint. The lying object is 
gripped since it is squeezed between the fingers. Due 
to the friction torque between the surfaces, the red 
cylinder is elevated after gripping it and rotating the 
revolute joint. 
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The model of this experiment setup is shown below. 
“Horizontal” is the lying red cylinder and “Finger1” 
and “Finger2” are the two fingers. This example 
shows the important role of the friction torque. If this 
feature would not be present in the model, then the 
red cylinder would rotate after gripping. 

 

4 Implementation 

In this section implementation details and variants 
for the collision handling are discussed. 

4.1 Central Collision Handling 

Since distances and contact response calculations are 
needed between any two collision objects, a central 
collision handling is present in the modified World 
component. In order that this is possible, every colli-
sion object needs a unique Integer identifier. The 
surface data, position, orientation, forces and torques 
are copied in appropriate arrays using the corre-
sponding Integer identifier as index in these arrays. 
Currently, this identifier has to be provided manually 
by the user as shown in section 2. 
As already mentioned, a Modelica language en-
hancement is under development to get rid of this 
unnecessary user input. The current plan is to intro-
duce the new dimension qualifier “each” and the new 
operator “uniqueElement(..)” to automatically pro-
vide a unique array index for objects. Examples: 
 Real vec[each,5,3]; 
 Real subvec[5,3] = uniqueElement(vec); 
 Real x[each]; 
 Real xv = uniqueElement(x); 

The following rules apply: 

(1) If a public array component, A, is declared using 
the subscript [each], e.g. Real A[each], it has the 
same access restriction as though it were protected 
except the "uniqueElement" operator can be applied 
to the array. This is the only allowed use of the 
uniqueElement operator and the only allowed use of 
the array name outside the declared scope. 
(2) The size of all array components with declared 
size [each] starts at zero and is then increased as fol-
lows. This is performed before size() of the array can 
be determined (e.g. to determine the size of other 
arrays). 
(3) For each use of the uniqueElement(..) operator 
the size of the array component is increased by one 
and a unique element of the array is referenced.  
These new language elements will allow an imple-
mentation where the unique collision object indices 
are automatically derived without requiring them 
from the user. This feature will be also useful for 
other purposes. 

4.2 Variant 1: Parametric surfaces 

The first implementation variant for the collision 
handling uses parametric surfaces. That is, the abso-
lute position vector r to each surface point is de-
scribed as a vector valued function of two parame-
ters, called α and β . 

( , )α β=r r  

Two tangent vectors eα and eβ are defined by partial 
derivatives from which the normal n to the surface 
can be computed: 

( )

( )

( )

,

,

,

α α

β β

α β

α β
α

α β
β

α β

∂= =
∂
∂= =
∂

= × =

re r

re r

n e e n

 

Both position and orientation of the surface patch 
close to a possible contact point are defined as func-
tions of α  and β . The tangential planes of two sur-
faces that are potentially colliding are constrained to 
be parallel, i.e., their normal vectors are parallel 
(quantities belonging to surface “a” are denoted by 
superscript “a”, e.g., ax ): 

1( , ) ( , ) 0a a a b b bα β λ α β+ ⋅ =n n  

Furthermore, the relative position vector of the con-
tact point candidates is constrained to be parallel to 
the surface normals: 

b a
2( , ) ( , ) ( , )b b a a a a aα β α β λ α β− = ⋅r r n  
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These constraints constitute 6 scalar equations in the 
unknown variables 1 2, , , , ,a a b bα β α β λ λ . These 
equations are in general nonlinear and have to be 
solved per each potential collision point pair. We 
may encounter computational problems since multi-
ple solutions may exist. For closed surfaces, at least 
4 different solutions exist (closest-closest, closest-
farthest, farthest-closest, farthest-farthest). A feasible 
solution must have a positive scalar product between 
the surface normal and the relative distance: 

( , ) ( ) 0a a a b aα β ⋅ − >n r r  

For convex surfaces, the solution of the above 
nonlinear system of equations, taking into account 
the inequality constraints, gives the two closest 
points when the bodies are apart. It is possible to 
track the correct closest points also for non-convex 
surfaces provided good starting values are given for 
the unknown variables. 
The local coordinate systems at these points as well 
as the relative position vector are illustrated below as 
rendered by Dymola during animation 
. 

 
Certain special surfaces such as ellipsoid, plane and 
parabola have been implemented as parameterized 
surfaces. It is easy to add other surfaces by defining 
corresponding parametric functions. 
An example for a non convex parameterized surface 
is shown below where a ball is thrown towards left 
on a “cosine” surface. 

 

The side view shows the trajectory of one point on 
the ball. The ball oscillates forth and back in the 

leftmost valley with the fixed point following the 
same path. 
The major drawback of closed parameterized sur-
faces is the occurrences of singular points. For ex-
ample, every closed surface has at least one singular 
point where the calculation of the normal vector fails 
because at least one of the tangent vectors becomes 
zero. For a sphere, these are the “north” and “south” 
pole of the sphere. Therefore, in general it is not pos-
sible to get a robust solution of the non-linear system 
of equations. For special cases where it is guaranteed 
that the singular points are outside of the operation 
region, a parametric surface might be used without 
re-parameterization, see, e.g., [12] that demonstrates 
collision handling of a CAM. However, for a generic 
collision handler, parametric surfaces are difficult to 
treat, since singular points require a re-
parameterization of the surface description. 

4.3 Variant 2: Algebraic constraint surfaces 

An alternative is to describe especially closed sur-
faces with constraint equations 

0 ( )h= r  

For example, a sphere can be defined by 
2 2 2( ) 1h x y z= + + −r  

An approximate representation of a box can be made 
by 

20 20 20( ) 1h x y z= + + −r  

and an approximation to a cylinder can be made by 
20 2 2 10( ) ( ) 1h x y z= + + −r  

as shown below. 

 
By choosing higher values of the exponent, the edges 
get sharper. It is possible to define cones and pyra-
mids as well by such closed formulas. However, it is 
difficult to find the closed formula for arbitrary sur-
faces.  
This representation allows the smooth normal to be 
calculated as the gradient 

( )( ) ( ) , ,
h h h

grad h
x y z

∂ ∂ ∂
= =

∂ ∂ ∂
 
 
 

n r r  

It should be noted that there are no singular points 
when using this surface representation. Inserting the 
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definition of the normals into the same constraint 
equations as used in variant 1, and considering the 
constraint equations for each surface, 8 scalar equa-
tions in the unknown variables 1 2, , ,a b λ λr r  are ob-
tained. Note, that start values are easier to give in 
this representation since the position vectors them-
selves are unknowns. 
This approach has the advantage to get smooth sur-
face descriptions. The drawback are the highly 
nonlinear equations closed to the edges, especially 
for high exponents. 
In both variant 1 and 2, partial derivatives of func-
tions defining the surfaces are required in the model 
code. This can be achieved by a special operator in 
the Modelica code and automatic differentiation. For 
details see, [12]. 

4.4 Variant 3: Collision handling with SOLID 

As a third variant, the collision detection of shapes 
and the computation of the penetration depth be-
tween shapes is performed with the software system 
SOLID 3.5 [3][2]. The SOLID software is free for 
non-commercial purposes. Commercial use requires 
a license. The SOLID software supports collisions 
between primitives such as spheres and cylinders, as 
well as between complex convex and non-convex 
objects described by a set of polytopes (point, line 
segment, triangle, tetrahedron, convex polygons, and 
convex polyhedrons). 
The software provides a good interface to define "re-
sponse functions" that are called when contact hap-
pens. In these response functions, contact forces and 
torques could be programmed. The disadvantage of 
this interface is that the integrator does not have in-
formation about occurred collisions and reduces the 
step-size around a collision only due to the sharp 
changes in contact response. Experiments showed 
that it is difficult to get a robust solution. In general, 
the integrator may stop for a corrector failure. The 
reason is that integrators require that the equations 
describing the system are continuous with a smooth 
first or higher derivative. At a contact point, these 
assumptions are not fulfilled and since the changes in 
the contact forces and torques are so drastic, it is un-
derstandable that an integrator may fail. This is also 
the reason why slight changes in the tolerances of the 
integrator or the tolerances of the contact detection 
may change the simulation time very significantly. 
For this reason, another interface of SOLID is used 
to explicitly compute either the distance of two ob-
jects or the penetration depth of two colliding ob-
jects. This allows to compute indicator functions for 
the root finder of an integrator, in order that an event 

is generated when contact occurs. The solution is 
more robust and usually more efficient than the solu-
tion with "response functions". 
The main disadvantage is that the calling environ-
ment has to perform all distance function calls by its 
own. In the current implementation a brute force 
method is used by computing the distances between 
all defined objects. The "broad phase" present in the 
"response function" interface of SOLID to reduce the 
number of distance tests significantly (based on 
"axis-aligned-bounding-boxes" approximations of 
the objects), is not present with the chosen "root-
finding" approach. This will be improved in the fu-
ture.  
The SOLID package uses a generalized version of 
the GJK algorithm [7] to compute the distances be-
tween convex polytopes in a finite number of steps 
and for other convex surfaces converges globally 
with a fast convergence rate. For the penetration 
depth calculation an algorithm is used that is based 
on similar principles as the GJK algorithm. Details 
are described in the book [2]. 
In order that the two algorithms can be applied, a 
"support mapping" of the corresponding surface is 
needed. This is a function sA that maps a vector n to 
a point on a convex shape A according to:  

sA(n) returns a point on the surface of A 
such that “n·sA(n) = max(n·r for all r in A)” 

This definition is visualized in the next figure for a 
cylinder:  

 
The arrow in this figure is vector "n" of the support 
mapping. This vector is proposed and changed by the 
distance and penetration depth algorithm. The "grey" 
shape in the figure above is a plane that is perpen-
dicular to "n" and is moved to the cylinder such that 
the plane touches the cylinder. The support mapping 
function has to return the coordinates of this touch-
ing point. If this is not unique, one of the points is 
returned. For a smooth surface this just means that a 
point r on the surface is defined as a function of its 
normal n: r = r(n). 
Due to this simple basic definition of a convex object 
via a support mapping, a user can introduce addi-
tional base shapes in a simple way.  
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The "penetration depth" algorithm adds in every it-
eration an additional edge to a simplex that defines 
the penetration volume. From this simplex, two 
points are selected in such a way that both points are 
on the surface of the respective shape and the dis-
tance between these two points is as small as possi-
ble. When moving the two collided objects along the 
connection line of these two points, until the two 
points coincide, then the two shapes are in touching 
contact. These two points are reported as result of the 
penetration depth calculation. The penetration depth 
is then the distance between these two points and the 
contact normal is on the connection line along these 
two points.  
The SOLID interface functions are used in the 
World.collisionHandler component that has the fol-
lowing basic structure: 
 equation 
   // Compute signed distances 
   (signedDistance, ...) =  
                     surfaceDistances(..); 
 
   // Generate event when distance is zero 
   for i in 1:nContactPairs loop 
     contact[i] = signedDistance[i] < 0.0; 
   end for; 
 
   // Contact response calculation 
   (frame_a_f, ...) =  
              contactForces(contact, ...); 

Function “surfaceDistances(...)” returns vector 
“signedDistance”. An element of this vector signals 
the shortest distance of two objects that are not yet in 
contact by a positive value. A negative element char-
acterizes the penetration depth of two objects that are 
in contact. The for loop in the code fragment above 
triggers events whenever two objects get in contact 
and whenever two objects are separating. Finally, the 
function “contactForces(...)” is used to perform the 
response calculation. It returns the resultant forces 
and torques acting at appropriate reference frames of 
the corresponding surfaces. 

4.5 Response calculation 

Contact forces and torques are applied when the rela-
tive distance along the normal vector is negative, 
signaling an interpenetration. As already shortly dis-
cussed in section 2, two different response calcula-
tions are provided: The first one uses simple 
spring/damper elements. The second one discretizes 
the contact area and a resultant response force and 
torque is computed by summation of appropriate 
forces over the contact area. This more precise calcu-
lation is currently under development. In the follow-
ing, the first option is discussed in some more detail: 

The response is computed according to the following 
equations: 

,

min( , 0)
1

/

1
1

/

n m m n

t min,m
t m n

t min,m

n min,m

n w m n n min,m

n min,m

t t n n

n n

f c s d v

v v
f f

v v

d f

f f

µ

ω ω
τ ω ω

ω ω

τ

= ⋅ + ⋅

 >
= ⋅ ⋅


− < −

= ⋅ ⋅ >



= ⋅ + ⋅
= ⋅

if
else

if
if
else

f e e
τ e

 

where  
fn contact force in normal direction 
ft contact force in tangential direction 
τn contact torque in normal direction 
f resultant contact force 
t resultant contact torque 
s penetration depth (≤ 0) 
vn relative velocity in normal direction 
vt relative velocity in tangential direction 
ωn relative angular velocity in normal 

direction 
en unit vector in normal direction 
et unit vector in tangential direction 

 
In other words, a linear spring/damper element is 
used to compute the force in contact normal direc-
tion. In tangential direction a sliding friction force is 
taken into account, if the tangential velocity is larger 
as vmin. Below vmin, the friction force is reduced so 
that it is zero, when the tangential velocity becomes  
zero. Sticking is currently not implemented. For 
gripping operations, it is important to take into ac-
count the friction torque. This is accomplished by a 
linear rotational damper that is proportional to the 
normal force and the relative angular velocity.  Fi-
nally, all force and torque parts are summed up re-
sulting in the contact force and torque. Note, if the 
normal force would become positive since the damp-
ing part is too large, it is reduced to zero, since a 
positive normal force is physically not correct.  
For the equations above material constants are 
needed, e.g., for the spring and the dampers. How-
ever, only material data for the respective surfaces 
are provided. The correct solution would be to apply, 
say, (1) a spring/damper element on surface A using 
the material constants of surface A, (2) a 
spring/damper element on surface B using the mate-
rial constants of surface B and (3) connect the 
spring/damper elements of surfaces A and B in se-
ries. Due to the linear dampers, this would result in 

H. Elmqvist, M. Otter, J. Dı́az López
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additional differential equations depending on the 
number of contact points. To avoid complications 
and to enhance efficiency, the following approxima-
tion is used: A resultant spring constant is computed 
from the surface data under the assumption of a se-
ries connections of two springs. For all other data, 
mean values are used: 

( )
( )
( )
( )
( )

1
2

1
, , ,2

1
2

1
, 2

1
, 2

A B
m

A B

m A B

w m w A w B

m A B

min m min,A min,B

min m min,A min,B

c cc
c c

d d d

d d d

v v v

µ µ µ

ω ω ω

⋅=
+

= ⋅ +

= ⋅ +

= ⋅ +

= ⋅ +

= ⋅ +

 

5 Outlook 

An overview was given, in which way the Modelica 
MultiBody library is extended with collision han-
dling. The current stage is already useful for applica-
tions. Development continues to improve the colli-
sion handling: 
• Using the “broad-phase” of SOLID to reduce the 

number of collision tests significantly. 
• Support more than one contact point between 

two surfaces. This is important for non-convex 
surfaces. 

• Optionally, provide a more detailed response 
calculation by discretization of the contact area. 

• Reduce the limitations of “*.dxf” files. 
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