

The Modelica Association Modelica 2006, September 4th – 5th

Modeling and simulation of differential equations in Scicos

Masoud Najafi Ramine Nikoukhah
INRIA-Rocquencourt, Domaine de Voluceau,

78153, Le Chesnay Cedex France

Abstract

Block diagram method is an old approach for the mod-
eling and simulation of differential equations. Model-
ing and simulation of some kind of differential equa-
tions such as differential-algebraic equations (DAE) is
cumbersome, difficult, or even impossible with this
approach. Scicos which is a modeling and simula-
tion software based on Block diagram approach has re-
cently been developed to simulate Modelica programs.
In this paper, it will be explained the way different
classes of DAE can easily be specified in Modelica and
simulated in Scicos.
Keywords: hybrid differential equations; numerical
solver; simulation; Modelica; Scicos

1 Introduction

Scilab1 is a free, and open-source software for sci-
entific calculation. Scicos2 is a toolbox of Scilab
and provides an environment for modeling and sim-
ulation of dynamical systems [6, 4]. For many ap-
plications, the Scilab/Scicos environment provides an
open-source alternative to Matlab/Simulink and Ma-
trixX [14, 15]. Scicos includes a graphical editor for
constructing models by interconnecting blocks, repre-
senting predefined or user defined functions, a com-
piler, a simulator, and code generation facilities. A
Scicos block diagram is composed of blocks and con-
nection links. A block corresponds to an operation and
by interconnecting blocks through links, we can con-
struct a model, or an algorithm.
The Scicos blocks represent elementary systems that
can be used as model building blocks. They can have
several inputs and outputs, continuous-time states,
discrete-time states, zero-crossing functions, etc. Sci-
cos allows customization with regard to incorporating
user C, Fortran, or Scilab codes. Scicos translates the
block diagram model into a system of Ordinary Dif-

1www.scilab.org
2www.scicos.org

ferential Equations (ODE) or Differential Algebraic
Equation (DAE) and applies an ODE or a DAE solver
in order to perform a simulation. A block diagram sys-
tem representation can only be used to model ODEs
and a special class of DAEs, while the solvers used in
Scicos support a larger class of DAEs [9]. In this paper
we will explain the way Scicos environment has been
developed to write and simulate a large class of differ-
ential equations, called hybrid differential equations.
To get an idea what a Scicos model looks like, a model
of a simple control system implemented in Scicos has
been shown in Figure 1. In Figure 1 the Clock block

Den(s)
−−−−−
Num(s)

Den(s)
−−−−−
Num(s)

PlantControllerReference

generator
sinusoid
generator
sinusoid

33

Den(s)
−−−−−
Num(s)

Den(s)
−−−−−
Num(s)

Feedback

Figure 1: A Scicos model of a control system

generates a periodic activation signal (event) that acti-
vates the Scope block. At event times the scope reads
its input signal and displays them.

2 Mathematical Background

A differential equation expressed either by an Ordi-
nary Differential Equations (ODE), i.e.,

ẋ � f
�
x � u � t �

where ẋ denotes the derivative of x, the state variables,
with respect to the time variable t, and u is the input
vector variable, or by Differential Algebraic Equations
(DAE) [2, 3, 5], i.e.,�

ẋ � f
�
x � y � u � t �

0 � g
�
x � y � u � t � (1)

177

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

where (1-a) is the differential part and (1-b) is the al-
gebraic part of the DAE. The equation set (1) is a semi-
explicit DAE, where the differential and the algebraic
parts are decomposed. If we cast (1) in the form of

0 � F
�
ż � z � t ��� z ��� x

y � (2)

This system is called a fully implicit DAE. Note that if
∂F
∂ż

is non-singular, then it is possible to formally solve

ż as a function of z in order to obtain an ODE. How-
ever, if it is singular, this is no longer possible and the
solution z has to satisfy certain algebraic constraints.
DAEs are characterized by their index. The index of
a DAE , e.g.,(2), is the smallest number of differenti-
ation of (2) to obtain an ODE by algebraic manipula-
tions [7]. In general, the higher the index, the greater
the numerical difficulty one encounters, when trying
to integrate the DAE numerically. In a semi-explicit
index-1 DAE (1), variables whose derivatives appear
in DAE are called differential variables and the other
ones are called algebraic, i.e., x in (1-a) is differential
and y in (1-b) is algebraic [16, 17].

2.1 Numerical solvers of Scicos

In order to integrate differential equations or simu-
late any model, Scicos uses two numerical solvers;
Lsodar [8, 16] and DASKR [16, 2]. Lsodar is an
ODE solver which is used when the Scicos diagram
represents an ODE. If a diagram represents a DAE,
DASKR is used. DASKR is a variable step, variable
order index-1 DAE solver. The solver properties dis-
cussed here are those of DASKR and LSODAR; how-
ever these properties are common to most modern
solvers. The most important of these properties will
be explained in the following subsections [11].
Consistent initial condition: Most of the problems in
using standard solvers are common to both ODE and
DAE solvers. However, there is an additional difficulty
with the DAE case: the problem of re-initialization and
finding consistent initial conditions. Simulation of an
ODE can be started from any initial state, but simula-
tion of a DAE should be started from a consistent ini-
tial state. This is an additional difficulty in simulation
of DAEs.
Continuity criteria for numerical solver: DASKR

and LSODAR use a variable order variable step-size
BDF (backward differentiation formula) method to in-
tegrate. The BDF methods normally need continuity
in variables and their derivatives [1]. Consequently,

DASKR and LSODAR require that the system be suffi-
ciently smooth over an integration period. This means
that simulator must make sure to stop and reinitialize
the solver at each potential point of non-smoothness
(discontinuity, discontinuity in the derivative, etc.) of
the ODE/DAE. These ODE/DAEs require some addi-
tional solver features, such as event detection or root
finding.
Event detection: The ability to detect the time when a
discontinuity occurs, or more precisely, the time when
a function crosses some given value (by default con-
sidered zero) is of capital importance in simulation of
DAEs. For this purpose, the discontinuity function is
given to the solver as a zero-crossing function. When
a zero-crossing occurs, the solver stops the integration
and returns the exact crossing time to the main pro-
gram. So, it is important to halt the solver and restart at
the discontinuity point. The numerical solver can also
provide the direction in which a function has crossed
the zero.

2.2 Discontinuity handling in the simulator
of Scicos

DAEs may have discontinuities or may be variable
structure or may change at certain points in time. Such
types of DAEs are called hybrid DAEs. A hybrid DAE
is a way of describing non-smooth multi-model sys-
tems in terms of a finite number of smooth systems.
The idea is to divide the state space of the system into
different regions. It is assumed that the system is de-
scribed in terms of a single smooth DAE within each
region. A simple example of a multi-model DAE is:	�
 �

g
�
x �
� 0 ��������� f1

�
ẋ � x � u � t � � 0������� f2
�
ẋ � x � u � t � � 0

(3)

where the DAE has two models: the first one is on
when

�
g
�
x �
� 0 � and the second is when the condition

is not true. This switching may cause a discontinuity in
the signals, so they cannot be integrated by the numeri-
cal solvers. In order to cope with this problem, the dis-
continuity should be detected and the solver be reini-
tialized after the discontinuity point. To detect and lo-
calize the discontinuity time, solvers use zero-crossing
functions that cross zero over the discontinuity point.
For example, for (3), we use g

�
x � as the zero-crossing

function [11].
For localizing the discontinuity point, the simulator as-
sociates Mode variables with each zero-crossing func-
tions in Scicos. Mode variables are used to assign
and fix an ODE/DAE in every time interval between

178

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

each two discontinuities. In general, when the nu-
merical solver is called, the system of equation should
not be changed. During integration, the zero-crossing
functions that indicate the conditions for the model
change are examined by the solver. In case of any
zero-crossing, the Mode variables should be updated
to feed another ODE/DAE to the solver. It should be
note that Mode variables are defined in the Scicos sim-
ulator and is transparent to the user. In Scicos, a Mode
variable is assigned systematically to each discontinu-
ity point, characterized by an If-then-Else block.
Scicos considers the system (3) in the following form:

0 � �
f1
�
ẋ � x � u � t � �
 ����� � �!

f2
�
ẋ � x � u � t � �
 ����� � �#"$ �%��� �

g
�
x �'& 0 �(���%��� ����� � �) $ �%��� �

g
�
x �'* 0 �(���%��� ����� � �+"

By default, for any discontinuity in the model,
a Mode is used. But it should be noted that
any If-then-Else, not resulting in a disconti-
nuity, can be used without Mode. If the result-
ing if-then-else expression is smooth, the mod-
eler has the possibility to give this extra information
to the simulator in order to avoid these unnecessary
solver reinitialization. That is why there is a param-
eter in If-then-Else blocks that lets the user de-
fine whether the block is used with or without zero-
crossing. The Mode variables should not be used in
some cases. For example, when a function is not de-
fined everywhere and might be called near the limit of
validity. In DAE (4),

ẋ �-, xy , x . y

y � � , 1 .0/ x �
 x & 0, 1 . / , x �
 x * 0
(4)

if the Mode variable is used the first model (i.e., / x)
is employed until the discontinuity point x � 0 is de-
tected. During the search process the solver uses / x
for x * 0 to localize the crossing point. This will
cause a failure in the integration, so the Mode variable
should not be used to permit the solver probe beyond
the discontinuity point.

3 Implementing differential equa-
tions with block diagram approach

Block diagram implementation is an old method to
represent differential equations. In this method,
through the use of multipliers, adders, integrators,
etc. a differential equations is constructed graphically.

Block diagram consists of blocks that are connected by
arrows and each block is a transducer that transforms
the incoming signals to one or more output signals.
A block can represent simple arithmetic operations or
functions without memory, but also operations whose
results are dependent on previous inputs to the block,
i.e., with memory. Several software tools such as Sci-
cos, Simulink, SystemBuild, etc. use block diagram
method to model and simulate dynamical systems. As
an example the diagram in Figure 2 displays the graph-
ical representation of equation (5).122223 22224

ẋ1
�-, 0 5 04x1 . 104x2x3

ẋ2
� 0 5 04x1

, 104x2x3
, 3 6 107x2

2�
 �
1 . sin

�
0 5 1t � , x2

, x1 � 0 5 5 ��7�%��� x3
�-, 10x1 ��8����� x3
� 10x1 5 (5)

Figure 2: Block diagram implementation of DAE (5)
in Scicos

3.1 Shortcomings in the block diagram ap-
proach

It is often possible to model differential equations via
block diagram approach, but in fact it is not an easy
and efficient way. There are several shortcomings. In a
block diagram model a small change in the differential
equations follows with another study to rearrange the
entire structure of the block diagram which may have
little similarity to the previous version. Furthermore,
most of the general-purpose simulation softwares on
the market such as ACSL, Simulink and SystemBuild
that use block diagram approach assume that a system
can be decomposed into block diagram structures with
causal interactions. This means that the models should
be expressed as an interconnection of models on semi-
explicit form, i.e., M

�
t � ẋ � f

�
x � t � , where the matrix

M
�
t � is singular [18]. Although theoretically any DAE

index-1, can be transformed into a semi-explicit DAE,

179

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

since such a transformation is done manually, it is time
consuming and sometimes it is practically impossible.
With these shortcomings, there is a rising need to have
an appropriate framework for DAE representation. A
convenient way is to work with the DAEs as the text.
The reader may think of simulation methods in which
DAEs are expressed in a textual environment, such as
writing computer programs and invoking the numer-
ical solvers, or writing Scilab or Matlab script files.
But these methods are not efficient and do not provide
a proper framework to control and interact with the nu-
merical solver. In fact, the numerical solver considers
the DAE as a black box and the internal discontinuities
remain hidden. For example, if a discontinuous DAE
is simulated directly by Dassl function in Scilab or
by ode15s function in Matlab, the simulation would
fail. As an example, when we tested DAE (5) with
Matlab, the simulation failed and the following error
message raised:
>> Warning: Failure at t=5.235698e+00.

Unable to meet integration tolerances

without reducing the step size

below the smallest value allowed

(1.860093e-14) at time t.

The problem lies in the solver control, i.e., a dis-
continuous DAE cannot be integrated by the numeri-
cal solver without discontinuity handling and a good
restart managements. Scicos has recently been de-
veloped to simulate non-casual models and the user
can write physical models symbolically with a new the
Modelica language [10].

4 Modelica language

Modelica3 is a freely available, object oriented, gen-
eral purpose language for modeling of physical sys-
tems, e.g., mechanical, electrical and control sys-
tems. The Modelica language allows a direct and
convenient specification of systems with continuous-
time and discrete-time dynamics. Although Model-
ica is a rich language having the capacity to handle
continuous-time and discrete-time behaviors, in this
paper we will focus mainly on modeling hybrid differ-
ential equations. A Modelica program or model like
any other computer language is composed of a vari-
able or component declaration section and an equation
section. Suppose that we want to model DAE (6) in

3www.Modelica.org

Modelica. 1223 224 ẋ � x , xy
ẏ � yx , 2y
x
�
0 � � 1

y
�
0 � � 2

(6)

This DAE consists of two differential variables, i.e., x
and y. They are continuous-time Real type variables
and their initial value at beginning (time=0) are 1 and
2, respectively. Here is the Modelica program:

class Oscillator "Oscillator model"
Real x(start =1), y(start=2);

equation
der(x) = x-x*y;
der(y) = x*y-2*y;

end Oscillator;

In the first part of the program, two variables and their
initial values are declared. The next part of the pro-
gram contains the equations. In this section, there are
two equations for two unknowns, i.e., der(x) and
der(y) the time derivatives of x and y. In Modelica,
equations are composed of expressions both on the left
hand side and the right hand side. It is neither required
to write the equations in form of assignments, nor to
write the equations in a specified order. It is, however,
important to provide equal number of unknowns and
equations. For instance, here is the above program that
has been rewritten without changing the model math-
ematically:

class Oscillator2 "Oscillator model"
Real x(start =1), y(start=2), v;

equation
der(x)-x+v=0;
0=-der(y)-2*y+ v;
x*y=v;

end Oscillator2;

Note that in this program, v is an algebraic variable. In
Modelica the initial value of all variables can be speci-
fied. Theoretically specifying initial value of algebraic
states is not required. This, however, would help the
numerical solver to find the consistent initial condition
for highly nonlinear DAEs or in case where there are
several solutions it acts as a guess value to help the
solver to catch the desired solution [13].
In Modelica models that are in fact the mathemati-
cal equations, it is not possible to classify (at least a-
priori) the variables as inputs and outputs. This type of
models are called acausal models. That is in contrast
with causal models where there are explicit inputs and
outputs and the outputs are computed as function of in-
puts and other internal variables. To make an analogy

180

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

with computer programming languages, causal models
correspond to the use of assignment statements where
the right-hand sides of the equations are evaluated and
the result of the evaluation is assigned to the variables
on the left-hand side of the equations [10].
An acausal model cannot be simulated directly, it
should be transformed into a causal model. In general,
it is possible to convert an acausal model into a causal
model by rewriting the equations and finding the ap-
propriate causality structure in equations. In Scicos
this is done by the Modelica compiler. The Modelica
compiler receives the Modelica program and extracts
the necessary information for the numerical simulation
and generates a usable C program for Scicos.

5 Hybrid DAE modeling in Modelica

In block diagram approach one cannot model fully-
implicit DAEs directly. In Modelica this constraint
does not exist and any DAE4 can be expressed without
making any effort to transform them into an explicit
form. A multi-model DAE or a DAE with discontinu-
ity is defined with If-then-else constructs. Note
that an If should always be used with an else. As
an example, a Modelica Code for the DAE (5) follows:

class DAE2
Real x1(start=1.0), x2 (start=0.0), x3,xs;

equation
der(x1) = -0.04*x1 + 1e4*x2*x3;
der(x2) = 0.04*x1 - 1e4*x2*x3 - 3e7*x2*x2;
x3 = if (xs>0.5) then -10*x1 else 10*x1;
xs = 1 + sin(0.1*time)-x2-x1;

end DAE2;

For this DAE, the Modelica compiler automatically
extracts (xs-0.5) as the discontinuity or zero-
crossing function and assigns a Mode variable during
the generation of the C program. If-then-else
constructs can also be used to define multi-model
DAEs. For example, for the following multi-model
DAE�
 � x & 0 �9������� � 0 � ẋ3 , xyẋ , x . y2 . 1

0 � ẏẋ . yx , x������� � 0 � ẏ , 2yẋ . y . x2 , 1
0 � 5ẋ . 2 , 2yx . ẏx . sin

�
t �

we can write this Modelica code:
0=if (x>=0) then der(x)ˆ3-x*y*der(x)-x+y*y+1

else der(y)-2*y*der(x)+y+x*x-1;

0=if (x>=0) then der(y)*der(x)+y*x-x
else der(x)*5+2-2*y*x+der(y)*x+sin(time);

4In the current version of the Modelica compiler of Scicos only
index-1 DAEs are accepted

By default, the Modelica compiler of Scicos associate
Mode variables with discontinuity points. When a dis-
continuity does not need any special treatments, the
compiler should be informed with noEvent() oper-
ator. For example, for DAE (4) we write

der(x)=-y*x-x+y;
y=if noEvent(x>=0) then -1+sqrt(x)

else -1+sqrt(-x);

In this case, the Modelica compiler does not consider
the condition as a zero-crossing functions and during
the simulation, the solver does not stop at x=0. For
(x>0), / x is evaluated and for (x<0), / , x is used.
In general, noEvent() performs two things: First,
it inhibits the solver to probe for solutions beyond
the limit of validity. Then, it prevents the solver
from halting the integration and doing an unnecessary
restart.

Modelica can also be used for mixed continuous-time
and discrete equations. For the discrete-time parts,
the synchronous data flow principle with the single
assignment rule is used. Discrete event and discrete-
time models are supported by when statements. The
equations in a when clause are conditionally acti-
vated at instants (called event) where the when con-
dition becomes true. Here is an example to show the
way a discrete-time equation is written in Modelica.
The difference equation should be updated whenever x
crossed zero with a positive to negative direction, i.e.,�

ẍ �-, 4x:�; ��< ��� z
�
k . 1 � � 0 5 9 z

�
k � , 0 5 2

we can write the following modelica program.

class Sine
Real x(start=1), y(start=0);
discrete Real z(start=3), z1(start=-1);

equation
der(x)=y;
der(y)=-4*x;
when (x<0) then

z=0.9*z-0.2;
end when;

end Sine;

The Modelica compiler deduces the direction of the
zero-crossing form the condition (x<0). Because this
condition becomes true when the x becomes negative.
So far, Scicos provides a minimum support for Model-
ica discrete models. That is because the discrete time
models can be modeled in the Scicos environment. It
is however envisaged to improve Modelica compiler
of Scicos to support Modelica discrete models.
In when clauses, continuous-time variable can also
be initialized. A special operator reinit(state,

181

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

NewValue) can be used to assign new values to the
continuous states of a model at an event time. reinit
can only be employed in the body of a when-clause.
As an example, consider the bouncing ball system.
Whenever the ball hits ground, i.e., its height be-
comes negative, the velocity changes sign and damp-
ens down. Here is a Modelica code for this hybrid
system.

class Bounce
Real y(start=10), v(start=0);

equation
der(y) = v;
der(v) = -9.8;
when y < 0 then

reinit(v, -0.9*v);
end when;

end Bounce;

6 Simulation of Modelica programs

Modelica is a language that provides an environ-
ment to express the differential and algebraic equa-
tions. Note however that the main goal is simulat-
ing the models. In order to simulate Modelica mod-
els, they should be transformed into a causal pro-
gram. For that, the Modelica models should be com-
piled. There are several Modelica compilers such as
Dymola5 and Open-Modelica6 . Scicos has its own
Modelica compiler called Modelicac (acronym of
”Modelica compiler”) for a subset of the Modelica lan-
guage. Modelicac is an external tool, i.e., it is inde-
pendent of Scilab. By default, Modelicac comes with
a module that generates a C code for Scicos blocks.
However, since Modelicac is free and open source, it
is possible to develop code generators for other targets
as well.
A Modelica program is associated with a Scicos block.
A Scicos block whose behavior is written in Model-
ica is called an implicit block [10]. With the asso-
ciated implicit block the input/output variables of the
Modelica program can be defined or visualized. This
block may be connected to other blocks to build a big-
ger model, see for example Figure 3 in which a sim-
ple electrical circuit has been built with implicit blocks
and some output variables are visualized with ordinary
or explicit blocks..
The Modelica compiler uses the input and output vari-
ables to establish a causality between the variables in
the Modelica program. In the next stage, the compiler

5www.dymola.com
6www.modelica.org

L=0.0001L=0.0001
+ −

C= 0.1

+ −

C= 0.1 Voltmeter

Source

VV

~
2
~
2

AA
MScopeMScope

R=0.2R=0.2

Ammeter

Figure 3: A Modelica block for Oscillator3.mo

simplifies the equations and eliminates the unneces-
sary variables if possible. In the final stage a C pro-
gram that has the input/output behavior of the Model-
ica program is generated [13]. Most of the time, the
simplification and elimination of variables reduces the
size of DAE that consequently reduces the integration
time. In addition, a semi-explicit DAE form may be
obtained that simplifies the numerical integration [12].
In order to demonstrate the simulation of a complete
example, consider this Modelica program

class Oscillator3 "Oscillator model"
Real x(start =1), y(start=2), u;

equation
der(x) = x-x*y;
der(y) = x*y-u*y;

end Oscillator3;

where u is unknown and is defined by user or an-
other block. To simulate Oscillator3, we use a
Modelica block (see Fig. 4) . In the dialog box of
the block (see Fig. 5) an input variable u and two out-
put variables x,y are defined. After clicking on OK,
another window lets the user write the program (see
Figure 6).

MScopeMScope
Block
Modelica
Block
Modelica

Figure 4: A Modelica block for Oscillator3.mo

When the program is compiled, a C program is gener-
ated. Here is a fragment of the generated code.

182

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

Figure 5: Defining the Modelica program input/output
variables

Figure 6: Modelica program in a Modelica block

if (flag == 0) { // generated DAE code
res[0] = xd[0]+x[0]*x[1]-x[0];
res[1] = u[0]*x[1]+xd[1]-x[0]*x[1];

}else if (flag == 1) { //output update
y[0][0] = x[0];
y[1][0] = x[1];

}else if (flag == 4) {// initial values
x[0] = 1.0;
x[1] = 2.0;

}

The simulation result is given in Figure 7.
As another example, consider the DAE (5) whose
block diagram implementation is depicted in Figure 2.
In this case, the Modelica block has only three out-
puts, see Figure 8-10. The simulation result is given in
Figure 11.

7 Conclusion

Modeling and simulation of DAEs via block diagram
approach has several shortcomings. Scicos which is a
simulation software based on block approach has re-
cently been developed to provide another approach for

0 4 8 12 16 20 24 28 32 36 40
0.0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0

+

0 4 8 12 16 20 24 28 32 36 40
−3.0
−2.2
−1.4
−0.6

0.2
1.0
1.8
2.6
3.4
4.2
5.0

+

0 4 8 12 16 20 24 28 32 36 40
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

+

Figure 7: Simulation results for the Scicos diagram in
Figure 4

MScopeMScopeBlock
Modelica
Block
Modelica

Figure 8: A Modelica block for the DAE (5)

modeling DAEs, i.e., using the Modelica language. In
this paper, with some examples we explained the way
hybrid DAEs are simulated in Scicos. The Modelica
language and its use in Scicos in modeling and simu-
lation of hybrid DAEs were explained. In the last part
of the paper, a simple Scicos block is introduced to
write and simulate Modelica programs in Scicos.

References

[1] BRENAN, K. E., CAMPBELL, S. L., AND PET-
ZOLD, L. R. Numerical solution of initial-
value problems in differential-algebraic equa-
tions. SIAM pubs., Philadelphia (1996).

[2] BROWN, P. N., HINDMARSH, A. C., AND PET-
ZOLD, L. R. Consistent initial condition calcu-
lation for differential-algebraic systems. SIAM
Journal on Scientific Computing 19, 5 (1998),
1495–1512.

[3] CAMPBELL, S. L. Numerical methods for un-
structured higher index daes. Annals of Numeri-

183

Modeling and Simulation of Differential Equations in Scicos

The Modelica Association Modelica 2006, September 4th – 5th

Figure 9: Defining the Modelica program input/output
variables

Figure 10: Modelica program in a Modelica block

cal Mathematics 1 (1994), 265–278.

[4] CAMPBELL, S. L., CHANCELIER, J.-P., AND

NIKOUKHAH, R. Modeling and simulation
Scilab/Scicos, 1st ed. Springer Verlag, 2005.

[5] CAMPBELL, S. L., MOORE, E., NAKASHIGE,
R., ZHONG, Y., AND ZOCHLING, R. Constraint
preserving integrators for unstructured higher in-
dex daes. Zeitschrift fuer Angewandte Mathe-
matik und Mechanik (ZAMM) 76 (1996), 83–86.

[6] CHANCELIER, J. P., DELEBECQUE, F.,
GOMEZ, C., GOURSAT, M., NIKOUKHAH,
R., AND STEER, S. An introduction to Scilab,
1st ed. Springer Verlag, Le Chesnay, France,
2002.

[7] GEAR, C. W. Differential-algebraic equation in-
dex transformations. SIAM. J. Sci. Stat. Comp. 9
(1988), 39–47.

[8] HINDMARSH, A. C. Lsode and lsodi, two
new initial value ordinary differential equation

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50
−0.10

0.04
0.18
0.32
0.46
0.60
0.74
0.88
1.02
1.16
1.30

+

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50
−1.0e−03
−4.0e−04

2.0e−04
8.0e−04
1.4e−03
2.0e−03
2.6e−03
3.2e−03
3.8e−03
4.4e−03
5.0e−03

+

5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50
−12.0

−9.6
−7.2
−4.8
−2.4

0.0
2.4
4.8
7.2
9.6

12.0

+

Figure 11: Simulation result for the diagram in Fig-
ure 4

solvers. ACM-Signum Newsletter 15 (1980), 10–
11.

[9] NAJAFI, M., AZIL, A., AND NIKOUKHAH, R.
Implementation of continuous-time dynamics in
scicos. 15th ESS Conference, Delft, the Nether-
lands (October 2003).

[10] NAJAFI, M., AZIL, A., AND NIKOUKHAH,
R. Extending scicos from system to component
level simulation. ESMC2004 international con-
ference, Paris, France (October 2004).

[11] NAJAFI, M., AND NIKOUKHAH, R. The use of
the numerical integrator in scicos, a user friendly
graphical based simulation software. European
Journal of Automation (JESA) Special issue on
modeling, formalism, methods and simulation
tools (2006), 95–111.

[12] NAJAFI, M., NIKOUKHAH, R., AND CAMP-
BELL, S. L. The role of model formulation in
dae integration: Experience gained in developing
scicos. 17th IMACS World Congress Mathemat-
ics and Computers in Simulation, Paris, France
(July 2005).

[13] NAJAFI, M., NIKOUKHAH, R., STEER, S., AND

FURIC, S. New features and new challenges in
modeling and simulation in scicos. IEEE con-
ference on control application, Toronto, Canada
(2005).

[14] NIKOUKHAH, R., AND STEER, S. Hybrid sys-
tems: modeling and simulation. In COSY: Math-

184

M. Najafi, R. Nikoukhah

The Modelica Association Modelica 2006, September 4th – 5th

ematical Modelling of Complex System, Lund,
Sweden (September 1996).

[15] NIKOUKHAH, R., AND STEER, S. Scicos: A dy-
namic system builder and simulator, user’s guide
- version 1.0. Tech. Rep. RT-0207, INRIA Tech-
nical Report, Le Chesnay, France, June 1997.

[16] PETZOLD, L. R. Automatic selection of meth-
ods for solving stiff and nonstiff systems of or-
dinary differential equations. SIAM J. Sci. Stat.
Comput 4 (1983).

[17] PETZOLD, L. R. Order results for implicit
runge-kutta method applied to differential alge-
braic systems. SIAM. J. Numer. Anal. 23 (1986),
837–852.

[18] SHAMPINE, L., REICHELT, M. W., AND

KIERZENKA, J. A. Solving index-1 DAEs in
MATLAB and Simulink. j-SIAM-REVIEW 41, 3
(1999), 538–552.

185

Modeling and Simulation of Differential Equations in Scicos

