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Abstract

The paper discusses the modeling of a central solar heating plant with seasonal storage in the ground
using the new object-oriented physical systems modeling language Modelica. Main emphasis is put
on the hierarchical decomposition of the system model and on the re-engineering of an existing
Fortran code for the ground store model. The object-oriented physical system model is compiled to
a mathematical description in the form of ordinary differential equations (ODE). The ODE model is
used to formulate and solve nonlinear optimization problems. We show design optimization results
obtained for given weather conditions in Switzerland. The heating system is designed to cover the
annual load of a housing area for space heating of about 500 MWh to 95% by solar. The optimization
results have been validated with the help of initial-value simulations using TRNSY'S, a special-purpose
simulation software for thermal energy systems.

1 Introduction

Seasonal heat storage in the ground is an important opportunity for a more efficient use of energy.
The idea is to store thermal energy when it is available and to use it when it is needed. Many
different thermal processes and their mutual interaction have to be considered, if a ground heat store
is integrated with energy systems. Advanced design tools are required in order to obtain cost-effec-
tiveness. Related system studies are normally done with the help of detailed computer simulations.

A widely used special-purpose modular simulation software for solar energy systems is TRNSYS.
Often hundreds of initial-value simulations with varied parameter values of the system components
have to be performed in order to optimize a system design, see e.g. [7]. The total number of needed
calculations strongly increases with the number of free parameters. That is why the approach is
no longer practicable for complicated optimization problems. On the other hand, the successful
application of mathematical optimization procedures to complex system models is burdened with
two things: a mathematical optimization problem has to be formulated and an appropriate solver is
needed. The use of the new object-oriented physical systems modeling language Modelica [1] and of
an advanced optimization solver [3] simplify the application of mathematical optimization to detailed
models of dynamic systems considerably.

This paper discusses, how the features of the general-purpose physical systems modeling language
Modelica can be exploited to implement a complex heating system model efficiently. The model is
used to solve a design optimization problem. As an example we treat a design case from [7]. In this
way we are able to compare our results with the comprehensive TRNSYS simulations done there.

2 The System Model

Figure 1 shows the structure of the system, whose model implementation in the object-oriented lan-
guage Modelica is discussed in this section. The system can be divided into three subsystems: a
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Figure 1: Structure of a central solar heating plant with seasonal duct store.

collector subsystem, a storage subsystem, and a load subsystem. Each subsystem is further subdi-
vided, e.g. the store into a buffer tank and a duct ground store. The system is intended to collect
and store solar energy during summer time and to use it for space heating in a housing area during
winter time. An auxiliary heater supplements the solar energy in order to fully cover the load.

2.1 Interfaces

First we define interfaces and an abstract system model. The according Modelica code is listed in Fig-
ure 2. We are mainly interested in the energy balance of the system. Accordingly a HeatingConnector
for the interconnection of several components is modeled by using variables and parameters that are
needed to describe the transport of energy with a heat carrier fluid. That is the fluid temperature 7',
the mass flow rate g, and the specific heat capacity of the fluid ¢,. The used types are predefined
in the standard package Modelica.SIunit.

Many components have two connectors, one inflow and one outflow. Examples are the collector model
and the load model. A HeatingTwoPort serves as common base class. The storage model has four
ports: two for the collector loop and two for the load loop. Using the base classes LoadModelShell,
CollectorModelShell, and StorageModelShell for the three main subsystems, the abstract solar
heating model SolarHeatingModelShell can be defined. The specialization of the system components
is discussed in the following subsections.

2.2 The Duct Ground Store

The model described here is based on the DST model [6], which is currently available as Fortran
and Pascal version and which has a size of about 100 KB source code. Using the high-level features
of Modelica, an efficient re-engineering of the model has been possible. The new implementation is
divided into several subcomponents to consider convective and conductive thermal processes in the
ducts and in the store, respectively.
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connector HeatingConnector partial model SolarHeatingModelShell

Temperature T; LoadModelShell 1m;

flow MassFlowRate qm; CollectorModelShell cm;

SpecificHeatCapacity cp; StorageModelShell sm;
end HeatingConnector;

equation

partial model HeatingTwoPort // load loop

HeatingConnector a, b; connect(sm.bl, 1m.a);
end HeatingTwoPort; connect(lm.b, sm.al);
partial model LoadModelShell // collector loop

= HeatingTwoPort; connect(sm.bc, cm.a);

connect(cm.b, sm.ac);

partial model CollectorModelShell end SolarHeatingModelShell;

= HeatingTwoPort;

partial model StorageModelShell
HeatingConnector al, bl "load loop";
HeatingConnector ac, bc "coll loop";
end StorageModelShell;

Figure 2: Connector and model interface definitions for a solar heating system model

In a duct store, an array of boreholes is drilled vertically into the ground. Water is used as heat
carrier fluid and is circulated through these ducts in order to exchange heat. In the model, the store
is divided into a number of sections (6 in our case). One representative duct component is defined
for each section.

The main model complexity is caused by the spatially distributed thermal process in the ground,
which can be described for constant thermal properties by the heat equation

10T

a Ot
with T the ground temperature and a the thermal diffusivity. The method of finite differences is a
famous tool to treat partial differential equations (PDE) of the form (1) numerically by calculating the
temperature field at several grid points. However, the number of temperature variables introduced in
this way can be very high. In order to keep the model complexity as small as possible, we first divide
the total thermal process in the ground into two subprocesses: a small-scale local thermal process
around each duct and a large-scale global thermal process in the overall store. Each subprocess is
treated separately. The total thermal process is given by superposition of the subprocesses.

= VT (1)

One component for the local thermal process is defined for each section of the storage model and
is attached to the corresponding duct component. Considering the radial temperature distribution
around the duct during heat injection or extraction, the model can be implemented by a radial, one-
dimensional mesh of ground cells (e.g. 10 cells per component). But after a comparable short time of
operation (some days) it can be seen that the shape of the local temperature field will become steady.
Furthermore the small-scale dynamics in the ground is damped by the buffer tank. Neglecting the
time variation, the dynamic model for the local thermal process can be replaced by an analytical
description of the local temperature field under steady-flux conditions. Accordingly the heat transfer
is assumed here to occur via time-invariant thermal resistances between the ducts and the ground
store volume. The resistances are given by a logarithmic function of the duct spacing, see [5].

The large-scale thermal process in the ground is modeled by a rectangular mesh of a few hundred
ground cells. In system simulations we are mainly interested in the interaction between the defined
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storage sections and the resting system. The actual temperature distribution in the ground, as
approximated by the mesh, is of less importance. That is why we are applying model order reduction
to the state-space model describing the temperature field in the ground. In the example discussed
here, the number of temperature variables could be reduced from 220 to 15 by applying a singular
perturbation approximation, see e.g. [8].

2.3 The Water Tank

The buffer tank is modeled by three uniformly mixed water layers. Each layer is described by one
temperature variable and an energy balance equation taking into account water inflows, water out-
flows, and conductive heat transfers with neighboring layers and with the environment. The natural
convection inside the tank is modeled by nonlinear conductances between neighboring layers using an
arc tangent function. Variations of the buffer tank volume influence heat capacities and heat losses
of the layers.

2.4 The Solar Collector Array and the Heat Load

In order to simplify this study, we use TRNSYS as preprocessor together with the solar collector
subsystem and the load model developed in [7].

The solar collector subsystem is simulated for a number of constant fluid temperatures over the year.
Afterwards the specific gained energy and the circulated water amount are approximated for periods
of 3 hours by cubic polynomials using the fluid temperature as free variable. The total collector area
is used as multiplier.

The heat load as well as the fluid forward and return temperatures in the load model are calculated
as functions of the ambient temperature.

3 System Optimization

With the help of the object-oriented modeling tool we automatically compile a mathematical system
model of the form

x(t) = £[t, x(t), 2(t), pl, x(to) = X(to)- (2)
The state variables x € IR™ are 24 temperatures and 6 energy quantities. An additional state is used
to integrate violations of a given limit by the buffer temperature. The disturbances z € R™* are the
weather conditions during the year. The time-invariant parameters p € R™? are the collector area,
the buffer tank volume, the duct store volume, and the duct spacing. The model is translated into
C-code as it can be imported by the applied optimization tool.

The optimization problem is to find the minimum-cost system design that fulfills a given solar fraction,
i.e. that supplements a given fraction of the total heat load by solar, during the operational period
[to, t1] of one year. The system costs are described by the cost function

J[x(t1),p] = rrgn, J:R™ x R™ — R, (3)

which includes prices for the solar collector array, the buffer tank considering cost decreases for
larger volumes, and the duct store considering e.g. drilling costs, land area costs and piping costs.
Furthermore we added a term to consider the energy needed for the thermal build-up process of the
ground store during the first years of operation. We are interested in a solution that minimizes J
subject to the system model behavior (2) and additional constraints of the form

c; <c[x(ty),x(t1),p] < ¢y, c:R"™ xR"™ x R™ — R™. (4)
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One final state constraint results from the solar fraction. Other constraints are restrictions on the
design parameters and on the state trajectories, e.g. to avoid boiling. Moreover we do not know initial
values for the 24 storage temperatures X7 (9) at the beginning of the year. They are the result of the
thermal build-up process. That is why the initial temperatures are not fixed, but they are defined
with the help of the equalities

iT(to) = XT(tl). (5)
The solution we are specifying in this way is called the steady-state operation of the system.
The nonlinear, constrained optimization problem (2)—(4) is solved numerically with the sequential
quadratic programming (SQP) software Omuses [3]. The optimization algorithm requires sensitivities
of the system equations (2), the criterion (3), and the constraints (4) with respect to the parameters
and the unknown initial states. They are calculated internally by the solver by using automatic

differentiation. The system equations (2) and their extension by sensitivity equations are solved
numerically with the procedure RKsuite, which is available in the Netlib.

4 Case Study
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Figure 3: Simulated daily mean values for a solar fraction of 95% in steady state operation. The
diagrams show the collected solar heat P, the average temperatures Ti¢ of the buffer tank and Ty of
the ground store (thick), as well as the heat load Ps and the solar contribution P, (thick).

We apply the methodology to the low temperature case of the study [7]. The system has a total
annual heat load of 500 MWh corresponding to 120 housing units. The heat is only used for floor
space heating. Weather data and prices for Geneva, Switzerland are assumed.

In [4] we have discussed optimization results for a solar fraction ranging from 40% up to 100%
assuming 25 years of operation and an annuity factor of 0.1. There we used a version of the model
formulated in the modeling language Omola. However, the compiled ODE-model is identical to the
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one used here. According to the results, there is almost no cost increase for solar fractions up to 95%.
The solar cost is less than 325 CHF per MWh.

Figure 3 shows the steady state behavior of the system for a solar fraction of 95%. The seasonal heat
store has to bridge the gap between availability of solar energy during summer time and the need for
space heating during winter time. It can be seen, how the large ground store and the small buffer
tank inter-operate in order to fulfill this task efficiently. The supplementary heat is mainly needed in
February. The optimal system parameters have been validated with the help of TRNSYS simulations.

5 Conclusions

Modern algorithms can considerably improve the efficiency of computer simulations. Here we suc-
cessfully solved a design optimization problem for a sophisticated system model. Other areas of
application of the method are nonlinear parameter estimation and optimal control, see e.g. [2].

The modeling done in this study is concentrated on seasonal heat storage. The use of the general-
purpose high-level modeling language Modelica and the exploitation of automated symbolic processing
of model equations simplify the model development and allow the efficient application of recently
developed mathematical algorithms to complex dynamical system models.

The main goal of the re-engineering done for an existing Fortran code of the ground store model
has been to reduce the model complexity in system simulations. New features introduced in the
Modelica version are the description of small-scale thermal processes by analytical expressions and
the application of model order reduction to the state space model of the large-scale thermal process in
the ground. Such modifications can be expressed in Modelica by replacing submodels with alternative
implementations. As the treatment of PDEs is not yet covered by Modelica, a model generator
program has been developed that generates a numerical mesh and performs the model order reduction.
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