
Modelica - A Language for Equation-Based Physical
Modeling and High Performance Simulation

Peter Fritzson

PELAB, Dept. of Computer and Information Science
Link6ping University, S-58183, LinkOping, Sweden

pet fr@ida, liu. se

Abstract. A new language called Modelica for hierarchical physical modeling is
developed through an international effort. Modelica 1.0 [http://
www.Dynasim.se/Modelica] was announced in September 1997. It is an object-
oriented language for modeling of physical systems for the purpose of efficient
simulation. The language unifies and generalizes previous object-oriented mode-
ling languages and techniques.

Compared to the widespread simulation languages available today this lan-
guage offers two important advances: 1) non-causal modeling based on differen-
tial and algebraic equations; 2) multidomain modeling capability, i.e. it is
possible to combine electrical, mechanical, thermodynamic, hydraulic etc.
model components within the same application model.

A class in Modelica may contain variables (i.e. instances of other classes),
equations and local class definitions. The multi-domain capability is partly based
on a notion of connectors, which are classes just like any other entity in Model-
ica.

Simulation models can be developed using a graphical editor for connection
diagrams. Connections are established just by drawing lines between objects
picked from a class library. The Modelica model is translated into a set of con-
stants, variables and equations. Equations are sorted and converted to assign-
ment statements when possible. Strongly connected sets of equations are solved
by calling a symbolic and/or numeric solver. The C/C++ code generated from
Modelica models is quite efficient.

High performance parallel simulation code can be obtained either at the
coarse-grained level by identifying fairly independent submodels which are sim-
ulated in parallel, or at the fine-grained level by parallelizing on clustered
expression nodes in the equation graph. Preliminary results using the coarse-
grained approach have been obtained in an application on simulating an autono-
mous aircraft watching car traffic.

1 Introduction

The use of computer simulation in industry is rapidly increasing. This is typically used
to optimize products and to reduce product development cost and time. Whereas in the
past it was considered sufficient to simulate subsystems separately, the current trend is
to simulate increasingly complex physical systems composed of subsystems from mul-
tiple domains such as mechanic, electric, hydraulic, thermodynamic, and control sys-
tem components.

150

1.1 Background

Many commercial simulation software packages are currently available. The market is
divided into distinct domains, such as packages based on block diagrams (block-orient-
ed tools, such as SIMULINK, System Build, ACSL), electronic programs (signal-ori-
ented tools, such as SPICE, Saber), multibody systems (ADAMS, DADS, SIMPACK),
and others. With very few exceptions, all simulation packages are strong only in one
domain and are not capable of modeling components from other domains in a reason-
able way. However, this is a prerequisite to be able to simulate modern products that
integrate components from several domains such as for example electric, mechanic, hy-
draulic and control.

1.2 Problems

To summarize the current situation, there are at least three serious problems:

�9 High performance simulation of complex multi-domain systems is needed. Current
widespread methods cannot cope with serious multi-domain modeling and
simulation in an economical way.

�9 Simulated systems are increasingly complex. Thus, system modeling has to be
based primarily on combining reusable components instead of re-inventing the
wheel. A better technology is needed in creating easy-to-use reusable components.

�9 It is hard to achieve truly reusable components in object-oriented programming and
modeling.

1.3 Proposed Solution

The goal of the Modelica project[8] is to provide practically usable solutions to these
problems, based on techniques for mathematical modeling of reusable components.

Several first generation object-oriented mathematical modeling languages and
simulation systems (ObjectMath [4], Dymola [2], Omola [1], NMF, gPROMS, Allan,
Smile, etc.) have been developed during the past few years. These languages were
applied in areas such as robotics, vehicles, thermal power plants, nuclear power plants,
airplane simulation, real-time simulation of gear boxes, etc.

Several applications have shown that object-oriented modeling techniques is not
only comparable to, but outperform special purpose tools on applications that are far
beyond the capacity of established block-oriented simulation tools.

However, the situation of a number of different incompatible object-oriented
modeling and simulation languages was not satisfactory. Therefore in the fall of 1996
a group of researchers (see Sect. 3.5) from universities and industry started work
towards standardization and making this object-oriented modeling technology widely
available.

The new language is called Modelica and designed for modeling dynamic behavior
of engineering systems, intended to become a de facto standard.

Modelica is superior to current technology mainly for the following reasons:

151

�9 Object-oriented modeling. This technique makes it possible to create physically
relevant and easy-to-use model components, which are employed to support
hierarchical structuring, reuse, and evolution of large and complex models covering
multiple technology domains. More details on object-orientation in Modelica can
be found in [5] and [8].

�9 Non-causal modeling. Modeling is based on equations instead of assignment
statements as in traditional input/output block abstractions. Direct use of equations
significantly increases re-usability of model components, since components adapt
to the data flow context in which they are used. This generalization enables both
simpler models and more efficient simulation. However, for interfacing with
traditional software, algorithm sections with assignments as well as external
functions/procedures are also available in Modelica.

�9 Physical modeling of multiple domains. Model components can correspond to
physical objects in the real world, in contrast to established techniques that require
conversion to "signal" blocks with fixed input/output causality. In Modelica the
structure of the model becomes more natural in contrast to block-oriented modeling
tools. For application engineers, such "physical" components are particularly easy
to combine into simulation models using a graphical editor.

1.4 Modelica view of object-oriented mathematical modeling

Traditional procedural languages such as Fortran or C, and object-oriented languages
like C++, Java, Smalltalk and Simula support programming with operations on state.
The state of the program includes variable values and object data. The number of ob-
jects changes dynamically. The Smalltalk view of object orientation is of sending mes-
sages between (dynamically) created objects. The Modelica view is different since the
Modelica language emphasizes structured mathematical modeling. Object-orientation
is primarily viewed as a structuring concept that is used to handle the complexity of
large system descriptions. A Modelica model is primarily a declarative mathematical
description, which allows analysis and equational reasoning. Dynamic system proper-
ties are expressed in a declarative way through equations.

1.5 Traditional High-Performance Software

High-performance software is traditionally developed in languages such as Fortran, C
or C++, often combined with parallel libraries e.g. MPI, ScalaPack, etc. Although this
paper primarily presents new aspects of Modelica examplified through non-causal
classes using equations, it is possible to write algorithmic code in Modelica, and to in-
tegrate traditional software components with Modelica code. In fact, Modelica's strong
view of software components [11] opens up new possibilities for component based soft-
ware design and system integration.

152

2 A Modelica overview

Modelica programs are built from classes. Like in other object-oriented languages, a
class contains variables, i.e. class attributes representing data. The main difference
compared with traditional object-oriented languages is that instead of functions (meth-
ods) we primarily use equations to specify behavior. Equations can be written explicit-
ly, like a=b, or be inherited from other classes. Equations can also be specified by the
connect statement. The statement connect (vl, v2) expresses coupling between
variables vl and v2. These variables are called connectors and belong to the connected
objects. This gives a flexible way of specifying topology of physical systems described
in an object-oriented way using Modelica.

In the following sections we introduce some basic and distinctive syntactical and
semantic features of Modelica, such as connectors, encapsulation of equations,
inheritance, declaration of parameters and constants.

2.1 Model ica m o d e l o f an electric circuit

As an introduction to Modelica we will present a model of a simple electrical circuit as
shown in Fig. 1. The system can be broken into a set of connected electrical standard
components. We have a voltage source, two resistors, an inductor, a capacitor and a
ground point. Models of such components are available in Modelica class libraries.

AC

1 N1 4 Legend

1-'] AC, R1, R2, L, C, G circuit elements
12 N I N 4 - nodes

N3q 2 :1.-7 - wires

C ~ +" + - positive pins
u (t) = VA sin(2~ f t)

3 N2 (alternate voltage source)
7

- - G

Fig. 1. A connection diagram of the simple electrical circuit example.
The numbers of wires and nodes are used for reference in Table 1.

A declaration like the one below specifies R1 to be of class Res i s t o r and sets the de-
fault value of the resistance, R, to 10.

Resistor RI(R=I0) ;

A Modelica description of the complete circuit appears as follows:

class circuit

Resistor R1 (R=I0) ;

Capacitor C(C=0.01) ;

Resistor R2 (R=I00) ;

Inductor L (L=0. i) ;

153

VsourceAC AC;

Ground G;

equation

connect (AC.p, Rl.p); // Wire 1

connect (Rl.n, C.p); // Wire 2

connect (C.n, AC.n) ; // Wire 3

connect (Rl.p, R2.p); // Wire 4

connect (R2.n, L.p); // Wire 5

connect (L.n, C.n) ; // Wire 6

connect (AC.n, G.p); // Wire 7

end circuit;

A composite model like the circuit model described above specifies the system topolo-
gy, i.e. the components and the connections between the components. The connections
specify interactions between the components. In some previous object-oriented mode-
ling languages connectors are referred to cuts, ports or terminals. The keyword c o n -
n e c t is a special operator that generates equations taking into account what kind of in-
teraction is involved as explained in Sect. 2.3.

Variables declared within classes are public by default, if they are not preceded by
the keyword protec ted which has the same semantics as in Java. Additional public
or p r o t e c t e d sections can appear within a class, preceded by the corresponding
keyword.

2.2 Library classes

The next step in introducing Modelica is to explain how library model classes can be
defined.

A connector must contain all quantifies needed to describe an interaction. For
electrical components we need the variables voltage and current to define
interaction via a wire. The types to represent those can be declared as:

class Voltage = Real;

class Current = Real;

where Real is the name of a predefined variable type. A R e a l variable has a set of de-
fault attributes such as unit of measure, initial value, minimum and maximum value.
These default attributes can be changed when declaring a new class, for example:

c l a s s v o l t a g e = R e a l (u n i t = ' V " , m i n = - 2 2 0 . 0 , m a x = 2 2 0 . 0) ;

In Modelica, the basic structuring element is a c l a s s . There are seven restricted class
categories with specific keywords, such as t y p e (a class that is an extension of built-in
classes, such as R e a l , or of other defined types) and c o n n e c t o r (a class that does not
have equations and can be used in connections). In any model the t y p e and c o n n e c -
t o r keywords can be replaced by the c l a s s keyword giving a semantically equivalent
model. Other specific class categories are mode l , p a c k a g e , f u n c t i o n and r e c o r d

154

of which model and record can be replaced by class.
The idea of restricted classes is advantageous because the modeler does not have to

learn several different concepts, except for one: the class concept. All properties of a
class, such as syntax and semantics of definition, instantiation, inheritance, and generic
properties are identical to all kinds of restricted classes. Furthermore, the construction
of Modelica translators is simplified considerably because only the syntax and
semantics of a class have to be implemented along with some additional checks on
restricted classes. The basic types, such as Real or Integer are built-in type classes,
i.e., they have all the properties of a class. The previous two definitions can be
expressed as follows using the keyword t y p e which is equivalent to c l a s s , but
limiting the defined type to be extension of a built-in type, record or array.

type Voltage = Real;

type Current = Real;

2.3 Connector classes

A connector class is defined as in the example below:

connector Pin

Voltage v;

flow Current i;

end Pin;

Connection statements are used to connect instances of connection classes. A connec-
tion statement connect (Pinl, Pin2), with Pinl and Pin2 of connector class Pin,
connects the two pins so that they form one node. This implies two equations, namely:

Pinl.v = Pin2.v

Pinl.i + Pin2.i : 0

The first equation says that the voltages of the connected wire ends are the same. The
second equation corresponds to Kirchhoffs current law saying that the currents sum to
zero at a node (assuming positive value while flowing into the component). The sum-
to-zero equations are generated when the prefix f l o w is used. Similar laws apply to
flow rates in a piping network and to forces and torques in mechanical systems.

2.4 Virtual classes

A common property of many electrical components is that they have two pins. This
means that it is useful to define an "interface" model class,

class TwoPin

Pin p, n;

Voltage v;

Current i;

equation

"Superclass of elements

with two electric pins"

155

v : p.v - n.v;

0 - p.i + n.i;

i = p.i;

end TwoPin;

that has two pins, p and n, a quantity, v, that defines the voltage drop across the com-
ponent and a quantity, i, that defines the current into the pin p, through the component
out from pin n (Fig. 2).

r , [. i o

Fig. 2. Generic TwoPin model.

The equations define generic relations between quantities of a simple electrical compo-
nent. In order to be useful a constitutive equation must be added.

2.5 Equations and non-causal modeling

Non-causal modeling means modeling based on equations instead of assignment state-
ments. Equations do not specify which variables are inputs and which are outputs,
whereas in assignment statements variables on the left-hand side are always outputs (re-
suits) and variables on the right-hand side are always inputs. Thus, the causality of
equations-based models is unspecified and becomes fixed only when the corresponding
equation systems are solved. This is called non-causal modeling.

The main advantage with non-causal modeling is that the solution direction of
equations will adapt to the data flow context in which the solution is computed. The data
flow context is defined by telling which variables are needed as outputs and which are
external inputs to the simulated system.

The non-causality of Modelica library classes makes these more reusable than
traditional classes containing assignment statements where the input-output causality is
fixed.

For example, regard the equation below from the R e s i s t o r class:

R*i - v;

which can be used in two ways. The variable v can be computed as a function of i , or
the variable i can be computed as a function of v as shown in the two assignment state-
ments below:

i :: v/R;

v :: R'i;

In the same way the following equation from the class TwoPin:

v=p.v-n.v

156

can be used in three ways:

v :: p.v - n.v;

p.v :: v + n.v;

n.v :: p.v - v;

2.6 Inheritance, parameters and constants

To define a model for a resistor we exploit T w o p i n and add a definition of a p a r a m -
e t e r for the resistance and Ohm's law to define the behavior:

class Resistor "Ideal electrical resistor"

extends TwoPin;

parameter Real R(unit="0hm") "Resistance";

equation

R*i = v;

end Resistor;

The keyword parameter specifies that the variable is constant during a simulation
run, but can have its value initialized before a run. This means that p a r a m e t e r is a spe-
cial kind of constant, which is implemented as a static variable that is initialized once
and never changes its value during a specific execution. A p a r a m e t e r is a variable
that makes it simple for a user to modify the behavior of a model.

A Model ica c o n s t a n t never changes and can be substituted inline.
The keyword e x t e n d s specifies the parent class. Variables, equations and

c o n n e c t s are inherited from the parent. Multiple inheritance is supported in Modelica.
Analogously to C++, variables, equations and connections of the parent class

cannot be removed in the subclass.

In C++ a virtual function can be replaced by a function with the same name in the
child class. In Model ica 1.0 equations cannot be named and therefore in general
inherited equations cannot be replaced/specialized in a child class 1. However, equations
may be replaced in the special case where they have a single identifier on When classes
are inherited, equations are accumulated. This makes the equation-based semantics of
the child classes consistent with the semantics of the parent class.

2.7 Time and model dynamics

Dynamic systems are models where behavior evolves as a function of time. We use a
predefined variable t i m e which steps forward during system simulation.

A class for the voltage source in our circuit example can thus be defined as:

class VsourceAC "Sin-wave voltage source"

extends TwoPin;

1. In the ObjectMath language, one of the precursors to Modelica, equations in gen-
eral can be named and thus specialized through inheritance.

157

parameter Voltage VA : 220 "Amplitude" ;

parameter Real f (unit:"Hz") = 50 "Frequency" ;

constant Real PI = 3.141592653589793;

equation

v = VA*sin(2*PI*f*time) ;

end VsourceAC ;

A class for an electrical capacitor can also reuse the T w o P i n as follows:

class Capacitor "Ideal electrical capacitor"

extends TwoPin;

parameter Real C (unit= "F") "Capacitance" ;

equation

C*der (v) = i;

end Capacitor ;

The notation d e r (v) means the time derivative of v.
During system simulation the variables i and v evolve as functions of time. The

solver of differential equations (see Sect. 3.2) computes the values of i(t) and v(O (t is
t i m e) so that C v'(t)=i(t) for all values of t.

Finally, we define the ground point as a reference value for the voltage levels:

c l a s s G r o u n d " G r o u n d "
Pin p ;

equation

p.v = 0;

end Ground;

More details on other Model ica constructs are presented in [8].

3 Implementation

3.1 Flattening of equations

Classes, instances and equations are translated into flat set of equations, constants
and variables (see Table 1). As an example, we translate the c i r c u i t model from

Sect. 2.1.
The equation v = p . v - n . v is defined by the class TwoPin . The R e s i s t o r class

inherits the T w o P i n class, including this equation. The c i r c u i t class contains a
variable R1 of type Re s i s t o r . Therefore, we include this equation instantiated for R1
as R1. v=R1. p . v - R 1 . n . v into the set of equations.

The wire labelled 1 is represented in the model as c o n n e c t (AC . p , R1 . p) . The
variables A C . p and R l . p have type P i n . The variable v is a non-flow variable
representing voltage potential. Therefore, the equality equation AC. p . v=R1. p . v is
generated. Equality equations are always generated when non-flow variables are

connected.

158

AC

R1

R2

C

Table 1:
0=AC.p.i+Ac.n.i

AC.v=Ac.p.v-AC.n.v

AC.i=AC.p.i

AC.v=AC.VA*

sin(2*PI*AC.f*time);

Equations generated from the simple circuit model
L 0=L.p.i+L.n.i

L.v=L.p.v-L.n.v

L.i=L.p.i

L.v = L.L*L.der(i)

0:Rl.p.i+Rl.n.i

Rl.v:Rl.p.v-Rl.n.v

Rl.i:Rl.p.i

Rl.v : RI.R*RI.i

0:R2.p.i+R2.n.i

R2.v:R2.p.v-R2.n.v

R2.i=R2.p.i

R2.v = R2.R*R2.i

wires

G G.p.v = 0

0=C.p.i+C.n. i flow

C.v=C .p .v-C .n.v at

C. i =C. p. i node
C.i = C.C*C.der(v)

Rl.p.v=AC.p.v // wire 1

C.p.v=Rl.n.v // wire 2

AC.n.v=C.n.v // wire 3

R2.p.v=Rl.p.v // wire 4

L.p.v=R2.n.v // wire 5

L.n.v=C.n.v // wire 6

G.p.v= AC.n.v // wire 7

0=AC.p.i+Rl.p.i+R2.p.i / / 1

0:C.n. i+G. i+AC.n, i+L.n, i / /
0=Rl.n.i+ C.p.i // 3

0 =R2.n.i + L.p.i // 4

Notice that another wire (labelled 4) is attached to the same pin, R1. p. This is repre-
sented by an additional connect statement: c o n n e c t (R1. p . R2. p) . The variable i is
declared as a f 1 ow variable. Thus, the equation AC. p . i +R1. p . 2 +R2. p . i = 0 is gen-
erated. Zero-sum equations are always generated when connecting flow variables, cor-
responding to Kirchhoff's current law.

The complete set of equations generated from the c i r c u i t class (see Table 1)
consists of 32 differential-algebraic equations. These include 32 variables, as well as
t irae and several parameters and constants.

3.2 Solution and simulation

After flattening, all the equations are sorted. Simplification algorithms remove most
equations. If two syntactically equivalent equations appear, only one copy of the equa-
tions is kept.

Then independent equations are converted to assignment statements. If a strongly
connected set of equations appears, this set is transformed by a symbolic solver which
performs a number of algebraic transformations to simplify the dependencies between
the variables. It can also solve a system of differential equations if it has a symbolic
solution. Finally, C/C++ code is generated, and linked with a numeric solver.

The initial values can be taken from the model definition. If necessary, the user
specifies the parameter values (Sect. 2.6). Numeric solvers for differential equations
(such as LSODE, part of ODEPACK[7]) give the user possibility to ask about the value
of specific variable at a specific moment in time. As the result a function of time, e.g.

159

R2. v (t) can be computed for a time interval [t o, tl] and displayed as a graph or saved
in a file. This data presentation is the final result of system simulation.

In most cases (but not always) the performance of generated simulation code
(including the solver) is similar to hand-written C code. Often Modelica is more
efficient than straightforwardly written C code, because additional opportunities for
symbolic optimization are used.

3.3 Current status and future work

As a result from 8 meetings in the period September 1996 - September 1997 the first
full definition of Modelica 1.0 was announced in September 1997 [8, 3]. The work by
the Modelica Committee on the further development of Modelica and tools is continu-
ing. Current issues include definition of Modelica standard libraries, efficient compila-
tion of Modelica, parallel simulation, experimentation environments. The next revision,
Modelica 1.1, is expected during the fall of 1998, including among other things more
precise semantic definitions, standard libraries, etc.

3.4 Conclusion

A new object-oriented language Modelica designed for physical modeling takes some
distinctive features of object-oriented and simulation languages. It offers the user a tool
for expressing non-causal relations in modeled systems. Modelica is able to support
physically relevant and intuitive model construction in multiple application domains.
Non-causal modeling based on equations instead of procedural statements enables ad-
equate model design and a high level of reusability.

Traditional high-performance computational software written in languages such as
Fortran, C, or C++, possibly including parallel libraries, is viewed as external functions
or computational blocks by Modelica and can be linked together with compiled
Modelica code. Furthermore, Modelica's strong component-based view of software
facilitates integration and reuse of software components in both traditional languages
and in Modelica.

There is a fairly straightforward algorithm translating Modelica classes, instances
and connections into a fiat set of equations. Further symbolic optimizations reduces the
size of the equation system and prepares for generation of efficient code. A choice of
several numeric DAE solvers are available for linking with the generated code for
computation of simulation results. Experience shows that Modelica is an adequate tool
for design of simulation models in several different application domains, as well as for
complex multi-domain models.

3.5 Acknowledgments

The Modelica definition has been developed by the Eurosim Modelica technical com-
mittee (Hilding Elmqvist, Francois Boudaud, Jan Broenink, Dag BrOck, Thilo Ernst,
Peter Fritzson, Alexandre Jeandel, Kaj Juslin, Matthias Klose, Sven-Erik Mattson, Mar-
tin Otter, Per Sahlin, Hubertus Tummescheit, Hans Vangheluwe) under the chairman-

160

ship of Hilding Elmqvist. The work by Linkrping University has been supported by the
Wallenberg foundation as part of the WITAS project.

References

[1] Mats Andersson: Object-Oriented Modeling and Simulation of Hybrid Sys-
tems. Ph.D. thesis ISRN LUTFD2FFFRT--1043--SE, Department of Automat-
ic Control, Lund Institute of Technology, Lund, Sweden, December 1994.

[2] Hilding Elmqvist, Dag Brtick, and Martin Otter: Dymola - - User's Manual.
Dynasim AB, Research Park Ideon,Lund, Sweden, 1996, http://www.Dy-
nasim.se

[3] Hilding Elmqvist, Sven-Erik Mattsson: Modelica - The Next Generation Mod-
eling Language - An International Design Effort. In Proceedings of First World
Congress of System Simulation, Singapore, September 1-3 1997.

[4] Peter Fritzson, Lars Viklund, Dag Fritzson, Johan Herber. High-Level Mathe-
matical Modelling and Programming, IEEE Software, 12(4):77-87, July 1995,
http://www.ida.liu.se/labs/pelab/omath

[5] Peter Fritzson, Vadim Engelson. Modelica - A Unified Object-Oriented Lang-
uage for System Modeling and Simulation, In Proceedings of ECOOP-98,
Brussels, July 1998, LNCS 1445, Springer Veflag.

[6] Dag Fritzson, Patrik Nordling. Solving Ordinary Differential Equations on
Parallel Computers Applied to Dynamic Rolling Bearing Simulation. In Paral-
lel Programming and Applications, P. Fritzson, L. Finmo, eds., IOS Press,
1995

[7] A.C. Hindmarsh. ODEPACK, A Systematized Collection of ODE Solvers, Sci-
entific Computing, R. S. Stepleman et al. (eds.), North-Holland, Amsterdam,
1983 (Vol. I of IMACS Transactions on Scientific Computation), pp. 55-64,
also http://www.netlib.org/odepack/index.html

[8] Modelica Home Page. http://www.Dynasim.se/Modelica

[9] ObjectMath Home Page. http://www.ida.liu.se/labs/pelab/omath

[10] Martin Otter, C. Schlegel, and Hilding Elmqvist. Modeling and Real-time Sim-
ulation of an Automatic Gearbox using Modelica. In Proceedings of ESS'97--
European Simulation Symposium, Passau, Oct. 19-23, 1997.

[11] Clemens Szyperski. ComponentSoftware--BeyondObject-OrientedProgram-
ruing. Addison-Wesley, 1997.

