OM Notebook — Interactive WY SIWY G Book Software
for Teaching Programming,

Anders Fernstréom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop
PELAB — Programming Environment Lab, Dept. Computer Science
Linkoping University, S-581 83 Linkoping, Sweden
{ petfr,andsa,adrpo} @ida.liu.se

Abstract

OMNotebook is one of the first open source software systems that makes is possible to create interactive WY SIWY G
books for teaching and learning programming. It has currently been used for course material (DrModelica) in teaching
the Modelica language, but can easily be adapted to electronic books on teaching other programming languages, or
even other subjects such as physics, chemistry, etc., where phenomena can be illustrated by dynamic simulations
within the book. This could substantially improve teaching in anumber of areas, including programming.

1 Need for morelnteractive Learning

Traditiona teaching methods are often too passive and do engage the student. A typical example is traditional lectur-
ing.

Another typical learning method is reading a textbook on a subject matter. This is a good method, but sometimes
requires a lot from the student. Also, learning programming needs interaction and programming exercises in order to
grasp the concept.

A third way, would be to make the book active — be able to run programs and exercises within the book, and mix
lecturing with doing exercises and reading in the interactive book.

2 Interactive Notebookswith Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as well as
graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation scripting,
model documentation and storage, etc.

2.1 Mathematica Notebooks

Literate Programming (Knuth 1984) is a form of programming where programs are integrated with documentation in
the same document. Mathematica notebooks (Wolfram 1997) is one of the first WY SIWY G (What-Y ou-See-Is-What-
Y ou-Get) systems that support Literate Programming. Such notebooks are used, e.g., in the MathModelica modeling
and simulation environment, e.g. see Figure 1 below and Chapter 19 in (Fritzson 2004)

2.2 OMNotebook

The OMNotebook software (Axelsson 2005, Fernstrém 2006) is a new open source free software that gives an inter-
active WY SIWY G (What-Y ou-See-Is-What-Y ou-Get) redlization of Literate Programming, a form of programming
where programs are integrated with documentation in the same document.

2.3 TreeStructured Hierarchical Document Representation

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are divided into
sections, subsections, paragraphs, etc. Both the document itself and its sections usually have headings as labels for
easier navigation. This kind of structure is aso reflected in electronic notebooks. Every notebook corresponds to one
document (one file) and contains a tree structure of cells. A cell can have different kinds of contents, and can even
contain other cells. The notebook hierarchy of cells thus reflects the hierarchy of sections and subsections in a tradi-
tional document such as a book.

£ Evaluated Modeling. Code Generation, and... [H[=] [E3
al

Modelln(g Evaluated Hodellng Code Generation, and... [E[=] [E3 |

Slmulatn

B r'l
Evaluated Modeling. Code Generation. and..
Process e . s 9. - IAI=] Ed
. oms g £ -
- using Mathe nrtar um can * Tom Licwastard dtcai

1 Evaluated Modeling. Code Generation, and... [H[E] E3

marc ekl e the wwzr 8 -
< u LiRrquintarsminz| —

xx . phozicalusiuex,
CumganmiMetelz |£1, 5., 1, 5., 0,9, 0, 03],

it ekt Snce e il compn a con

o.1TdwntlégHatclx |2] |:
=i i MmtcLxaom

fEcoEn s
FENEITT]

The conoel lus m ke ted 0 ufl = - £ vH, e v LT Mramstncna oF oo e Thi o e
Plicamre eleard Ioog marrd momradas ¢H = F HL - £ vH]
L]
1
im

[R]
[N

B Eimu kcien and Chde Generacion

- Pl e

Chares ramcs oF vanables m only <50 chamers [nec ded Por peck pxreraaceis -

[5o - 4| v

Figure 1. Examples of Mathematica notebooks in the MathM odelica modeling and simulation environment.

3 TheDrModelica Tutoring System —an Application of OM Notebook

Understanding programs is hard, especially code written by someone else. For educationa purposes it is essential to
be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is aso
important to have the source code, the documentation about the source code, the execution results of the simulation
model, and the documentation of the simulation results in the same document. The reason is that the problem solving
process in computational simulation is an iterative process that often requires a modification of the original mathe-
matical model and its software implementation after the interpretation and validation of the computed results corre-
sponding to an initial model.

Most of the environments associated with equation-based modeling languages such as Modelica focus more on
providing efficient numerical algorithms rather than giving attention to the aspects that should facilitate the learning
and teaching of the language. There is a need for an environment facilitating the learning and understanding of Mode-
lica. These are the reasons for developing the DrModelica teaching material for Modelica and for teaching modeling
and simulation.

CL oMNotebook: drmodelica.onb o] B4

File Edit Cell Format Insert ‘Window Help

Vergion 2006-02-03 =

DrModelic gmodeiica Edition

Copynght: (o) Linkoping University, PELAE, 2003-2006, Wiley-IEEE Press, Modeliza Association.
Contact: OpenModelicai@idalhse; Openblodelica Project web site: wnanarida I sefprojectsfOpenblodalica
Book weh page: woanar matheore comidrModelica; Book author: Peter Fritesoni@ida 1o se

DirModelica Authors: (2003 version) Susanna Monemar, Eva-Lena Lengquist Sandelin, Peter Fritzson, Peter Burms
DiyMaodelica Authors: (2005 and later updates): Peter Fritzson

Getting Started Using OMNotebook
Openhodelica commands

Berkeley license Openhodelica

A Quick Tour of Modelica

Getting Started - First Basic Examples

There is a long tradition that the first sample program in any computer language is a
trivial program printing the string p. 19). Since Modelica iz an equation
based language, printing a string does ot male much sence. Instead, our Hello World
Modelica program solves a trivial differential equation. The second example shows how
you can write a model that zolves a Differential Algebraic Equation System (p. 19). In
the Van der Pol (p. 22) example declaration as well as mitialization and prefix usage are
shown in a slightly more complicated way.

Classes and Instances

In Modelica objects are created iunplicitly just by Declaring Instances of Clagses (p. 26).
Almost anything in Modelica is a class, but there are some keywords for specific use of
the clags concept, called Restiicted Claszes (p. 28). The concept Reuse of Modelng
Enowledge (p. 28) is an important part of Modelica. Modelica has several built-in types
(like Real, Infeger, Boolean and Sfring), which has most of the properties a clags has
and it iz possible to change the value of them during nm-time. You can read more about
claszes in chapter 3.

A=
Ready o

Figure 2. The start page (main page) of the DrModelica tutoring system using OMNotebook. The link to the HelloWorld example
shown in Figure 3 is marked with an oval.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a table of
contents that holds all other notebooks together by providing links to them. This particular notebook is the first page
the user will see (Figure 2).

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the book “Prin-
ciples of Object-Oriented Modeling and Simulation with Modelica 2.1” by Peter Fritzson. The summary introduces
some keywords, being hyperlinks that will lead the user to other notebooks describing the keywords in detail .

I OMMotebook: helloworld.onb oy] 4

File Edit Cell Formatk Insert ‘window Help

First Basic Class

HelloWorld

The program contains a declaration of a class called He 1 loWor 1d with two fields and one equation. The first field is the
variahle x which is initialized to a start walue 2 at the time when the simulation starts. The second field is the wariable a, which is
a constatt that is initialized to 2 at the beginning of the simalation. Such a constant is prefived by the keyword parameter in
otder to indicate that it iz constant during siglation bt is a model parameter that can be changed between sinnlations.

The Modelica program solves a teivial differential equation: x' = - & * x. The variable xis a state variable that can
chatge value ovet time. The x'is the time detivative of x.

class HelloWorld
Feal x(start = 1);

parameter Real a = 1;
equation
der(x) = - a * x;

end HelloWorld;

Ok

Simulation of HelloWorld

simulate| HelloWorld, startTime=0, stopTime=4 };

[done]

plot(= J;

Plet by OpenModelica
1D [T T T T T T T T T] x .

nar]

nar]

oo

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure3. TheHelloWorld class simulated and plotted using the OMNotebook version of DrModelica.

Now, let us consider that the link “Helloworld” in DrModelica Section “ Getting Started — First Basic Examples” in
Figure 2 is clicked by the user. The new notebook, to which the user is being linked (see Figure 3), is not only a tex-
tual description but also contains one or more examples explaining the specific keyword. In this class, HelloWorld, a
differential equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a notebook.
Alternatively, the user can create an entirely new notebook in order to write his’her own programs or copy examples
from other notebooks. This new notebook can be linked from existing notebooks.

MI oMNotebook: drmodelica.onb oy] 4
File Edit Cel Format Insert ‘Window Help
Algorithms and Functions =
Algorithuns
In Modelica, algoritlunic statements can only occur within Algorithm Sections (p. 285),
starting with the keyword algorithm Siunple Assicnment Statements (p. 287) is the
most conmon kind of statements in algorithm sections. There iz a special form of
azzigimment gtatement that is only uzed when the right hand side confaing a call to a
Function with Multiple R esults (p. 287).
The for-Statement (also called for-loop) is a convenient way of expressing iteration (p.
288). When using the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate in a closzd form as an iteration
expression. For cazes where this is not feasible there iz alzo a While-loop iteration
construct in Modelica (p. 290). For conditional expressions the if-Statement (p. 292) is
used. When-Statements (p. 293) are used to express actions at event instants and are
clozely related to when-ecquations. The Reinit (p. 296) statement can be used in
when-statements to define new values for contimious-time state variabler of a model at
an event.
The Assert (p. 298) statement provides a convenient means for gpecifying checks on
model validity within a model.
The most common usage of Tenminate (p. 298) is to give more appropriate stopping
criteria for terminating a simulation than a fixed point in time.
Exercises J
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise S
Functions
The body of a Modelica function iz a kind of algorithm section that contains procedural
algorithiic code to be executed when the function iz Called (p. 300). Since a function is
a restricted and enhanced kind of class. it ix nossible to mherit an existing fimction El
Ready 4

Figure 4. DrModelica Chapter “Algorithms and Functions’ in the main page of DrModelica.

When a class has been successfully evaluated the user can simulate and plot the result, as depicted in Figure 3 for the
simple HelloWorld example model..

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by doing
the exercises that concern the specific chapter. Exercises have been written in order to elucidate language constructs
step by step based on the pedagogical assumption that a student learns better “using the strategy of learning by do-
ing”. The exercises consist of either theoretical questions or practical programming assignments. All exercises provide
answers in order to give the user immediate feedback.

Figure 4 shows the algorithm part of the Chapter “ Algorithms and Functions’ of the DrModelica teaching mate-
rial. Here the user can read about Modelica language constructs, like algorithm sections, when-statements, and re -
init equations, and then practice these constructs by solving the exercises corresponding to the recently studied sec-
tion.

I oMNotebook: Exercisel.nb -0l x|

File Edit Cell Format Insert ‘Window Help

Exercise 1

Using Algorithm Sections

Write a function, Sum, which calculates the sum of numbers, in an array of arbitrary size.

TWrite a funchon, Average, which calculates the average of numbers, m an array of artbitrary size. Average
should use malce a function call to Sum.

|]

TWrite a class, LargestAve rage, that has two arrays and calculates the average of each of them. Then it
cotpares the averages and setz a vartable to true if the first array iz larger than the second and otherwise false.

|]

Answer

Ready i

Figure5. Exercise 1 in Chapter “Algorithms and Functions’ of DrModelica.

Exercise 1 in the algorithm part of Chapter “ Algorithms and Functions’ is shown in Figure 5. In this exercise the user
has the opportunity to practice different language constructs and then compare the solution to the answer for the exer-
cise. Notice that the answer is not visible until the Answer section is expanded. The answer is shown in Figure 6.

G oMMotebook: Exercisel.nb® 10l x|

File Edit Cell Format Insert ‘Window Help

L

Answer

Swmn

function Sum
input Reall[:] =;
output Real sum;
algorithm
for i in l:size{x,1l) loop
sum = sum + x[i1];
end for;
ernd Sum;

Average

function Average

input Real[:] =

output Real average;
protected

Real sum;

algorithm

average := Sum{x) / size{x,1);
end Average;

LargestAverage

class Largestaverage
parameter Integer[:] &1 = {1, Z, 3, 4, 5};
parameter Integer[:] &2 = {7, B, 2};
Real averageal, averagedl;
Boolean AlLargesti(start = false);
algorithm
averageil = Average(il);
averageil = Average (AZ);
if averagedl > averagedZ then
AlTargest 1= true;
else
AlLargest :

end if;

false;

end Largestiverage;

Stnulation of LargestAverage

simulate{ Largestiverage J; }

TWhen we look at the values in the variables we see that A2 has the largest average (8) and therefore the
variable 4 1Largest iz false (=0).

Ready

Nk

Figure 6. The answer section to Exercise 1 in Chapter “Algorithms and Functions’ of DrModelica.

4 Conclusions

The OMNotebook software is one of the first open source software systems that makes is possible to create inter-
active WY SIWY G books for teaching and learning programming. It has currently been used for course material
(DrModelica) in teaching the Modelica language, but can easily be adapted to electronic books on teaching other
programming languages such as Java, Scheme, etc, through its genera CORBA interface. This could revolution-
ize teaching in programming.

5 Acknowledgements

Support for Modelica-related research from SSF and Vinnova is gratefully acknowledged. Eva-Lena Lengquist-
Sandelin and Susanna Monemar prepared the first version of the DrModelica tutorial material and thus aso con-
tributed to this paper. Daniel Hedberg at MathCore provided advice regarding Qt-based implementation. Peter
Aronsson implemented large parts of the OpenModelica compiler and the communication protocol used from
OMNotebook. PhD students at PELAB (Programming Environment Lab) contributed to various aspects of
OpenModelica.

References

[1] Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In Pro-
ceedings of the 33" ACM Technical Symposium on Computer Science Education (SIGCSE 2002) (Northern
Kentucky — The Southern Side of Cincinnati, USA, February 27 — March 3, 2002).

[2] Ingemar Axelsson. OpenModelica Notebook for Interactive Sructured Modelica Documents. Final thesis,
LITH-IDA-EX-05/080-SE, Link&ping University, Linkdping, Sweden, October 21, 2005.

[3] Anders Fernstrom. Extending OMNotebook — An Interactive Notebook for Sructured Modelica Docu-
ments.Final thesis to be presented spring 2006, Dept. Computer and Information Science, Linkoping Univer-
sity, Sweden.

[4] Peter Fritzson. Principles of Object Oriented Modeling and Simulation with Modelica 2.1, 940 pages, ISBN
0-471-471631, Wiley-|IEEE Press. Feb. 2004.

[5] Peter Fritzson, et al. OpenModelica Users Guide, Preliminary Draft, for OpenModelica 1.3.1, Nov 28 2005.
www.ida.liu.se/projects/OpenModelica.

[6] Knuth, Donald E. Literate Programming. The Computer Journal, NO27(2), pp. 97-111, May 1984.

[7] Bva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica — A Web-
Based Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian Conference on Smula-
tion and Modeling (SIMS 2003), available at www.scan-sims.org. Vasteras, Sweden. September 18-19,
2003.

[8] The Modelica Association. The Modeica Language Specification Version 2.2, March 2005.
http://www.modelica.org.

[9] Stephen Wolfram. The Mathematica Book. Wolfram MediaInc, 1997.

