
7th IFAC Symp. on Computer Aided Control Systems Design, CACSD'97, Gent, Belgium, 28-30 April 1997

MODELICA | AN INTERNATIONAL

EFFORT TO DESIGN THE NEXT

GENERATION MODELING LANGUAGE

Sven Erik Mattsson

Department of Automatic Control

Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden

E-mail: SvenErik@control.LTH.se

Hilding Elmqvist

Dynasim AB

Research Park Ideon

SE-223 70 Lund, Sweden

E-mail: Elmqvist@Dynasim.se

Abstract A new language called Modelica for physical modeling is developed in
an international e�ort. The main purpose is to make it easy to exchange models
and model libraries. The design approach builds on non-casual modeling with true
equations and the use of object-oriented constructs to facilitate reuse of modeling
knowledge. There are already several modeling language based on these ideas
available from universities and small companies. There is also signi�cant experience
of using them in various applications. The aim of the Modelica e�ort is to unify
the concepts and design a new uniform model language for model representation.
The paper describes the e�ort and gives an overview of Modelica.

Keywords Modelica; modeling language; object-orientation; hierarchical sys-
tems; modeling; simulation; di�erential-algebraic equations

1. INTRODUCTION

Mathematical modeling and simulation are emerg-
ing as key technologies in engineering. Relevant
computerized tools, suitable for integration with
traditional design methods are essential to meet
future needs of e�cient engineering.

In October 1996 an e�ort started within the ES-
PRIT project \Simulation in Europe Basic Re-
search WorkingGroup (SiE-WG)" (18) to design a
new language for physical modeling. The language
is called Modelica. The main purpose is to make it
easy to exchange models and model libraries and
to allow for the end user to bene�t from the ad-
vances in object-oriented modeling methodology.
This paper presents the status of the Modelica de-
sign as of April 1997.

1.1 Today's simulation tools

There is a large amount of simulation software
on the market. All languages and model repre-

sentations are proprietary and developed for cer-
tain tools. There are general-purpose tools such
as ACSL, SIMULINK, System Build, which rep-
resentations are essentially based on the same
modeling methodology, input-output blocks, as in
the previous standardization attempt, CSSL, from
1967. There are domain oriented packages: elec-
tronic programs (SPICE, Saber), multibody sys-
tems (ADAMS, DADS, SIMPACK), chemical pro-
cess (ASPEN Plus, SpeedUp) etc. With very few
exceptions, all simulation packages are only strong
in one domain and are not capable to model com-
ponents from other domains in a reasonable way.
This is a major disadvantage since technical sys-
tems are becoming more and more heterogeneous
with components frommany engineering domains.

1.2 The state-of-the art

Techniques for general-purpose physical modeling
have been developed during the last decades, but
it did not receive much attention from the simu-

1



lation market. The modern approaches build on
non-causal modeling with true equations and the
use of object-oriented constructs to facilitate reuse
of modeling knowledge. There are already several
modeling languages with such a support available
from universities and small companies. Examples
of such modeling languages are ASCEND (16, 15),
Dymola (7, 6), gPROMS (3, 14), NMF (17), Ob-
jectMath (8, 19), Omola (13, 1), SIDOPS+ (5),
Smile (4, 12), U.L.M. (11, 10) and VHDL-AMS
(2, 9). There is also signi�cant experience of us-
ing these languages in various applications. The
aim of the Modelica e�ort is to unify the concepts
of these languages and introduce a common ba-
sic syntax and semantics and design a new uni�ed
modeling language for model representation.

1.3 The Modelica e�ort

The work was started in the continuous time
domain since there is a common mathematical
framework in the form of di�erential-algebraic
equation (DAE) systems and there are several ex-
isting modeling languages based on similar ideas.
There is also signi�cant experience of using these
languages in various applications. It was thus ap-
propriate to collect all knowledge and experience
in order to design a new uni�ed modeling lan-
guage or neutral format for model representation.
The short range goal is to design a modeling lan-
guage based on DAE systems with some discrete
event features to handle discontinuities and sam-
pled systems. The design should allow an evolu-
tion to a multi-formalism, multi-domain, general-
purpose modeling language.

The members of the Modelica design group

are listed in Table 1. Hilding Elmqvist is the

Table 1 The active members of the Modelica design

group.

Fabrice Boudaud, Gaz de France

Jan Broenink, Univ. of Twente, Netherlands

Dag Br�uck, Dynasim AB, Lund, Sweden

Hilding Elmqvist, Dynasim AB, Lund, Sweden

Thilo Ernst, GMD-FIRST, Berlin, Germany

Peter Fritzson, Linköping University, Sweden

Alexandre Jeandel, Gaz de France

Kaj Juslin, VTT, Finland

Sven Erik Mattsson, Lund University, Sweden

Bernt Nilsson, Lund University, Sweden

Martin Otter, DLR Oberpfa�enhofen, Germany

Per Sahlin, BrisData AB, Stockholm, Sweden

Hubertus Tummescheit, GMD FIRST, Berlin

Hans Vangheluwe, University of Gent, Belgium

chair man. The activity started in October
1996 as an e�ort within the ESPRIT project
\Simulation in Europe Basic Research Work-
ing Group (SiE-WG)". Information on SiE-WG
can be found in (18) and the at home page
http://hobbes.rug.ac.be/SiE/. In February
1997 the Modelica design e�ort was made into
a Technical Committee within the Federation of
European Simulation Societies, EUROSIM.

2. AN INTRODUCTION TO MODELICA

In order to give an introduction to Modelica
we will consider modeling of a simple electrical
circuit as de�ned in Fig. 1. The system can
be broken up into a set of connected electrical
standard components. We have a voltage source,
two resistors, an inductor, a capacitor and a
ground point. Models of these components are
typically available in model libraries and by using
a graphical model editor we can de�ne a model by
drawing an object diagram as shown in Fig. 1 by
positioning icons that represent the models of the
components and drawing connections.

The corresponding Modelica model looks like

model circuit (

Resistor: R1 (R=10);

VsourceAC: AC;

Capacitor: C (C=0.01);

Ground: G;

Resistor: R2 (R=100);

Inductor: L (L=0.1);

equation

CONNECT(AC.n, C.n);

CONNECT(G.p, AC.n);

CONNECT(R1.n, C.p);

CONNECT(AC.p, R1.p);

CONNECT(L.p, R2.n);

CONNECT(R1.p, R2.p);

CONNECT(C.n, L.n);

)

This composite model speci�es the topology of the
system to be modeled. It speci�es the components
and the connections between the components.

The statement `Resistor: R1 (R=10);' declares
a component R1 of class Resistor and sets the
default value of the resistance R to 10.

Fig. 1 A simple electrical circuit.

2



Connections specify interactions between compo-
nents. In other modeling languages connectors are
referred as cuts, ports or terminals. A connector
must contain all quantities needed to describe the
interaction. For electrical components we need the
quantities voltage and current. The types to rep-
resent them are declared as

type Voltage = Real(Unit="V")

type Current = Real(Unit="A", Connection=Sum)

where Real is the name of a prede�ned class or
type. A real variable has in addition to its value,
a set of attributes such as unit of measure, initial
value, minimum and maximum value. Here, the
units of measure is set to be the SI units. A
connector class is de�ned as

connector Pin (

Voltage: v;

Current: i;

)

A connection CONNECT(Pin1, Pin2), with Pin1

and Pin2 of connector class Pin, connects the
two pins such that they form one node. This
implies two equations, namely Pin1.v = Pin2.v

and Pin1.i + Pin2.i= 0. The �rst equation in-
dicates that the voltages on both branches con-
nected together are the same, and the second cor-
responds to Kirchho�'s current law saying that
the current sums to zero at a node. Similar laws
apply to 
ow rates in a piping network and to
forces and torques in mechanical systems. The pre-
de�ned class Real has an attribute Connection

which can have the values Equal (default) or Sum.
The declaration of the type Current de�nes its
value of Connection to be Sum. In Modelica it is
assumed that the value is positive when the cur-
rent or the 
ow is into the component.

It is good to start by de�ning a set of connector
classes, when developing model libraries for a new
domain of application. It supports compatibility
of the component models.

A common property of many electrical compo-
nents is that they have two pins. It means that
it is useful to de�ne a \shell" model class

partial model TwoPin

"Shell model with two electrical pins" (

Pin: p, n;

Voltage: v;

Current: i;

equation

v = p.v - n.v;

p.i + n.i = 0;

i = p.i;

)

that has two pins, p and n, a quantity, v, that
de�nes the voltage drop across the component and
a quantity, i, that de�nes the current into the pin
p, through the component and out from the pin

n. The equations de�ne generic relations between
quantities of a simple electrical component. In
order to be useful a constitutive equation must
be added. The keyword partial indicates that
this model class is incomplete. The key word is
optional. It is meant as an indication to a user
that he cannot use the class as it is to instantiate
components. Between the name of a class and its
body it is allowed to have a string. It is treat
as a comment attribute. Tools may display this
documentation in special ways.

To de�ne a model for a resistor we exploit TwoPin
and add a de�nition of parameter for the resis-
tance and Ohm's law to de�ne the behavior:

model Resistor "Ideal resistor" (

extends TwoPin;

parameter Real: R(Unit="Ohm") "Resistance";

equation

R*i = v;

)

The keyword parameter speci�es that the quan-
tity is constant during a simulation run, but can
change values between runs. A parameter is a
quantity which makes it simple for a user to mod-
ify the behavior of a model.

Models for electrical capacitors and inductors are
de�ned in similar ways

model Capacitor "Ideal capacitor" (

extends TwoPin;

parameter Real: C(Unit="F") "Capacitance";

equation

C*der(v) = i;

)

model Inductor "Ideal inductor" (

extends TwoPin;

parameter Real: L(Unit="H") "Inductance";

equation

L*der(i) = v;

)

where der(v) means the time derivative of v. A
model for the voltage source can be de�ned as

model VsourceAC "Sine-wave voltage source" (

extends TwoPin;

parameter Real: VA = 220 "Amplitude [V]";

parameter Real: f = 50 "Frequency [Hz]";

parameter Real: t0 = 0 "Offset time [s]";

private

constant Real: PI=3.141592653589793;

equation

v = VA*sin(2*PI*f*(Time-t0));

)

Finally, we must not forget the ground point.

model Ground "Ground" (

Pin: p;

equation

p.v = 0;

)

3



The purpose of the ground model is twofold.
First, it de�nes a reference value for the voltage
levels. Secondly, the connections will generate one
Kirchho�'s current law too many. The ground
model handles this by introducing an extra current
quantity Pin.i, which implicit by the equations
will be calculated to zero.

3. MORE ADVANCED MODELING
FEATURES

So far, the Modelica language has been introduced
by giving an elementary example. Model classes
and their instantiation form the basis for hierar-
chical modeling, connectors and connections cor-
responds to physical connections of components.
At the lowest level, equations are used to describe
the relation between the quantities of the model.

The expressive modeling power of Modelica is
large. We will brie
y summarize the more powerful
constructs below.

Modeling of, for example, multi-body systems,
control systems and approximations to partial
di�erential equations is done naturally by utilizing
matrix equations. Multi-dimensional matrices and
the usual matrix operators and matrix functions
are thus supported in Modelica. It is also possible
to have arrays of components and to de�ne regular
connection patterns. A typical usage is modeling
of a distillation column which consists of a set of
trays connected in series.

We have so far discussed component parameters
like the resistance value. Reuse of model library
components is even more supported by allowing
also model classes to be parametricized. An ex-
ample is a controlled plant where certain PID con-
trollers are replaced with auto tuning controllers.
It is of course possible to just replace those con-
trollers in a graphical user environment, i.e. to cre-
ate a new model. The problemwith this solution is
that two models have to maintained.Modelica has
the capability to instead just substitute the model
class of certain components using a language con-
struct at the highest hierarchical level, i.e. only
one version of the rest of the model is needed.

Realistic physical models typically contains dis-
continuities, events and changes of structure. Ex-
amples of such phenomena are relays, switches,
friction, impact, sampled data systems etc. Mod-
elica supports such models by allowing the use of
�nite state machines and Petri Nets and in a way
that a simulator can introduce e�cient handling
of such events. Special emphasis is given to syn-
chronization and propagation of events and the
possibility to �nd consistent restarting conditions
after an event.

4. NON-CAUSAL MODELING

It is now widely recognized that graphical system
input tools are an important part of simulation-
ist's toolkit. However, graphical system input on
its own is not su�cient to solve all problems. It
is important to have an appropriate framework
for model representation. Most of the general-
purpose simulation software on the market such as
SIMULINK, SystemBuild and ACSL assume that
a system can be decomposed into block diagram
structures with causal interactions. This means
that the models are expressed as an interconnec-
tion of submodels on explicit state-space form:

dx

dt
= f(x; u)

y = g(x; u)

where u is input and y is output. The connections
of outputs to to inputs must not lead to algebraic
loops. It is seldom that a natural decomposition
into subsystems lead to such a model. It is often a
signi�cant e�ort in terms of analysis and analyt-
ical transformations to obtain a problem in this
form. It requires a lot of engineering skills and
manpower and it is error-prone. To illustrate this
a block diagram description of the system in Fig. 1
is shown in Fig. 2. The topology of the circuit is
not preserved in the block diagram. Furthermore,
di�erent types of blocks are needed for the two re-
sistors. The block Res2, which represents the re-
sistor R2 has the current as input and calculates
the voltage drop as output, while the block Res1,
which represents the resistor R1 has reversed com-
putational causality with the voltage drop as in-
put and the current as output. This means that
we need to have two di�erent blocks for resistors
and it is the user's task to �nd out which to use.
Furthermore, in most cases this is not su�cient,
because despite how the blocks are selected there
is an inherent algebraic loop. A very simple exam-
ple is two resistors in series connected to a voltage
source.

Modelica supports object-oriented modeling,
where behavior on the lowest level may be ex-
pressed in terms of ordinary di�erential equations

Fig. 2 A block diagram for the system in Fig. 1.

4



and algebraic equations, so called di�erential-
algebraic equation (DAE) systems, which is the
natural mathematical framework for continuous
time models. On the other hand, the Modelica
language has been carefully designed in such a
way that computer algebra can be utilized to
achieve as e�cient code as if the model would be
converted to ODE form manually.

5. CONCLUSIONS

The Modelica e�ort has been described and
an overview of Modelica has been given. More
information is available on WWW at URL:

http://www.Dynasim.se/Modelica.

Acknowledgements

The authors would like to thank the other mem-
bers of the Modelica Design Group for inspiring
discussions and their contributions to the Model-
ica design.

6. REFERENCES

[1] M. Andersson. Object-Oriented Modeling and

Simulation of Hybrid Systems. PhD thesis ISRN
LUTFD2/TFRT--1043--SE, Department of Au-

tomatic Control, Lund Institute of Technology,
Lund, Sweden, December 1994.

[2] J. Barby. \The need for a uni�ed modeling lan-
guage and VHDL-A." In Proceedings of the 1996

IEEE International Symposium on Computer-
Aided Control System Design, pp. 258{263, Dear-

born, Mi, USA, September 1996.

[3] P. Barton and C. Pantelides. \Modeling of com-

bined discrete/continuous processes." AIChE J.,
40, pp. 966{979, 1994.

[4] M. Biersack, V. Friesen, S. Jähnichen, M. Klose,

and M. Simons. \Towards an architecture for sim-
ulation environments." In Vren and Birta, Eds.,

Proceedings of the Summer Computer Simulation
Conference (SCSC'95), pp. 205{212. The Society
for Computer Simulation, 1995.

[5] A. P. Breunese and J. F. Broenink. \Modeling

mechatronic systems using the SIDOPS+ lan-
guage." In Proceedings of ICBGM'97, 3rd In-

ternational Conference on Bond Graph Modeling
and Simulation, Simulation Series, Vol.29, No.1,

pp. 301{306. The Society for Computer Simula-

tion International, January 1997.

[6] H. Elmqvist, D. Br�uck, and M. Otter. Dymola
| User's Manual. Dynasim AB, Research Park

Ideon, Lund, Sweden, 1996.

[7] H. Elmqvist, F. Cellier, and M. Otter. \Object-
oriented modeling of hybrid systems." In Pro-
ceedings of European Simulation Symposium,

ESS'93. The Society of Computer Simulation, Oc-
tober 1993.

[8] P. Fritzson, L. Viklund, D. Fritzson, and J. Her-

ber. \High-level mathematical modeling and pro-
gramming." IEEE Software, 12:3, July 1995.

[9] IEEE. \Standard VHDL Analog and Mixed-

Signal Extensions." Technical Report IEEE
1076.1, IEEE, March 1997.

[10] A. Jeandel, F. Boudaud, P. Ravier, and A. Buhs-
ing. \U.L.M: Un Langage de Mod�elisation, a
modelling language." In Proceedings of the

CESA'96 IMACS Multiconference. IMACS, Lille,
France, July 1996.

[11] A. Jeandel, P. Ravier, and A. Buhsing.
\U.L.M.: Reference guide." Technical Report
M D�eGIMA.1205, Gaz de France, 1995.

[12] M. Kloas, V. Friesen, and M. Simons. \Smile |
A simulation environment for energy systems."

In Sydow, Ed., Proceedings of the 5th Interna-
tional IMACS-Symposium on Systems Analysis
and Simulation (SAS'95), vol. 18{19 of Systems

Analysis Modelling Simulation, pp. 503{506. Gor-
don and Breach Publishers, 1995.

[13] S. E. Mattsson, M. Andersson, and K. J. Åström.
\Object-oriented modelling and simulation." In
Linkens, Ed., CAD for Control Systems, chap-

ter 2, pp. 31{69. Marcel Dekker Inc, New York,
1993.

[14] M. Oh and C. Pantelides. \A modelling and
simulation language for combined lumped and
distributed parameter systems." Computers and

Chemical Engineering, 20, pp. 611{633, 1996.

[15] P. Piela. ASCEND: An Object-Oriented Envi-

ronment for Modeling and Analysis. PhD the-
sis EDRC 02-09-89, Engineering Design Research
Center, Carnegie Mellon Univeristy, Pittsburgh,

PA, USA, 1989.

[16] P. Piela, T. Epperly, K.Westerberg, and A. West-

erberg. \ASCEND: An object-oriented computer
environment for modeling and analysis: the mod-

eling language." Computers and Chemical Engi-

neering, 15:1, pp. 53{72, 1991.

[17] P. Sahlin, A. Bring, and E.F.Sowell. \The Neutral

Model Format for building simulation, Version
3.02." Technical Report, Department of Build-
ing Sciences, The Royal Institute of Technology,

Stockholm, Sweden, June 1996.

[18] H. L. Vangheluwe, E. J. Kerckho�s, and G. C.

Vansteenkiste. \Simulation for the Future:
Progress of the ESPRIT Basic Research work-

ing group 8467." In Bruzzone and Kerckho�s,

Eds., Proceedings of the 1996 European Simula-
tion Symposium (Genoa), pp. XXIX { XXXIV.

Society for Computer Simulation International
(SCS), October 1996.

[19] L. Viklund and P. Fritzson. \ObjectMath { An

object-oriented language and environment for
symbolic and numerical processing in scienti�c

computing." Scienti�c Programming, 4, pp. 229{
250, 1995.

5


