
DrModelica
An Interactive Environment for Learning Modelica

and Modeling using MathModelica

Eva-Lena Lengquist Sandelin, Susanna Monemar, Peter Fritzson, Peter Bunus
PELAB, Programming Environment Laboratory

Department of Computer and Information Science
Linköping University, S-581 83 Linköping, Sweden
Email: {evale, x02susmo, petfr, petbu}@ida.liu.se

Abstract
This paper states the need for interactive teaching
materials for programming languages within the
area of modeling and simulation. We propose an
interactive teaching material for the modeling
language Modelica inspired by existing tutoring
systems for Java and Scheme.

The purpose of this new teaching material, called
DrModelica, is to facilitate the learning of
Modelica through an environment that integrates
programming, program documentation and
visualization. The teaching material is intended to
be used for modeling and simulation related
courses at the undergraduate and graduate level.

1. Background
The concepts of model, system, and experiment are
central in the area of modeling and simulation. “A
model of a system is anything an “experiment” can
be applied to in order to answer questions about
that system.” [1] “A simulation is an experiment
performed on a model.” [1]

Tools that are used for modeling and simulation
are becoming powerful aids in the product
development process. Using advanced tools and
languages to build a model of a product and then
simulate its behavior, before producing a physical
prototype, reduces the number of errors that can
occur during fabrication. This reduction
consequently leads to a decrease in the time needed
to develop the final product. Furthermore, the
earlier the errors are detected, the cheaper the
corrections are.

Not too long ago in the history of modeling and
simulation technology, mathematical models were
implemented by hand. The models were usually
designed on paper using mathematical notation and the
programs written manually in a high-level
programming language, like C or Fortran, and stored
in text files. Much manual work was needed, making
not only maintenance of models expensive, but also
the modification of models hard in order to adapt to
new requirements [2].

2. Interactive Environments
Modelica helps solving problems concerning modeling
and simulation. In order for Modelica to be used for
this purpose, a modeling and simulation environment
is needed. In this section the MathModelica
environment [4] is presented. MathModelica is partly
built on Mathematica technology, which is also
described below.

2.1. Mathematica

Mathematica [3] is a computer algebra system and
programming environment for performing
mathematical computations. The system can be used in
many different ways; the most basic functionality
involves using it as a “calculator”. The user types a
calculation and Mathematica performs it immediately.
However, there is a big difference between what a
traditional calculator can do and what Mathematica
can perform. The system seamlessly integrates a
numeric and symbolic computational engine, graphics
system, programming language, documentation
system, and advanced connectivity to other
applications.

Mathematica can also be used as a modeling and
simulation environment. When a model is
simulated in the environment, the results can be
visualized in various ways, using the Plot
function.

Mathematica is divided into two distinct parts: the
computer algebra engine and interpreter (“kernel”)
that receives and evaluates all expressions sent to it
and the user interface (“front-end”). The front-end
provides the programming interface to the user and
is concerned with such issues as how input is
entered and how computation results are displayed
to the user.

Mathematica’s front-end documents are called
notebooks. A notebook can contain specific
computations, text (including hyperlinks to other
notebooks), graphics, sounds and animations.
Using a hierarchical structure divided into sections,
subsections etc. A notebook can be made to look
like a traditional typeset document, with the
advantage that the calculations can remain active
and can be re-evaluated at any time.

2.2. MathModelica

MathModelica, from MathCore Egineering AB [4],
is a powerful engineering environment for physical
modeling, simulation, analysis and design [5, 6]. In
MathModelica, models are described using
Modelica.

The MathModelica environment integrates
modeling and simulation with graphic design,
advanced scripting facilities, integration of code
and documentation, and symbolic formula
manipulation provided via Mathematica. Import
and export of Modelica code between internal
structured and external textual representation is
supported by MathModelica. The environment
extensively supports the principle of literate
programming and integrates most activities needed
in simulation design: modeling, documentation,
symbolic processing, transformation and formula
manipulation, input and output data visualization.

The user interface of MathModelica consists of the
Model Editor, the Simulation Center and
Mathematica notebooks. The Model Editor is a
graphical tool for designing models using
predefined library components. The Simulation
Center is a graphical user interface for running

simulations and plotting curves of the models.
Mathematica notebooks provide a text based
programming environment.

3. DrModelica
Understanding programs is hard, especially code
written by someone else. For educational purposes it is
essential to be able to show the source code and to
give an explanation of it at the same time [9].
Moreover, it is important to show the result of the
source code’s execution. In modeling and simulation it
is important to have the source code, the
documentation about the source code, the execution
results of the simulation model, and the documentation
of the simulation results in the same document. The
reason is that the problem solving process in
computational simulation is an iterative process that
often requires a modification of the original
mathematical model and its software implementation
after the interpretation and validation of the computed
results corresponding to an initial model.

Most of the environments associated with equation-
based modeling languages focus more on providing
efficient numerical algorithms rather than giving
attention to the aspects that should facilitate the
learning and teaching of the language. There is a need
for an environment facilitating the learning and
understanding of Modelica. Also, users are reluctant to
using a programming language that does not provide
an adequate programming environment [10]. All the
above-mentioned facts constitute our reason for
developing DrModelica [11], a teaching material for
Modelica. DrModelica is based on MathModelica [4]
and the ideas of Literate programming [12].

Literate programming is a programming methodology
that was introduced by Donald E. Knuth. It represents
the idea of organizing a source program in an “essay”
manner by combining the source code with the
corresponding documentation in the same document.
By doing so it is easier to read and understand the
program.

MathModelica has an interface allowing the user to
write source code as well as documentation in the
same document. The user does not have to switch to a
command prompt to compile the source code, since
this can also be performed in the environment. The
same document also contains plots of the simulation
results. Additionally, in DrModelica the whole
Modelica language is available to the user, unlike

many other tutoring systems, where it is common
to provide a subset of the language. Furthermore,
we have developed a web version of DrModelica,
which has a similar interface and includes most of
the functionality that can be found in

MathModelica. The difference between the web
version and the Mathematica-style MathModelica
version of DrModelica is that the functionality of the
web version is limited, for example there is no
possibility to show plots of a simulated model.

Figure 1. The front-page notebook of DrModelica.

Furthermore, the web version is intended to be used
as a testing environment for evaluating Modelica

code. It is not a teaching material, since there is no
text or examples that the user can learn from.

DrModelica has a hierarchical structure represented
as Mathematica notebooks. The front-page notebook
is similar to a table of contents that holds all other
notebooks together by providing links to them. This

particular notebook is the first page the user will see
(Figure 1).

In each chapter of DrModelica the user is presented a
short summary of the corresponding chapter of the
book “Principles of Object-Oriented Modeling and
Simulation with Modelica” by Peter Fritzson [1]. The
summary introduces some keywords, being hyperlinks
that will lead the user to another notebook describing
the keyword in detail.

Figure 2. HelloWorld class.

Now, let us consider that the link “HelloWorld” in
section 2.1 in Figure 1 is clicked by the user. The

new notebook, to which the user is being linked (see
Figure 2), is not only a textual description but also
contains one or more examples explaining the specific

keyword. In the class, HelloWorld, a differential
equation is described.

No information in a notebook is fixed, which implies
that the user can add, change or remove anything in
a notebook. Alternatively, the user can create an

entirely new notebook in order to write his/her own
programs or copy examples from other notebooks.
This new notebook can be linked from existing
notebooks.

Figure 3. Chapter 9 in the main page of DrModelica.

When a class has been successfully evaluated the
user can simulate and plot the result. These two
actions are performed by the Mathematica
commands Simulate and PlotSimulation.
Simulate compiles the code and
PlotSimulation shows a diagram of the result.
Figure 2 shows how HelloWorld uses the
Mathematica commands Simulate and
PlotSimulation.

After reading a chapter in DrModelica the user can
immediately practice the newly acquired
information by doing the exercises that concern the
specific chapter. We have written the exercises in

order to elucidate language constructs step by step
based on the pedagogical assumption that a student
learns better “using the strategy of learning by
doing”. The exercises consist of either theoretical
questions or practical programming assignments.
All exercises provide answers in order to give the
user immediate feedback.

Figure 3 shows Chapter 9 in the teaching material.
Here, the user can read about language constructs,
like algorithm sections, when-statements and
reinit and then practice by solving the exercises
corresponding to the recently read section.

Figure 4. Exercise 1 in chapter 9.

Exercise 1 in section 9.1.1 is shown in Figure 4. In
this exercise the user has the opportunity to practice
different language constructs and then compare the
solution to the answer for the exercise. Notice that
the answer is not visible until the Answer section is
expanded. The answer is shown in Figure 5.

Figure 6 shows that circuits created in the Model
Editor of MathModelica can be inserted in
DrModelica as pictures and it can be used to
generate Modelica code from.

Figure 5. The answer section to Exercise 1 in chapter 9.

Figure 6. Pictures from the Model Editor in MathModelica can be inserted in the environment.

4. Related Work
During the last two decades interactive teaching
materials have been developed with the purpose of
facilitating the learning process. For example,
DrJava and DrScheme are both interactive teaching
materials for Java and Scheme respectively. These
materials teach the language to the user both by
explaining the concepts of the language and by
letting the user write programs in a beginner-
adjusted environment [13, 14].

DrScheme [14] is a programming environment for
Scheme, providing a graphical user interface, in
which it is possible to edit and interactively evaluate
Scheme programs. The environment is especially
useful for students learning Scheme, since it guides
the student through Scheme in a way similar to an
introductory course [14].

DrJava is an open-source, pedagogic programming
environment for teaching Java. The environment is
influenced by DrScheme, which has served as a

model for DrJava [13]. To facilitate the learning of
Java, DrJava first introduces the concepts of coding,
as well as testing and debugging the source code,
and then focuses on the language semantics.

5. Evaluation of DrModelica
Evaluation methods are important tools for user
interface design. Such methods can be divided into
usability testing methods and usability inspection
methods. The difference between them is that users
are involved in usability testing methods but are not
involved in usability inspection methods. For
evaluation of DrModelica, both methods have been
used, with specially developed questionnaires [15]
and performing a heuristic evaluation [16].

Using a questionnaire is a usability testing method
and reflects the users’ subjective opinions. It is a
cheap method for testing a system and can be
distributed to many users.

Heuristic evaluation is a usability inspection
method, which is performed by an evaluator, using

a checklist of guidelines to determine the usability
of the user interface. This method is easy to learn
and inexpensive to perform. Most of the general
usability problems can be identified using a
heuristic evaluation. The method requires some
experience with heuristic evaluation principles for
an optimal result. However, even a non-expert can
find many usability problems using a heuristic
evaluation.

5.1. Evaluation using Questionnaire

Twelve students attending a graduate Modelica
course at Linköping University tested DrModelica.
After a few weeks they were asked to answer a
questionnaire. All testers were engineering students,
either in the area of physics or computer science.
The questions in the questionnaire concerned their
expectations of the teaching material and if their
expectations were fulfilled, what they felt about the
approach using literate programming and the
structure and layout of the material. The results of
the questionnaire were positive. For example,
Literate programming was appreciated when
programming Modelica. The test group generally
found DrModelica to be a better way of learning a
programming language, compared to the way they
were used to.

The structure of DrModelica and the way of
navigating between the notebooks was, according to
the test group, fairly easy. The exercises at the end
of each chapter were also appreciated by the
students. In this way the student was able to
“directly use the collected knowledge”, referring to
one of the testers.

5.2. Heuristic Evaluation

Three usability experts from HCS (Human Centered
Systems), at the Department of Computer and
Information Science (IDA) have performed a
heuristic evaluation on DrModelica. When
performing the evaluation, the evaluators used the
guidelines from “Ten Usability Heuristics” [17].
They are listed below:

1. Visibility of system status: The system should
always keep users informed about what is going
on, through appropriate feedback within
reasonable time.

2. Match between system and the real world: The
system should speak the users' language, with

words, phrases and concepts familiar to the
user, rather than system-oriented terms. Follow
real-world conventions, making information
appear in a natural and logical order.

3. User control and freedom: Users often choose
system functions by mistake and will need a
clearly marked "emergency exit" to leave the
unwanted state without having to go through an
extended dialogue. Support undo and redo.

4. Consistency and standards: Users should not
have to wonder whether different words,
situations, or actions mean the same thing.
Follow platform conventions.

5. Error prevention: Even better than good error
messages is a careful design which prevents a
problem from occurring in the first place.

6. Recognition rather than recall: Make objects,
actions, and options visible. The user should not
have to remember information from one part of
the dialogue to another. Instructions for use of
the system should be visible or easily
retrievable whenever appropriate.

7. Flexibility and efficiency of use: Accelerators --
unseen by the novice user -- may often speed up
the interaction for the expert user such that the
system can cater to both inexperienced and
experienced users. Allow users to tailor
frequent actions.

8. Aesthetic and minimalist design: Dialogues
should not contain information which is
irrelevant or rarely needed. Every extra unit of
information in a dialogue competes with the
relevant units of information and diminishes
their relative visibility.

9. Help users recognize, diagnose, and recover
from errors: Error messages should be
expressed in plain language (no codes),
precisely indicate the problem, and
constructively suggest a solution.

10. Help and documentation: Even though it is
better if the system can be used without
documentation, it may be necessary to provide
help and documentation. Any such information
should be easy to search, focused on the user's
task, list concrete steps to be carried out, and
not be too large.

The evaluation gave many valuable results. The
evaluators found that learning how to use
DrModelica was easy in general. However,
realizing how some of the functionality works was,
according to the evaluators, not so intuitive. For
example it can be hard to discover the ability to
collapse and expand sections. Though, once it was
known how to use the functionality they found easy.
Furthermore, according to the evaluators it might be
confusing that a link in some cases opens a new
window and in other cases refers to another chapter
in the same window. This is a problem concerning
heuristic number 4. Another problem, when being
linked to another page, is that there is no feedback
telling the user that a new page has appeared in
front of the previous one. This is a problem mostly
concerning heuristics number 1, 2 and 3. When a
new window is opened in front of the other the user
is not properly informed about what is going on,
since there is no feedback that the window was just
being opened (see heuristic number 1). This
involves another problem, taking the user back to
the former window. This is currently resolved by
closing the window, but it would be better solved by
having a “back”-button, following real-world
conventions (see heuristics 2 and 3). Heuristics
number 5, 8 and 9 concern dialogues and error
messages, none of which exist in neither
DrModelica nor MathModelica, but that is why the
environment does not have a need for it. Heuristic
number 10 concerns help and documentation. There
is a help section on how to start using DrModelica,
which was appreciated by the users.

The evaluators also found that DrModelica was less
intimidating than other programming environments,
since the user is presented with an environment
similar to a document showing only a small amount
of functionality. This leads the user to believe that
DrModelica is a reading material. However, after
using the material for a while the user discovers that
DrModelica could be used for programming as well.
A common approach adopted by many
programming environments is to lead the user in the
opposite direction, by presenting all functionality
from the beginning. This approach can have a
discouraging effect on the user.

6. Future Improvements
Considering the results of the evaluation and
comparing our work with related work we have

discovered some possible improvements that can be
implemented in the future. Here follows a list of
these improvements:

A suggestion from the students, attending the
Modelica graduate course, is to extend DrModelica
to contain more exercises on simple as well as more
complex constructs in order for the student to get
more practice.

Since it can be difficult to learn how to use the
functionality in DrModelica, an idea is to make an
introductory exercise for practicing the basics step
by step instead of just reading a long introductory
text.

Links between files containing different variants of
the same term should be added.

Currently the exercises in the material mainly
concern language specific constructs, it would be
desirable to add exercises reflecting the purpose of
Modelica. The material needs to be extended with
more exercises in general.

Features, like parenthesis matching and keyword
highlighting, used in DrScheme and DrJava, would
be helpful when programming.

7. Summary and Conclusions
In this paper we have presented the interactive
teaching material for Modelica, based on
MathModelica, called DrModelica. DrModelica has
the goal of teaching Modelica in an environment
that has the purpose of facilitating the learning
process of the language. Because of the complexity
of learning Modelica there is a need for such a
material.

DrModelica is based on Literate programming,
which enables the user to write, document and
execute the source code in the same file or entity.
This file or entity becomes a Literate program. In
DrModelica the documentation about the source
code is not embedded as comments in the code, but
instead separated from the code in specific sections
only with the purpose of containing text.

The Literate programming approach is extended in
DrModelica, in such a way that the result of the
executed Modelica program is included in the same
file or entity. The results of the source code can be
shown in the form of diagrams. This is a necessary
part of DrModelica, since Modelica is a

programming language used for creating models of
complex physical systems and there is a need to
check if these models’ behaviour follows the
specification or comply with the user intent.

The evaluations of DrModelica resulted in many
valuable opinions. The members of the test group,
answering the questionnaire, generally found
DrModelica to be a better way of learning a
programming language compared to ways they are
used to. One conclusion that can be drawn from the
evaluation is that DrModelica is a good teaching
material for Modelica. The evaluators also found
that Literate programming is a methodology
suitable for learning Modelica. DrModelica is
developed with the programming environments
DrJava (for Java) and DrScheme (for Scheme) in
mind.

There is a need for a programming environment for
Modelica and DrModelica will hopefully fill this
need and increase the usage of Modelica by
facilitating the learning process.

The interested reader can visit:
http://www.mathcore.com, where a short version of
DrModelica is freely available for download. The
full version of the material is included in the
software MathModelica and in “Principles of
Object-Oriented Modeling and Simulation with
Modelica” by Peter Fritzson [1].

References
[1] Fritzson, P., Principles of Object-Oriented

Modeling and Simulation with Modelica 2.1. pp
940, 2003: Wiley-IEEE Press, ISBN 0-471-
471631.

[2] Grubb, P. and A.T. Armstrong, Software
Maintenance Concepts and Practice (Second
Edition). 2003: World Scientific Pub Co.

[3] Wolfram Research, Mathematica. 4 ed. 1999,
Champaign, Illinois: Wolfram Research, Inc.

[4] MathCore, MathModelica Users Guide.
MathCore Engineeering AB, Teknikringen 1B,
583 30 Linköping, Sweden,
www.mathcore.com.

[5] Fritzson, P., J. Gunnarsson, and M. Jirstrand.
MathModelica - An Extensible Modeling and
Simulation Environment with Integrated
Graphics and Literate Programming. In
Proceedings of the 2nd International Modelica
Conference. 2002. Munich Germany. Available
at www.mathcore.com or at
www.ida.liu.se/labs/pelab/modelica.

[6] Fritzson, P., et al. The Open Source Modelica
Project. In Proceedings of the 2:nd
International Modelica Conference. 2002.
Munich, Germany.

[7] Elmqvist, H., D. Bruck, and M. Otter, Dymola -
User’s Manual. 1996, Dynasim AB, Research
Park Ideon: Lund, Sweden.

 [9] Nørmark, K. Requirements for an Elucidative
Programming Environment. In Preceedings of
the International Workshop on Program
Comprehension, IWPC’2000. 2000. Limerick,
Ireland.

[8] Ducassé, M. and J. Noyé, Logic Programming
Environments: Dynamic Program Analysis and
Debugging. 1994. 19/20: p. 351-384.

[11] Lengquist Sandelin, E.-L. and S. Monemar,
DrModelica - An Experimental Computer-Based
Teaching Material for Modelica, Master Thesis
Department of Computer and Information
Science. 2003, Linköping University, Sweden.

[12] Knuth, D.E., Literate Programming. The
Computer Journal 1984. NO27(2): p. 97-111.

[13] Allen, E., R. Cartwright, and B. Stoler. DrJava:
A Lightweight Pedagogic Environment for Java.
In Preceedings of the 33rd ACM Technical
Symposium on Computer Science Education
(SIGCSE 2002). 2002. Northern Kentucky,
USA.

[14] Findler, R.B., et al. DrScheme: A Programming
Environment for Scheme. A Preliminary Version
Appeared at Symposium on Programming
Languages: Implementations, Logics, and
Programs in 1997. 2001.

[15] Nielsen, J., Usability Engineering. 1993, San
Diego: Academic Press Inc.

[16] Nielsen, J. and R.L. Mack, Usability Inspection
Methods. 1994: John Wiley and sons inc.

[17] Nielsen, J., Ten Usability Heuristics. 1994.
Available at: http://www.useit.com/papers/
heuristic/heuristic_list.html. Last accessed
September 2003.

