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ABSTRACT

The present paper proposes a methodology to organize
model libraries of eectro-hydraulic components. This
methodology holds in the association of an object oriented
modeling, equation based, language for modd structure
description, with a graphical formalism suitable for the dynamic
behavior description of reactive hybrid systems. That is, a recent
general purpose language for physica modeling, called
Modelica, is used to develop object-oriented libraries of models
for different physical domains; the hierarchical description of
the dynamic behavior of each model is obtained by means of the
Statecharts formalism.

With the method proposed, complex models are built by
model interconnection schemes; it is possible to organize the
models for different complexity levels adapting them for distinct
simulations (real-time or off-line), by refining their behavior
using the Statecharts graphical formalism.

The developed hydraulic models, once compiled into C-
code, are assembled as a whole application, and executed by a
digital signal processing card (DSP). The simulation task is
based on hardware-in-the-loop techniques in such away that the
“virtual” hydraulic application is controlled by real hardware.

1. INTRODUCTION

Hydraulic systems have been, for along time, often used in
industrial manufacturing and in heavy machinery. Hydraulic
hardware suffered a great evolution during the last years, from
hydro-mechanical devices to microprocessor controlled eectro-
hydraulic systems. The use of eectronics and microprocessors
contributes to improve the dynamic performance and to enhance
the traditional systems with new features, as well as with new
control possihilities. Due to the complex dynamics and non-
linearity of these systems, the control algorithms usually applied
in linear systems, such as the traditional PID algorithms, can

have a poor peformance for sophisticated hydraulic
applications. Nowadays, there is an increased interest on
strategies for using dectro-hydraulics in  advanced
manufacturing systems, where dynamic performance and
precision are very important parameters as, for example, in
high-speed machining, injection molding systems or high-
speed assembly hydraulic robots. It is important to investigate
how advanced control schemes can improve the hydraulic
actuation of this type of machinery. According to [Edge, 1997],
it isimportant that, for a given application, the relative merits
of different control schemes can be evaluated, being the
computer simulation one of the best evaluation tool.
Supporting this idea is [Ellman et al., 95] referring that a
simulated environment is the cheapest and fastest way to test
control algorithms. Modeling and real time simulation of
complex systems ill is an area to explore [Burrows, 1998]
and, with the growing of computating power, more complex
systems can be simulated in real time with decreasing costs
[Lennevi et al., 1995].

The application of new control schemes on real hydraulic
systems is a difficult task due to the cost and/or size of the
hardware and its working conditions. In many applications, it
is impossible to reproduce, in the laboratory, the hydraulic
systems and their operating conditions. Some specific studies
have been performed, where the operating environment and
the hydraulic machinery hardware were reproduced by
simulation and 3D visualization of the simulated mode’s
dynamic behavior. Examples of such studies can be found in
[Gonthier and Papadopoulos, 1998], [DiMaio at al., 1998] or
[Schothorst, 1997]. However, these works use private modeling
methodologies, thus precluding the interchange and the
refining of the models.



Why a new methodology proposal?

Although the strong recent evolution in eectro-hydraulic
hardware, the project of hydraulic systems still is essentially
based on tradition and experience. This fact, added to the
growing complexity of modern hydraulic systems, can lead to
unexpected behavior and errors. One way to predict these
situations is the use of computer simulation, in many cases with
ad-hoc simulation programs, usualy written in FORTRAN, or
with physical prototypes [Ellman et al., 1995].

The modeling language to be used must deal with various
physical domains involved (hydraulics, mechanics, eectrics,
etc.) and with hybrid systems, where the involved components
have a continuos and/or discrete dynamic behavior.

The representation of models in a systematic and flexible
way has been studied in recent years, and there are specific
domain and general purpose modeling languages [Otter and
Cdlier, 1995]; in ether case, two main philosophies can be
identified: traditional programming techniques and object-
oriented methodologies. Nowadays, the tendency is focused
toward object-oriented languages mainly due to the simplicity
when reusing, expanding or adapting models. Confirming this
idea is the work done by [Beater, 1998], referring that the
largest time consuming step in system modeling can be speed up
by using modern object-oriented simulation languages and
component libraries.

The integration of models from different domains is a
complex and time consuming task because, although powerful
libraries exist, they are generally based on different modeling
languages, almost invariably, not compatible. To minimize this
Situation there is a strong effort of a working group (including
simulation tool builders, computer scientists and users from
different domains) in order to build a unified object-oriented
language for physical systems modeling. This language, named
Modelica [Mattsson and Elmquist, 1997], is intended for
modeling virtually any application domain (electrical circuits,
multi-body systems, hydraulics, thermodynamic systems,
chemical systems, etc.), and it allows the inclusion of severa
formalisms for behavior description (ODE, DAE, bond graphs,
finite state automata, petri nets or statecharts).

It is believed that the association of an object oriented
modeling language, for mode structure description, with a
graphical formalism suitable for the dynamic behavior
description of hybrid systems can be an interesting and useful
approach for electro-hydraulic systems modeling.

The objective of this paper is to present a methodology
where such an association, using Modelica and Statecharts, is
embedded in a hardware-in-the-loop simulation environment.

2. HYBRID STATECHARTS AND MODELICA

A brief review on the formalism of Statecharts

The formalism of Statecharts [Harel, 1987] is intended to
describe the dynamic behavior of complex reactive systems. It is
viewed as an extension of the finite-state-machine (FSM)

formalism with the add-ons of hierarchy, parallelism and
broadcast communication.

Hierarchy is a well accepted approach for dealing with
complexity, helping the human abstraction process. In
Statecharts, hierarchy is used to group sets of states together,
allowing high level description and step-wise development.
The designer can start with an high level description of the
model and proceed with the refinement of states by means of
AND/OR  decomposition operations. This hierarchica
organization encourage “zoom” capabilities for moving easly
back and forth between different levels of abstraction.

Concurrence inside a statechart can be described with
AND dtates, allowing modeding of concurrent activities
(parallelism) in the same modd via orthogonal states. All
these orthogonal states are activated when an AND date is
entered and deactivated when it is exited.

Figure 1 shows the high level description of a system with
states A and B. These states can be refined through state
decomposition. State A will be a compound OR state with
substates A1, A2 and A3. State B will be a compound AND
state with substates B1 and B2. This process can proceed until
low level description is achieved.
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Fig. 1 - Refining states to achieve low level system’s
description
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Fig. 2 - Broadcast communication in Statecharts



When orthogonal components are not truly independent,
communication between them must be specified by associating
an action with a transition. This action is assumed to be
broadcasted and so every system component in the statechart
will recognize the message. This broadcast communication
mechanism alows that, when one part generates an event
(attaching an action to a transition), all the other parts sense it,
acting in response if it is so specified. In the example of figure
2, state A generates an event when transition f is fired; this
event is sensed if state G is active, although state G belongs to
another orthogonal state.

Ancther enhancement over the FMS formalism is the
association of an event action with a transition, when it is taken,
or with a state, when the state is entered or exited. Continuous
activity can also be associated with a state for modeling
continuous behavior when the state is active. These action and
activity concepts allow the modeling of hybrid systems: actions
capture the discrete features of the system while activities
describe the continuous part.

Modelica

Modelica is a new language for physical modeling that is
being developed as an international effort with the main
objective of making easy the exchange of models and model
libraries. The language is built on non-causal modeling with
algebraic and differential equations, and uses object-oriented
congtructs to facilitate model reuse, through hierarchical
modeling, encapsulation, and inheritance.

Models and submodels are declared as classes with
connection interfaces called connectors. This connection
capability allows the use of modd libraries to compose complex
models with the drag and drop, and connection drawing
facilities of modern graphical editors.

With Modelica, the modedling of hybrid systemsis supported
via mixed continuoug/discrete systems of equations.
Discontinuous modds can be handled with if-then-else
expressions, allowing the modeling of phenomena with different
expressionsin different operating regions. Models with different
complexity levels can be supported by the use of conditional
equations, in such a way that changes on behavior are obtained
by just setting a parameter. Discrete event and discrete time
models are supported by when statements. The equations in a
when clause are conditionally activated at event instants where
the when condition becomestrue.

The Statecharts library in Modelica

A smal library to implement the hybrid Statecharts
formalism in Modedica language was aready developed
[Ferreira and Oliveira, 1999]. Two statecharts implementation
levels were considered: library models and component models.
Statecharts library models are responsible for capturing events
related to the firing of transitions and to the activation and
deactivation of states that must be performed when transitions
are taken. Library models have aso to code the activation or
deactivation of the substates, in order to implement what is

expected with OR states and AND states. Component models
create the statechart, with the basic models provided by the
Statecharts library, make the state-transition-state connections
and define the transition events or describe the continuous
activities within states.

The approach followed to generate the code for statechart
implementation is to consider a statechart as a modd in
Modelica. This model will be composed by states and
transitions. Modelica models are developed for the basic
elements of the statechart. The final model of the statechart is
a st of Moddlica models connected by state-transition-state
connectors.

The equation based modeling of the Modelica language,
along with the connector constructions, proves its efficiency by
passing activation/deactivation messages instantaneously
through nested states. Also, the broadcast communication
mechanisms of Statecharts can easily be fulfilled, just by
setting the value of a variable; thisis automatically transmitted
to al the statechart components because, in fact, the statechart
is implemented with differential algebraic equations (DAE)
that are evaluated concurrently.

Behavior inheritance of the Statecharts library

The main guideline followed by Harel [Harel and Gery,
1997], concerning the Statecharts behavior inheritance, is to
base the two statecharts on the same underlying state/transition
topology. Thus, B inherits all A sates and transtions.
Although these cannot be removed, certain changes are
allowed. States can be modified in three ways. breaking down a
basic state by OR (into substates) or by AND (into orthogonal
components) decompositions; adding substates to an OR state;
adding orthogonal components to any state. This last way is
the most important because it enriches A behavior capabilities.

Transitions can also be added to the statechart, and some
modifications are alowed in the inherited ones. For example,
if the transition is labelled by event[guard]action, changes can
be made in the trigger event, the guard or even in the action
list. Although, explicitly, it is not possible to remove a
transition, it can be done implicitly by making its guard false.

All these features were implemented [Ferreira and
Oliveira, 1999] in the statecharts Modelica library by means of
boolean switch parameters associated with the status of each
dtate or transition. That is, each state or transition can be
inhibited, at compile time, by setting its enabling parameter to
false.

3. MODELING METHODOLOGY

The main directions to model the dynamic behavior of
modern hydraulic systems are: object oriented libraries of
models; hierarchical description of the dynamic behavior;
model interconnection is used to build more complex models;
various levels of model complexity achieve different ssimulation
experiments; ability to refine or redefine behavior; graphical
description of dynamic behavior to enhance model
understanding.



The concept behind the methodol ogy isto consider a modd,
of a physical component, as a composition of two
complementary perspectives: its structure and its behavior.

The structure characterize the static part of the modd, its
parameters, its connection terminals, etc. Object oriented
techniques and the design of hierarchies of models, connected
by inheritance mechanisms, are important issues to develop
reusable modd’s libraries. Mechanisms for  modd
interconnection can aso make easier complex system’s
modeling.

The dynamic part of the modd, that is, itstime evolution, is
described by its behavior. This behavior depends on time,
captured events or changing attributes that derive from the
model’s connection terminals. The behavior of an hydraulic
model can be reactive when stimulated through its connection
terminals. Thus, it is believed that a graphical formalism (such
as Statecharts) is suitable to describe reactive hybrid systems
and very useful for the hierarchical description of the model’'s
dynamics.

The proposed methodology holds in the association of an
object oriented modeling, equation based, language (Modelica)
for mode structure description, with a graphical formalism
(Statecharts) suitable for the dynamic behavior description of
reactive hybrid systems. The implementation of this graphical
formalism insde the modeing language alows the
methodol ogy to be supported by a single global language.

The association of the object oriented modeling language
with the graphical formalism leads to two types of inheritance
for the component models. The modd structure can be inherited
through the usual mechanisms of object oriented languages. For
model behavior description, this work purposes the adoption of
the hybrid Statecharts formalism to obtain the required behavior
inheritance.

The organization of model’s knowledge is simple because
the model’s behavior can be hierarchically detailed by nesting
statecharts. In fact, the statechart states can be decomposed until
low level behavior description is achieved. An interesting
feature of this approach is the possihility of inheriting and
refining model’ s behavior in a very understandable manner, and
with well-defined rules; this allows the organization, for the
same component, of models whose behaviors can have various
complexity stages suitable for different simulation experiments.
For example, component models can be organized with a
complexity order number; then, by just defining a certain degree
of complexity, a complex model can be composed by severa
connected component models, either for real time simulation or
for off line simulation experiments. The user can always inhibit
the behavior of models and define a new behavior, for a part or
for thewhole modd, in a very elegant way.

A simple example is presented shortly to illustrate the
method.

The relief valve example
Consider the example of a component, reief valve (fig. 3),
that limits the pressure in a hydraulic system. It is a closed loop

system but it is usually modelled by its (static) input/output
characteristic [Beater, 1998]. Consider, as afirst approach, that
the valve has the behavior depicted on the left side of figure 4.

ReliefValve: Model Symbol

C

q,pb‘
Fig. 3 — Symbol for a hydraulic relief valve

The behavior of the smple relief valve modd can be
described by considering that the valve has two possible stable
dtates, and also hysteresis when it changes from one state to
another. When the pressure difference (dp) is bigger than the
pressure required to open the valve (pressureOpen), the valve
will be totally open (g=(dp—pressureClose)* gOpen); when the
pressure difference is smaler than the close pressure
(pressureClose) the valve will be totaly closed (g =

dp*gLeak).
Flow rate (q) Flow rate (q)
0 Rlm———

0 pressureClose  pressureOpen
Pressure differential (dp) Pressure differential (dp)
Fig. 4 — Two different behaviors for the relief valve
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Fig. 5 — Inheritance hierarchy for the relief valve
model



Using the formalism of Statecharts, the dynamic behavior
of the valve (fig. 5) can be represented by an OR statechart
(Reliefvalve) that contains two substates (Close and Open) and
two state transitions (tOpen and tClose). Initially the valve is
closed (Close is the default substate). The continuous behavior
of the relief valve is described by its during activity (q = dp *
gLeak), that is enabled while the valve isin its Close state and
is not exiting. If the valve is totally closed and its pressure
difference (dp) exceeds pressureOpen, then a transition (tOpen)
takes place and the state Open becomes active. The during
activity of state Open will be evaluated for all the simulation
steps while the state Open is active, that is, while transition
tClose does not occur. This transition is fired when pressure dp
reaches a value below the pressure difference defined by the
parameter pressureClose.

Refining the relief valve model

To improve the relief valve mode, the characteristics
displayed at the right of figure 4 can be used. One possible
solution is carried out by the statechart associated with the
ReliefValveExt model of figure 5. The statechart shows that the
states Close and Open and transition tOpen were redefined. The
transition tClose is the only one that is inherited without
changes from the ancestor model (ReliefValve).

It should be noted that the state Open was refined, being
now an OR state with PartialOpen and TotalOpen substates.
The modd will inherit al the structure and, concerning the
behavior, all the equations that were not redefined. For instance,
the equation that defines the trigger event for the transition
tClose (tClose.event = dp<pressureClose) will be inherited
from the moddl Relief\alve, while the trigger event equation for
transition tOpen must be redefined.

A subset of the Modelica code for the relief valve modd’s
hierarchy is presented bellow. The modds use the Statecharts
Modelica library described in [Ferreiraand Oliveira, 1999].

model ReliefValve
extends TwoPortHydComp;
parameter Real pressureOpen=55¢€5; //Pa

RootStateS Root;
StateS Close(defaultState = true);
StateS Open;
TrangitionS tOpen;
TransitionStCloseg;
equation
tOpen.event = event(dp > pressureOpen);
tClose.event = event(dp < pressureClose);
g =if Open.active then (dp-pressureClose)* gOpen
elsedp * gLeak;
end ReiefValve

model ReliefValveExt
extends ReliefValve;

StateS Partial Open(defaultState = true);
StateS Total Open;
TrangitionS tPOpen;
TransitionS tTOpen;
equation

tOpen.event = event(dp > pressureClose);

tPOpen.event = event(dp > pressureOpen);

tTOpen.event = event(dp < pressureOpen);

g=if Closed.activethen dp * gLeak
elseif Partial Open.active then (dp-pressureClosed)"2 *

gOpen / (pressureOpen-pressureClose) + dp*gleak
else (dp-pressureClosed) * gOpen + dp*glLeak;
end ReliefValveExt;

model HydOilProp “ Oil properties’
parameter Real KVisc=46e-6; /I m"2/s; kinematic viscosity
parameter Real rho=865; 1l kg/m”3; mass density
parameter Real bulkModulus=1€9; // Pa; bulk modulus

end HydOilProp;

connector HydConnector “Hydraulic connector”
Real p; /I Pa; fluid pressure
flow Real g; // m"3/s; fluid flow

end HydConnector;

model TwoPortHydComp
extends BasicOil;
HydConnector HydA; // hydraulic connector A
HydConnector HydB; // hydraulic connector B

Real dp; /I Pa, pressure difference
Real q; /Im"3/s; flow through component
equation

dp = HydA.p - HydB.p;

end TwoPortHydComp;

0.07 rValve.q rValveExt.q
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Fig. 6 — Behavior of ReliefValve and ReliefValveExt

models
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The dynamic behavior of instances of ReliefValve and
ReliefValveExt models (r\Valve and rvalveExt, respectivelly) is
shown in the following graphics, the absolute value of a
sinusoidal signal was used as the pressure difference dp. This
model was tested with the Dymola package [Dymola] that
supports the Modelica language.

This example shows how simple can be the refining of
behavior of, for example, mode libraries of hydraulic
components, if the present methodology is used.

4. HARDWARE-IN-THE-LOOP
HYDRAULIC SYSTEMS
Hardware-in-the-loop simulation refers to a technology

where some of the components of a pure simulation are replaced

with actual hardware. This type of procedure is useful, for
example, to test a controller which, instead of being connected
to the real equipment under control, is connected to a real time
simulator. The controller must “think” that it is working with
the real system and so the accuracy of the smulation and its
electrical interfacing to the controller must be adequate [Maclay,
1997]. This technology provides a way for testing control
systems over the full range of operating conditions, including
failure modes. Testing a control system prior to itsusein a red
plant can reduce the cost and the development cycle of the
overall system. Hardware-in-the-loop simulation has been used,
with success, in the aerospace industry and is now emerging as

a technique for testing eéectronic control units. It has been

applied to solve some specific problems but is seldom used as a

platform to test the real time behavior of hardware components.

The main purpose of the present methodology is to give a
well defined support for the model libraries of electro-hydraulic
components, to be used in hardware-in-the-loop simulation
experiments. The global performance is related to the modedl’s
complexity, thus, for diverse type of simulations, different
model’s behavior shall be used. When using real time
simulation, the model’s complexity shall take into account the
dedicated real time hardware that will “run” the codified modd.
With the proposed methodology, the real-time simulation
experiments can be done with the same mode topology as the
off-line simulations, because the time required for simulation
can be defined by sdecting the appropriate degree of
complexity.

In order to use this methodology for hardware-in-the-loop
simulation of electro-hydraulic systems, libraries of models with
different complexities shall be developed for the different
physical domains involved in such systems. This means that
new basic models must be designed and also that some others
must be redefined and/or refined.

The main use of hardware-in-the-loop simulation applied to
hydraulic systems is the testing of control algorithms and the
development of new control schemes. Usually thisimpliesarea
controller, operating over areal time simulated hydraulic plant.

The objective of future work is to be able to modify the
complexity of a composed hydraulic model, just by setting

SIMULATION OF

parameter values; that way a model can be compiled with the
complexity adjusted to the hardware platform.

Figure 7 presents an outline of the general block diagram
for the modeling methodology testbench. This platform will be
used in a near future to emulate eectro-hydraulic systems in
order to test real controllers and algorithms.

Electro-hydraulic
virtual system
(simulated in real time)

Inputs
(Mouse and
keyboar d)

Output
"| (Display)
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y
Edition tools

Visualization tools
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Appropriateinterface
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environment (Development and

Non-real time | | WindowsNT Applications
visualization tools)

I Personal
computer (PC)

DSP hardware
(running real time C code)

}

Real world interface

I

Real controllers

Real time
environment

Real world [

Fig. 7 — Outline of the block diagrams of hardware
and software components

5. CONCLUSIONS

The present paper proposes a methodology to organize
model libraries of eectro-hydraulic components, in order to
easly manage complex modds for hardware-in-the-loop
simulation experiments.

The concept behind the methodology is the following: the
model of a physica component is composed by two
complementary perspectives, its structure and its behavior. For
that, the methodology is based on the association of an object-
oriented language, Modelica, to modd the structure, with the
hybrid Statecharts formalism to describe the dynamic behavior
of the modd.

By making use of the Statecharts inheritance rules, this
work also proposes a solution to refine or redefine the behavior
of hydraulic systems. This way, different simulation
experiments can be achieved by choosing the appropriate
behavior for each modd.
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