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Abstract

This document defines the Modelidcanguage, versio&.33.4, which is developed by the Melica
Association, a noiprofit organization with seat in Linkdping, Sweden. Modelica is a freely
available, objecbriented language for modeling of large, complex, and heterogeneous systems. It is
suited for mulidomain modeling, for example, mechatwmnodels in robotics, automotive and
aerospace applications involving mechanical, electrical, hydraulic coatrdl state machine
subsystems, process oriented applications and generation and distribution of electric power. Models
in Modelica are mathematity described by differential, algebraic and discrete equations. No
particular variable needs to be solved for manually. A Modelica tool will have enough information
to decide that automatically. Modelica is designed such that available, specializétdrakyoan be
utilized to enable efficient handling of large models having more than one hundred thousand
equations. Modelica is suited and used for hardwatbeloop simulations and for embedded
control systems. More information is availabletat//www.Modelica.org/
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Preface
Modelica is a freely available, objeatiented language for modeling of large, complex, and heterogeneous

physical systems. From a ué&epoint of view,models are described by schematics, also called object diagrams.
Examples are shown in the next figure:

‘ lossyRavigneaux
Star2 N
D_< lossyPlanetary e
R3 L
= e
- eT -

wo | F = g la

G”BE R=0.0001 . 'l =

. . . AlCA i_0=-1.9189
eIectrlcaI circuits electrical machines
drive trains, e.g. planetary gea
‘ 5
o A A = é . ”DEJDWSnurce Valume Sink
= 4 } ] B
pump = | % WValve
® » V=1
— @ . .
. thermofluid pipe flow, e.g.
hydraulic circuits power plants, air conditioning systems

IS

fitter nitizlStep  transition? step transition2

feedback \_:
+j o } |:| active I 1
L x
T D'I

f_cut=5 timer ’

Al =
state machines <+ — 3-dim. mechanical system

block diagrams

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has

fconnectaor sad sppofctal |l ed HAportso) t hat describe the
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system or block
diagram model is constructed. Internallyacompe nt i s defined by another sche

equation based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, call packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model) and to
perform model simulations and other analysis. Information about suefromments is available at
www.modelica.org/toolsBasically, all Modelica language elements are mapped to differential, algebraic and
discrete equations. There are no language elements to describe dire@lydiféetential equations, although
some types of discretized partial differential equations can be reasonably defined, e.g., based on the finite volume
method and there are Modelica libraries to import results of fhétment programs.

This document des the details of the Modelica language. It is not intended to learn the Modelica language
with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publiations This specification is used by computer scientist to implement a Modelica
translator and by modelers who want to understand the exact details of a particular language element.

The Modelica language has been developed since Iﬁ%document desitresrevision-1-ofversion 33-4 of
the Modelica languagé/

Men&e—desenb&ee#&reﬂe#s—and%wrehmn%s—sta%e—m&ahmemplete summary is avallable kppendlx
E.1EL
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Chapter 1

Introduction

1.1  Overview of Modelica

Modelica is a language for modeling of physical systems, degigmsupport effective library development and
model exchange. It is a modern language built on acausal modeling with mathematical equations and object
oriented constructs to facilitate reuse of modeling knowledge.

1.2  Scope of the Specification

The semanticsef the Modelica language is specified by means of a set of rules for translating any class described
in the Modelica language to a flat Modelica structure.

A class(of specralrzed class model class or blomkended to be srmulated on its own is caledimulation
naed into

The flatModelica structure is also defined for other cases than simulation moadélsling functions (can
be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial models (used as
basemodels).This aIIows correctness tceb/erlfred for those classes before using them to build the simulation
modelFhi A
There are specrfrc semantic restrrctrons for a simulation model to ensure that the model is ctmeplete;
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that the model can
be initialized from thénitial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica structure. Many
Modelica models, especially in the associated Modelica Standard Library, are higher index systems, and can only
be reasonably simulated if symbolic index reduction is performed, i.e., equations are differentiated and
appropriate variables are selected as statethat the resulting system of equations can be transformed to state
space form (at least locally numerically), i.e., a hybrid DAE of indero. In order to allow this structural
analysis, a tool may reject simulating a model if parameters cannotlbatedaduring translationdue to calls of
external functions or initial equations/initial algorithms for fixed=false parameters. Accepting such models is a
guality of implementation issu&he Modelica specification does not define how to simulate a mbfisvever, it
defines a set of equations that the simulation result should satisfy as well as possible.

The key issues of the translation flattening are:

1 Expansion of inherited base classes
i Parameterization of base classes, local classes and cemtpon
9 Generation of connection equations from coreggtations

The flat hybrid DAE form consists of:
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9 Declarations of variables with the appropriate basic types, prefixes and attributes, spatarastér
Real v=5 "

1 Equations from equation sections.

1 Function invocations where an invocation is treated as a set of equations which involves all input and all
result variables (number of equations = number of basic result variables).

9 Algorithm sections where every section is treated as a set of equatidcts imolves the variables
occurring in the algorithm section (humber of equations = number of different assigned variables).

1 Whenclauses where every whetause is treated as a set of conditionally evaluated equations, also called
instantaneous equatignwhich are functions of the variables occurring in the clause (number of equations =
number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only conditionally
evaluated (e.gnstantaneous equations are only evaluated when the correspondingontgion becomes true).
Initial setup of the model is specified using stalues and instantaneous equations that hold at the initial time
only.

A Modelica class may also contain aketions, i.e. formal comments, which specify graphical representations
of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the ModelicangranNonnormative text, i.e.,
examples ath comments, are enclosed in [chmments are set in italicAdditional terms are explained in the

glossary inAppendix AAppendix-A Some important terms are:

Term Definition

Component | An element defined by the productiommpenent—clause—component - clause in the
Modelica grammar
(basicallya variable or an instance of a class)

Element Class definitions, exteneldauses and compentclauses declared in a class
(basically aclassreferencear a componenin a declaration).

Flattening The translation of a model described in Modelica to the corresponding model deasri
hybrid DAE, involving expansion of inherited base classes, parameterization of base
classes, local classes and components, and generation of connection equations from
connectequaions (basically, mapping the hierarchical structure of a model isé af
differential, algebraic and discrete equations together with the corresponding variable
declarationsandfunction definitions from the model

1.4 Notation and Grammar

Thefollowing-syntactiemeta symbolgof the extended BF-grammarjaredefined inB.1.used-{extended-BNF):
[H—eptional

—ropootasre s merstes

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used as
identifiers, with the exqaion of initial which is a keyword in section headingsidder which is a keyword

for declaration functiongyut it is also possible to call the functidnitial() andder (.é)
SeeAppendix BAppendix-Bfor a full lexical specification and grammar.
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Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical units
including identifiers and literals. Without question, the smallest building blockbdelica are single characters
belonging to a character set. Characters are combined to form lexical units, also called tokens. These tokens are
detected by the lexical analysis part of the Modelica translator. Examples of tokens are literal constants,
identifiers, and operators. Comments are not really lexical units since they are eventually discarded. On the other
hand, comments are detected by the lexical analyzer before being thrown away.

The information presented here is derived from the more foppealfgcation inAppendix BApperdixB

2.1 Character Set

The character set of the Modelica languagdrigode, but restricted to the Unicode characters corresponding to
7-bit ASCII characters in several places; for details see Appéhdisct.

2.2 Comments

There arewo kinds of comments in Modelica which are not lexical units in the language and therefieataec:
as whitespacdy a Modelica translatorThe whitespace characters are space, tabulatat,line separators
(carriage return and line feed); and whitespace caooctr inside tokens, e.g., <= must be written as two
characters without space or comments between tfiEme comment syntax is identical to that@f+]. The
following comment variats are available:

/l comment Characters fromi to the end of the line are ignored.
I* comment */ Characters betweén and*/ are ignored, including line terminators.
Modelica commentdo not nest, i.e/s */  cannot be embedded withi */ . The following isinvalid:

[* Commented out - erroneous comment, invalid nesting of comments!
[* This is a n interesting model */
model interesting

end interesting;
*/

There is also a kind of fil et omentatire siringahiatiispart ottlieenModelica , 0 r
|l anguage and therefore not ignored by the Modelica
declarations, equations, or statements or at the beginning of class definitions. For example:

model TempResistor "Temperature dependent resistor"

parameter Real R "Resistance for reference temp.";
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end TempResistor;

2.3 Identifiers, Names , and Keywords

Identifiers are sequences of letters, digits, and other characters sucld@score, which are used foaming
various items in the language. Certain combinations of lettedsesmeordsrepresented a®servedwordsin the
Modelica grammar and are therefore not available as identifiers.

23.1 Identifiers

Modelicaidentifiers used for naming classes, variables, constants, and other items, are of two forms. The first
form always stagwith a letter or underscore (), followed by any number of letters, digits, or underscores. Case
is significant, i.e., the nameaaductor andinductor are different. The second forr@ (DENT) starts with a

single quote, followed by a sequence of anptable ASClicharacter, where singlpuote must berecededy
backslash, and terminated by a single quotg, '€2H' , '13 \'H' , '+foo' . Control characters in quoted
identifiers have touse string escape$he single quotes are part of the identifier, i»¢., andx are distinct
identifiers but the redundant escaspe( \?' and ' \"') are the same alshe correspodlnq nonescaped
vanants (7 ' and ™ ). =4 4 ets {}
epetiti Aifali. BNF defmltlon of the

Modellca syn ax andaklcal umts is avallable |A|:_)Qend|x Bbcppendm—B

IDENT = NONDIGIT { DIGIT | NONDIGIT} | Q - IDENT
Q IDENT =" 6"{Q -CHAR|S -ESCAPE| """ }" &"
NONDIGIT=" _"| letters"a" to "z"| letters"A" to "Z"
DIGIT =0|1]2|3|4|5|6|7]8]|9
Q_ CHAR = NONDIGIT | DIGIT | II|II | II#II | II$II | IIO/ " | II&II | ll(ll | |l)ll | g II+II II,Il |
::;"!":I-"lllfl{:'lll:' [ <> I| et r@t [T
S-ESCAPE="\&"|" \""|" \?2"|" \\"
Il\alllll \blllll \f"l" \nlllll \r"lll \tlllll \V"

2.3.2 Names

A nameis an identifier with a certain interpretation or meaning. For example, a name may demégean
variable, aReal variable, a function, a type, etc. A name may have different meanings in different parts of the
code, i.e., different scopes. The interpretation of identifiers as names is described in more ddtajtén

S5Chapte-5. The meaning of package names is described in more detdibinter 1&hapter13

2.3.3 Modelica Keywords

The following Modelicakeywordsare reserved words and may not be used as identifiecgpt as listed in
AppendixB.18-1:

algorithm discrete false loop pure
and each final model record
annotation else flow not re declare
elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while
der external input public within
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2.4 Literal Constants

Literal constats are unnamed constants that have different forms depending on their type. Each of the predefined
types in Modelica has a way of expressing unnamed constants of the corresponding type, which is presented in the
ensuing subsections. Additionally, arragtéls and record literals can be expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits optionally
followed by a decimal pot, optionally followed by an exponent. At least one digit must be present. The exponent
is indicated by an E or e, followed by an optional sign (+)oand one or more decimal digits. Thenimal
recommendedange is that of IEEE double precision flogtipoint numbers, for which the largest representable
positive number is 1.7976931348623157E+308 and the smallest positive number is 2.2250738585802014E

For example, the following are floating point number literal constants:

22,5, 3.141592653589793 , 1.2E-35
The same floating point number can be represented by different literals. For example, all of the following literals
denote the same number:

13., 13EO0, 13el, 0.13E2

2.4.2 Integer Literals

Literals of typeinteger are sequences of decimal digits, e.g. as in the integer nuB#Hers100, 30030044 .
[Negative numbers are formed by unary minus followed by an integer]litEn@minimal recommendedumber
range is from 2147483648 to +21474834 7 f o rconmplenent @Aitsnteger implementation.

2.4.3 Boolean Literals

The twoBoolean literal values ar&rue andfalse

24.4 String s

String literals appear between double quotes asetiveen" . Any character in the Modelica language character
set(see appendi®B.1B-1 for allowed charactergpart from double quoté X and backslash §, including new
line, can balirectly included in a string without using an escape code. Certain characters in stringdaarhks
represented using escape codes., the character is preceded by a backslayhwithin the string. Those
characters are:

\' single quot& may also appear without backslash in string constants.
\ " double quote

\? guestionmark2z may also appear without backslash in string cotstan
\\ backslash itself

\a alert (bell, code 7, ct®G)

\b backspace (code 8, ct)

\ f form feed (code 12, ctil)

\n newline (code 10, ctrll), same as literal newline

\r carriagereturn (code 13, cti)
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\'t horizontal tab (code 9, ctl)
\v vertical tab (code 11, ctK)

For example, a string literal containing a tab, the word& is , double quote, space, the wotgtween ,
double quote, space, the woud;, and newline, would appear as follows:

"\tThisis \"between \"us \n"

Concatenatiorof string literals in certain situations (see the Modelica grammar) is denoted by the + operator in
Modelica, e.g'a" +"b" becomesab" . This is useful for expressing long string literals that need to be written
on several lines.

The "\ n" character is sed to conceptually indicate the end of a line within a Modelica string. Any Modelica
program that needs to recognize line endings can check for a'simgleharacter to do so on any platform. It is
the responsibility of a Modelica implementation to makg necessary transformations to other representations
when writing to or reading from a text filgFor example, &\ n" is written and read ag in a Unix or Linux
implementation, but written _as\r\n" pair, and converted back t6\n" when read, in a Widows

implementation.

, i Hed i : i e i jon-is-responsible
to—handle the different—|tine—ending symbols—em file
oft—a—t+ine—and—on——W-ndows —systems—to —-have—a—fnewl.
pr—o-g—r—ammi—ng—ranguvages—+he—content—eft—a—F+1te Iin a M
For 1l ong string c oammiationttosstore the dpcumentatioreof dimodel, @ would be very
inconvenient, if the string concatenation operator would have to be used for every line of documentation. It is
assumed that a Modelica tool supports the-poni nt abl e @A ne wl browsidg orcetlitang astringe r wh
literal. For example, the followingtatementlefines one string that contains (nprintable) newline characters:

assert (noEvent (length >s_small), "

The distance between the origin of frame_a and the origin of frame_b

ofa LineForceWithMass component became smaller as parameter s_small

(= a small number, defined in the \ "Advanced \ " menu). The distance is

set to s_small, although it is smaller, to avoid a division by zero

when computing the direction of the line force.",
lev el = AssertionLevel.warning );

2.5 Operator Symbols

The predefined operator symbols are formally defioegage281255 andsummarized irthe table of operators
in Section3.23-2
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Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the rules
given by the expression part of the Modeligammar inAppendix BAppendixR

This chapter describes the evaluation rules for expressions, the concept of expression variability, built
mathematical operators and functiong] &me builtin special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or usef tefpredefined
built-in types of Modelica arReal , Integer , Boolean , String , and enumeration typeghich are presented in
more detail in Sectior.84.8. [The abbreviatedpredefined typanformation below is givenas background
informationfor the rest of the presentati$n

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operadi +,-, *, /, *, etc. with normal precedence as defined inTthble in
Section3.23:2 and thegrammar inAppendix BAppendix-B The semantics of the operatiossdefined for both
scalar and array arguments in SectionGto-6

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments @escribed in Sectioi2.4.12.41 and for vectorized calls in Section
12.4.4:2.4-4 The builtin array functions are given in Sectitf.1.10-2-1and other builin operators in Section
3.3+

3.2 Operator Precedence and Associativity

Operator precedence determines tirder of evaluation of operators in an expression. An operator with higher
precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all trexpressioroperators in order of pcedence from higkst to lowest, as
derived from the Modelica grammar Hppendix BAppendixB All operators are binary exceptie postfix
operators and those shown as unary togetherexjth the conditional operator, the array construction operator {}
and concatenation operato}, [and the array range constructor which is eithaafyi or ternaryOperators with
the same precedence occur at the same line of the table:

Table 3-13-1. Operators.

Operator Group Operator Syrdx Examples

postfix arrayindex operator | [] arrfindex]

postfix access operator . a.b

postfix function call funcNamefunction sin(4.36)
argumentunctionargumenty

array construct/concat {expressions [expression$ | {2,3} [5,6]
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[expressions expressions.] [2,3; 7,8]
exponentiation N 273
multiplicativeand array o x 2*3 2/3
elementwise multiplicative [1,2;3,4].*[2,3;5,6]
additiveard array + - +expr -expr a+b, a-b,+a, -a
elementwise additive A+ [1,2;3,4].4][2,3;5,6]
relational < <= > >= == < a<b, a<=b, a>b, ...
unary negation not expr not bl
logical and and bl and b2
logical or or blor b2
array range expr : expr 15

expr: expr: expr start:step: stop
conditional if exprthen exprelse expr | ifbthen 3 else x
named argument ident = expr X=2.26

The conditionaloperator may also include elseluses.Equality = and assignment= are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associa@xeept exponenti@n which is norassociativeThe array range operator

iS nonassociative.

[The unary minus and plus in Mdda is slightly different than ilfMathematica and ilMATLAB, since the
following expressions are illegal (whereas in Mathematcal inMATLABthese are valid expressions):

2*-2 [l = - 4 in Mathematica/ MATLAB s illegal in Modelica

-- 2 /I = 2in Mathematica/ MATLAB s illegal in Modelica

++2 [/ = 2 in Mathematica/ MATLAB s illegal in Modelica
2-- 2 /I = 4 in Mathematica/ MATLAB s illega I in Modelica

Non- associative exponent i ation and array range operator:
xXNy"z /I Not legal , use parenthesis to make it cl ear
a:b:c:d:e:fig /I Not legal, and scalar arguments gives no legal interpretation.

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do not
influence the result (e.g. shanitcuit evaluation ofBoolean expressions). itatements and -gxpressions
guarantee that their clauses ardyoavaluated if the appropriate condition is true, but relational operators
generating state or time events will during continuous integration have the value from the most recent event.

If a numeric operation overflows the result is undefinedr literalsit is recommendd to automatically
convert the number to another type with greater precision.

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

[Example. If one wants to guard an expression against incorrect evaluasbould be guarded by an if:

Boolean v[n];

Boolean b;

Integer I,
equation

x=v[l] and (I>=1 and I<=n);// Invalid

x=if (I>=1 and I<=n) then V[l] else false;// Correct

To guard square against square root of negative numbenaBsent :

2MATLAB is a registered trademark of MathWorks Inc.
3 Mathematica is a registered trademark of Wolfram Research Inc.
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der (h) =if h>0 then T c*sqgrt(h) else 0;// Incorrect
der (h)= if noEvent(h>0) then 17 c*sqrt(h) else 0;// Correct

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

A Exponentiation
Multiplication

/ Division

+  Addition

- Subtraction

*

Some of these operators can also be applied to a combination of a scalar type and spearsag tSection
10.616-6
The syntax of these operatisglefined by the following rules from the Modelica grammar:

arithmetic—expression———arithmetic - expression :
[ add—ep-add- operator ]term { add—op-add- operator  term }

add—op-add - operator :

nyn I n

term :
factor { wmwul—ep-mul- operator  factor}

mudl—ep-mul - operator

g | u/u

factor :
primary [ "' primary ]

3.5 Equality , Relational , and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard boolean
valuestrue or false

> greater than

>=  greater than or equal

< less than

<= less than or equal to

== equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equéticngdr &hapter-38 Section
10.6.16-6-) and in function calls using named parameter passing (Sé&iérit2.4-9).

The following logical operators are defined:

not negation, unary operator
and logical and
or logical or

The grammar rules define the syntax of the relational and logical operators.

logical—expressioh———logica | - expression :
logicalterm——logical -term { or logicalterm——logical -term }
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logical-term——logical -term :
legicalfactor——Ilogical - factor { and legicalfactor—Ilogical -factor }

legicalfactor—logical - factor

[ not ]relation

relation :

arithmetic—expres—sien—arithmetic - expression [ rel—ep—relational - operator
arithmetic—expression———arithmetic - expression ]

rel—ep—relatlonal - operator

"< PENENy ===

The following holds for relational operators:

1 Relational operators <, <=, >, >=, ==, <are only defined for scalar operands of simple types. The result is
Boolean and is true or false if the relation is fulfilled or not, respectively.
9 For operands of typgtring , strl op str2 is for each relational operatap, defined in terms of the-C

functionstrcmp asstrcmp(strl,str2) op 0

9 For operands of type Boolednalse <true .

For operands of enumeration types, the order is given by the order of declaration of the enumeration literals.

1 In relations of the form vl == v2 or vl <> v2, v1 or v2 $hahless used in a function, not be a subtype of
Real. [The reason for this rule is that relations with Real arguments are transformed to state events (see
Events, Sectio®.58-5) and this transformation becomes unnecessarily complicated for the == and <>
relational operators (e.g. two crossing functions instead of one crossing function needed, epsilon strategy
needed even at event instants). Furthermore, testing on eqo&l®eal variables is questionable on
machines where the number length in registers is different to number length in main jnemory

9 Relational operators can qenerate events, see sécﬁ@R—H—a—H—e—n—s—\Agdi—egA@—ee—W&IM m 0

==

3.6 Miscellaneous Operators and Variables

Modelica also contains a few buiilt operators which are not standard arithmetic, relational, or logical operators.
These are described below, includiimge , which is a buikin variable, not an operator.

3.6.1 String Concatenation

Concatenation of strimysee the Modelica grammar) is denoted by the + operator in Modelgda" + "b"
becomesab” .

3.6.2  Array Constructor Operator

The array constructor operator { ... } is described in Sedtibilo-4

3.6.3  Array Concatenation Operator

The array concatenation operator [ ... ] is described in Sefign2.0-4-2

3.6.4  Array Range Operator

The array range constructor operatas descriled in Sectiori0.4.36-4-3
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3.6.5 If-Expression s

An expression

if expressionl then expression2 else expression3

is one example of {éxpression. Firsexpressionl , which must be boolean expressi is evaluated. If
expressionl is trueexpression2 is evaluated and is the value of theexfpression, elsexpression3 is
evaluated and is the value of theedpression. The two expressionagpression2  andexpression3 , must be
type compatibleexpressins (Sectiorb.66-6) giving the type of the #expression. Hexpressions witlelseif — are
defined by replacinglseif by else if . [Note:elseif has been added for symmetry witltlduses. For
shortcircuit evaluation see Secti@33-3.

[Example
Integer i;
Integer sign_of_il= if <O then -1 elseif i==0 then O else 1,
Integer sign_of_i2= if i<0O then -1 else if i==0 then O else 1,

]

3.6.6 Member Access Operator

It is possible to access members of a clasarigst using dot notation, i.e., the operator.

[Example:R1.R for accessing the resistan@®mponen of resistorR1. Another use of dot notationodal
classes which are members of a class can of course also be accessed using dot ndtaginanoa ofthe class,
not on instances of the clafss.

3.6.7 Built -in Variable time

All declared variables are functions of the independent variabde. The variableime is a builtin variable
available in alimodels and block which is treated as an input variable. It is implicitly defined as:

input Realtime (  final quantity = "Time",
final unit  ="s");

The value of the start attribute tofie is set to the time instant at which the simulation is started

[Example

encapsulated model SineSource

import  Modelica.Math.sin;

connector  OutPort= output Real,

OutPort y=sin(time); // Uses the built - in variable time.
end SineSource;

]

3.7 Built -in Intrinsic Operators with Function Sy ntax

Certain builtin operators of Modelica have the same syntax as a function call. However, they do not behave as a
mathematical function, because the result depends not only on the input arguments but also on the status of the
simulation.

There are ats builtin functions that depend only on the input argument, but also may trigger events in
addition to returning a value. Intrinsic means that theydafened at the Modelica language level, not in the
Modelica library. The following buiin intrinsic operatorfunctionsareavailable:

1 Mathematicafunctionsand conversion functions, see Section. 1371 below.
9 Derivative and special purpose operators with function syntax, see Sectigh7-2below.
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1 Eventrelated operators with function syntax, see Se@&ia@r3-7#3below.
1 Array operators/functionseeSection10.1. 1011,

Note that when the specification references a function having the name of-ia fwilttion it references the
built-in function, not a usedefined function having the same name, see also sd&iériVith exception dbuilt-
in operatorString  (..), all operators in this section can only be called with positional arguments.

3.7.1 Numeric Functions and Conversion Functions

The following mathematical operatoaad functions, also including some convensfunctions, are predefined in
Modelica and are vectorizable according to Secti@m.6.2.4-§ except for thestring  function. The functions
which do not trigger events are described in the table belowgahéhne everttiggering mathematical functions
are described in Sectigh7.1.B-741

abs(v) | s ex pamdEeent (ifi wt=® fhen v else iv)0
Argument v needs to be an Integer or Real exjwas
sign(v) | s e x p anndBsedt (ifi rn0otherii 1 else if v<0
then 11 else 0) 0. A rvgneedsstabie an Integer or R
expression.
sqrt(v) Returns the square root of v if v>=0, otherwise an error od
Argument v need® be an Integer or Real expression.
Integer(e) Returns the ordinal number dfe expressiore of enumeratiol
type that evaluates tthe enumeration valu&.enumvalue ,
where Integer(E.el)=1 , Integer(E.en)= n, for an
enumeration type&=enumeration(el, ... , en). See als
Sectior4.8.5.24-8.5.2
EnumTypeNaméi) .
For any enumeration typeEnumTypeName returns th¢
enumeration value  EnumTypeNamee such tha
Integer( EnumTypeNamee) = i . Refer to the definition ¢
Inte _ger above.
It is an error to attempt to convert values iofthat do no
correspond to values of the enumeration typee also Sectid
4.8.5.3
String(b, <options>) Convert a scalar neBtring expression to a String representa
2:::238 <options>) The first argument may be Boolean b , aninteger i, a
’ significantDigits=d, Real r or an Enumeration e  (Section4.8.5.2.8.5-). The
<options>) other arguments must use named argumente optiona
String(r, format=s) <options> are:
String(e, <options>) Integer minimumLength=0 : minimum length of th

resulting string. If necessary, the blank character is used to
unused space.

Boolean leftJustified = tr ue: if true, the converte
result is left justified in the string; if false it is right justified
the string.

For Real expressions the output shall be according t
Modelica grammar. IntegesignificantDigits =6: defineg
the number of significant dit§i in the result string.Examples
"12.3456 ", "0.0123456 ", "12345600 ", "1.23456E - 10"].

The format string corresponding to options is:
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9 for Realsif leftustified then " -"else
")+String(minimumLength)+"."+
String(signficantDigits)+"g" ,

9 for Integers{i f leftdustified then " - "else
")+String(minimumLength)+"d"

Format string: According to ANST the format string specifie
one conversion specifier (excluding the leading %), may
contain length modifiers, and may not usé for width and/o
precision. Forall numeric valuetheformat specifiers, e, E,
g, G are allowed. For integral valudsis also allowed taise
thed, i, o, x, X, u, and €ormat specifiers (for nointegral
values a tool magound, truncate or use a different format if
integer conversion characters are used).

The x,Xformats (hexadecimal)and c (character) for Intege
does not lead to inptihat agrees with the Modeliggammar.

3.7.1.1 Event Triggering Mathematical Functions

Thebuilt-in operatorsn this sectiortriggerstateevents if used outside of a whelauseand outside o clocked
discretetime partition §ee Sectiorl6.8.16.8-]). These expression for div, ceil, floor, and integer are event
generating expression. The event generating expression for mod(x,y) is floor(x/y), and for rem(x,y) it is-div(X,y)
i.e. events are not generated when mod or rem changes continuouaslyinterval, but when they change
discontinuously from one interval to the neif this is not desired, thaoEvent function can be applied to
them. E.gnoEvent( integer (v)) ]

div(x,y) Returns the algebraic quotiedy with any fractioml part discarded (also known
truncation toward zero)Npte: this is defined for / in C99; in C89 the result
negative numbers is implementatidefined, so the standard functidiv() must
be used. Result and arguments shall have type Real aghat If either of the
arguments is Real the result is Real otherwise Integer.

mod(x,y) Returns the integer modulus xf , i.e. mod(x,y)=x - floor(x/y)*y . Result an
arguments shall have type Real or Integer. If either of the arguments ighR
result is Real otherwise IntegdiNote, outside of a wherlause state events 3
triggered when the return value changes discontinuously. Exa
mod(3,1.4)=0.2 , mod(-3,1.4)=1.2 ,mod(3, -1.4)= -1.2]

rem(x,y) Returns the integer remaindef x/y , such thadiv(x,y)*y + rem(x, y) =

x. Result and arguments shall have type Real or Integer. If either of the argur]
Real the result is Real otherwise IntedBliote, outside of a wheslause state even
are triggered when the return value ages discontinuously. Examp
rem(3,1.4)=0.2 ,rem(-3,1.4)= -0.2]

ceil(x) Returns the smallest integer not less tRarResult and argument shall have t
Real. [Note, outside of a wherlause state events are triggered when the re
valuechanges discontinuous)y.

floor(x) Returns the largest integer not greater thaResult and argument shall have t
Real. Note, outside of a wherlause state events are triggered when the re
value changes discontinuou$ly.

intege  r(x) Returns the largest integer not greater thafhe argument shall have type Real.
The result has type Integer.
[Note, outside of a wheslause state events are triggered when the return value
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changes discontinuous]y.

3.7.1.2 Built -in Mathematical Functions and External Built -in Functions

The following built-in mathematical functions are available in Modelica and can be called directly without any
package prefix added to the function name. They are also ldeades externabuilt-in functions in the
Modelica.Math  library.

sin( x) sine

cos( x) cosine

tan( x) tangent (x shall not be: ..-;/2,” 2,3 /2, ...)
asin (x) inverse sine -( Ox O1)

acos (x) inverse cosine-{ Ox O1)

atan (x) inverse tangent

the atan2y, x) function calculates the princip
value of the arc tammt ofy/x, using the signs
atan2( y, x) |ofthe

two arguments to determine the quadrant o

the result
sinh( x) hyperbolic sine
cosh( x) hyperbolic cosine
tanh( x) hyperbolic tangent
exp( x) exponential, base
log(" x) natural (base) logarithm & > 0)

log10( x) base 10 logarithmx( 0)

3.7.2  Derivative and Special Purpose Operators with Function Syntax

The following derivativeoperatorand special purpose operators with function syntax are predefihedspecial
purpose operators thi function syntax where the call below uses named arguments can be called with named
arguments (with the specified names), or with positional arguments (the inputs of the functions are in the order
given in the calls below).

der (expr) The time derivative okxpr . If the expressioexpr is a scalar iheed to
be a subtype of Reallhe expression and all its sMpressions must |
differentiable. Ifexpr is an array, the operator is applied to all elemen
the arrayFor nonscalar argumestthe function is vectorized according
Sectionl10.6.120.6-12 [For Real parameters and constants the result
zero scalar or array of the same size as the variable.
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delay(expr,delayTime,
delayMax )

delay(expr,delayTime)

Returns: expr(time 1 delayTime) for time>time.start +
delayTime and expr(time.start) for time <= time.start +
delayTime . The arguments, i.eexpr , delayTime anddelayMax , neeg
to be subtypes of RedbelayMax needs @ be additionally a paramelf
expression. The following relation shall hold:<= delayTime <=
delayMax , otherwise an error occurs.délayMax is not supplied in th
argument listdelayTime need to be a parameter expression. See
Section3.7.2.8B-7#2-1 For nonscalar arguments the function is vectori
according to Sectioh0.6.12.0.6-12

cardinality(c)

[This is a deprecated operatdt.shouldno longerbe usel, since it will be
removed in one of the next Modelica relegses.

Returns the number of (inside and outside) occurrences of con
instance ¢ in a conneeguation as an Integer number. See also S€
3.7.2.3723

ctual ,

homotopy(actual=a  ctu The scalar expr essi on subtypasoftReadl ¢
simplified=s implified ) | \odelica translator should map this operator into either of the two for

1. Ret ur n sJafiidati mpleméndation]

2. In order to solve algebraic systems of equations, the operator mig
during the solution processturn a combination of the two argumer
ending at actuale.qg.,

actual*lambda + simplified*(1 - lambda) ,
wherelambda is a homotopy grameter going from 0 to]1
The soldion must fulfill the equations for homotopy returning
Afactual 0.
See also Sectiofi.7.2.8-72:4 For nonscalar arguments the function
vectorized according to SectidR.4.6.2-4-6
SemiLinear(x, Returns:
p05|t|\(eSIope, smooth(0, if x>=0 then positiveSI ope*x else
negativeSlope) —_—

negativeSlope*x ).

The result is of type Real. See Section.2.3-72.5[especially in the

case when x =]0For nonscalar arguments the function is vectorized

according to Sectioh0.6.12.0.6-12

inStream(v) The operatomStream(v)  is only allowed on stream variablesiefined
in stream connectors, and is the value of the stream variable v close
connection point assuming thie flow is from the connection point in
the component. This value is computed from the stream conn
equations of the flow variables and of the stream variables. The ope
vectorizable. For more details see Secfibri?l5.2

actualStream(v) The actualStream(v) operator returns the actual value of the str|
variable v for any flow direction. The operator is vectorizable. For
details, see Sectidtb.35-3

spatialDistribution € The spatialDistr i bution (&) operator allows approximation d

in0 =in0 , Inl=inl, X=x, variabk-speed transport of propertiesee Sectiof.7.2.3.7.2.2

positiveVelocity= epv,

initialPoints= éipP-,

initialValues= el

getinstanceName ()

Returns a string with the name of the model/block that is simu
appended with the fully qualified name of the instance in which
function iscalled see Sectiof3.7.2.8-+26
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A few of these operators are described in more detail in the following.

3.7.2.1 delay

[Thedelay() operator allows a numerical sound implementation by interpolating in the (injeimabrator
polynomials, as well as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr. Without further information, the complete time history of the delayed signal® meestored,
because the dgy time may change during simulation. To avoid excessive storage requirements and to enhance
efficiency, the maximum allowed delay time has to be givefeligMax .

This gives an upper bound on the values of the delayed signals which have to beFstomedl-time
simulation where fixed step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer size is
dynamic durig integration. In principle, alelay operator could break algebraic loops. For simplicity, this is
not supported because the minimum delay time has to be give as additional argument to be fixed at compile time.
Furthermore, the maximum step size of thegrator is limited by this minimum delay time in order to avoid
extrapolation in the delay buffér

3.7.2.2 spatialDistribution

[Many applications involve the modelling of varialjgeed transport of properties. One option to model this
infinite-dimensional system is to approximate it by an ODE, but this requires a large number of state variables
and might introduce either numerical diffusion or numerical oscillations. Another option is to use-m built
operator that keeps track of tispatial distribution of z(x, t), by suitable sampling, interpolation, and shifting of

the stored distribution. In this case, the internal state of the operator is hidden from the ODR solver.

The spatialDistribution () operator allows to approximate eféotly the solution of the infinitelimensional
problem

HD) L vy Y .0
M KX

z(0.0,t) =in,(t)if v2 O
z(1.0,t) =in (t)if v<O
wherez(yx, t) is the transported quantity;x is the normalized spatial coordinate (@.x ¢ 1.0),t is the time,

v(t)=der (x) is the normalized transport velocity and the boundary conditions are set akgith@i0 orxy = 1.0,
depending on the sign of the velocity. The calling syntax is:

(out 0, out 1) = spatialDistribution(inO, inl, x, positiveVelocity
initialPoints = {0.0, 1.0},
initialValues = {0.0, 0.0 )
wherein0 , inl , out0 , outl , x, v are all subtypes of RealpsitiveVelocity is a BooleaninitialPoints

andiniti  alvalues are arrays of subtypes of Real of equal size, containing ¢berdinates and thevalues of

a finite set of points describing the initial distributiorzf, t0). Theout0 andoutl are given by the solutions at
z(0.0, t)andz(1.0, t) andin0 andinl are the boundary conditions#D.0, t)andz(1.0, t)(at each point in time
only one ofin0 andinl is used).Elements in thenitialPoints array must be sorted in nalescending
order. The operator can not be vectorized according to the wettoni rules described in secti@@.4.6.2-4-6
The operator can be vectorized only with respect to the argumenendinl (which must have the same size),
returning vectorized outputsut0 and outl of the same size; the argumenitstialPoints and
initialvValues are vectorized accordingly.

The solution z(..), can be desdned in terms of characteristics:
t+b
zZ(y+ ﬁ v(a)da,t + b) =zy, 1), for allb, as long astayng inside the domain.

This allows to directly compute the solution based on interpolating the boundditartn
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The spatialDistribution operator can be described in terms of the pseode given as a block:

block spatialDistribution
input Real in0;
input Real in1;
input Real x;
input  Boolean positiveVelocity;
parameter  Real initialPoints [] (each min=0, each max=1){}— ={0.0, 1.0}
parameter Real initialValues[:] = {0.0, 0.0},
output  Real out0;
output  Real outl;
protected
Real points[:];
Real values|[:];

Real x0;
Integer m;
algorithm
if  positiveVelocity then
outl:=interpolate(po ints, values, 1 a(x - x0));
outO:=values[1]; // similar to inO but avoiding algebraic loop
else
outO:=interpolate(points, values, (x - x0));
outl:=values[end]; // similar to in1 but avoiding algebraic loop
end if ;

when <acceptedStep > then
if x>x0 then
m:=size(points,1);

while (ifm>0 then points[m]+(x  -x0)>=1 else false) then—Iloop
m:=m-1;
end while ;
values:=cat(1, {in0}, values[1:m], {interpolate(points, values,1 - (x -x0)});
points:=cat(1, {0}, p oints [I'm] .+ (X1 -x0),{1} );
elseif  x<x0 then
m:=1;
while  (if m<size(points,1) then points[m]+(x - X0)<=0 else false) ther———Ioop
m:=m+1;
end while ;
values:=cat(1, {interpolate(points, values, 0 - (X - x0))},values[m :end] {in1});
points:=cat(1, {0}, points[m:end] .+ (x1 - x0), {1});
end if ;
X0:=X;
end when ;
initial algorithm
x0:=x;

points:=initialPoints;
values:=initialValues;
end spatialDistribution;

[Note that the implementation has @ternal state and thus cannot be described as a fundtiolodelicg
initialPoints and initialValues aréeclared as parameters to indicate that they are aeddduring initialization

[The infinitedimensional problem stated above can then be formulatie ifollowing way:

der (xX) =v;
(out 0,o0ut 1)= spatialDistribution (in0, inl, x, v>=0
initialPoints, initialValues);

Events are generated at the exact instants when the velocity changésdfdigis is not neededyoEvent () can
be used to suppress event generation.

If the velocity is known to be always positive, tbaét0 can be omitted, e.g.:

der(x) = v;
(, out 1) = spatialDistribution(in 0, 0, x, true, initialPoints, initialValues);
Technically relevant use cases for the usia@$patialDistribution () operator are modeling of electrical

transmision lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems, impulse
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propagation in elongated bodies, convepelts, and hydraulic system#ectaization is needed for pipelines
where more than one quantity is transported with velocity v in the exampleJabove.

3.7.2.3 cardinality (deprecated)
[The cardinality operator is deprecated for the following reasons and will be removed in a future release:

1 Reflective operator may make early type checking more difficult.
1 Almost always abused in strange ways
1 Not usedor Bond graphven though it was originally introduced for that purpose.

]

[Thecardinality() operator allows the definition of connection dependegn&ons in a model, for example

connector  Pin
Real V;
flow Reali;
end Pin;

model Resistor
Pin p, n;
equation
assert(cardinality(p) > 0 and cardinality(n) > 0,
"Connectors p and n of Resistor must be connected");
/I Equations of r esistor

em-:i“ Resistor;
]

The cardinality is counted after removing conditional components. and may not be applied to expandable
connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the scalar
elements of aay of connectors). The cardinality operator should only be used in the condition of assert and if
statement$ that do not contain connect (and similar operéatmse sectio.3.38-3-3.

3.7.2.4 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear systems of
equations must be solved by meanaroiterative solver. The convergence of such solvers critically ripen

the choice of initial guesses for the unknown variables. The process can be made more robust by providing an
alternative, simplified version of the model, such that convergence is possible even without accurate initial guess
values, and then by cantiously transforming the simplified model into the actual model. This transformation can

be formulated using expressions of this kind:

lambda*actual + (tlambda)*simplified

in the formulation of the system equations, and is usually called a homwmsmsformation. If the simplified
expression is chosen carefully, the solution of the problem changes continuously with lambda, so by taking small
enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be f#ad with ordered arguments or preferably with named arguments for improved
readability.

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not several
homotopy iterations over the respective #ioear algebraic guation systems. The reason is that the following
structure can be present:

w =fy(x) // has homotopy operator
0 =fy(derk), x, z, w)

Here, a nodinear equation systef is present. The homotopy operator is, however used on a variable that is an
fiiprut 0 t elinearfalgebraicequation system, and modifies the characteristics of thknean algebraic
equation system. The only useful way is to perform the homotopy iteratidh anef, together.



31

The suggested

system.

appr oa cehmore efficiént inplementationsa dred possilllee e.@ Uty
determining the smallest iteration loop, that contains the equations of the first BLT block in which a homotopy
operator is present and all equations up to the last BLT block that describes|me®nalgebraic equation

A trivial implementation of # homotopyoperator is obtained by defining the following function in the global

scope:

function homotopy
input  Real actual;
input  Real simplified;

output Realy;
algorithm

y = actual;

annotation  (Inline = true);

end homotopy;

Example 1:

In electrical systems it is often difficult to solve #imear algebraic equations if switches are part of the
algebraic loop. An idealized diode model might be implementélge following way, by stari ng wi t h

diode characteristic and then move with the homotopy operatbetdesiredi st e e p 0

model IdealDiode

parameter
protected
Real Goff_ flat
Real Goff2;
equation

off =s< 0
Goff2 =
u=s* if off then 1
i=s* if off then Goff2

en(-iu IdealDiode;

Example 2:

Real Goff = 1le - 5;

homotopy ( actual= Goff,
else Ron2) + Vknee;
else 1 )+ Goff2*Vknee;

= max(0.01, Goff);

simplified= Goff_ flat

);

character:i

In electrical systems it is often useful that all voltagersesistart with zero voltage and all current sources with
zero current, since steady state initialization with zero sources can be easily obtained. A typical voltage source

would then be defined as:

model ConstantVoltageSource
extends Modelica.Electrica
parameter

equation

I.Analog.Interfaces.OnePort;

Modelica.Slunits.Voltage V;

v = homotopy (actual=V, simplified=0.0);

end ConstantVoltageSource;

Example3:

In fluid system modelling, the pressure/flowrate relationships are highly nonlinear duegieatth@tic terms and
dueto the dependency on fluid properties. A simplified linear model, tuned on the nominal operating point, can be
used to make the overall model less nonlinear and thus easier to solve without accurate start values. Named

arguments areised here in order to further improve the readability.

model PressurelLoss
import S| = Modelica.Slunits;

a

st

r
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parameter  Sl.MassFlowRate m_flow_nominal "Nominal mass flow rate";
parameter  Sl.Pressure dp_nominal "Nominal pressure drop";
Sl. Density rho "Upstream density";
Sl.DynamicViscosity lambda "Upstream viscosity";
equation

.rﬁ'_flow = homotopy (actual = turbulentFlow_dp(dp, rho, lambda),
simplified = dp/dp_nominal*m_flow_nominal);

end Pre ssurelLoss;

Example 4:

Note that the homotopy operatshall not be used to combine unrelated expressions, since this can generate
singular systems from combining two waidifined systems.

model DoNotUse
Real x;
parameter Real x0 = 0;
equation
der(x)=1 -x;
initial equation
0 = homotopy( der (x), x - x0);
end DoNotUse;

The initial equation is expanded into

0 = lambda*der(x) + (Xlambda)*(xx0)
and you can solve the two equations to give

x = (lambda+(lambdal)*x0)/(2*lambda- 1)

which has the cogct value of x0 at lambda = 0 and of 1 at lambda = 1, but unfortunately has a singularity at
lambda = 0.5.

]

3.7.2.5 semilLinear

(See definitionof semiLinear in Section3.7.8-72). In some situationsgquations with theemiLinear()

function become underdetermined if the first argumehtb€comes zero, i.e., there are an infinite number of
solutions. It is recommended that the following rules are used to transform the equations during the translation
phase in order to select one meaningful solution in such cases:

Rule 1 The equations

y = semiLinear(x, sa, sl);
y = semiLinear(x, s1, s2);
y = semiLinear(x, s2, s3);

y = semiLinear(x, sN, sh);

may be replaced by

sl= if x >=0 then sa else sb
s2 =sl,
s3 =5s2;

SN =S N
y = semiLinear(x, sa, sb);

Rule 2 The equations

X=0;
y=0;
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y = semiLinear(x, sa, sb);

may be replaced by
x=0
y=0;
sa = sb;
[For symbolic transformations, the following property is useful (this follows fromietfirgtion):

semiLinear(m_flow , port_h, h);

is identical to :

- semiLinear( - m_flow , h, port_h);

ThesemiLinear function is designed to handle reversing flow in fluid systems, such as

H_flow =semiLinear(m_flow , port.h, h);

i.e., the enthalpy flow ratél_flow is computed from the mass flow rate flow and the upstream specific
enthalpy depending on the flow direction.

]

3.7.2.6 getinstanceName

Returns a string with the name of the model/block that is simulated, appended with the fully qualified name of the
instancen which this function is dked.

[Example:
package MyLib
model Vehicle
Engine engine;

end Vehicle;

model Engine
Controller controller;

end Engine;

model Controller
equation
Modelica.Utilities.Streams. print ("I nfo from: " + getinstanceName());
end Controller;
end MyLib;
If MyLib.Vehicle is simulated, the call of getinstanceName() returns:"Vehicle.engine.controller"

]

If this function is not called inside a model or block (e.g. the function is called ircadiuror in a constant of
a package), the return value is not specified.
[The simulation result should not depend on the return value of this furjction.

3.7.3 Event-Related Operators with Function Syntax

The following eventelaied operators with function syntax are supporféte operatorsioEvent , pre , edge,
andchange , are vectorizable according to Sectith4.6.2.4-6

initial 0 Returnstrue during the initializatio phase anéhlse otherwise fhereby
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triggering a time event at the beginning of a simuldtion

terminal () Returns true at the end of a successful analifsisgbyensuringan event
at the end of successful simulafion

Real elementary relations withaxpr are taken literally, i.e., no state

noEvent(expr
(expr) time event is triggered. See aSection3.7.3.3-7-3-2and Sectior8.58-5.

If p>=0 smooth(p,expr) returnsexpr and states thadxpr is p times
continuously differentiable, i.eexpr is continuous in all real variabl¢
appearing in the expression and all partial derivatives with respect
smooth(p, expr) appearing real variables exist and are continuous up to qrd
The argument p should be a scalar integer parameter exprédsioanly
allowed types foexpr in smooth are: real egressions, arrays of allowe
expressions, and records containing only components of all
expressions. See also Sectbni.3.3-7-3-2

Returns true and triggers time events at time instantsart +
i*interval (i=0,1,...) . During continuous integration the opera
sample(start,interval ) returns always false. The starting timeart and the sample interv
inter val need to be parameter expressions and need to be a sub
Real or IntegerThe sample intervahterval must be a positive numbe

Ret ur ns t h e dfasidble y(t) at artime instapt {. At an ev
instant, y(t") is the value of y after the last event iteration at time inst
(see comment below). Thee() operator can be applied if the followi
three conditions are fulfiled simultaneously: (a) variable either a
subtype of a simple typer is a record @amponent (b) y is a discretéime
expression (c) the operator rigt applied in a function clas§Note: This
can be applied to continuodsne variables in wheglauses, se&ection
3.8.3-8-3for the definiton of discreteime expressioh.The first value of
pre(y) is determined in the initialization phase. See also Se

pre(y)

3.7.3.B-+4341

I s expan(dadnotiprald)o O f or Braalod be T
edge(b) same restrictions as for tipee() operator apply (e.g. not to be used
function classes).

I s expanpkepedv)i mt.o The same restr

h
change(v) operator apply.

In the body of a when clause, reinitializesvith expr at an event instan
x is aReal variable(or an array of Real variablefiatis implicitly defined
to have StateSelect.alwayso[must be selected as a statnd it is an
error, if this is not possibleexpr needs to be typeompatible withx. The
reinit operator can only be applied once for the same variaditleer as af
individual variable or as part of an array of variablesan only be applie
in the body of a when clausa an equation sectio See also Sectig

reinit(x, expr)

A few of these operators are described in more detail in the following.

3.7.3.1 pre

A new event is triggered if at least for one variablépre(v) <>v 0 aft er the active mo
evaluated at an event instant. In this case the model iscat reevaluated. This evaluation sequence is called
flievent iteratiod . The i ntegrat i ovhused m preopemtbra thd fellowing comditioh dalds: a | |
fiore(v)==v 0.
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[If v andpre(v) are only used in whedlauses, the translator might mas¥ent iteration for variable v since v
cannot change during event iteration. It is a fAqua
iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraics®ms of equations where the unknown variables are of type Real,
Integer, Boolean, or an enumeration. These systems of equations can be solved by a global fix point iteration
scheme, similarly to the event iteration, by fixing the Boolean, Integer, amlfaneration unknowns during one
iteration. Again, it is a quality of implementation to solve these systems more efficiently, e.g., by applying the fix
point iteration scheme to a subset of the model equdtions.

3.7.3.2 noEvent and smooth

The noEvent operator implkes that real elementagkpressienselations/functionsare taken literally instead of
generating crossing functions, Sect®f8-5. Thesmooth operator should be used insteachefvent , in order

to avoid evats for efficiency reasons. A tool is free to not generate events for expressionssinsidie .

However, smooth does not guarantee that no events will be generated, and thus it can be necessary to use
noEvent insidesmooth . [Note thatsmooth does not guaantee a smooth output if any of the occurring variables
change discontinuously.

[Example
Real x,y,z;
parameter Real p;
equation
x= if time<l then 2 else time -2;
z = smooth(0, if time<O0 then O else time);
y = smooth(1, noEvent( if x<0 then O els e sqrt(x)*x));

/I noEvent is necessary.

3.8 Variability of Expressions

The concept of variability of an expression indicates to what extent the expression can vary over time. See also
Section4.4.44-4-4regarding the concept of variability. There are four levels of variability of expressions, starting
from the least variable:

9 constant variability

1 parameter variability

1 discretetime variability

9 continuoustime variability

For an assignment=expr or bindingequationv=expr , v must be declared to be at least as variable as expr.

1 Theright-hand side expression inbénding equation[that is,expr ] of a parameter component and of the
base type attributesiich asstart ] needs to be a parametegrcorstantexpression.

1 If vis a discretdime component then expr needs to be a distirag expression.

3.8.1 Constant Expression s

Constant expressions are:
1 Real, Integer, Boolean, String, and enumeration literals.
9 Variables declareds constant.

9 Except for the special builb operatordnitial , terminal , der , edge, change , sample , andpre , a
function or operator with constant subexpressions as argument (and no parameters defined in the function)
is a constant expression.
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Componentsleclared as constant shall have an associated declaration equation with a constant exfptlession,
constant is directly in the simulation model, or used in the simulation m®delvalue of a constant can be
modified after it has been given a vaJugiess the constant is declared final or modified with a final modifier
constant without an associated declaration equation can be given one by using a modifier.

3.8.2 Parameter Expressions

Parameter expressions are:
i Constant exyessions.
i Variables declared as parameter.

{__Except for the special builh operatorsnitial , terminal , der , edge, change , sample, andpre, a
function or operator with parameter subexpressions is a parameter expression.

1 _Some function calls are paramedgpressions even if the arguments are not:

o ndims(A)
0 cardinality(c) , See restrictions for use #7.2.3

0 endinA[ é e n difAig variable declared in a ndanction class.

0 size(A) (includingsize(A, |) wherej is parameter exgssion)if A is variable declared
in a nonfunction class

(@)

Connections.isRoot( A.R)

0 Connections.rooted( AR)

LIS

3.8.3 Discrete -Time Expressions

Discretetime expressions are:
9 Parameter expressions.

9 Discretetime variables, i.e.In teger , Boolean , String Vvariables angnumeration variables, as well
asReal variables assigned in whafauses

Function calls where all input arguments of the function are distitne¢eexpressions.
Expressions where all the subexpressions are didoreteexpressions.
Expressions in the body of a whelausg initial equation, or initial algorithm

Unless insideoEvent : Ordered relations (>,<,>=,<#)}atleast-onre-operanddssubtype-oReal{i.e-Real
elementary—relations,—see—Secti@b)—and the event generatindunctions ceil , floor , div , and

integer , med—+em —if at least one argument is ndiscrete time expression and subtype of Rddlese
will generate events, see secti®®. Note tha rem and mod generate events but are not disdieie
expressiontthesewilloenemiccvenicaltleast encsubooressiois pot o disereidimecsearession Hn
other words, relations insideEvent() , such asioEvent(x>1) , arenot discretetime expresions]-

1 The functionsre , edge, andchange result in discretdime expressions.

9 Expressions in functions behave as though they were didtnet@xpressions.

= =4 -4 =4

For an equatiorexprl = expr2 where neither expression is of base t@mal , both expressions ust be
discretetime expressions. For record equations the equation is split into basic types before applying figstest. [
restriction guarantees that theoEvent() operator cannot be applied tBoolean , Integer , String , or
enumeration equations outsi@f a wherclause, because then one of the two expressions is not discrete

Inside an ifexpression, itlause while-statemenbr for-clause, that is controlled byren-discretetime (that
is continuougime, but not discretéme) switching expresion and not in the body of a whelause, it is not legal
to have assignments to discrete variables, equations between disoeetexpressions, or real elementary
relations/functions that should generate evefisis|restriction is necessary in order guarantee that therall
equations fodiscrete variableare discretetime expressias) and to ensure that crossing functions do not become
active between evertts.
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[Example

model Constants
parameter Realpl=1;
constant Realcl=pl+2; /ler ror, o constant expression
parameter Real p2=pl+2; //fine

end Constants;

model Test
Constants c1(p1=3); //fine
Constants c2(p2=7); /I fine, declaration equation can be modified

Boolean b;
Real x;
equation
b = noEvent(x > 1) // error, since b is a discrete -time expr. and
/l noEvent(x > 1) is not a discrete - time expr
end Test;

]

3.8.4 Continuous -Time Expressions

All expressions are continuotisne expressions including cstant, parameter and discrete expressions. The term

fi n aliscretet i me expressiondo refers to expressions

t hat

ar
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Chapter 4

Classes, Predefined Types, and Declarations

The fundamentastructuring unit of modeling in Modelica is the class. Classes provide the structure for objects,
also known as instanseClasses can contain equations which provide the basis for the executable code that is
used for computation in ModelicEonventional algorithmic code can also be part of classes. All data objects in
Modelica are instantiated from classes, including the basic dat#®tR@as, Integer , String , Boolean & and
enumeration types, which are bdiiitclasses or class schemata.

Declarations are the syntactic constructs needed to introduce classes andi@bjectmgonents).

4.1 Access Control 1 Public and Protected Elements

Members of a Modelica class can have twelgwf visibility: public  or protected . The default igublic if
nothing else is specified
A protected element, i) classesand components may nioé accessed via dot natat (e.g., A.P, a.P, a[1].P,
a.b.P, .A.P; buthere is no restriction on usingdP P.x for a protected elemeRt. They may not be modified or
redeclaredexcept for modifiers applied to protected elements in a-tlass modification(not inside any
compament or class) and the modifier on the declaration of the protected element
[Example
package A
model B
protected
parameter Real Xx;
end B;
protected
model C end C;
public
model D
Cc; /lLegal use of protected class C from enclosing scope
extends A.B(x=2); // Legal modifier forx in derived class
/l also x.start=2 and x(start=2) are legal.
Real y=x; // Legal use of X  in derived class
end D

model E
A.B a(x=2); /' lllegal modifier, also x.start=2 and x( start=2) are illegal
A.Cc; /' lllegal use of protected class C
model F=A.C; // lllegal use of protected class C
end E;
end A;

]

All elements defined under the headprgtected  are regarded as protected. All other elemergs Hefined
under the headingublic , without headings or in a separate filare public [.e. not protecteld Regarding
inheritance of protecteahd publicelements, seeSection7.1.2-1-2
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4.2 Double Declaration not Allowed

The name of a declared element shall not have the same name as any other elempattialljtsflattened

enclosing classA component shall not have the same name as its type spétifieever, the internal flaghing

of a class can in some cases be interpreted as having two elements with the same name; these cases are describe
in Section5.55.5, andSection7.37%3.

[Exampe:

record R
Real x ;
end R;

model M // wrong Modelica model

RR; //notco rrect, since component name and type specifier are identical
equation

R.x=0;
end M

4.3 Declaration Order and Usage before Declaration

Variables and classes can be ugefibre they are declared.
[In fact, declaration order is only significant for:

9 Functions with more than one input variable called with positionaliswents, Sectioh2.4. 11241
1 Functions with more than one output variable, Seciidd.32.4-3

1 Records that are used as arguments to external functions, Seztibth.32.9.1.3

1 Enumeration literal order within enumeration types, Sectidh54-8.5

4.4 Component Declarations

Componenteclarations are described in this section.

441 Syntax and Examples of Component Declarations

Theformal syntax ofa componentieclaration clausis given by the followingyntacticrules:

component—eladse—component - clause :
type—prefix—type - prefix  type—speeifie——type - specifier [ atray—subseripts——array -
subs cripts ] eemponentdist—component - list

type—prefix—type - prefix
[ flow | stream ]

[ discrete | parameter | constant ][ input | output ]

type—specifie——type - specifier

name

compenentist—component - list
component—declaratioh———component - declaration " compenent—declaratior——component -

declaration }

compoenent—declaration———component - declaration :
declaration [ conditionh—attribute———condition - attribute ] comment

condi—tion—attribute———condition - attribute
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if expression

declaration :

IDENT [ arra—y—subseripts—array - subscripts ][ modification ]

[The declaration of a&componentstates the type, access, variability, data flow, and other properties of the
component A component—clause—component - clause i.e., the whole declarationcontains type prefixes
followed by atype—specifier——type - specifier with optional array—subscripts——array - subscripts
followed by acempenent_list—component - list

There is neemantidifference betweeraviables declared in a single declaration or in multiple declarations.
For example, regard the following single declaratiommponent—clause—component - clause ) of two matrix
variables:

Real[2,2] A, B;

That ceclaration has the same meaning as the following two declarations together:

Real[2,2] A

Real[2,2] B;
The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previexample:

Real A[2,2];
Real B[2,2];

The following declaration is different, meaning that the varialiea scalarbutB is a matrix as above:
Real a, B[2,2];

]

4.4.2 Component Declaration Static Semantics

If the type—specifie—type - specifier of the componet declarationdenotes a builin type RealType ,
IntegerType , etc.), thdlattened oiinstantiated component has the same type.

If the type—specifie——type - specifier  of the component does not denote a bailtype, the name of the
type is looked up (Sectn 5.35-3). The found type iflattenedwith a new environment and tipartially flattened
enclosing clasef the component. It is an error if the type is paitiad simulation model, or if a simulation model
itself is partial The new environment is the tdsof merging

9 the modification oknclosing classlementmodification with the same name as the component
9 the modification of the component declaration

in that order.

Array dimensions shall be neregative parameter expressions, or the colon opedatooting that the array
dimension is left unspecified.

The ruledor components in functions are described in Sectib@t2.2

Conditional declarations of components are described in Sectidi-4-5

4.4.2.1 Declaration Equations

An environment that defines the value of a component of-ioutlfpe is gid to define a declaration equation
associated with the declared component. For declarations of vectors and matrices, declaration equations are
associated with each element.

4.4.2.2 Prefix Rules

Variables declared with thfew or thestream type prefix shall be a subtype of Real.
Type prefixes that is, flow , stream , discrete , parameter , constant , input , output ) shall only be
applied for type, record and connector componisee also recorspecializectlass,Section4.64-6.
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exception |snput for componentsrvhose type is of the speC|aI classmftlontype (these can only be used for
function formal parameters arths special semantjcsee Sectiorl2.4.22.4.), andthe input prefix is not
applied to the elements of the comporeemd is allowed even if the elements have input or output prefix

In addition instances ofclasses extending from ExternalObject may have type prefixesneter and

constant , and in functions ab type prefixegput andoutput - see Sectiod2.9.7

The type prefixeflow , stream , input and output of a structured componefgxcept as described above)
are also applied to the elements of the compoftbistis done afteverifying that the type prefixes occurring on
elements of the component are correct; e.gflthe prefix can be used on a record comporsert all the record
elements will generate zesum equations, even if elements of a record may not be declatedheitow
prefix). When any of the type prefixése-type—prefixedlow , stream , input andoutput are applied for a
structured component no element of the component may have any of these tvpesmaﬂemcdy—b&apphed—for

Byory
&weea{egeﬂes—are—mpu#eu{upu{—amlem#se%{rlﬁor examplemput can only be used, if none of the eIements
has a flow, stream, input or output type prefiy. The coresponding rules for the type prefixes

discrete , parameter andconstant are described in Sectigh4.4.4-4-4-Afor structured components.
The prefixesnput andoutput havea slightly differentsemanticmeaning depending on the context where
they are used

1 In functions these prefixes define the computational causality of the function body, i.e., givearidibles
declared asnput , the variables declared astput are computedn the function body, se&ection

1 In simulationmodelsandblocks(i.e., on the top level of a model or block that shalklmulated), these
prefixes define the interaction with the environment where the simulation model or block is used.
Especially, thenput prefix defines thavalues for such a variable hateebe provided from the simulation
environmentand theoutput prefix defines that the values of the corresponding variable can be directly
utilized in the simulation enviranent, se¢he notion of Globally balanced Bection4.74-7.

1 In componenmodelsandblocks theinput prefix defines that a binding equation has to be provided for
the corresponding variable when the component is utilized in order to guarantee a locally balanced model
(i.e., the number of local equationsidentical to the local number of unknownsgeeSection4.74-7.
Example:

block FirstOrder
input  Real u;

end Fi};stOrder;

model UseFirstOrder
FirstOrder firstOrder(u=time); // binding equation for u

end .l-J.seFirstOrder;

Theoutput prefix does not have a particular effect in a model or block component and is ignored.

1 In connectorsprefixesinput andoutput define that the corresponding connectors can only be connected
according to block diagram semantisge Section9.19-1 (e.g., a connector with asutput variable can
only be connected to a connector where the corresponding variable is declanaat gs There is the
restriction that connectors which have at least one variable declanpdtasmust be externally corected
see Section4.74-7 (in order to get a locally balanced madelhere the number of local unknowns is
identical to the number of unknown equatijpi®gether with the block diagram semantigie this meas,
that such connectors must be conneetattly once externall

1 In records prefixesinput andoutput are not allowed, since otherwise a record could not be, e.g., passed
as input argument to a function.
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4.4.3  Acyclic Bindings of Constants and Parameters

The unexpandedinding equations for parameters and constants in the translated model must be acyclic after
flattening except that cycles are allowed if the cycles disappear when evaluating parameters having annotation
Evaluate=true that are not part of thele. Thus it is not possible to introduce equations for parameters by cyclic
dependencies.

[Example

constant  Real p=2*q;
constant  Real g=sin(p); // lllegal since p=2*q, g=sin(p) are cyclical

model ABCD

parameter Real A[n,n];

parameter Integer n=si ze(AL);
end ABCD;

final ABCD a;
I/l lllegal since cyclic dependencies between size(a.A,1) and a.n

ABCD b( redeclare Real A[2,2]=[1,2;3,4));
/I Legal since size of A is no longer dependent on n.

ABCD c(n=2); // Legal since n is no longer dependent on the size of A.

parameter Real r = 2*sin(r); // lllegal, since r = 2*sin(r) is cyclic

partial model PartialLumpedVolume
parameter Boolean use_T_start = true "= true, use T_start, otherwise h_start"
annotation  (Dialog(tab = "Initialization"), Evaluate=t rue);

parameter Medium.Temperature T_start=if use_T_start then system.T_start else
Medium.temperature_phX(p_start,h_start,X_start)
annotation  (Dialog(tab = "Initialization", enable = use_T_start));
parameter  Medium.SpecificEnthalpy h_sta rt=if use_T_start then
Medium.specificEnthalpy_pTX(p_start, T_start, X_start) else Medium.h_default
annotation  (Dialog(tab = "Initialization", enable = not use_T_start));
end PartialLumpedVolume;
/I Cycle for T_start and h_start, but ok since disa ppears
/l when evaluating use_T_start

/I lllegal since the unexpanded bindings have cycles for both x and y
/I (even if they would disappear if bindings were expanded ).
model HasCycle s

parameter Integern =10;

final constant Real A[3,3]=[0,0,0;1,0,0;2 ,3,0];
parameter  Real y[3]=A*y+ones(3);
parameter  Real x[n]=cat(1, {34}, x(L:(n -1)]);

end HasCycle s;

]

4.4.4  Component Variability Prefix es discrete , parameter , constant

The prefixediscrete , parameter , constant of a component declaration are called variability prefixes and
define in which situation the variable values of a component are initialized (see 8e&idmnd Sectior8.63-6)
and when they are changed in transient analysis (= solution of initial value problem of the hybrid DAE):

9 A variablevc declared with the parameter or constant prefixes remains codstarg transient analysis.

1 A discretetime variablevd has a vanishing time derivative (informatlgr(vd)=0 , but it is not legal to
apply theder() operator to discretéme variables) and can change its values only at event instants during
transient aalysis (see SectioB.58:5).

1 A continuoustime variablevn may have a nemanishing time derivativedér(vn)<>0 possible) and may
alsochange its valudiscontinuoushat any time during transient analysis (see Se@ié8.5). If there are
any discontinuities the variable is not differentiable.
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If a Real variable is declared with the prefix discrete it nust simulation moddbe assigned in a wherause,
either by an assignment or an equatithe variable assigned in a whelause may not be defined in a sub
component of model or blodpecializectlass[This is to keep the property of balanced mddels

A Real variable assigned in a whelause is a discretéme variable, even though it was not declared with the
prefix discre te . A Real variable not assigned in any wigdsuse and without any type prefix is a continuous
time variable

The default variability fointeger , String , Boolean , orenumeration variables is discretéme, and it is
not possible to declare continuetirme Integer , String , Boolean , or enumeration  variables. A Modelica
translator is able to guarantee this property due to restrictions imposed on discrete expressions, see Section
3.83.9

The variability of expressions and restrictions on variability for definition equations is given in Segdién

[A discretetime variable is a piecewise constant signal which changes its valuestoaWent instants during
simulation. Such types of variables are needed in order that special algorithms, such as the algorithm of
Pantelides for index reduction, can be applied (it must be known that the time derivative of these variables is
identical tozero). Furthermore, memory requirements can be reduced in the simulation environment, if it is
known that a component can only change at event instants.

A parameter variable is constant during simulation. This prefix gives the library designer the lippgsibi
express that the physical equations in a library are only valid if some of the used components are constant during
simulation. The same also holds for discitee and constant variables. Additionally, the parameter prefix
allows a convenient grdgical user interface in an experiment environment, to support quick changes of the most
important constants of a compiled model. In combination with-alaifse, a parameter prefix allows to remove
parts of a model before the symbolic processing of a hiakies place in order to avoid variable causalities in
the model (similar to #ifdef in C). Class parameters can be sometimes used as an alternative. Example:

model Inertia
parameter  Boolean state = true;

equation
J*a=t1 T t2;
if state then /I code which is removed during symbolic
der (v) =a; [/ processing, if state=false
der (r) =v;
end if ;
end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and sually not changed aftehey have been given a value. It can be used to represent mathematical
constants, e.g.

final constant  Real Pl=4*atan(1);
There are no continuottime Boolean , Integer or String  variables.In the rare cases they are needed they
canbe faked by usingBeal variablesg.g.:

Boolean offl, offla;

Real off2;
equation
offl =s1<0;
offla = noEvent(sl < 0); // error, since offla is discrete
off2 = if noEvent(s2 <0) then 1 else O0; // possible
ul= if offfi then sl else O0; /I state events
u2 = if noEvent(off2 > 0.5) then s2 else 0; //no state events

Sinceoffl is a discreteime variable, state events are generated such dfiat is only changed at event
instants. Variableoff2 may change its value during continuouagegration. Thereforeyl is guaranteed to be
continuous during continuous integration whereas no such guarantee exigs for

]
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4.4.4.1 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive ofttability prefix and the
variability of the component wins (using the default variability for the component if there is no variability prefix
on the component).

[Example

record A
constant  Real pi=3.14;
Real y;
Integer i;
end A;
parameter A a;
/I a.piis a constant
/I a.y and a.i are parameters

Ab;

// b.pi is a constant

/I b.y is a continuous - time variable
/lbiisadi screte - time variable

4.4.5 Conditional Component Declaration

A component declaration can havesadition—attribute——condition - attribute  : "if " expression
[Example

parameter Integer level (min=1) =1;

Motor motor;

Levell component1(J=J) if level==1 "Conditional component";

Level2 component2 if lev el==2 "Conditional component";

Level3 component3 (J=componentl.J) if level <2 "Conditional component" ;

/' llegal modifier on component3 since componentl.J is conditional
/I Even if we can see that componentl always exist if component3 exist

equation
conne ct (componentl..., ...) "Connection to conditional component 1
connect (component 2.n, motor.n ) "Connection to conditional component 2"
connect (component 3.n, motor.n ) "Connection to conditional component 3"

componentl.u=0; // lllegal
]

The expressio must be @8ooleanscalar expression, and must be a parar@geressionthat can be evaluated
at compile timg

A redeclaration of a component may not include a condition attribute; and the condition attribute is kept from
the original declaration (s&ection6.36-3).

If the Booleanexpression is falséne component (including its modlﬂer) is removed from the flattened DAE , and
connections to/from the component are reméved Hemmediics
ighered;—and connections to/from the component are remopMedding the component and then removing it
ensures that the component is vdhdcomponent declared witheprditien—attributeonditionrattributecan only

be modified and/or uskein connectionsi-the-cendition-isfalse;-the-component-its-modifiers,—and-any-eennect
equationsinveolving—the—compenent—are—+emovddf a connect statement defines the connection of a non

conditional component c1 with a conditional component c2cnid deactivated, then c1 must still be a declared
element.

If the condition is true for a public connector containing flow variables the connector must be connected from
the outside. The reason for this restriction is that the default flow equatiquradably incorrect (since it could
otherwise b&n unconditionalconnectoy and the model cannot check that connector is connécted
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4.5 Class Declarations

Essentially everything in Modelica is a class, from the predefined classger andReal , to large packages
such as the Modelica standard library.

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing a
number of declarations followed by a number of equations in an equatidansect
class ClassName

Declaration1
Declaration2

eqﬁétion
equationl
equation2

end ClassNamg
]
The following is the formal syntax of class definitions, including the special variants described in later sections.

class—definiion——class - defi nition :
[ encapsulated ] elass—prefixes——class - prefixes
class—specifie——class - specifier

class—prefixes—class - prefixes

[ partial ]
( class | model |[ operator ] record | block |[ expandable ] connector | type |
package |[( pure | impure )][ operator ] function | operator )

class—specifier———class - specifier :
leng—class—specifier———long - class - specifier | short—class—specifie——short - class - specifier
| der—elass—specifier———der - class - specifier

long - class - specifier
~ IDENT string—comment—string - comment composition end IDENT
| extends IDENT [ class—modification———class - modification ] string—comment—string - comment
composition

end IDENT

sheﬁ—elass—speemerishort - class - specifier

IDENT "="  base—prefix—base - prefix  name[ array—subseripts——array - subscripts ]
[ elass—modification———class - modification ] comment

| IDENT "=" enumeration  "(" ([ enum-list—enum- list ]| ™")")" comment

— der - class - specifier :
IDENT "=" der "( "name"," IDENT {"," IDENT } ")" comment

base—prefix—base - prefix :
[ input | output ] type—prefix—

endm—list—enum- list . enumerationliteral———enumeration - literal "
enumerationliteral—enumeration - literal  }

enumerationliteral———enumeration - literal :ID ENT comment

composition :
elementtlist——element - list
{ public elementlist——element -list |
protected element_list——element -list |
eguation—section——equation - section |
algorithm—sectioh———algorithm - section

}

[ external [ language—specif—ication—language - specification ]
[ externalfunction—eall———external - function -call ][annotation |
[ annotation ";"]
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451 Short Class Definition s

A class definitiorof the form
class IDENT1 =IDENT2 class—medification———class - modification

is identical, excepthat IDENT2 may be replaceable aiod the lexical scope of modifiers, where the short class
definition does not introduce an additional lexical scope for madifio the longer form
class IDENT1

extends IDENT2 eclass—medification———class - modification
end IDENT1;

[Example: demonstrating the difference in scopes

model Resistor
parameter Real R;

end Resistor;

model A
parameter Real R;
replaceable mocel Load=Resistor(R=R) constraine  dby TwoPin;
/I Correct, sets the R in Resistor to R from model A.

replaceable model LoadError
extends Resistor(R=R);

/I Gives the singular equation R=R, since the right - hand side R
/l is searched for in Lo adError and found in its base - class Resistor.
end LoadError constraine dby TwoPin;
Load a,b,c;
ConstantSource ...;
end A;

]

A short class definition of the form
type TN =T[N](op tional modifier) ;

where N represents arbitrary array dimensioasceptually yields an array class
6arraydé TN
T[n] _ (optional modifiers);
6endo6 TN;
Such an array class has exactly one anonymous componesegd glso sectiofh.5.24-5-2 When a component of
such an array class type fiattened the resultingflattened component type is an array type with the same
dimensions as _ and with the optional modifier applied.

[Example
type Force = Real[3](unit={"Nm","Nm","Nm"});
Forcef 1;
Real f2[3](unit={"Nm","Nm","Nm"});

the types oft andf2 are identicall

If a short class definition inherits from a partial class the new class definition will be partial, regardless of whether
it is declared with the keyword partial or not.
[Example

replaceable model Load=TwoPin;
Load R; // Error unless Load is redeclared since TwoPin is a partial class.

]

If a short class definition does not specify apgcializectlass the new class definition will inherit thgecialized
class (this rule appliggeratively and also for redeclare).
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A baseprefix applied in the shoxlass definition does not influence its type, but is applied to components
declared of this type or types derived fronsie also sectioh5.24-52

[Example

type InArgument = input Real;
type OutArgument=  output Real[3];

function foo
InArgument u; // Same as: input Real u
OutArgument y; // Same as: output Real[3] y
algorithm
y:=fill(u,3);
end foo;

Real x[:]=foo(time);

]

4.5.2 Restriction on combining base -classes and other elements

It is not legal to combine other components or Bdasses with an extends from an array class, a class with non
empty baseprefix, a simple type (Real, Boolean, Integer, String and enumeration types), dassyransitively
extending from an array class, a class with-aopty baserefix, or a simple type (Real, Boolean, Integer, String
and enumeration types).

[Example:

model Integrator
input  Real u;
output Real y=x;
Real x;

equation
der (X)=u;

end Integrator;

model Integrators = Integrator[3]; /I Legal

model lllegal Model

extends Integrators;

Real x; // lllegal combination of component and array class
end lllegal Model ;

connector lllegal  Connector
extends Real;
Real y; // lllegal combin ation of component and simple type

end lllegal Connector ;

]

453 Local Class Definitions 17 Nested Classes

The local class should be staticdligttenablewith the partially flattenedenclosing classf the local class apart
from local class components that are partialwer . The environment is the modification of agyclosing class
element modification with the same name as the local class, or an empty environment.

The urlattenedlocal class together with its environment becomes an elementftdtteaedenclosing class

[The following example demonstrates parameterization of a local class

elass—model C1
elass—type Voltage = Real(nominal=1);
Voltage v1, v2;

end C1;

elass—model C2
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extends C1(Voltage(nominal=1000));
end C2;

Flattening of classC2 yields a local class Voltage with nomirabdifier 1000. The variablegl and v2 are
instances ofhis local class and thus have a nominal value of 1000.

]

4.6 Specialized Classes

Specializedkinds of classes[Earlier known as restricted clasdesecord, type, model, block,

package, function, and conne ctor have the properties of a general class, apart from restrictions.
Moreover, they have additional properties called enhancenigradollowing table summarizes tilefinition of

the specialized classésdditionalrestrictions on inheritance are in 8en 7.1.3:

record Only public sectionsre allowed in the definition or in any of its compong
(i.e., equation, algorithm, initial equation, initial algorithm and protg
sections are noéllowed) The elements ofa record may not haverefixes
input , output , inner , outer ,stream, orflow . Enhanced with implicitly
availablerecordconstructor functionsee Sectioi2.6t2.6 Additionally, recorg
components can be useda@snponent references @xpressions anth the left
hand side ofassignments, subject to normal type compatibility rulEse
components directly declared in a record may onlv be of specialized clasg

type May onlybe predefined types enumeratloasray of type or cIasses extendln
closs hoslkie croon il

model Identical toclass , the basic class concepg., no restrictions and no
enhancements.

block Same asnodel with the restriction thatazh canectorcomponentf ablock

must have prefixemput and/oroutput for all connector variable§The
purpose is to model input/output blocks of block diagrams. Due to the
restrictions on input and output prefixes, connections between blocks are
possble according to block diagram semaitic

function See Sectio2.222for restrictions and enhancements of functions.
Enhanced to allow the function to contain an exteumattion interface.Non
function specialized classes do not have this progerty.

connector Only public sections are allowed in the definition or in any of its componen
(i.e., equation, algorithm, initial equation,tial algorithm and protected
sections are not allowed).

Enhanced to allowonnect (..) to components of connector clasSése
elements of a connector may not have prefixes , or outer. May only
contain components of specialized class connector, recortype.

package May only contain declarations of classes and constants. Enhanced to allo
import  of elements of packages. (See d¥$mpter 1&hapter1dn packages.

oper ator record Similar to record; bubperator overloading is possible, and due to this the ty
rules are different seeChapter Ehapter6lt is not legal to extend from an
operator record (or connector imtigg from operator record), except if the ng
class is an operator record or connector that is declared as a short class
definition, whose modifier is either empty or only modify the default attribu
for the component elements directly inside the dperacordtis-rotlegalto
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record can only extend from an operator recasdghort class definitigrand
not from another specialized cldsk is not legal to extend from any of its

enclosing scopes. (S&hapter 1&hapter-1i

operator Similar to package; but may only contain declarations of functions. May or
placeddirectlyin an operatorecord. (See alsGhapter 1&hapter1i

operator function Shorthand for an operator wigixactly one function; same restriction as func
classand in additiormay only be placedirectlyin an operatorecord.
[Aoperator function f oo ehd foo; Ois conceptuallyfreated as
floperator foo function fool é end fool ;end foo; 0]

[Exampl eerfatroro®:p

operator  record Complex
Real re;
Real im;

encapsulated operator  function Nj* Nj
import  Complex;
input Complex c1;
input Complex c2;
output  Complex result

algorithm
result = Complex(re=cl.re*c2.re T cl.im*c2.im,
im=cl.re*c2.im + cl.im*c2.re);
end Nj* Nj;

end Complex;

record MyComipex
extends Complex; // not allowed, since extending from enclosing scope
Real k;

end MyComplex;

operator  record ComplexVoltage = Complex(re(unit= "V"),im(unit=" "V")); // allowed

4.7 Balanced Models

[In this section restrictionfor model and block classese presentin order that missing or tomanyequations
can be detected and localized by a Modelica translator before using the respective model clabloéknon
trivial case is demonstrated the following example:

partial model BaseCorrelation
input Real x;
Real y;

end BaseCorrelation;

model SpecialCorrelation // correct in Modelica 2.2 and 3.0
extends BaseCorrelation(x=2);

equation
y=2/X;

end SpecialCorrelation;

model UseCorre lation  // correct according to Modelica 2.2
/I not valid according to Modelica 3.0
replaceable model Correlation=BaseCorrelation;
Correlation correlation;
equation
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correlation.y=time;
end UseCorrelation;

model Broken // after redeclaration, there is 1 equation too much in Modelica 2.2
UseCorrelation example( redeclare Correlation=SpecialCorrelation);
end Broken;
In this case one can argue that bothiseCorrelation (adding a acausal equation) and
SpecialCorrelation (adding adefault to an input) are correct, but still when combined they lead to a model

with too many equatiorisand it is not possible to determine which model is incorrect without strict, ragethe
ones defined here.

In Modelica 2.2, modeBroken will work with some models. However, by just redeclaring it to model
SpecialCorrelation , an error will occur and it will be very difficult in a larger model to figure out the source
of this error.

In Modelica 3.0, modébseCorrelation is no longerallowed and the traslator will give an error. In fact, it
is guaranteed that a redeclaration cannot lead to an unbalanced mogeiae.

].
The restrictions below applgfter flatteningi i.e. inherited components are includegossibly modified. The
corresponding restrions on connectors and connections arg@edntion9.39-3.

Definition 1: Local Number of Unknowns

The bcalnumber ofunknownsof a model or block class the sum based on the comngnts:

1 For each declaredomponent okpecializedclasstype (Real, Integer, String, Boolean, enumeration and
arrays of thosegteetc) or record , or operator r  ecord not declared asuter , it is the finumberof
unknown variablesinside it (i.e., excluding parameters and constaatsl counting the elements after
expanding all recordsperator recordand arrays ta setof scalarof primitive types.

1 Each declaredomponent ofspecializedclasstype or record declaredas outer is ignored[i.e., all
variables inside the component are treated as kihown

9 For each declaredomponent obpecializecclassconnector c omponent , it is the Al
variablesodo inside it (i.e., éngihdeleaeants gftergxpandingalt er s
records and arrays to a set of scalars of primitive types).

1 For eactdeclaredcomponent obpecializectlassblock or model , it is the Asum of t

and flow variabl esd i n compoeent§ dfthgse cbnegponef@sll copntingthe ¢ c o
elements after expanding all records and arrays to a set of scalars of primitive types).

Definition 2: Local Equation Size

The bcal guationsize of a model or block classtige sum of the following numbers:

1 The rumber of equations defined locally (i.e. not in any model or block component), inchiditigg
equations, anequations generated fromonnectequatiors. This includes the proper count for when
clauses (se8ection8.3.8-3-5, and algorithms (seectionl1.111.1), and is also used for the flat Hybrid
DAE formulation (seéppendix @ppendix-g.

1 The number of input and flowariables present ieach(top-level) public connector componertThis
represents the number of connection equations that will be provided when the clasg is used.

1 The number of (top level) public input variablat neither are connectors nor habpeding equaions
[i.e., toplevel inputs are treated as known variabl€kis represents the numberhihding equations that
will be provided when the class is uged.

[To clarify toplevel inputs withoubindingequation (for nonrinherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier an 6ud giving the value)

model M
input Real u;
input Real u2=2;
end M
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Her e O0ud a nlevel idput® &nd rot cenndctorg The variable u2 hemding equation, but u
does not have hindingequation. In the equation count, it is assumed that an equation for u is supplied
when using the model.

]

Definition 3: Locally Balanced

A model or block class is #fAlocally babbnd¢odd hief At
equation sizeo for al |l | e g drespeutiagl finad bidingsfandcnmonfmax ant s
restrictions.A t ool shall verify the #Alocally balancedo

constants in the simulation model. It is a quality of implementation tmoldo verify this property in general,
due toarrays of (locally) undefined z¢s, conditional declarations, for loopsetc].

Definition 4: Globally Balanced

Similarly as locally balanced, but including all unknowns and equations dtboomponentsThe global
number of unknowns is computed by expagdall unknowns (i.e. excluding parameters and constants) into a
set of scalars of primitive types. This should match the global equation size defined as:

1 The number of equations defined (included in any model or block component), including equations
gererated fronconnectequatiors.

The number of input and flowariables present in each (tmvel) public connector component.

The number of (top level) public input variables that neither are connectors nobihdirey equations

[i.e., toplevel inputs ag treated as known variables

il
il

The following restictions hold

1 In a nonpartial model or block, all neoonnector inputs of model or block components must hanging
equations.[E.g. if the model contains a componeiitOrder (of specializedclass nodel ) and
firstOrder h amputikealu 6 t hen t h kindiagegoatisntforfikt@rderau ]

1 A component declared with thener or outer prefix shall not be of a class having dgwel public
connectors containing inputs.

1 In a declaration of a compent of a record, connector, or simple type, modifiers can be applied to any
element’ and these are also considered for the equation count.
[Example:

Flange support(phi=phi, tau=torquel+torque2) if use_support;

If use_support=true, there are two addital equations for support.phi and support.tau via the modlifier

91 In other case@eclaration of a component of a model or block type, modifiers on extends, and modifier on
shortclassdefinitions) modifiers for components shall only contairedeclaatiors of replaceable
elements andinding equations The binding equations in modifiers for components may in these cases
only befor parameters, ewstantsinputsandvariables having a defaldindingequation

1 All non-partial model and block classesnust be locally balanced[this means that the local number of
unknowns equals the local equation kize

Based on these restrictignise following strong guarantee can be given for simulation models and blocks:
Proposition 1:

All simulation models iad blocks are globally balanced
[Therefore the number of unknowns equal to the number of equations of a simulation model or block, provided
thatevery used nepartial model or block class iIscally balanced.

[Example 1:
connector  Pin
Real v;
flow Real i;
end Pin;

model Capacitor
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parameter Real C;
Pin p, n
Real u;

equation
0=p.i+n.i;
u=np.v T nv;
C*der (u) = p.i;

end Capacitor;

ModelCapacitor is a locally balanced model according to the following asiaty
Locally unknown variablesp.i, p.v, n.i, n.v, u
Local equations 0=p.i+n.i
u=p.v T nwv;
C*der (u) = p.i;
and 2 equations corresponding to the 2 fleaviablesp.i andn.i.

The® are 5 equations in 5 unknownacg@lly balancedmode). A more detailed analysis would reveal that this is
structurally nonsingular, i.e. that the hybrid DAE will not contain a singularity independent of actual values.

I f the equadni o dldBeanissing m the Capacitor model, there would be 4 equations in 5
unknowns and the model would loeally unbalancedand thussimulation models in which this model is used
would be usuallgtructurally singular and thusat solvable

If the equatiorfiu=pv 1T nvd woul d be r epl a6 darthe dqlaBoc*dequy at i on
=pi would be repl ac@&d(uby ©Ohherewayld lzetsiequationsiin 5 unknownsdlly
balanced, but the equations would tmngular, regardless of howhe equations corresponding to the flow
variables are constructed becaush e i nf or mati on that Auod is constant |

Example2:
connector  Pin
Real v;
flow Reali;
end Pin;

partial model TwoPin
Pin p,n;
end TwoPin;

model Capacitor
parameter Real C;
extends TwoPin;
Real u;

equation
0=p.i+n.i;
u=p.v T nv;
Cxder (u) = p.j;

end Capacitor;

model Circuit
extends TwoPin;
replaceable TwoPin t;
Capacitor c¢(C=12);

equation
connect (p, t.p);
connect (t.n, c.p);
connect (c.n, n);

end Circuit;

Since t is partial we cannot check whether thia gdobally balanced modelbut we can check thatircuit  is
locally balanced

Counting on modetircuit  results in the following balance sheet
Locally inknown variables (8)p.i, p.v, n.i, n.v , and 2 flow variables fot (t.p.i, t.n.i)
and?2 flow variable forc (c.p.i, c.n.i).
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Local equations p.v =t.p.v;
0= p.i -tpdi
c.p.v =load.n.v;
0 = c.p.i+load.n.i;
n.v=c.n.v;
O=ni -c.ni
and 2 equation corresponding to the flow variables p.i, n.i

In total we have 8 scalar unknowns and 8 scalar equationsailecally balancedmodel(and this feature holds
for any models used for the replaceable component i

Some more analysis reveals that floisal set of equations and unknowns is structuratig-singular. However,
this does not provide any guarantees for the global set of equations, and specific combinations of models that are
il ocatslimgrudmr 0 may | sirgdlarimalela gl obal ly non

Example 3:
import S| = Modelica.Slunits;

partial mod el BaseProperties
"Interface of medium model for all type of media"
parameter  Boolean preferredMediumStates= false ;
constant Integer nXi "Number of independent mass fractions";
InputAbsolutePressure  p;
InputSpecificEnthalpy  h;

Inp utMassFraction Xi[nXi];

Sl.Temperature T,

Sl.Density d;

Sl.SpecificinternalEnergy u;

connector  InputAbsolutePressure = input  Sl.AbsolutePressure;
connector  InputSpecificEnthalpy = input  Sl.SpecificEnthalpy;
connector  InputMassFraction = input  Sl.MassFraction;

end BaseProperties;

The use of connector here is a special design pattern. The var@ghieXi are marked as input to get correct
equation count. Since they are connectors they should neithevdre lgjnding equations in derived classes nor
when using the model. The design pattern is to give textual equations for them (as below); using connect
equationdor these connectors would be possible (and would work) but is not part of the design.

This patial model defines that,d,u can be computed from the medium model, provige&i are given.
Every medium with one or multiple substances and one or multiple phases, including incompressible media, has

the property thaff,d,u can be computed fromh,Xi . A particular medium may ha
variablesdo from which all other intrinsic thermodyn
simple air model could be defined as:
model SimpleAir "Medium model of simple air. Independe nt variables: p,T"
extends BaseProperties(nXi =0,
p(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default),
T(stateSelect = if preferredMediumStates then StateSelec t.prefer

else StateSelect.default));
constant  Sl.SpecificHeatCapacity R = 287,
constant  Sl.SpecificHeatCapacity cp = 1005.45;
constant  Sl.Temperature TO =298.15
equation
d = p/(R*T);
h=cp*(T -TO0);
u=h 1 p/d;
end SimpleAir;

The local number of unknowns in mo8whpleAir  (after flattening) is:
1 3(T,d, u: variables defined inBaseProperties  and inherited irSimpleAir ), plus
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1 2+nXi (p, h, Xi: variables inside connectors defined BaseProperti es and inherited in
SimpleAir )

resulting in5+nXi unknowns. The local equation size is:

1 3(equations defined in SimpleAir), plus

1 2+nXi (input variables in the connectors inherited from BaseProperties)

Therefore, the model is locally balanced.

The genericmedium modeBaseProperties is used as aeplaceablemodel in different components, like a
dynamic volume or a fixed boundary condition:

import S| = Modelica.Slunits

connector  FluidPort
replaceable model Medium = BaseProperties;

Sl.AbsolutePressure p;
flow Sl.MassFlowRate m_flow;

Sl.SpecificEnthalpy  h;
flow Sl.EnthalpyFlowRate H_flow;

Sl.MassFraction Xi  [Medium.nXi] "Independent mixture mass fractions";
flow Sl.MassFlowRate mXi_flow[Medium.nXi] "Independent subst. mass flow rates";
end FluidPort;

model DynamicVolume
parameter  Sl.Volume V;

replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium);
Medium medium(preferredMediumStates= true) ; // No modifier for p,h,Xi
Sl .InternalEnergy U;
Sl.Mass M;
Sl.Mass MXi[medium.nXil;
equation

U = medium.u*M;

M = medium.d*V;

MXi = medium.Xi*M;

der (U) = port.H_flow; // Energy balance

der (M) = port.m_flow; // Mass balance

der (MXi) = port.mXi_flow; // Substance mass balance

/I Equations binding to medium (inputs)
medium.p = port.p;
medium.h = port.h;
medium.Xi = port.Xi;

end DynamicVolume;

The local number of unknownsmfnamicVolume is:

1 4+2*nXi (inside theport connector), plus

1 2+nXi (variablesU, MandMXi), plus

1 2+nXi (the input variables in the connectors of thedium model)
resulting in8+4*nXi unknowns ; the local equation size is

1 6+3*nXi from the equation section, plus

1 2+nXi flow variables in thgport conrector.

Therefore DynamicVolume is alocally balancednodel.

Note, when th®ynamicVolume is used and th&ledium mo d e | i s r @nplesdr|l @ar etdherm d& t oo
try to selectp, T as states, since these variables h&vateSelect.prefer in the SimpleA ir model (this

means that the default stategv are derived quantities). If this state selection is performed, all intrinsic medium
variables are computed fromedium.p andmedium.T , althoughp andh are the input arguments to the medium

model. This dematrates that in Modelica input/output does not define the computational causality. Instead, it
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defines that equations have to be provided herepfaiXi , in order that the equation count is correct. The
actual computational causality can be differenttds demonstrated with thi&mpleAir  model.

model FixedBoundary pTX
parameter  Sl.AbsolutePressure p "Predefined boundary pressure";
parameter  Sl.Temperature T "Predefined boundary temperature";
parameter  Sl.MassFraction  Xi[medium.nXi]
"Predefined boundary mass fraction";
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium);
Medium medium;

equation
port.p =p;
port.H_flow = semiLinear (port.m_fl ow, port.h , medium.h);
port.MXi_flow = semiLinear (port.m_flow, port.Xi, medium.Xi);

/I Equations binding to medium (note: T is not an input).
medium.p =p;
medium.T =T;
medium.Xi = Xi;
end FixedBoundary_pTX;
The number of local variables i n FixedBoundary pTX is:
1 4+2*nXi (inside theport connector), plus
1 2+nXi (the input variables in the connectors of thedium model)
resulting in6+3*nXi unknowns, while the local equation size is
1 4+2*nXi from the equation section, plus
1 2+nXi flow variablesin the port connector.

Therefore FixedBoundary_pTX is alocally balancedmodel. The predefined boundary variabjeand Xi are
provided via equations to the input argumentslium.p andmedium.Xi , in addition there is an equation for
in the same way even though is not an input. Depending on the flow direction, either the specific enthalpy in

the port port.h ) or his used to compute the enthalpy flow ratéow . Aho i s provided as &
the medi um. Wi heiumT h & Oceletas peni ii c enthal py fAho of
computed via the medium equations. Agai n, this der

equations have to be provided, but that it not necessarily defines the computational causality.

]

4.8 Predefined Types_and Classes

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types are
descrlbed below Wlth Modellca syntax aIthouqh thev are predefﬁ@aﬁnb&es—ef—the—pdeﬁmed—vanaue

A ddefingds

cannot be accessed using dot notation, and are not constramed by equat|ons and alqorlthm sections. E.g. in Real
x(unit="kg") = y; only the values of x and y are declared to be equal, but not their unit attributes, nor any other
attribute of x and ylt is not possible to combine extends from the predefined types, enumeration tyihés, or
Clocktype withother components. The naml@eal Integer, Boolean and Strlnq are reserved such that it is illegal

to declare an element with these naiR ereserved

#em—the—predeﬂned—types—wﬁh—e&he%eempeneﬁtbusn is 0055|ble to deﬂne a normal class called Clock in a

package and extendofn it.] The definitions useRealType , IntegerType , BooleanType , StringType
EnumType as mnemonics corresponding to machine representatidescé the only way to declare a subtype of
e.g.Real is to use thextends mechanisnj.

4.8.1 Real Type
The following is the predefine®eal type:
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type Real // Note: Defined with Model ica syntax although predefined
RealType value; /I Accessed without dot - notation
parameter  StringType quantity ="
parameter  StringType unit ="" "Unit used in equations";
parameter  StringType displayUnit ="" "Default display unit";
parameter RealType min= - Inf, max=+Inf; // Inf denotes a large value
parameter RealType start=0; /I Initial value

parameter  BooleanType fixed = true, // default for parameter/constant;
= false; // default for other variables
parameter RealType nominal; // Nominal value
parameter BooleanType unbounded=false; // For error control
parameter  StateSelect stateSelect = StateSelect.default;
equation
assert (value >=min and value <= max, "Variable value out of limit");

end Real;
The nominal attribute is meant to be used for scaling purposes and to define tolerances in relatsesterms
section4.8.7.

4.8.2 Integer Type

The following is the predefinedteger type:
type Integer // Note: Defined with Modelica syntax although predefined

In tegerType value; /I Accessed without dot - notation
parameter  StringType quantity ="
parameter IntegerType min= - Inf, max=+Inf;
parameter IntegerType start =0; // Initial value
parameter BooleanType fixed = true, // defa ult for parameter/constant;
= false; // default for other variables
equation
assert(value >= min and value <= max, "Variable value out of limit");
end Integer;

4.8.3 Boolean Type

The followingis the predefine@oolean type:
type Boolean // Note: Defined with Modelica syntax although predefined

BooleanType value; /I Accessed without dot - notation
parameter  StringType quantity ="'
parameter  BooleanType start = false; /I Initial value

parameter  BooleanType fixed = true, // default for parameter/constant;
= false, // default for other variables
end Boolean;

4.8.4 String Type

The following is the predefinestring type:
type String // Note: Defined with Modelica syntax although predefined

StringType value; /I Accessed without dot - notation
parameter  StringType quantity ="
parameter  StringType start ="";  // Initial value

parameter BooleanType fixed = true, // default for parameter/constant;
= false, // default for other variables

end String;

4.8.5 Enumeration Types

A declaration of the form
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type E = enumeration ([ eaum-tist—enum-list 1]);

defines an enumeration type E and the associated enumeration literals of tHestenithe enumeration literals
shall be distinct within the enumeration type. The names of the enumeration literals are defined insige the s
E. Each enumeration literal in theum—list—enum- list  has type E.

[Example

type Size= enumeration (small, medium, large, xlarge);
Size t_shirt_size = Size.medium;

].
An optional comment string can be specified with each enumeration literal:

[Exanple:

type Size2 = enumeration (small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in Seéti®i4-8-5-1 The Boolean type

name or arenumeration type name can be used to specify the dimension range for a dimension in an array
declaration and to specify the range in a for loop range express®@ibectioil.2.2.21-2.2.2 An element of an
enumeration typean be accessed in an expresség.[an array index valje

[Example

type DigitalCurrentChoices = enumeration (zero, one);
/I Similar to Real, Integer

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices(quantity="Current",

start = DigitalCurrentChoices. one, fixed = true);
DigitalCurrent c(start = DigitalCurrent.one, fixed = true);
DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);

1
Using enumeration types A&cessing-attribute-values@xpressions:

Real x[DigitalCurrentChoices];

/I Example using the type name to represent the range

for e in DigitalCurrentChoices loop
x[e] =0

end for ;

for e loop /I Equivalent example using short form
x[e] =0

end for ;

/I Equivalent ex ample using the colon range constructor

for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
x[e] :=0,;

end for ;

model Mixingl "Mixing of multi - substance flows, alternative 1"

replaceable type E=enumeration (:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output  Real c3[E], mdot3;
equation
0 = mdotl + mdot2 + mdot3;
for e in E loop
0 = mdotl*cl[e] + mdot2*c2[e]+ mdot3*c3[e];
end for ;
[* Array operations on enumerations are NOT (yet) possible:
zer os(n) = mdotl*cl + mdot2*c2 + mdot3*c3 // error
*/
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end Mixingl;

model Mixing2 "Mixing of multi - substance flows, alternative 2"
replaceable type E=enumeration (:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3

protected
/I No efficiency loss, since ccl, cc2, cc3
/l may be removed during translation
Real ccl[:]=c1, cc2[:]=c2, cc3[:]=c3;
final parameter Integer n = size(ccl,l);

equation
0 = mdotl + mdot2 + mdot3;
zeros(n) = mdotl*ccl + mdot2 *cc2 + mdot3*cc3
end Mixing2;

]

4.8.5.1 Attributes of Enumeration Types

For each enumeration:

type E=enumeration (el,e2, ..., en);
a new simple type is conceptually defined as

type E // Note: Defined with Modelica syntax although predefined
EnumType value; /I Accessed without dot - notation
parameter  StringType quantity ="'
parameter EnumType min=el, max=en;
parameter EnumType start = el; // Initial value
parameter  BooleanType fixed = true, // default for parameter/constant;
= false; // default for other variables
constant EnumType el=..,

constant  EnumType en=...;
equation

assert(value >= min and value <= max, "Variable value out of limit");
end E;

[Since the attributes and enumeratiliterals are on the same level, it is not possible to use the enumeration
attribute names (quantity, min, max, start, fixed) as enumeration literals
4.8.5.2 Type Conversion of Enumeration Values to String or Integer

The type conversion functidnteger (<expressi on of enumeration type> ) returns the ordinal number
of the enumeration valuE.enumvalue , to which the expression is evaluateghere Integer(E.el) =1 ,
Integer(E.en) = n, for an enumerationtyp€=enumer ation(el, é, en)

String(E.enumvalue) gives the strig representation of the enumeration eaJ&Example:String(E.Small)
gives 'Small ".]

See also Sectiob.7.13-7-1

4.8.5.3 Type Conversion of Integer to Enumeration Values

Whenever an enumeration type is defined, a tgeversion function with the same name and in the same scope
as the enumeration type is implicitly defined. This function can be used in an expression to convert an integer
value to the corresponding (as described in sedti®’.d enumeration value.

For an enumeration type namé&mumTypeName the expressiorEnumTypeName(<Integer expression>)
returns the enumeration valBE@umTypeName.e such thatinteger(EnumTypeName.e) is equal to the original
integer expression.

Attempting to convert an integer argument that does not correspond to a value of the enumeration type is an error.
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[Example:

type Colors = enumeration ( RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW );

Converting from Integer to Colors:
¢ = Colors(i);
c = Col ors(10); // An error

4.8-5:34.8.5.4 Unspecified enumeration

An enumeration type defined using enumeration(;) is unspecified and can be used as a replaceable enumeration
type that can be freely redeclared to any enumeration type. There can be no enumeration valmigesidiag
enumeration(:) in a simulation model.

4.8.6 Clock Type s
See Sectionl6.2.16-2-1and16.3L6-3

487 Attributes start, fixed, and-nominal, and unbounded

The attributesstart andfixed defi ne the initial fixedefasa i i emean$ omnai -
guess, i . e., val ue may fikee=true h@nmedndyastaguicradaVl gtk
consistat set of values for ALL model variables is used as initial values for the analysis to be performed.

The attributenominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default valliee lad of defaultallows the tool to propagate the nominal attribute
based on equations, andtihere is no value to propagate the tool should use az@@nvalue, it may use
additional information (e.g. miattribute) to find a suitable value, and as lasbntasse 1If fiunbounded =true 0O
it indicates that thestate may grow without boundand the error in absolute terms shall be controllgkhe
nominal value can be used by an analysis tool to determine appropriate tolerances or epsilons, or may be used for
scaling. For example, the abselute—tolerance for an integrator could be computed as
fit ol *( absTel=—abs(nominal) *relFel—100—+(if x.unbounded then 0 else abs(x) )) 0 . A default
value is not provided ba=ho,orvdhbar &ahéata ilmoeciapsasds rsoLehfi
nominal value can be propagated to the other variap[€or external functions in C8RealType by default
maps to double and IntegerType by default map#tta In the mapping proposed in Annex F of the C99
standard, RealType/double ~ matches the IEC 60559:1989 (ANSI/IEEE -1%®85) double format. Typically
IntegerType  represents a 3bit 2-complement signed integgr.

4.8.8 Other Predefined Types

4.8.8.1 StateSelect

The predefinecstateSelect ~ enumeration type is the type of thteateSelect  attribute of theReal type. It is
used toexplicitly control state selection.

type StateSelect = enumeration  (
never "Do not use as state at all.",
avoid "Use as state, if it cannot be avoided (but only if variable appears
differentiated and no other potential state with attribute
default, prefer, or always can be selected).",
default "Use as state if appropriate, but only if variable appears
differentiated.",
prefer "Prefer it as state over those having the default value
(also vari ables can be selected, which do not appear
differentiated). ",
always "Do use it as a state.”

);
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4.8.8.2 ExternalObject
See Sectioi2.9.242.9-7for information about the predefined typeternalObject

4.8.8.3 AssertionLevel

The predefinedssertionLevel enumeration type is used together vaithert , section8.3.78-3-7.
type AssertionLevel= enumeration (warning, error );

4.8.8.4 Connections

The package Connections is used for e@istrainedonnecdion graphs section9.4.

4.8.8.44.8.8.5 Graphical Annotation Types

A number of fdApredefinedodo record types and in€Chapterter at i
18Chapter—18 These types are not predefined in the usual sense since they cannot be referenced in ordinary
Modelica code, only within annotations.
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Chapter 5

Scoping , Name Lookup , and Flattening

This chaptedescribeghe scop rules, and most of the name lookup #atieningof Modelica.

51 Flattening Context

Flatteningis made m a context which consists ofnaodificationenvironmentSection7.2.2--2-2) and an ordered
set ofenclosng classes

5.2 Enclosing Classes

The classes lexically enclosing an element form an ordered eetloking classe#\ class defined inside another
class definition (thenclosing clagsprecedes its enclosing class definition iis get.

Enclosing all class definitions is an unnanextiosing classhat contains all tofevel class definitions, and
notyet read classes defined externally as described in Set#cdh23.2.2 The order of topevel class
definitions in the unnameehclosing class undefined.

During flattening theenclosing classf an element beinflattenedis apartially flattenecclass. For example,
this means that a declaration can refer toame inherited through an exterdause]

[Example

class C1... end Ci1;
class C2... end C2;
class C3

Real x=3;

Cly;

class C4

Real z;

end C4;

end C3;

The unnameeénclosing classf class definition C3 contains C1, C2, and C3 in arbitrargler. Wherflattening
class definition C3, the set efclosing classesf the declaration of x is theartially flattenedclass C3 followed
by the unnamednclosing classvith C1, C2, and C3. The setaficlosing classesf z is C4, C3 and the unnamed
enclosing clas$n that order]

5.3 Static Name Lookup

Names are looked up at clatstteningto find names of base classes, component types, etc. Implicitly defined
names of record constructor functicasd enumeration type conversion functicer® ignored dring type name
lookup [since a record and the implicitly created record constructor function, see Sé&tiGH-§ , and an
enumeration type and the implicitly created conversion function (Sec8dn3, have the same nafjn®&ames of
record classesnd enumeration typ@se ignored during function name lookup.
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5.3.1 Simple Name Lookup

When an element, equation, or section is flattenedsengle name[not composed using dot notatias]looked

up sequentially in edn member of the ordered sgft instance scopes (see secti@n6.1.]) corresponding to
lexically enclosing classesintil a match is found or an enclosing class is encapsulated. In the latter case the
lookup stops except for the predefined types, functions and operators defined in this specification.

Reference to variables successfully looked umnnenclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved imgtencescope of which the modifier appears; if the use
is in a modifier on a short class definition,

This lookup in eacinstancescoge is performed as follows

1 Among declared named elementtags - definition and component - declaration ) of the class
(including elements inherited from baslasses).

1 Among the import names of gqualified import statements inifk&nce scope. The import mae of
import A.B.C _;isC and the import name afiport D=A.B.C; is D.

1 __Among the public members of packages imported via unqualified im@igments in thénstance
scope. It is an error if this step produces matches from several unqualified imports.

Import statements defined in inherited classes are ignored for the lookup, i.e. import statements are not

inherited.




5.3.2 Composite Name Lookup

For a composite name of the fomB or A.B.C , etc lookup is performed as follows:

1 The first identifier(A) is looked up as defined above.

1 If the first identifier &knotes a component, the rest of the néeng.,B or B.C) is looked up among the
declared named component elements of the component.

1 If not found, and if the first identifier denotes a scalar comporerntomponent[j] where component is an
array of compoents andhe indiceg can be evaluated at translation time anchponent[j] is a scalaand
if the composite name is used as a function call, the lookup is also performed among the declared named
class elements of the scalar componant must find a meoperator functionAll identifiers of the rest of
the namde.g., B and B.Cmust be classes.

1 If the identifier denotes a class, that class is temportaifiened(as if instantiating a component without
modifiers of this clagssee Sectioii.2.27-2.2 and using thenclosing classesf the denoted class. The rest
of the namge.g.,B or B.C] is looked up among the declared named elements of the temflattaged
class. If the class does not satisfy the requirements for a package, the boésipidted to encapsulated
elements onlyThe class we look inside may not be partial in a simulation model.

[The temporary clasBattening performed for composite names follow the same rules as ftddigning of the

base class in an extendkuse,local classes and the type in a component clause, except that the environment is
empty.See alsMoistAir2  example inSection7.37-3 for further explanations regarding looking inside partial
packageg.

5.3.3 Global Name Lookup

For a name starting with dot, e.cp: [or .A.B , .A.B.C etc] lookup is performed as follows:

1 The first identifier [A] is looked up in the global scope. Thisasgible even if the class is encapsulated and
import statements are not used for tiithere does not exist a class A in global scope this is an error.

1 If the name is simple then the class A is the result of lookup.

9 If the name is a composite hame tia class A is temporarily flattened with an empty environment (i.e.
no modifiers, see Sectioh2.2-2.2) and using the enclosing classes of the denoted class. The rest of the
name [e.g.B or B.C] is looked up among the declared hamed elements of the temporary flattened class. If
the class does not satisfy the requirements for a package, the Isalagtricted to encapsulated elements
only. The class we look inside may not be patrtial.

[The packageestriction ensure that global name lookup of component references can only find global
constantg.

5.3.4  Lookup of Imported Names
See Section3.2.1.13.2.11

54 Instance Hierarchy Name Lookup of Inner Declarations

An element declared with the prefixiter references an element instance with the same name but using the
prefixinner which is nearest in the enclosing instance hierarchy afutee elemen declaration.
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a at-les Ghing declarationfor-Am outer element referencm a
simulation modelequires thabne correspondingner element declaratioaxist or can be created in a unique
wayi
9 _If there aretwo (or morg outer declarations with the same name, both lacking matchingr
declarationsand theouter declarations are not of the same class it is in error.
9 If there is one (or moreyuter declarations of a partial class it is an error.
1 In other cass i.e. if a unique noipartial class is used for aluter declarations of the same name lacking
a matchiwg inner  declaration, then ainner  declarationof that classs automatically addedt the top of
the modeblnd diagnostics is given.
1 _The annotatios defined inl8.618.7does not affect this process, other than that:
0 _missinglnnerMessage can be used for the diagnostic (and possibly error messages)

An outer element component may be @fpartialclass[but the referencethner component must be of a ron

partial clasg. [i nner /outer components may be used to model simple fields, where some physical quantities,
such as gravity vector, environment temperature or environment pressure, are accessilait components in

a specific model hi erarchy. l nner components are ac:
a correspondingnner declaration in anore deeplyested level of the model hierardhy.

[Simple Example

class A
oute r Real TO;

ent.j" A;

class B
inner Real TO;
Aal, a2; //B.TO, B.al.TO and B.a2.TO0 is the same variable

ent.j" B;

More complicated example:

class A
outer Real TI;
class B
Real TI;
class C
Real TI;
class D
oute r Real TI; //
end D;
Dd;
end C;
Cc;
end B;
B b;
end A;

class E
inner Real TI;
class F
inner Real TI;
class G
Real TI;
class H
Aa;
end H;
H h;
end G;
Gg;
end F;
Ff;
end E;
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class |
inner Real TI;
E e;
/l e.f.g.h.a.Tl, e.f.g.h.a.b.c.d.Tl, and e.f.Tl is the same variable
/I But e.f.Tl, e.Tl and Tl are different variables
Aa; /laTl, a.b.c.d.Tl, and Tl is the same variable
end I

]

The inner componentshall be a subtype of the correspondmger component. If the two types are not
identical, the type of thener component defines the instance anddinter component references just part of
theinner componerit

[Example

class A
inner Real TI;
class B
outer Integer TI; // error, since A.Tl is no subtype of A.B.TI
end B;
end A;

]

5.4.1 Example of Field Functions using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

partial function A
input Real u;
output Realy;

end A;

function B  //Bis a subtype of A
extends A;
algorithm

enc'i“ B;

class D
outer function fc=A;

eqﬁ-étion
y = fe(u);
end D;

class C
inner  function fc = B; // define fu nction to be actually used
D d; // The equation is now treated as y = B(u)

end C;

55 Simultaneous Inner /Outer Declarations

An element declared with both the prefixeser andouter conceptually introduces two declarationshatibe
same name: one that follswthe above rules foinner and another that follosvthe rules forouter . [Local
references for elements with both the préfixer and outer references theuter element. That in turn
references the corresponding elemerdiinenclosing scope with the preificer ]

Outercomponenteclarations may only have modificatiofrscJuding declaration equatioh# they also have
theinner prefix. Outer class declarations should be defined using-stas$ defiitions which only nay have
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modfications if they also have thénner prefix. For both casehdse modifications are only applied to the
inner declaration.

[Example

class A
outer parameter Real p=2; // error, since modification
end A;

Intent of the following example: Pragate enabled through the hierarchy, and also be able to disable
subsystems locally.

model Conditionallntegrator "Simple differential equation if isEnabled"
outer Boolean isEnabled;
Real x(start=1);

equation
der (x)= if isEnabled then 7ix else O;

end Conditionallntegrator;

model SubSystem "subsystem that 'enable’ its conditional integrators"
Boolean enableMe = time<=1;
/I Set inner isEnabled to outer isEnabled and enableMe
inner outer Boolean isEnabled = isEnabled and enableMe;
Conditionallintegr ator conditionalintegrator;
Conditionalintegrator conditionallntegrator2;

end SubSystem;

model System
SubSystem subSystem;
inner Boolean isEnabled = time>=0.5;
/I subSystem.conditionallntegrator.isEnabled will be
/ 'isEnabled and subSystem.e nableMe'
end System;

]

5.6 Flattening Process

In order to guarantee that elements can be used before they are declared and that elements do not depend on the
order of their declaration (Section 4.3) in the enclosing class, the flattening proceeds in thieddimamajor
steps:

1. Instantiation process

2. Generation of the flat equation system
The result is an equation system of all equations/algorithms, initial equations/algorithms and instances of
referenced functions. Modifications of constants, parametersaaiabhes are included in the form of equations.

The constants, parameters and variables are defined by globally unique identifiers and all references are resolved
to the identifier of the referenced variable. No other transformations are performed.

5.6.1 Instant iation

The instantiation is performed in two steps. First a class tree is created and then from that an instance tree for a
particular model is built up. This forms the basis for derivation of the flat equation system.

An implementation may delay and/omit building parts of these trees, which means that the different steps can
be interleaved. If an error occurs in a part of the tree that is not used for the model to be instantiated the
corresponding diagnostics can be omitted (or be given). Howevers dhat should only be reported in a
simulation model must be omitted there, since they are not part of the simulation model.
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5.6.1.1 The Class Tree

All necessary libraries including the model which is to be instantiated are loaded from e.g. file system and form a
so calledclass tree This tree represents the syntactic information from the class definitions. It contains also all
modifications at their original locations in syntactic foffifhe class tree is built up directly during parsing of the
Modelica texts. br each class a local tree is created which is then merged into the one big tree, according to the
location of the class in the class hierarchy. This tree can be seen as the abstract syntax tree (AST) of the loaded
libraries.]. The builtin classes are puto the unnamed root of the class tree.

5.6.1.2 The Instance Tree

The output of the instantiation process isimstance tree The instance tree consists of nodes representing the
elements of a class definition from the class tree. For a component the subtpgtafular node is created using

the information from the class of the component clause and a new modification environment as result of merging
the current modification environment with the modifications from the current element declésaddr?.3.

The instance tree has the following properties:

- It contains the instantiated elements of the class definitions, with redeclarations taken into account and
merged modifications applied.

- Each instance knows its source class dtefimfrom the class tree and its modification environment.

- Each modification knows its instance scope.
The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on the
structure of the class tree with respicthe class definitions. The builtin classes are instantiated and put in the
unnamed root prior to the instantiation of the user classes, to be able to find them.
[The existence of the two separate trees (instance tree and class tree) is conceptual thetteally exist or
are merged into only one tree or the needed information is held completely differently is an implementation detail.
It is also a matter of implementation to have only these classes instantiated which are needed to instantiate the
class of interest.]
A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in the class it
is instantiated from. The instance scope is the starting point for name Ipbktae.name is not found the lookup
is continued in the instance scope corresponding to the lexically enclosing class. Extends clauses are treated as
unnamed nodes in the instance tieavhen searching for an element in an instance scope the search also
recursively examines the elements eféktends clauseBxcept that inherited impodtatements are ignored.]

5.6.1.3 The Instantiation Procedure.

The instantiation is a recursive procedure with the following inputs:

- the class to be instantiated (current class)

- the modification environment with akpplicable redeclarations and merged modifications (initially

empty)

- areference to the node of the instance tree, which the new instance should go into (parent instance)

The instantiation starts with the class to be instantiated, an empty modificatimmarent, and munnamed root
node as parent node.

During instantiation all lookup is performed using the instance tree, starting from the instance scope of the current
element. References in modifications and equations are resolved later (duringi@eoéiftat equation system)
using the same lookup.

5.6.1.4  Steps of Instantiation

The element itself
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A partially instantiated class or component is an element that is ready to be instantiated; a partially instantiated
element (i.e. class or component) is comprisEa reference to the original element (from the class tree) and the
modifiers for that element (including a possible redeclaration).

The possible redeclaration of the element itself takes effect.

The class of a partially instantiated component is fomnthe instance tree (using the redeclaration if any),
modifiers merged to that class forming a new patrtially instantiated class that is instantiated as below.

The local contents of the element

For local classes and components in the current class, dastarles are created and inserted into the current
instance. Madifiers (including class redeclarations) are merged and associated with the instance and the element is
partially instantiated[The patrtially instantiated elements are used later for lookupnduthe generation of the

flat equation system and are instantiated fully, if necessary, using the stored modification environment.]

Equations, algorithms, and annotations of the class and the component declaration are copied to the instance
without merging. [The annotations can be relevant for simulations, e.g. annotations for code genei&idh (
simulation experimentd.8.4 or functions(2.7,12.8and12.9.]

Extends clauses are not looked up, but empty extends clause nodes are created and inserted into the current
instancd to be able to preserve the declaration order of components.

The inherited contents of the element

Classes of extends clauses of the current class are looked up in the instance tree, modifiers (including
redeclarations) are merged, the contents of these classes are partially instantiated using the new modification
environment, and areserted intcan extends clause node, which is an unnamed node in the current instance that
only contains the inherited conteffitsm that baselass

The classes of extengtauses are looked up before and after handling extdadses; and it is an errifrthose

lookups generate different results.

At the end, the current instance is checked whether their children (including children of -ekeisds) with the
same name are identical and only the first one of them is [Kdms. is important for functiomrguments where
the order matters.lt is an error if they are not identical.

Recursive instantiation of components
Components (local and inherited) are recursively instantiated.

[

As an example consider:
model M
model B
Aa;
replaceable model A=C;
type E=Boolean;
end B;
B b( redeclare model A=D(p=1));
partial model C
E e;
end C,;
model D
extends C;
parameter E p;
type E=Integer,
end D;
type E=Real;
end M;




71

To recursively instantiat M allowing the generation of flat equation system we have the following steps (not
including checks):

1. Instantiate M: which partially instantiates B, b, C, D, E.

2. Instantiate M.b:

2.1.First find the class B in M (the partially instantiated elements have cioname allowing lookup)

2.2.instantiate the partially instantiated M.B with the modifier "redeclare model A=D(p=1)"

2.3.partially instantiate M.b.a (no modifier), and M.b.A (with modifier "=D(p=1)")

3. Instantiate M.b.a

3.1.First find the class A in M.b (the partiallgstantiated elements have correct name allowing lookup)

3.2.Instantiate the partially instantiated M.b.A with the modifier "=D(p=1)".

3.2.1Find the baselass "=D" from the modifier. This performs lookup for D in M, and finds the
partially instantiated class D

3.2.2Instantiate the baselass M.D with modifier p=1, and insert as unnamed node in M.b.A.

3.2.2.1Partially instantiate the component p with modifier "=1"

3.2.2.2Find the baselass "C" in M.D. Since there is no local element called "C" the search is then
continued in M and figs the partially instantiated class M.C

3.2.2.3Instantiate the baselass M.C as below

4. Instantiate the baselass M.C inserting the result into unnamed node in M.b.a

4.1.Partially instantiate "e"

4.2.Instantiate "e" which requires finding "E". First looking for "E" inethinrnhamed node for extends "M.C",
and, since there is no local element "E" the search is then continued in "M" (which lexically encloses
M.C) and finds "E" class inheriting from Real. The "e" is then instantiated using class "E" inheriting
from "Real".

5. Instantiate M.b.a.p

5.1.First the class "E" in M.b.a finding "E" class inheriting from Integer.

5.2.Instantiate the "M.b.a.p" using the class "E" inheriting from Integer with modifier "=1"

5.3.Instantiate the baselass Integer with modifier "=1", and insert as unnamede in "M.b.a.p".
An implementation can use different heuristics to be more efficientusimg instantiated elements as long as
the resulting flat equation system is identical.
Note that if "D" was consistently replaced by "A" in the example aboveesiudt would be identical (but
harder to read due to two different classes called "A").

1

5.6.2 Generation of the flat equation system

During this process, all references by name in conditional declarations, modifications, dimension definitions,
annotations, guations and algorithms are resolved to the real instance to which they are referring to, and the
names are replaced by the global unique identifier of the instArids.identifier is normally constructed from
the names of the instances along a patthéibstance tree (and omitting the unnamed nodes of extends clauses),
separated by dots. Either the referenced instance belongs to the model to be simulated the path starts at the model
itself, or if not, it starts at the unnamed root of the instance &gein case of a constant in a package.]

[To resolve the names, a name lookup using the instance tree is performed, starting at the instance scope
(unless the name is fully gualified) of the modification, algorithm or equation. If it is not found kbeafigarch
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is continued at the instance of the lexically enclosing class of the scope [this is normally not equal to the parent
of the current instance], and then continued with their parents as described in ge8titdrihe found component

is an outer declaration, the search is continued us
lookup has to look into a class which is not instantiated yet [or only partially instantiated], it is instantiated in

place]

The flat equation system consists of a list of variables with dimensions, flattened equations and algorithms, and a
list of called functions which are flattened separately. A flattened function consists of algorithm or external clause
and toplevel variables(variables directly declared in the function or one of its tués&ses) which recursively

can contain other variables; the list of ftop level variables is not needed.

The instance tree is recursively walked through as follows for eleméritee class (if necessary a partially
instantiated component is first instantiated):

- At each visited component instance, the name is inserted into the variables list. Then the conditional
declaration expression is evaluated if applicable.

0 __The variableikt is updated with the actual instance

0 The variability information and all other properties from the declaration are attached to this variable.

o Dimension information from the declaration and all enclosing instances are resolved and attached to
the varialke to define their complete dimension.

o Ifitis of record or simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject):

A In the modifications ofialue attribute references are resolved using the instance scope of the
modification. Anequation is formed from a reference to the name of the instance and the
resolved modification value of the instance, and included into the equation system. Except if
the value for an element of a record is overridden by the value for an entire rectioth; sec
7.2.3

o Ifitis of simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject):

A In the modifications ohon-value attributes, e.g. start, fixed etc. references are resolved
using the mstance scope of the modification. An equation is formed from a reference to the
name of the instance appended by a dot and the attribute name and the resolved modification
value of the instance, and included into the equation system.

o Ifitis of a nonsimple type the instance is recursively handled.

- If there are equation or algorithm sections in the class definition of the instance, references are resolved using
the instance scope of the instance and are included in the equation system. Some réfergrazésular to
non simple, non record objects like connectors in connect statements and states in transition statements are
not resolved yet and handled afterwards.

- Instances of local classes are ignored.

- The unnamed nodes corresponding to extefalsesre recursively handled.

- __If there are function calls encountered during this process, the call is filled up with default arguments as
defined in12.4.1 These are built from the modifications of input arguments which areveglsaking their
instance scope. The called function itself is looked up in the instance tree. All used functions are flattened and
put into the list of functions.

- Conditional components with false condition are remaaféelwardsand they are not part di¢ simulation
model.[Thus e.g. parameters don't need values in them. Howeveretymrecan be detected.]

- Each referencés checked, whether it is a valid reference, e.g. the referenced object belongs to or is an
instance, where all existing conditiondéclaration expressions evaluate to true or it is a constant in a
package[Conditional components can be used in conmstatements, and if the component is conditionally
disabled the connestatement is removed.]
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This leads to a flattened equation sgsteexcept for connect and transition statements. These have to be
transformed as described @Ghapter SandChapter 17 This may lead to further changes in the instance[érge

from expandable emectors (sectior®.1.3] and additional equations in the flattened equation sy$eem
connect equations (secti®?), generated equations for state machine semantics (sdatidr] .

[After flattening, the resulting equation system is self contained and covers all information needed to transform it
to a simulatable model, but the class and instance trees are still needed: in the transformation process, there
might be the need to instantiate further functions, e.g. fidenvative annotation or frominverse

annotation etc., on demand.]
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Chapter 6

Interface or Type Relationships

A class or componene.g. denoted\, can in some casdse usedat a location designed fonatherclass or
comporent, e.g. denoted. In Modelica this is the case for replaceable classesSseton 7.373) and for
inner /outer elements (se&ection 5.45:-4). Replaceable classese the primary mechanism to create very
flexible models. In this chapter, the precise rules are defined vlsan be used at a latton designed for Brhe
restrictiors are defined in terms of compatibility ruleSegtiors 6.36-3 and 6.46-4) betweendinterfaces (Section
6.16-1); this can also be viewed as dyping (Section6.16-1).

In this chaptertwo kinds ofterminology is used for identicabnceps to get better understanding.§. byboth
enginers and computer scientit?A short summary of the terms is given in thBowing table. The details are
defined in tle rest of thishapter

term description

type or The Aessential 0o part of the pu

interface needed to decide whether A can be used instead©BfgBa declaration
fiReal x0 i s part of the typmpot Al &
nof.

class type or The Aessent i alaodpmaetieclarationtséctonspau

inheritance interface class that is needed to decide whether A can be used instead of B.

class type , also called inheritance interface, is needed iniertance
takes placgsince then the protected declarations have to be taken ir

account.
subtype or A is a subtype of B, or equivalently, the interface of A is compatible
compatibleinterface the interface of B, if the fies
sections of B is also availablein[&. g. , i f B hRBea a

x0, this de csblempradertioA. If Alas d& dedatation
iReal vy O ratiohrhustsot egrederd ir].B

restricted subtype or A is a restricted subtype of B, or equivalently, the interface of A is p
plug compatible interfacg compatible to the interface of B,A is a subtype of B and donnector
componentén A that are not in Baredefault connectabldE.g. it is not
allowed thathesec onnect or s have variahb
becausehen they must be connecietl model or block A cannot be
usal instead of B, if the particular situation does not allow to make ¢
connection to these additional connectbrsuch a case the stricter

Aplug compatibled is required
function subtype or A is a function subtype of B, or equivalently, the interface of A is
function compatible functioncompatible tdheinterface of B, if A is a subtype of B and if
interface the additional arguments of function A that are not in function B are

defined in such a way, that A can be called at placesenBiés called.
[E.g. an aditional argument must have a default vajue.
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6.1 The Concepts of Type , Interface and Subtype

A typecan conceptually be viewed aset of valueswhen we say that the variabldas the typ&eal , wemean
that the value ok belongs to the set of values represented by theRgpk i.e., roughly the set of floating point
numbers representable Bgal , for the moment ignoring the fact théal is also viewed as a class with certain
attributes. Analogaly, the variablé havingBoolean type means that the valuetbelongs to the set of values
{false ,true }. The builtin typesReal , Integer , String , Boolean are considered to be distinct types.

The subtyperelation between types is analogous to the subset relation between setsAAligoey a subtype
of type A means that the set of values corresponding to Alpis a subset of the set of values corresponding to
typeA.

The typelnteger is not a subtypef Real in Modelica even though the set of primitive integer values is a
subset of the primitive real values since there are some attribukeslothat are not part dhteger (Section
4.84-8).

The concept ointerfaceas déined in Section6.26-2 and used in this document is equivalent to the notion of
type basedn sets in the following sense:

An elementis characterized by its interface defined dsyme attributes (Sectiod.26-2). The type of the
element is the set of values having the same interface, i.e. the same attributes.

A subtypeAl in relation to another type A, means that the elements of the set corresponding to Al ét a subs
of the set corresponding to A, characterized by the elements of that subset having additional properties.

[Example

A recordR: record R Boolean b; Real x; end R;

Another record called®2: R2 Boolean b; Real x; Real y; end R2;

An instance: Rr;

Aninstance2 : R2 r2;

The typeR of r can be viewed as the set of all record valbaging the attributes defined by the interface of
R, e.g. the infinite seR(b=false,x=1.2) , R(b=false , x=3.4) , R(b=true , x=1.2), R(b=true , x=1.2,
y=2), R(b=true  ,x=1.2,a= 2), ..) . The statement thathas the type (or interfac® means thathevalue
of r belongs to this infinite set

The typeR2 is a subtype oR since its instances fulfill the additional property of having¢bmponenReal
y; in all its values.

Type R: Records with at least
components named x and b

instance r .
R2: Records with at least

components x, b,y

instance r2

Figure 6-1. The type R can be defined as the set of record values containing x and b. The subtype R2 is the subset
of values that all contain x, b, and y.
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6.2 Interface or Type

Basd on a flaenedclass or component we can construct an interfiacéhat flattened class or componenhe
interfaceor type fthe terms interface and type are equivalent and can be used interchandealgfined as the
following informationabouttheflattenedelement itself:

1 Whether it is replaceable or not.

1 Whether the class itself or the class of the componemansitively norreplaceablgSection6.2.16-2-1),
and if not the reference tthereplaceable classrigfers to.

1 Whether it is a component aclass.

9 Additional information about the element:

0 The flow or strearqrefix.

Declared variability (constant, parameter, discrete).

The prefixes inpuand output.

The prefixesnner and/orouter .

Whether the declaration is final, and in that case its semantics contents.

Array sizes (if any).

Condition of conditional components (if any).

Which kind of specialized class.

For an enumeration type or compohef enumeration type the names of the enumeration

literals in order.

0 Whether it is a builin type and the builin type (RealType, IntegerType, StringType or
BooleanType).

9 Only for an operator record classand classes derived from ExternalOhjate full name of the
operator recorcbaseclass (i.e. the oneontaining the operatiopsor the derived classSee Chapter
14Chapter-14nd Sectiori2.9.42.9-7
The following item desnot apply for aroperator record classor class derived from ExternalObject
since the type is already uniquely defined byftllename.

1 For each named public element tbfe class or componeiffincluding both local and inherited named
elements) a tupleoenprised of

o Nameof the element.

o0 Interfaceor type of the elementThis might have been modified by modifiers and is thus not
necessarily identical to the interface of the original declaration

The correspondingonstraininginterface is constructed basedthe constrainingtype (Section?7.3.2-3-2) of
the declaration (if replaceahileotherwise same as actual type) and withdbestraininginterface for the named
elements.

In a class all references to elart® of that class should be limited to their constraining interfieeeonly
public elements and if the declaration is replaceable limited to the constraining interface)

[Thepublicinterface does not contain all of the information about the dasemponentWhen usinga class
as a baseclass we alsmeedprotected elements, and for internal tygeecking we need e.g. impafements.
However, the information is sufficient for checking compatibility and for using thetolfisgencomponents.

O O 0O O O O O o

6.2.1 Transitively non -Replaceable

[In several cases it is important that no new elements can be added to the interface of a class, especially
considering short class definitions. Such classes are defined as transitivelyptaareable]

A class reference is transitively nogplaceable ff( i . e . fii f alaparts ofotel ngme isdtisiy) the
following:

1 If the class definition is long it isansitively norreplaceabléf not declared replaceable.
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1 If the class definition iss hor t clafsiA=P®8. 6 )0 it i s treplaceable if i’ mohhy non

replaceabl e and emBoOgHatistransiticely acrsplaceabfee r ence (i

[According to section/.1.4714 for a hierardical name all parts of the name must be transitively-non
repl acealplteads AB.C. &@. tihn si iABEIMmud e trankitavdly nereplaceable, as well as
andAB, wi th the exceptréedecharatoime tch e refiecShciosi.8.78%t end s

6.2.2 Inheritance Interface or Class Type

For inheritance the interface also must include protected elements; this is the only change compared to above.

Based on a flattened class we can construct an inheritance interface or dafy tyyat flattened class. The
inheritance interface or class type is defined as the following information about the flattened element itself:

1 Whether it is replaceable or not.
1 Whether the class itself or the class of the componemansitively norredaceable(Section6.2.16-27),
and if not the reference to replaceable class it refers to.
1 For each named elementtbg clasgincluding both local and inherited named elements) a tuple comprised
of:
o Name of the element.
0 Whether the element is component or a class.

o For elemats that are classelstheritance interface or class type of the eleméEhis might have
been modified by modifiers and is thus not necessarily identical to the interface of the original
declaration

o0 For elements that are components: interface or bfpthe element.This might have been
modified by modifiers and is thus not necessarily identical to the interface of the original
declaration

1 Additional information about the element:
0 Theflow - orstream -prefix.
Declared variability donstant , parameter , dis crete ).
Theprefixesinput andoutput .
Theprefixesinner and/orouter .
Whether the declarationfimal , and in that case its semantics contents.
Array sizes (if any).
Condition of conditional components (if any).
Which kind ofspecializectlass.
For an @umeration type or component of enumeration type the names of the enumeration literals
in order.
0 Whether it is a builin type and the builin type RealType , IntegerType , StringType oOr
BooleanType ).

o Visibility (public or protected).

OO O0OO0OO0OO0OO0oOOo

6.3 Interface Compatibili ty or Subtyping

An interfaceof a class or componem is compatible with an interfacef a class or compone (or the
constraining interfacef B), or equivalently that the type of A &subtype of the type of Bff [intuitively all
important elemets of B must be present4n]:
1 Aisaclassif and only if B is a class (and thus: A is a component if and only if B is a component).
9 If A has anoperator record baseclass then B must also have one and it must be the same. If A does not
have an operatoecord baselass then B may not have oseeChapter 1&hapter14
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9 If A is derived from ExternalObject, then B must also be derived from ExternalObject and have the same
full name. If A is not derived from E&rnalObject then B may not derived from ExternalObject. See
Sectionl2.9.42.97

1 If B is not replaceabléhen Amay not be replaceable.

1 If B is transitively norreplaceabléhen A must beransitively norreplaceabléSection 6.2.16-2-9). For all
elements of thénheritanceinterface of B there must exist a compatible element with the same name and
visibility in the inheritanceinterface of A. The interface of A may not contairy ather elementdWe
might even extend this to say that A and B should have the same contents, as in the additional restrictions
below]

1 If B is replaceable then for all elements of the component interface of B there must existanphagible
elementith the same name in the component interface of A.

1 If B is neithertransitively norreplaceablenor replaceable then A must be linked to the same class, and for
all elements of the component interface of B there mustexist a plugcompatible element wh the same
name in the component interface of A.

1 Additional restrictions on the additional information. These elements should either match or have a natural
total order:

o If Bis a nonreplaceable long class definition A must also be a long class definitio
0 The flowor stream -prefix should be matched for compatibility.
o Variability is ordered constant< parameter< discrete< (no prefix: contiftimador Real), and
A is only compatible with B if the declared variability in A is less than or equal the Wityiab
B. For a redeclaration of an element the variabiliprefix is as default inherited by the
redeclaration (i.e. no need to repeat O&épar ame
o0 The input and outpuprefixes must be matched. This ensures that the rutgarding
inputs/outputs for matching connectors and ¢oonnector inputs) are preserved, as well as the
restriction on blocksFor a redeclaration of an element the input or outprefix is inherited
from the original declaration.
o Theinner and/orouter prefixesshould be matchedzor a redeclaration of an element the
inner and/orouter prefixesare inherited from the original declaration (since it is not possible
to haveinner and/orouter as part ofa redeclare)
o If Bis final A must also be final anttve the same semantic contents.
o The number of array dimensions in A and B must be matéhethermere-the-fellowing-must
be—vatid—+or—eaech—array—dimension——either th

o Conditional components are only compatible with conditional components. The conditions must

have equivalent contents (similar as array sitzee x c e p t ther e i s no fi:
components)For a redeclaration of an element tlenditional part is inherited from the
original.

0 A function class is only compatible with a function class, a package class only compatible with a
package class, a connector class only with a connector class, a model or block class only
compatible with anodel or block class, and a type or record class only compatible with a type or
record class.

o If B is an enumeration type A must also be an enumeration type and vice versa. If B is an
enumeration type not defined as () then A must have the same enumigeatids in the same
order, if B is an enumeration type defined as (:) then there is no restriction on the enumeration
type A

o If Bis a builtin type then A must also be of the same Hiltype and vice versa.

Plugcompatibility is a further restricih of compatibility (subtyping) defined in Section6.46-4, and further
restricted for functionsseeSection6.55.5. For a replaceable declaration or modifier tledadlt class must be
compatible with the constraining class.

For a modifier the following must apply:

1 The modified element should exist in the element being modified.
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91 The modifier should be compatible with the element being modified, and in most casgsuglso
compatible Section6.46-4.

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of
class/component), and modifiers legal as abbwben the resulting flat class will be legal (no references to
unknown elements and no illegade of class/component and compatible with original constraining class) and
references refer to similar entitigs.

6.4 Plug-Comp atibility or Restricted Subtyping

[If a subcomponent is redeclaredee Secton 7.373 it is impossible to connect to any new conneckor.
connector with inpuprefix must be connected to, and since one cannot connect across hierarchies, one should
not be allowed to introduce such a connector at a level waaennection is not posde. Therefore all public
componergpresent in the interface A that are not present in B must be connected by]default.

Definition 5: Plug-compatibility (= restricted subtyping)

An interface A igplug-compatible with(a restrcted subtype ofan interface B (or theonstraining interface of
B) iff:

1 Ais compatible with(subtype of)B.

9 All public componerg present in A but not in B must be defattinnectabléas defined below).

Definition 6: Default connectable

A component of an interface is defaatinnectable iff:

9 All of its components are default connectable.

1 A connector component musbtrbeaninput [Otherwise a connection to the input will be misging.

1 A connecto component must not b&f an expandable connectatass.[The expandable connector does
potentially have inputg.

1 A parameter, constant, or nopnnector input must either havebading equation or all of its sub
components must hawéndingequations.

Based on the above definitions, there are the following restrictions:
1 A redeclaratiorof an inherited togevel componenimust becompatiblewith (subtype of}the constraining
interface of theelement being redeclared

1 In all other cases redeclarations inbe plug-compatiblewith the constraining interface of the element
being redeclared

[The reason for the difference is that fan @herited toplevel componentt is possible to connect to the
additional connectors, either in this class or in a derivied .

Example:

partial model TwoFlanges
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;
end TwoFlanges;

partial model FrictionElement
extends TwoFlanges;

end FrictionEleme nt;
model Clutch “"compatible T but not plug - compatible with FrictionElement"
Modelica.Blocks.Interfaces.Reallnput pressure;

extends FrictionElement;

éﬁd Clutch;
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model DriveLineBase
extends TwoFlanges;

Inertia J1;

replaceable FrictionElemen t fric tion ;
equation

connect (flange_a, J1.flange_a);

connect (J1.flange_b, fric tion .flange_a);

connect (fric tion .flange_b, flange_b);
end DriveLineBase;

model DrivelLine
extends DrivelLineBase( redeclare Clutch fric tion );
Constant const;
equation
connect (const.y, fri tion .pressure);
/I Legal connection to new input connector.
end Driveline;

model UseDriveLine "illegal model"
DriveLineBase base( redeclare  Clutch fric tion );
/I Cannot connect to fric tion .pressure

end UseDriveline;

If a subcompnentis redeclaredit is impossible to connect tamy new connector. Thus any new connectors must
work without being connected, i.the default connection of flevariables. That fails fomputs (and expandable
connectors may contain inputs). For paraters andnon-connectorinputs it would be possible to provide
bindings in a derived class, but that would require hierarchical merdifand it would be bad modeling practice
that a hierarchical modifier must be used in order to make a model validl#&cegple class might be used as the
class for a suilcomponent, therefore plegpmpatibility is required not only for replaceable stiimponents, but
also for replaceable classgs.

6.5 Function -Compatibility or Function -Subtyping for Functions

[Functions may be called with either named or positional arguments, and thus both the name and order is
significant If a function is redeclared, s&ection7.373, any new arguments must have defaults (and be at the
end) in order to preserve the meaning of existing galls.

Definition 7: Function-Compatibility or Function-Subtyping for Functions

A function classA is functioncompaible with or a functionsubtype offunction class B if [The terms

functioncompatible and function subtype of are synonyms and used interchafgeably

1 Ais compatible tqsubtype ofB.

1 All public input components of B have correspondiingamed public iput components of A in the same
order and preceding any additional public input compor@ms

9 All public output components of B have correspontiimamed public output components of A in the same
order and preceding any additional public output compisiod A.

1 A public input component of A must have a binding assignment if the corresponding hamed element has a
binding assignment in B.

1 A public input component of A not present in B must have a binding assignment.

Based on the above definition the feling restriction holds:
1 The interface of aedeclaredfunction must befunctioncompatiblewith or a function subtype ofthe
constraining interface of tHanctionbeing redeclared.

[Example: Demonstrating a redeclaration usinfuactioncompatible funton

function GravityInterface
input Modelica.Slunits. Position position[3];
output  Modelica.Slunits. Acceleration acceleration[3];
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end GravityInterface;

function PointMassGravity
extends Gravitylnterface;

input  Modelica.Slunits. Mass m;
algor ithm
acceleration:= - Modelica.Constants. G'm*position/ (position  *position)*1.5 ;

end PointMas sGravity

model Body
Modelica.Mechanics.MultiBody.Interface. Frame_a frame _a;
replaceable function gravity=Gravitylnterface;
equation
frame _a.f = gravity(fram e_a.r0); /I or gravity(position=frame _a.ro);
frame _at = zeros(3);
end Body;

model PlanetSimulation
function sunGravity = PointMassGravity(m=2e30);
Body planet  1( redeclare function gravity=  sunGravity );
Body planet2(  redeclare function gravity=Poi  ntMassGravity(m=2e30));

end PlanetSimulation;

Note: PointMassGravity is not functioncompatible with Gravityinterface (no default form), but
sunGravity  insidePlanetSimulation is functioncompatible withGravityinterface i

6.6 Type Compatible Expressions

Certain expressions consist of an operator appligd/@oor moretype compatiblesubexpressions (A and B)
including binary operators, e.§. + B, if-expressionse.g.if x then A else B , and array expressions.g.
{A,B} . The resultingype of the expressioin case of two type compatible subexpressions A anddBfised as
follows:

1 If A is a recordexpression B must also be a recesghression with the same named elements. The type
compatible expression is a record comprised of named elemahtgehcompatible with the corresponding
named elements of both A and B.

1 If A is an array expression then B must also be an array expressiongdiamsdA)=ndims (B). The type
compatible expressios an array expression with elements compatible thiéhelenents of both A and B.

If bothsize (A) andsize (B) are known andize (A)=size (B) then this defines the size of the type
compatible expression, otherwise the siz¢he expressiois not knownuntil the expression is about to be
evaluated. In case of anékpression the size of the type compatible expression is defined based on the
branch selected, and for otlwsesize (A)=size (B) must hold at this point.

1 If Ais a scalar expression of a simple type B must also be a scalar expression of a simple type.

1 If Ais a Real expression then B must be a Real or Integer expression and the type compatible expression is
Real.

1 If Alis an Integer expression then B must be a Real or Integer expressicaxponentiation andivision
the type compatible expression isd (even if both A and B are Integer) 46e610.6 in other casesand
tthe type compatible expression is Real or Integer (same:as B)

1 If Ais a Boolean expression then B must be a Boolean esipreand the type compatible expression is
Boodlean.

1 If Ais a String expression then B must be a String expression and the type compatible expression is String.

1 If A is an enumeration expression then B must besmumeration expression and the type corbfmti
expression is enumeration expression, ancemillmeration expressions must be defined in terms of an
enumeration type with the same enumeration literals in the same order

9 If A has anoperator record baseclass then B must also have agerator record baseclass, and it
must be the samand otherwisaeither A norB may have amperator record baseclass. This is also
theoperator record basec | ass for the expression e.g. for o6if
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1 If A is derived from ExternalObject then B mussa@lbe derived from ExternalObject and they must have
the same full name; and otherwise neither A nor B may be derived from ExternalObject. The common full
name also defines the type of the expression, e.dg
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Chapter 7

Inheritance , Modification , and Redeclaration

One of the major benefits of objemtientation is the ability t@extendthe behavior and properties of an existing

class. The original classn&wn as théase classis extended to create a more specialized version of that class,
known as thalerived clas®r subclassin this process, the data and behavior of the original class in the form of
variable declarations, equations, and certain atbatents are reused, imherited by the subclass. In fact, the
inherited contents is copied from the superclass into the subclass, but before copying certain operations, such as
type expansion, checking, and modification, are performed on the inheoitteints when appropriate. This
chapter describes the inheritance concept in Modelica, together with the related concepts modification and
redeclaration.

7.1 Inheritance 0 Extends Clause

The extendslause is used to specifyhiaritance from a base class into @nclosing classcontaining the
extendsclause The syntax of the extend$ause is as follows:

extends—clause—extends - clause :
extends name [ elass—modificatioh——class - modification ] [annotation]

The name of the baselass is looked up in theartially flattenedenclosing clas§Section5.25-2) of the extends
clause. The found base clasdlagtenedwith a new environment and tipartially flattenedenclosing classf the
extendsclause. The new environment is the result of merging

1 arguments of aknclosing clasenvironments that match names in flattenedbase class
9 the optionaklass—maodification——class - modification of the extendglause

in that order.

[Example

clas s A
parameter Real a, b;
end A;

class B
extends A(b=2);
end B;

class C
extends B(a=1);
end C;

]

The elements of the flattened base class become elements of the flattened enclosing class, and are added at the
place of the extendslause: specifiglly components and classes, the equation sections, algorithm sections,
optional external clause, and the contents of the annotation at the end of the class, but excludmg import
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[From the example above we get the followilatienedclass:

class Cinstance
parameter Real a=1,;
parameter Real b=2;
end Cinstance;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bcomp(b=3);
end C2;

yields an instance withcomp.b=3 , which override$=2.]
The declaration elements of tiiattenedbase class shall either

9 Not already exist in thpartially flattenedenclosing clasg.e., have different namls
T The new el ement is a | odag dxtendsmAdo fs yrndSdhaani.3&3ee or u s

1 Be exactly identical to any element of tettenedenclosing classvith the same name and the same level
of protection (public or protected) and same contents. In this ttesérst element in order (can be either
inherited or local)g kept.lt is recommended to give a warning for this casdess it can be guaranteed that
the identical contents will behave in the same.way

Otherwise the model is incorrect.
[ Clarifiying order:
function A
input Real a;
input Real b;
end A

function B
extends A;
input Real a;
end B;
/[l The inputs of B are "a, b" in that order; and the "input Real a;" is ignored.

1

Equations of thélattenedbase class that are syntactically equivalent to equations ftattemedenclosing class

are discardedThis feature is deprecated, and it is recommend to give a warning when discarding them and for the
future give a warning about all forms of equivalent equations due to inherifdme.: equations that are
mathematically equivalent but noyrgactically equivalent are not discarded, hence yield an overdetermined
system of equatiorjs.

7.1.1  Multiple Inheritance

Multiple inheritance is possible since multiple extenldsises can be presentirtlass.

7.1.2 Inheritance of Protected and Public Elements

If an extendsclause is used under tlpeotected heading, all elements of the base class become protected
elements of the current class. If an exteddsise is a public element, all elements of theebdass are inherited
with their own protection. The eventual headipgstected andpublic from the base class do not affect the
consequent elements of the current class (i.e., hegglintgsted andpublic  are not inherited).
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7.1.3 Restrictions on the Kind of Base Class

Sincespecializedclasses of different kinds have different properties,Sssion4.64-6, only specializedclasses
thatarefii n s o mempailEéts exh other can be derived from each other via inheritafice following

table shows which kind ofpecializectlass can be used in artends clause of another kindspfecializectclass

(the Agreyodo cell s mar k tspgedalizéddass canbe denvedifrarepadializeddasse s, w
of another kind):

Base Class
Derived |packagqoperatol function| operator| type|record operato|expandabl{ connecto| block| model| class
Class function record | connector
package yes yes
operator yes yes
function yes yes
operator yes yes yes
function
type yes yes
record yes yes
operator yes yes
record
expandabl yes yes
connector
connector yes| yes | ves yes yes yes
block yes yes yes
model yes yes | yes | yes
class yes

If a derived class is inherited from another type of specialized class, then the result is a specialized class of the
derived class typeFpr example, if @lock inherits from ar ecord , then the result is block ]

All specialized classes can be derived frolass [provided the resulting class fulfills the restriction of the
specialized clasdt is recommended to use the most specific specialized]dlaskss may only contain lass
definitions, annotations, and exterrauses (having any other contents is deprecated).

The specialized classes package , operator , function , type , record , operator record , and
expandable connector can only be deriveffom their own kind {e.g. a pacigecan only be base class for
packages. All other kinds of cl@&san use the import statement se the contents of a packdgahd from
class .

[Examples
record RecordA
end mRecordA;
package PackageA
end mPackageA;
package PackageB
extends PackageA,; // fine
end PackageB;
model ModelA

extends RecordA; // fine
end ModelA;
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model ModelB
extends PackageA,; // error, inheritance not allowed
end ModelB;

]

7.1.4 Restrictions on Base Classe s and Constraining Types to be Transitively
Non-Replaceable

The class name used after extends for dotesses and for constraining classes must use a class reference
consideredransitively nonreplaceablesee definition in Sectiofi.2.16-2-4. [This formulation excludes the long
form of reddetlaaree, miodel &OxWwMedsebeld inherited replaceable clg$sor a
replaceable component declaration without constraining clause the class must use a class refeidgres cons
transitively nonreplaceable[This implies that constraining classes are alwaygsisitively norreplaceablei

both if explicitly given or implicitly by the declaratidn.

7.2 Modifi cations

There are three kinds of constructs ia Modelica language in which modifications can occur:

9 Variable declarations.
1 Short class declarations.
1 Extendsclauses.

A modifier modifies one or more declarations framlass by changing some aspect(s) of the declarations. The
most common kind of modg#r just changes théefault valueor thestart valuein a binding equation the value
andbr startvalueshould be compatibleith the variableaccording to Sectiof.65-6.

[Example: Modifying the defaudtart value of thaltitude  variable
Real altitude(start= 59404);

]

A moadification (i.e. C1 cl(x = 5) is considered a modification equation, if the modified variable is-a non
parameter (here: c1.x) variabl@hjs equation is created, if the modified component (here: @l3adscreated (see
section4.54-54.4.54-4.5. In most cases a modification equation for a-#panameter variable requires that the
variable was declared with a declaration equation, see sedtith?; in those cases the declaration equation is
replaced by the modification equatipn.

A more dramatic change is to modify ttype and/or theprefixesand possibly thelimension sizesf a declared
element. This kind of modification is calledredeclaration (Section7.373) and requires the special keyword
redeclare  to be used in the modifier in order to reduce the risk for accidental modeling errors. In most cases a
declaration that can be redeclaredsiminclude the prefixeplaceable  (Section7.3743). The modifier value

(and class for redeclarations) is found in the context in which the modifier occurs, see als® s i@l

[Example: Scope for modifiers

model B

parameter Real x;

package Medium=Modelica.Media.PartialMedium;
end B;

model C
parameter Real x=2;
package Medium=Modelica.Media.PartialMedium;

B b(x=x, redeclare package Medium=Medi um);
/'l The 6x06 and O06Medi umd b ededagedmtheimotiel e d B.r e
/'l The modifiers 6é=x06 and 6é=Mediumbé are found in the model

end C;
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model D
parameter Real x= 3;
package Medium=Modelica.Media.PartialMedium;

C c(b(x=x, redeclare pack  age Medium=Medium));

/'l The 6x06 and 6Medi umod aleedclared inthe chodél B.e d

/'l The modifiers 6=x06 and 6=Mediumé are found in the model
end D

]

7.2.1  Syntax of Modifications and Redeclarations

The syntax iglefined in the grammar, Secti@n2.58-2.5

7.2.2 Modification Environment

The modification environment contains arguments which modify elements of the class (e.g., parameter changes).
The modification environment is built by memgi class modifications, wheratermodifications overridénner
modifications. Note: this should not be confused wither outer prefixes described in Sectiéns-4]

7.2.3  Merging of Modifications

Merging of modiiers means thabuter modifiers overrideinner modifiers. The merging is hierarchical, and a
value for an entire nesimple componenbverrides value modifiers for all components, and it is an error if this
overrides a finaprefix for a componentor if value for a simple component would override part of the value of a
nonsimple componenWhen merging modifiers each modification keeps its own-peefix.

[The following larger example demonstrates several aspects:

class C1
class Cl11
parameter Real x;
end C11;
end C1;
class C2
class C21

end C21;

end C2;

class C3
extends Cl1;
C11 t(x=3); I/l ok, C11 has been inherited from C1
C21 u; Il ok, even though C21 is inherited below
extends C2;

end C3;

The folowing example demonstrateverriding part of noisimple component:

record A
parameter Real x,y;
end A;
model B
parameter A a=A(2,3);
end B;
model C
B bl(a(x=4));
/| Error since attempting to override value for a.x when a has a value.
end C;
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The modification environment of the declarationt a§ (x=3). The modification environment is built by merging
class modifications, as shown by:

class C1
parameter Real a;

end C1;

class C2
parameter Real b,c;

end C2;

class C3
parameter Real x1; // No default value
parameter Real x2 =2; // Default value 2
parameter C1 x3; /I No default value for x3.a
parameter C2 x4(b=4); // x4.b has default value 4
parameter C1 x5(a=5); // x5.a has default value 5

extends CI,; /I No default value for inherited element a
extends C2(b=6,c=77); /I Inherited b has default value 6
end C3;
class C4
extends C3(x2=22, x3(a=33), x4(c=44), x5=x3, a=55, b=66);
end C4;

Outer modifications overrideaner modifications, e.g.h=66 overrides the nested class modification of extends
C2(b=6) . This is known as merging of modificationsergd(b=66), (b=6)) becomegb=66) .

A flatteningof classC4 will give an object with the following variables:

Variable Default value
x1 none

X2 22

x3.a 33

x4.b 4

X4.c 44

x5.a X3.a

a 55

b 66

c 77

7.2.4  Single Modification

Two arguments of a modification shall nobdify the same element, attribute, stringcomment When using
gualified names the different qualifiedmes starting with the same identifier are merged into one madiiféer.
modifier with a qualified name has the each or fimafix that prefix isonly seen aspplied tothe final part of
the name

[Example

class C1

Real x[3];
end C1;
class C2=C1( x=ones(3), x=ones(3) ); // Error: x designated twice
class C3

class C4

Real x;

end C4;

C4 a( final  x.unit ="V", x.displayUnit="mV", x=5.0);
/I Ok, different attributes designated (unit, displayUnit and value)
/l identical to:

C4 b(x( final uni t="V", displayUnit="mV") = 5.0));
end C3;

The following examples are incorrect:
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m1(r=1.5, r=1.6) // Multiple modifier for r (its value)

m1(r=1.5, r=1.5) // Multiple modifier for r (its value) - even if identical
ml(r.start=2, r(start=3)) // Multiple mo difier for r.start

ml(x.r=1.5"x", x.r(start=2.0) "y")) // Multiple string - comment for x.r
m1(r=R(), r(y=2)) // Multiple modifier for r.y - both direct value and part of record

The following examples are correct:
m1(r=1.5, r(start=2.0))
m1(r=1.6, r "x")
i (r=R(), r(y(min=2)))

]

7.2.5 Modifiers for Array Elements
The followingrulesappliesapply to modifiers

1 Theeach keyword on a modifier requires that it is applied in an array declaration/modification, and the
modifier is applied individually to each elemagitthe array(in case of nested modifiers this implies it is

appliedindividually to each elemanof each element of the enclosing arrsge example If the modified

element is a vector and the modifier does not contairatie-prefix, the modificationis split such that the

first element in the vector is applied to the first element of the vector of elements, the second to the second
element,until the last element of the vectexpression is applied to the last element of the array; it is an
error if these sizes do not matdiatrices and general arrays of elements are treated by viewing th@se as

vectors of vectors etc.

1 If a nested modifier is split, the split is propagated to all elements of the nested modifier, and if they are
modified by thesach -keyword the split is inhibited for those elements. If the nested modifier that is split in

this way contains rdeclarations that are split it is illegal.

[Example

model C
parameter Real a [3];
parameter Real d;
end C;

model B
Cc[5]( each a={1,2,3} ,d={1,2,3,4,5});
parameter Real b=0;

end B;
This implies thaic[i].a[j]=j , andc[i].d=i
model D
B b(each c.a={3,4,5} ,c.d={2,3,4,5 61);

/| Equivalent to:
B b2(c( each a={3,4,5} ,d={2,3,4,5,6));
end D

This implies thatefil-affl=—andefil.d=—i—b.c[i].a[j]=2+] andb.c [i].d=

1+i

model E

B b[2] (each c(each a={1,2,3},d= {1,2,3,4,5} ),p= {1,21});

/I Without the first each one would have to use:

B b2[2](c( each a={1,2,3}, d= fill( {1,2,3,4,5} ,2)),p= {121});
end E;

This implies thatb[k] .c[i].a[j]= j andblk] .c [il.d= iand b[K].p =k
For 'c.a' the additional (outer) each has no effect, but it is necessary for 'c.d".

]
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7.2.6 Final Element Modification Prevention

An element defined as findly thefinal  prefix in an element modification or declaration cannotrimelified by

a modification or by a redeclaration. All elements of a final element are also fBeting the value of a
parameter in an experiment environment is conceptually treated as a modification. This implies that a final
moadification equation cd parameter cannot be changed in a simulation enviroriment

[Examples

type Angle =Real( final quantity="Angle", final unit ="rad",
displayUnit="deg");

Angle al(unit="deg"); /I error, since unit declared as final!

Angle a2(displayUnit="rad"); /I fine

model TransferFunction
parameter Real b[:] ={1} "numerator coefficient vector";
parameter  Real a[:] = {1,1} "denominator coefficient vector";

end TransferFunction;
model Pl "PI controller”;

parameter Real k=1 "gain";
parameter Real T=1 "time constant";

TransferFunction tf( final  b=k*{T,1}, final  a={T,0});
end PI;
model Test

Pl c1(k=2, T=3); //fine , will indirectly change tf.b to 2*{3,1}

Plc2( tf( b={1} )); /l error, bis declared as final
end Test;

]

7.3 Redeclaration

A redeclare construct in a modifier replaces the declaration of a local class or component with another declaration.
A redeclare construct as an element replaces the declaration of a local classponeranwith another
declarationBoth redeclare constructs work in the same way. The redeclare construct as an element requires that
the element is inherited, and cannot be combined with a modifier of the same element in theckusador

modifiers he redeclare of classes uses a special-stagsdefinition construct; that is a subset of normal class
definitions and semantically behave as the correspondingdgéisgion.

A modifier with the keywordeplaceable  is automatically seen as being deelare.

In redeclarations some parts of the original declaration is automatically inherited by the new declaration. This
is intended to make it easier to write declarations by not having to repeat common parts of the declarations, and
does in particular@ply to prefixesthat must be identical. The inheritance only applies to the declaration itself and
not to elements of the declaration.

The general rule is that if mrefix within one of the following groups is present in the new declaration the old
prefixesof that kind are preserved.

The groups that are valid for both classes and components:

1 public, protected

9 inner , outer
9 constraining type according to rules in Sectioh 2/-3-2

The groups that are only Néfor components:

9 flow, stream

i discrete, parameter, constant
1 input, output

i array dimensions
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Note that if the old declaration was a short class definition with array dimensions the array dimensions are not
automatically preserved, and thus have to beatepgdn the few cases they are used.

Replaceable component array declarations with array sizes on the left of the component are seen as syntactic
sugar for having all arrays sizes on the right of the component; and thus can be redeclared in a cogsistent wa

[Note: The inheritance is from the original declaration. In most cases replaced or original does not matter. It does
matter if a user redeclares a variable to be a parameter and then redeclares it without pajameter.

[ et madif

madel HeatExchanger

replaceable parameter GeometryRecord geometry;
replaceable input  Real u[2];

end HeatExchanger;

HeatExchanger(
[*redeclare*/ replaceable [*parameter */ GeoHorizontal geometry,
redeclare  /* input */ Modelica.Slunits.Angle u /*[2] */);

/I The semantics ensure that parts in /*.*/ are automatically added
Il from the declarations in HeatExchanger.

Exampleof arrays on the left of the component name:

model M
replaceable Real [4] x[2];
/| Seen as syntactic sugar for "replacea ble Real x[2,4];"
// Note the order.
end M;
M m(redeclare Modelica.Slunits.Length x[2,4]); // Valid redeclare of the type




94 Modelica Language Specificatiéh3-Revisien-3.4

7.3.1 The class extends Redeclaration Mechanism

Aclassdec | ar at i oradeceré t ha&s st yexe e @ d,swvheBg ctags as usual can be replaced
by any other specialized clagsplaces the inherited claBswith another declaration that extends the inherited
class where the optional claswdification is applied to the inherited classSihce this implies that all
declarations are inherited with modifications applied there is no need to apply modifiers to the new dedglaration.
Inherited B here means that the class contairddeclare class extends B (_é )ould diso inherit another
declaration of B from one of its extendgausesThe new declaration should explicitly includgleclare

Forededlare <cl ass exten@stmEeé)inherited class is subject
of the inheritecelement and the original class B should be replaceabid,the new element is only replaceable if
the new definition is replaceabla. contrast to normal extendsis not subject to the restriction that B should be
transitively norreplaceableginceB should be replaceable).

The syntax rulefor class extends construct is in thedefinition of the class—specifier————class -
specifier nonterminaksee also class declarations in Sectidi-5):

class—definition——class - definition

[ encapsulated ] elass—p#eﬂ*es—.class - prefixes
class—specifie——class - specifier

class—specifier——class - specifier . long—class—specifier———long - class - specifier | ...

leng—class—specifier———Ilong - class - specifier .
| extends [IDENT[ elass—modification——class -modlflcatlon ] string—comment—string -
comment composition end IDENT

The nonterminalelass—definition———class - definition is referenced in several places in the grammar,
including the following case which is used ion®e examples belgwncluding package extends ~ andmodel
extends :

element :
import—elause—import - clause |
extends—clause—extends - clause |
[ redeclare ]

[ final ]
[ inner ][ outer ]
(( elass—definition———class - definition | ecompenent—elause—component - clause ) |
replaceable ( elass—definition——class - definition | eompenent—elause—component - clause )

[ eonstraining—clause———constraining - clause  comment])
[Example to extend from existing packages:

package PowerTrain / library fr om someone else
replaceable package GearBoxes

end GearBoxes;
end PowerTrain;

package MyPowerTrain
extends PowerTrain; // use all classes from PowerTrain

redeclare package extends GearBoxes /I add classes to sublibrary

end GearBoxes ;
end MyPowerTrain;

Example for an advanced type of package structuring with constraining types:

partial package Parti al Medi um njGeneric medium interfacen;

constant | nt eger nX nnumber of substancesnj;
replaceable partial model BaseProperties
Real X[nX];

end BaseProperties;

replaceable partial function dynamicViscosity
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input Real p;
output Real eta;
end dynamicViscosity;

end PartialMedium;

package Moist Ai r njSpeci al type of medi umnj
extends PartialMedium(nX = 2);

redeclare model extends BaseProperties (T(stateSelect=StateSelect.prefer))
I/l replaces BaseProperties by a new implementation and
/I extends from Baseproperties with modification
/I note, nX = 2 (N
equation
X={0, 1}

end BaseProperties

redeclare function extends dynamicViscosity
Il replaces dynamicViscosity by a new implementation and
/I extends from dynamicViscosity
algorithm
eta = 2*p;
end dynamicViscosity;
end Moist Air;

Note, sinceMostAir extends fromPartialMedium , constantnX=2 in packageMoistAir and the model
BaseProperties  and the functiordynamicViscosity is present inMoistAir . By the following definitions,
the available BaseProperties model is replaced by anotheémplementation which extends from the
BaseProperties ~ model that has been temporarily constructed during the extends of padkag&r from
PartialMedium . The redeclaredBaseProperties model references constaniX which is 2, since by
construction the rdeclaredBaseProperties ~ model is in a package witlx = 2.

This definition is compact but is difficult to understaid.a first glancean alternative exists that is more
straightforward and easier to understand:

package MoistAir2 "Alternative definition that does not work"
extends PartialMedium(nX = 2,
redeclare model BaseProperties = MoistAir_BaseProperties,
redeclare function dynamicViscosity = MoistAir_dynamicViscosity);
model MoistAir_BaseProperties // wrong model since nX has no value
extends PartialMedium.BaseProperties;
equation
X ={1,0};

end MoistAir_BaseProperties;

model MoistAir_dynamicViscosity
extends PartialMedium.dynamicViscosity;
algorithm
eta :=p;
end MoistAir_dynamicViscos ity;
end MoistAir2;

Here, the usual approach is used to extend (here RamilMedium ) and in the modifier perform all

redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of

PartialMedium  have to be gien under a different name, suchMstAir2. MoistAir _BaseProperties
since the nam@asePropertes al r eady e exiesld PartidMedumt 6 . A Then it i s
modifier to redeclareartialMedium.BaseProperties to MoistAir2.MoistAir _BasePropties. Besides

po:

the drawback that the namespace is polluted by elements that have different names but the same implementation

(e.g. MoistAir2.BaseProperties is identical to MoistAir2.MoistAir _BaseProperties ) the whole
construction does not work if arraysegoresent that depend on constant®artialMedium , such asx[nX] :
The problem is thaMoistAir _BaseProperties extends frapartialMedium.BaseProperties where the
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constant nX does not yet have a value. This means that the dimension of array X is uratefimaddel
MoistAir_BaseProperties is wrong. With this construction, all constant definitions have to be regeateder

these constants shall be used, especiallyaistAir_BasePropertie s andMoistAir_dynamicViscosity
For larger models this is not mitacal and therefore the only practically useful definition is the complicated
construction i n t heleclranmddeliexends e xBasaPpopegies wdt h A

To detect this issue the rule on lookup of composite nanSectibn 5.3.5-3-2) ensure that
PartialMedium.dynamicViscosity 6 is incorrect in a simulation mode

]

7.3.2 Constraining Type

In a replaceable declaration the optionabnstraining—clause——constraining - clause  defines a
constraining type. Any modifications following the constraining type name are applied both for the purpose of
defining the actual constraining type and they are automatically applied in the declaration and in any subsequent
redeclarationThe precedence cedis that declaration modifiers override constraining type modifiers.

If the censtraining—clause———constraining - clause is not present in the original declaration (i.e., the-non
redeclared declaration)

{__T+the type of the declaration is also used as a @n#stg type

1 The modifiers for subsequent redeclarations and constraining type are the modifiers on the component or
shortclassdefinition if that is used in the original declaration, otherwise erapt/modifications—affect
the-constraining-type-and-aappliedHin-subsequentredeclarations

The syntax of @enstraining—claug®nstrainingclauses as follows:

constraining—clause———constraining - clause
constrainedby name [ elass—modification——class - modification ]

[Example omerging é modifiers

class A
parameter  Real x;
end A;

class B
parameter Real x=3.14,y; // Bis a subtype of A
end B;

class C
replaceable A a(x=1);
end C;

class D
extends C(redeclare B a(y=2));
end D;

which is equivalent to defining D as

class D
B a(x=1, y=2);
end D;

Example

A modification of the constraining type is automatically applied in subsequent redeclarations:

model ElectricalSource
replaceable Sine Source source constrainedby MO(final n=5);

end ElectricalSource;

model Trapezo idalSource
extends ElectricalSource(
redeclare Trapezoidal source); // source.n=5
end TrapezoidalSource;
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A modification of the base type without a constraining type is automatically applied in subsequent redeclarations:

model Circuit
replaceable nodel NonlinearResistor = Resistor(R=100);

end Circuit;

model Circuit2
extends  Circuit(
redeclare replaceable model NonlinearResistor
= ThermoResistor(T0=300));
/I As a result of the modification on the base type,
/Il the default value of R is 100
end Circuit2;

model Circuit3
extends  Circuit2(
redeclare replaceable model NonlinearResistor
= Resistor(R=200));
/I The TO modification is not applied because i t did not
[/l appear in the original declaration
end Circuit3;

Circuit2 is intended to illustrate that a user can still select any resistor model, including the originabsng
done in Circuit3, since the constraining type is kept from the origiealaration if not specified in the redeclare.
Thus it is easy to select an advanced resistor model, without limiting the possible future changes.

A redeclaration can redefine the constraining type:

model Circuit4
extends  Circuit2(
redeclare replac eable model NonlinearResistor
= ThermoResistor constrainedby ThermoResistor);
end Circuit4;

model Circuit5
extends  Circuitd(
redeclare replaceable model NonlinearResistor = Resistor); // illegal
end Circuit5;

]

The class or fye of component shall be a subtype of the constraining type. In a redeclaration of a replaceable
element, the class or type of a component must be a subtype of the constraining type. The constraining type of a
replaceable redeclaration must be a subtygheotonstraining type of the declaration it redeclares. In an element
modification of a replaceable element, the modifications are applied both to the actual type and to the constraining
type.

In an elementredeclaration of a replaceable element the fradi of the replaced constraining type are
merged to both the new declaration and to the new constraining type, using the normal rules where outer
modifiers override inner modifiers.

When a class idlattenedas a constraining type, thattening of its replaceable elements will use the
constraining type and not the actual default types.

The number of dimension in the constraining type should correspond to the number of dimensions in the type
part. Similarly the type used in a redeclaration must havsatime number of dimensions as the type of redeclared
element.

[Examples:
replaceable T1x[n] constrainedby T2;
replaceable type T=T1[n] constrainedby T2;
replaceable T1[n]x  constrainedby T2;

In these examples the number of dimensions must be theirsaiieand T2, as well as in a redeclaration.
Normally T1 and T2 are scalar types, but both could also be defined as arrayi twikbsthe same number of
dimensionsThus if T2 is a scalar type (e.g. type T2= Real) then Tl mlae be a scalar type; anifl T2 is
defined as vector type (e.g. type T2=Real[3]) then T1 must also be vectpr type.
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7.3.2.1 Constraining -clause annotations

Description and annotations on the constraitlagise are applied to the entire declaration, and it is an error if
they also appearnothe definition.[The intent is thathe description and/or annotation are at the end of the
declaration, but it is not straightforward to specify this in the grammar.]

[Examples:
replaceable model Load 1=Resistor  constrainedby TwoPin "The Load "; // Reconmended
replaceable model Load2=Resistor "The Load"  constrainedby TwoPin; //ldentical to Load 1
replaceable model Load3=Resistor "The Load"  constrainedby TwoPin "The Load" ; //Error
replaceable Resistor  loadl constrainedby TwoPin "The Load" ; //[Recommen ded
replaceable Resistor load2 "The Load" constrainedby TwoPin ; //ldentical to loadl
replaceable Resistor  load3 "The Load" constrainedby TwoPin "The Load !'"; //Error

1
Seealsothe examples in sectioh3.4

7.3.3 Restrictions on Redeclarations

The following additional constraints apply to redeclarations (pfefixesare inherited, Section.37.3):

Only classes and components declared as replaceable can be redeclared with a fredetypeation with
the same type can be used to restrict variability and/or change array dimdnsitich musthave an interface
compatible with theonstrainingnterface 6 the original declaration, and to allow further redeclarations one must
U s eedefilare replaceable 0]

1 an element declared as constant cannot be redeclared

1 an element declared as final may not be modified, and thus not redeclared

1 Modelica does not allow a protected element to be redeclared as public, or a public element to bedredeclar
as protected.

1 Array dimensions may be redeclar@dovided the sultyping rules in 6.3 are satisfied:His is one example
of redeclare of nomeplaceable elements.

7.3.4  Annotation Choices for Suggested Redeclarations and Modifications

A declarationcandav e an adhaicestoa tc comt afii n i nchoicemontharef each of shenoindicates
a suitable redeclaration or modifications of the element.

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations of the
choices. The annotation is not restricted to replaceable elements but can also be applieceptaceable
elements, enumeration types, and sim@gables.For a Boolean variable, a choices annotation may contain the
definition checkbex—check Box =true , meaning to display a checkbox to input the vafass ortrue in
the graphical user interface.

Choices menus of replaceable elements can be atitaityaconstructed showing the names of all classes that
are either directly or indirectly derived by inheritance from the constraining class of the declardatarariThe

recommended by havingnnotation choicesAllMatching = true ; and disabled by hawnannotation
choicesAllMatching = false . The behavior whethoicesAllMatching is not specified; ideally it should
present (at least) the same choices ascfaicesAllMatching = true ; but if it takes (too long) time to

present the list it is better to hawkoicesAllMatching = false

[Example

replaceable model MyResistor=Resistor
annotation  (choices(
choice( redeclare model My Resi st or =11i b2
choice( redeclare model My Resi stor=11ib2.

PPy

esistor(a={2}) "é&"),
esistor 2 e")) ).

replacea ble Resistor Load(R=2) constrainedby TwoPin
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annotation  (choices(

choice( redeclare |l ib2. Resistor Load(a={2}) "é&"),

choice( redeclare Capacitor Load(L=3) "é")));
replaceable FrictionFunction a(func=exp) constrainedby Friction
annotation  (choices(

choice( redeclare ConstantFriction a(c=1) "é&"),

choice( redeclare TableFriction a(table="é") "é&"),

choice( redeclare FunctionFriction a(func=exp) "é")))):
replaceable package Medium = Modelica.Media. Water.ConstantPropertyLiquidWater

constrainedby Modelica.Media.Interfaces.PartialMedium
annotation (choicesAllMatching=true);

It can also be applied to nonreplaceable declarations,te.describe enumerations.

type KindOfController=Integer(min=1,max=3)
annotation  (choices(

choice=1"P",
choice=2 "PI",
choice=3 "PID"));
model A
KindOfController x;
end A;
A a(x=3 "PID");

It can also beapplied toBoolean variables to define a check box

parameter  Boolean useHeatPort=false annotation  (choices(checkBox=true));
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Chapter 8

Equations

8.1 Equation Categories

Equations in Modelica can be classified intdetiént categories depending on the syntactic context in which they
occur:

1 Normal equality equationsoccurring in equation sections, including conremtiations and other equation
types of special syntactic form (Sectidrss-3)
9 Declaration equations which are part of variable, panater, or constant declarations (Section

4.4.2.84.29.
Modification equationswhichare commonly used to modify attributes of céas€Sectiory.27-2)

1
1 Binding equationsinclude both declaration equations and modification equations (for the value itself).
1 Initial equations which are used texpress equations feplving initialization problems (Sectich63-6)

8.2 Flattening and Lookup in Equations

A flattenedequation is identical to theorrespondingporflattenedequation.

Names in an equation shhk found by looking up in theartially flattenedenclosing classef the equation.

8.3 Equations in Equation  Sections

The following kinds of equations may occur in equation sectibims.syntax is defined as follows

equation :

( simple—expression——simple - expression "=" expression
Hf—egquationh——if - equation

I
| for—eguation——for - equation

| eonnect—eclause—connect - clause
I

I

when—eguatioh—when- equation
name-component - reference  funetion—ealargs——function -call -args )

comment

No statements are allowed in equation sections, inclitiangssignment statement usthg:= operator

8.3.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations knawnrnfrathematics that express an equality
relation between two expressions. There are two syntactic forms of such equations in Modelica. The first form
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below isequality equations between two expressions, whereas the second form is used when callingra functi
with severalresults.The syntax for simple equality equations is as follows:

simple—expression——simple - expression "=" expression

The types of the lefhandside and the rightandside of an equation need to be compatible in the same way as
two argumets of binary operators (Secti@ngs-6).

Threeexamples:

9 simple_ exprl = exprz;
1 (if pred then altl else alt2) =exprz;
1 (outl, out2, out3) = function_name(inexprl, inexpr2);

[Note: According to the grammar the-ttienelse expression in the second example needs to be enclosed in
parentheset avoid parsing ambiguitieg\lso compare with Sectidril.2.1.11.231about calling functions with
several results in assignment statemégnts

8.3.2 For-Equations i Repetitive Equat ion Structures

The syntax of a feequation is as follows:

for fer—indices——for -indices loop
{ equation ";" }
end for "
Forequatims may optionally use severaérators fer—indices—for -indices ), see Sectioril.2.2.31.2.2.3
for more information:

for—indices—for -indices
for—index—for -index {"" ferindex—for -index }

for—index—for -index :
IDENT[ in expression ]

The followingis one example of a prefix of a fequation:

for IDENT in expression loop

Theexpressio n of afor-equationshall be a vector expression. It is evaluated once forfeagguation and is
evaluated in the scope immediately enclosing fidreequation The expression of $or-equationshall be a
parameter expressiomhe iteration range of af-equation can also be specified as Boolean or as an enumeration
type, see Sectiohl.2.2.2for more informationThe loopvariable (DENT) is in scope inside the loamnstruct

and shall not be assigned to. The la@piable has the same type as the type of the elements of the vector
expression.

[Example
for i in 1:10 loop /i takes the values 1,2,3,...,10
for r in 1.0:15:5.5 loop /I r takes the values 1.0, 2.5, 4.0, 5.5
for i in {1,3,6,7} loop i takes the values 1, 3, 6, 7
for i in TwoEnums loop /i  takes the value§woEnums.one, TwoEnums.two

[/l for TWoEnums = enumeration(one,two)

The loopvariable may hide other variables as in the following example. Uaimgher name for the loep
variable is, however, strongly recommended.

constant  Integer j=4;

Real x[j];
equation
for j in 1j loop // Theloop - variable j takes the values 1,2,3,4
X[il=j; // Uses the loop - variable j

end for ;
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8.3.2.1 Implicit Iteration Ranges of For-Equations

The iteration range of a loop variable may sometimes be inferred from its use as an array index. See Section
11.2.2. 3322 1for more information.

[Example

Real x[n],y[n];
for i loop /I Same as: for i in lssize( x
,1)  loop
X[i] = 2*y(i];
end for ;

]

8.3.3  Connect -Equation s

A connectequation has the following syntax:
connect "(" ecempenentreference—component -reference """ ceompenentreference——component -

reference ") ;

These can be placed inside-faquations and iéquations; provided the indices of the-fmop and conditions of
the if-clause are parameter expressions that do not depenchrlinality, rooted, Connections.rooted, or
Connections.isRoot. The fequations/#equations are expande@Gonnectequations are described in detail in
Section9.19-1.

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot; which after
expansion are handled according to secigf-4.

8.3.4 If-Equations

If-equationshave the following syntax:

if expression then
{ equation ";" }

{ elseif expression  then
{ equation ";" }

}

[ else
{ equation ";" }

]

end if "

Theexpression of an it or elseifclause must ba scalarBooleanexpressionOne itclause, and zero or more
elseifclauses, and an optional eldause together form a list of branches. One or zero of the bodies of these if
elseif and elseclauses is selected, by evaluating the conditions of trend elseifclauses sequentiw until a
condition that evaluates to true is found. If none of the conditions evaluate to true the body of tcreustses
selected (if an elselause exists, otherwise no body is selected). In an equation section, the equations in the body
are seeras equations that must be satisfied. The bodies that are not selected have no effect on that model
evaluation.

If-equationsn equation sections which do not have exclusively parameter expressions as switching conditions
shall have the same number of equad in each branch (a missing else is counted as zero equations and the
number of equations is defined after expanding the equations to scalar equfdtitinis)condition is violated, the
single assignment rule would not hold, because the number afi@ggimay change during simulation although
the number of unknowns remains the game

8.3.5 When-Equations

Whenequations have the following syntax:
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when expression  then
{equation ";" }

{ elsewhen expression then
{ equation";"}}

end when ";"

Theexpression  of a wherequationshall be a discretéme Boolean scalar or vector expression. The statements
within a wherequationare activated when the scakatpressioror any of the elements of the vector expression
becomes true.

[Example

The order between the equatidnsa wherequationdoes not matter, e.g.

equation
when x>2 then
y3 = 2*x +y1+y2; // Order of y1 and y3 equations does not matter
y1 = sin(x);
end when;
y2 = sin(yl);

8.3.5.1 Defining Wh en-Equations by If -Expressions in Equality Equations

A whenequation

equation
when x>2 then
vl =exprl;
V2 = expr2 ;
end when;

is conceptuallyequivalent to the followingquations containingpecial ifexpressias

/I Not correct Modelica
Boolean b(start=x.start>2);
equation
b =x>2;
vli= if edge(b) then exprl else pre(vl);
v2= if edge(b) then expr2 else pre(v2);

[The equivalence is conceptual sipee() of anondiscretetime Real variable ioexpression can only be used
within a wherclause Example:

[* discrete*/ Real X;

input Real u;

output Real vy;

equation
when sample() then
X = a*pre(x)+b*pre(u);

end when;

y=X 3
In this example x is a discretie variable whether it isdeclared with the discrete prefor nof), butu and y
cannot be discretéme variables (since they are not assigned in wtianses). However, pre(u) is legal within
the wherclause, since the body of the whkdause is only evaluated at events, andstlall expressions are
discretetime expressionk.

The starvalues of the introduceBooleanvariables are defined by the taking the stattie of the when
condition, as above where is a parameter variable. The stealues of the special functionai tial |,
terminal , and sample is false.

8.3.5.2 Restrictions on Equations within ~ When-Equations

1 Whenstatements may not occur inside initial equations.
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1 Whenequations cannot be nested.
[Example

The following wherequation is invid:

when x>2 then
when y1>3 then
y2 = sin(x);
end when;
end when;

]
The equations within the whesguation must have one of the following forms:

1 v=expr

(outl, out2, out3, ...) = function_call _name(inl, in2, ...);

operatorsassert() ,ter minate() , reinit()

For- and ifequations if the equations within the-fand ifequations satisfy these requirements.

The different branches of when/elsewhen must have the same set of component references-barte left
side.

9 The branches of an-thenelse clause inside wheamguations must have the same set of component
references on the lefftand side, unless thetlienelse have exclusively parameter expressions as switching
conditions.

= =4 -4 =

Any left hand side referencey,(outl , én) a wheRrclause mat be a component reference, and any indices
must be parameter expressions.

[The needed restrictions on equations within a wigmation becomes apparent with the following example:

Real x, y;
equation
X+y=5;
when condition then
2*xX+y =T, I error: not valid Modelica
end when;

When the equations of the wheguation are not activated it is not clear which variable to hold constant, either
ory. A corrected version of this example is:

Real x,y;
equation
X+y=5;
when condition then
y=7 1 2*; /I fine
end when;

Here, variabley is held constant when the whequation is deactivated armxdis computed from the first equation
using the value of from the previous event instant.

]

8.3.5.3 Application of the Single -assignment Rule to When-Equations
The Modelica singlassignment rule (Sectiéh48-4) has implications for wheaquations:
1 Two whenrequations mapotdefine the sameariable.

[Without this rulethis may actually happen for the erroneous madelbleWhenConflict  below, since there
are two equationgclose = true; close = false; ) defining the same variablgose . A conflict between
the equations will occur if both cortidns would becomeue at the same time instant.

model DoubleWhenConflict

Boolean close; // Erroneous model: close defined by two equations!
equation
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when conditionl then
close = true;

end when;

when condition2 then
close = false;

end when;

en('j“ DoubleWhenConflict

One way to resolve the conflict would be to give one of the two-@deiions higher priority. This is possible by
rewriting the whenequation usingelsewhen , as in theWtenPriority model below or using thetatement
version of thavhenconstruct see Sectiofl.2.4-1-2.7]

1 Whenequatios involving elsewherparts can be used to resolassignmentonflicts since thefirst of the
when/elsewhen partgegiven higher prioritythan later ones

[Below it is well defined what happens if both conditions becooge at the same time instant since
conditionl  with associated conditional equations has a higher priority twamlition2
model WhenPriority

Boolean close; // Correct model: close defined by two equations!
algorithm

when conditionl then
close =tru e;

elsewhen condition2 then
close =false;

end when;

em-:i“ WhenPriority;

]

8.3.6 reinit

Thereinit  operator camnly be used in the body of a whequation. It has the following syntax:

reinit(x, expr);

The operatorainitializesx with expr at an event instant.is aReal variable or an array oReal variable$ that

must be selected as a state (resp., states)reinit on x implies stateSelect=StateSelect.always expk. needs

to be typecompatible withx. The reinit operatoran for the same variable (resp. array of variabtegy be

applied (either as an individual variable or as part of an array of variables) in one equation (having reinit of the
same variable in when and elsben of the same variable is allowelt) case dreinit active during initialization

(due to when initial), see secti@r63-6.

The reinit operator does not break the single assignment rule, because reinit(x,expr) in equations evaluates expr to
a value (value), themat theend of the current event iteration step it assigns this value to x (this copying from
values to reinitialized state(s) is done after all other evaluations of the model and before copying x to pre(x)).

[If a higher index system is present, i.e., comstsabetween state variables, some state variables need to be
redefined to norstate variablesDuring simulation, norstate variables should be chosen in such a way that
variables with an applieteinit  operator are selected as states adewhen the goesponding wheitlauses
become active. If this is not possible, an error occsirs;eotherwise the reinit operator would be applied on a
nonstate variable.

Example for the usage of thenit  operator:

Bouncing ball

der (h) =v;
der (v)= if flying then -g else O;
flying = not (h<=0 and v<=0);
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when h<0 then
reinit(v, -e*pre (v));
end when;

]

8.3.7 assert

An equation or statement ohe ofthe following forns:

assert(condition, message); /I Uses level=Asser tionLevel.error
assert(condition, message, assertionLevel);
assert(condition, message , level = assertionLevel );

is an asseidn, wherecondition  is aBoolean expressigmessage is a string expressigmndlevel is a built
in enumeration with a defaulalue It can be used in equation sections or algorithm sectjdhss means that
assert can be called as if it were a function with three formal parameters, the third formal parameter has the
name ‘'level’ and the default value AssertionLevel.grror.
If the condition  of an asseitn is true,message is not evaluated and the procedure call is ignored. If the
condition  evaluates to falsdifferent actions are taken depending on the level input:
level = AssertionLevel.error : The current evaluation is abortélthe simulation may continue
with another evaluatiofe.g., with a shorter stegize, or by changing the values of iteration variablés
the simulation is aborteehessage indicates the cause of the error.
Failed assertions takes precedence suecessful termination, such that if the model first triggers the
end of successful analysis by reaching the-stop or explicitly withterminate()  , but the evaluation
with terminal()=true triggers an assert, the analysis failed.

9 level = AssertionLevel .warning : The current evaluation is not abortedessage indicates the
cause of the warningdt is recommended to report the warning only once when the condition becomes false,
and it is reported that the condition is no longer violated when the condéioms to true. Thassert (..)
statement shall have no influence on the behavior of the model. For example, by evaluating the condition
and reporting the message only after accepted integrator stepdition  needs to be implicitly treated
with noEvent() since otherwise events might be triggered that can lead to slightly changed simulation
resultg.

[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity; for instance,
a function to compute the saturateduliid temperature cannot be called with a pressure lower than the triple
point value.

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance, a fluid
property model based on a polynomial interpolation curve nggré accurate results between temperatures of
250 K and 400 K, but still give reasdsia results in the range 200 K aBA0 K. When the temperature gets out of
the smaller interval, but still stays in the largest one, the user should be warned, but ulaiaishould
continue without any further action. The corresponding code would be

assert (T>250 and T <400, "Medium model outside full accuracy range",
AssertionLevel.warning);

assert (T>200 and T <500, "Medium model outside feasible region");

]

8.3.8 terminate

The terminate(...) equation or statementging function syntdxsuccessfully terminates the analysis which
was carried out, see also SectibB. B-3-7. The termination is not immediate at the place where it is defiimee

not all variable results might be availakiat arenecessary for a successful stbpstead, the termination actually
takes placevhen the current integrator step is ce&sfully finalized or at an event instant after the event handling
has been completed before restarting the integration.



108 Modelica Language Specificatiéh3-Revisien-B.4

Theterminate clausbas a string argument indicating the reason for the sucddes.irtention is to give more
complex stopping ceria than a fixed point in time. Example
model ThrowingBall
Real x(start=0);
Real y(start=1);
equation
der (X)=...

der (y)=...
algorithm

when y<0 then
terminate("The ball touches the ground");
end when;
end ThrowingBall;

]

8.3.9 Equation Operators for Overconstrained Connection -Based Equation
Systems

See SectioB.49-4 for a description of this topic.

8.4 Synchronous Data -flow Principle and Single Assignment Rule

Modelica is based on the synchronous data flow principle and the assiggmentule, which are defined in the
following way:

1. All variables keep their actual values until these values are explicitly elaMariable values can be
accessed at any time instant during continuous integration and at event instants.

2. At every time instant, during continuous integration and at event instants, the active equations express
relations between variables which hatee be fulfilled concurrently (equations are not active if the
corresponding ibranch, wherclause or block in which the equation is present is not active).

3. Computation and communication at an event instant does not takeltioenputation or commucation
time has to be simulated, this property has to be explicitly mddeled

4. The total number of equations is identical to the t@aimber of unknown variablé$= single assignment
rule).

8.5 Events and Synchronizati on

The integration is halted and an event occurs whenevevent generation expresskeat-elementaryrelation
e.g.fix >2 6o orfloor(x) , changes its valuén event generating expression has an internal buffer, and the
value of the expression can otiilg changed at event instants. If the evaluated expression is inconsistent with the
buffer, that WI|| trigger an event and the buffer WI|| be updated with avadue at the event mst%e—vala&ef

i i i [ i € odel is
p#eeesseel—at—theevent—mst{antother Words a root flndlng mechanlsm is needbutlwdetermmes a smaII time
mterval in WhICh therelation-e xgressmmhanges its value the event occurs at the right side of this interval

BDuring COﬂtII"IUOUS mteqratlon event qenenamo

[Example

y= if u>uMax then uMax else if u <uMin then uMin else u;
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During continuous integration always the saméréinch is evaluated. The integration is halted whenewer
uMax or u-uMin crosses zero. At the event instant, the correbtafch is selected and the integration is
restarted.

Numeical integration methods of order n (n>=1) require continuous model equations which are differentiable
up toorder n. This requirement can be fulfilled if Real elementary relations are not treated literally but as defined
above, because discontinuous clemgan only occur at event instants and no longer during continuous
integration.

]

[It is a quality of implementation issue that the following special relations

time >= discrete expression
time < discrete expression

trigger a timmediewverndt eate xigrienesi ono, i.e., the event
needed to find the exact event instant.

]

Relations are taken literally also during continuous integration, if the relation or the expression in which the
relation ispresent, are the argument of theEvent(..) function. Thesmooth(p,x)  operator also allows
relations used as argument to be taken literally.nb@ent feature is propagated to all subrelations in the scope

of thenoEvent function. Forsmooth the libertyto not allow literal evaluation is propagated to all subrelations,
but the smootiproperty itself is not propagated.

[Example
x = if noEvent(u > uMax) then uMax elseif  noEvent(u < uMin) then uMin else u;
y = noEvent( if u>uMax then uMax elseif u<uM in then uMin else u);
z = smooth(0, if u>uMax then uMax elseif u<uMin then uMin else u);

In this case x=y=z, but a tool might generate events for z. Haepikssion is taken literally without inducing
state events.

The smooth function is useful, if g. themodelercan guarantee that the usedlduses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event iterations
occur during integration. The noEvent function is used todguam g ai n st fout si g=eif domai n
noEvent(x >= 0) then sqrt(x) else 0 J

All equations and assignment statements within wdleases and all assignment statements within function
classes are implicitly treated with the noEvent function, iedations within the scope of these operators never
induce state or time events. [Using state events in wlaarses is unnecessary because the body of aeléese
is not evaluated during continuous integration.]

[Example

Limitl = noEvent(x1 > 1);
/I Er ror since Limitl is a discrete - time variable

when noEvent(x1>1) or x2>10 then
Il error, when - conditions is not a discrete - time expression
Close = true;

end when;

]
Modelica is based on the synchronous data flow principle (Sexténd).

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique set of
equations. It is not possible that a variable is e.g. defined by two equations, which would give rise to conflicts or
nondeterministic behavior Furthermore, the continuous and the discrete parts of a model are always
automatically fAsynchronizedo. Exampl e
equation  // lllegal example
when conditionl then

close = true;
end when;
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when condition2 then
close = fals e;
end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown variable
close. If this would be a valid model, a conflict occurs when both conditions become true at the same time instant,
since no gorities between the two equations are assigned. To become valid, the model has to be changed to:
equation
when conditionl then
close = true;
elsewhen condition2 then

close = false;
end when;

Here, it is weldefined if both conditions becenirue at the same time instarbifditionl  has a higher
priority than condition2 ).

]

There is no guarantee that two different events occur at the same time instant.
[As a consequence, synchronization of events has to be explicitly programmed in thes modi, counters.
Example

Boolean fastSample, slowSample;
Integer ticks(start=0);

equation
fastSample = sample(0,1);
algorithm
when fastSample then
ticks = if pre(ticks) <5 then pre(ticks)+1 else 0;
slowSample := pre(ticks) == 0O;
end when;
algorithm

when fastSample then /I fast sampling

enc'i” when;
algorithm
when slowSample then /I slow sampling (5 - times slower)

enc'i” when;

TheslowSample whenclause is evaluated at every 5th occurrence dbth@ample whenclause.

]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow a
certain degree of model verification already at compile fime.

8.6 Initialization , initial equation , and initial algorithm

Before any operation is carried out with a Modelica modsg.[ simulation or linearizatigninitialization takes

place to assign consistent values for all variables present in the model. During this phase, albmativesje

der(..) , and the prevariablespre(..) , are interpreted as unknown algebraic variables. The initialization uses

all equations and algorithms that are utilized in the intended operatioh s simulation or linearizatipnThe
equations of a henclause are active during initialization, if and only if they are explicitly enabled with the
initial() operator and only in one of the two formeghen initial() then orwhen {é,initial (),
then . In this case, the wherlause equations remain activeridg the whole initialization phaself [a when

clause equatiowv = expr; is not active during the indlization phase, the equation= pre(v) is added for
initialization. This follows from the mapping rule of whdause equationdf the condition oftie wherclause

contains initial() but not in one of the specific forptke wherclause is not activduring initialization when not
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initial() then print("simulation started");end whelp; In case of a reinit(x,expr) being active during initialization
(due to being inside when initial()) this is interpreted as adding x<{#xpreinitequation) as an initial equation.

Further constraints, necessary to determine the initial values of all variables, can be defined in the following ways:

(1) As equations in anitial equation section or as assignments iniaitial algorithm  section. The
equations and assignments in these initial sections are purely algebraic, stating constraints between the
variables at the initial time instant. It is not allowed to use witeuses in these sections.

(2) For all nondiscrete (that is continuodisne) Real variablegc, the equatiomre (v ¢c) =v c is added to the
initialization equations.If pre (v c) is not present in the flattened model, a tool agosenot to introduce
this equaion, or if it was introduced it can eliminate it (to avoid the introduction of many dummy variables
pre (vc)).]

(3) Implicitly by using the attributestart=value ~ andfixed=true  in the declaration of variables:

1 For allnondiscrete (that i€ontinuoustime) Real variablesc, the equationc = startExpression is
added to the initialization equationssiirt = startExpression andfixed = true

9 For all discrete variablead, the equatiorpre(vd) = startExpression is added to the initialization
equations, iktart = startExpression and fxed = true

9 For all variables declared anstant and parametevjth fixed = true ; No equation is added to the
initialization equations.

For constants and parameters, the attribute fixed is by default true. For otheesdnad is by default false. For
all variables declared as constant it is an error to feace= false
Startvalues of variables having fixed = false can be used as initial guesses, in case iterative solvers are used in
the initialization phasdin case of iterative solver failure, it is recommendedpecially reportthose variables
for which the solver needs an initial guess, but which only have the default value of th#tribaite as defined
in SectioM.84-8, since the lack of appropriate initial guesses is a likely cause of the solver failure.
If a parameter hasraodifier for thestart -expressioattribute does not haviixed=false , and neither has a
binding equation nor is part of a record havingraling equationthe modifier for thestart -expressieattribute
can be usedo add a parameter binding equation assigning the parameter to tham(mldrer In thrs case a
draqnostrc message is recommended in a srmulatro

A A ing-the meter Wmars used in libraries to give
non-zero defaults so that users cgnickly combine models angsimulate without setting parameters; but still

easly find the parameters that need to be -s&kingparameters—are-also-covered-by-this,—since-they-lack a
fixed—attribute-they-can-never-haliged=false —|

All variables declared as parameter haviingd = false are treated as unknowiuring the initiailzation
phase, i.e. there must be additional equations for thamd the startalue can be used as a gueskie during
initialization.

[In the case a parameter has both a binding equationfiaad = false a diagnostics is recommended, but
the parameteshould be solved from the binding equation.

Nortdiscrete (that is continuottime) Real variablesc have exactly one initialization value since the rules
above assure thaturing initializationve = pre (vc)=v c.startExpression (if fixed= true).

Before he start of the integration, it must be guaranteed that for all variables= pre (v) . If this is not the
case for some variables , préi(vi) := vi 0 must be set and an event itera
so the model is revaluated, untithis condition is fulfilled.

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to state
space form. This may require to differentiate equations for index reduction, i.e., additional equations and, in some
cases, additional unknown variables are introduced. This whole set of equations, together with the additional
constraints defined above, should lead to an algebraic system of equations where the number of equations and the
number of all variables (includg der(..) andpre(.) variables) is equal. Often, this is a nonlinear system

of equations and therefore it may be necessary to provide appropriate guess valuesaft.e.,values and
fixed=false ) in order to compute a solution numerically.
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It may be diftult for a user to figure out how many initial equations have to be added, especially if the system
has a higher index. A tool may add or remove initial equations automatically such that the resulting system is
structurally nonsingular. In these casesghastics are appropriate since the result is not unique and may not be
what the user expects. A missing initial value of a discrete variable which does not influence the simulation result,
may be automatically set to the start value or its default witidotming the user. For example, variables
assigned in a whealause which are not accessed outside of the wlarse and where thae() operator is
not explicitly used on these variables, do not have an effect on the simulation.

Examples:

Continuous tira controller initialized in steadgtate

Real y(fixed = false); // fixed=false is redundant

equation
der (y) = a*y + b*u;
initial equation
der (y) =0;
This has the following solution at initialization:
der (y) = 0;
y = -bla*u;

Continuous tire controller initialized either in steaestate or by providing a start value for state y:

parameter  Boolean steadyState = true;
parameter Real y0 = 0 "start value for y, if not steadyState";
Real y;
equation
der (y) = a*y + b*u;
initial equation
if steadyState then
der (y)=0;
else
y =y0;
end if ;

This can also be written as follows (this form is less clear):

parameter  Boolean steadyState=true;

Realy (start=0, fixed= not steadyState);
Real der_y(start =0, fixed=steadyState) = der (y);
equation

der (y) = a*y + b*u;
Discrete time controller initialized in steadyate:

discrete Real y;
equation
when {initial (), sampleTrigger} then
y = a*pre(y) + b*u;
end when;
initial equation
y = pre(y);

This leads to the following equations during initialization:
y = a‘pre(y) + b*u;

y = pre(y);
With the solution:
y = (b*u)/(1 -a)

pre(y) :=y;
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8.6.1  The Number of Equations Needed for Initialization

[In general, for the case of a pufiést order) ordinary differential equation (ODE) system witlstate variables
and m output variables, we will have+m unknowns in thaimulationproblem. The OD#Hnitialization problem
hasn additional unkiowns corresponding to the derivative variables. At initialization of an ODE we will need to
find the values ofr®mvariables, in contrast to justt mvariables to be solved for during simulation.

Example: Consider the following simple equation system
der (x1) = f1(x1);
der (x2) = f2(x2);
y = x1+x2+u;

Here we have three variables with unknown values: two dynamic variables that also are state vatiadhes,
X2, i.e.,n=2, one output variablg, i.e.,m=1, and one input variable with known value. A cons&nt solution of
the initial value problem providing initial values fat, x2, der(x1) , der(x2) , andy needs to be found. Two
additional initial equations thus need to be provided to solve the initialization problem.

Regarding DAEs, only that at mastadditional equations are needed to arrive ai+2n equations in the
initialization system. The reason is that in a higher index DAE problem the number of dynamic cotitineous
state variables might be less than the number of state variablés noted inSection 8.68-6 a tool may
add/remove initial equations to fulfthis requirement, if appropriate diagnostics are given.

]

8.6.2 Recommended selection of start -values

In general many variables have staatues thatare not fixed and selecting a ssét of these can give a
consistent set of stavBlues close to the usexpectations. The following gives a Rparmative procedure for
finding such a suiset.

[A model has a hierarchical component structure. Each caemtoof a model can be given a unique model
component hierarchy level number. The top level model has a level number of 1. The level number increases by 1
for each level down in the model component hierarchy. The model component hierarchy level nusdgketois u
give start values a confidence number, where a lower number means that the start value is more confident.
Loosely, if the start value is set or modified on level i then the confidence number is i. If a start value is set by a
possibly hierarchical mdifier at the top level, then this start value has the highest confidence, namely 1
irrespectively on what level, the variable itself is decldred
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Chapter 9

Connectors and Connections

This chapter covers connectors, cartregjuations, and connections.

The speciafunctionscardinality rooted[ deprecatei Connections.isRoot, and Connections.roatey not be
used to control them.

9.1 Connect -Equations and Connectors
Connections between objects are introduced by comugations in the equation part of a clagsconnect
equation has the following syntax:

connect "(" componentreference——component - reference  ""  ceompenent—reference——component -

reference e

The connecequation construct takes two references to connefdorennector is an instance of a connector
clasg, each of which is either of the following forms:

1 c.. € cwhere gis a connector of the class, n>=1 apdis a connector element qgffori=1:(n -1).
I m.c, wheremis a nonconnector element in the cfaandc is a connector element of

There may optionally be array subscripts on any of the components; the array subscripts shall be parameter
expressionso r t he s pecilathe conpextrcarstuct refBrendes array of connectors, the array
dimensions must match, and each corresponding pair of elements from the arrays is connected as a pair of scalar
connectors.

[Example of array usage

connector InPort
connector  OutPort

input Real;
output Real;

block MatrixGain

input InPort u[ size(A, 2)];
output  OutPort y[size(A, 1] ;
parameter Real A[;,;:;] = [1] ;
equation

y=A*u;

end MatrixGain;

Modelica.Blocks.Sources.Sine sinSourcel[5];
MatrixGain gain (A = 5*identity(5));
MatrixGain gain2(A = ones( 2,5));
QutPort x[2];
equation
connect (sinSource.y, gain.u); // Legal
connect (gain.y, gain2.u); // Legal
connect (gain2.y, x); /I Legal

]
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The three main tasks are to:
9 Elaborate expandable connectors.
9 Build connection sets from connesjuations.
1 Generateequations for the complete model.

9.1.1 Connection Sets

A connection set is a set of variables connected by means of ceguetions A connection set shall contain
either only flow variables or only neiftow variables.

9.1.2 Inside and Outside Connectors

In an elenent instance M, each connector element of M is called an outside connector with respect to M. All other
connector elements that are hierarchically inside M, but not in one of the outside connectors of M, is called an
inside connector with respect to Whis is done before resolvirmuter elements to correspondifger ones.

[Example:

m6
mO

m3

ml m4

inner d

outerd

m2 c

m5

Figure 2 Example for inside and outside connectors

The figure visualizes the followirgnnect equatiors to the connector c in the models @onsider the following
connect equatiors found in te model for component mO:

connect (ml.c, m3.c); // ml.c and m3.c are inside connectors
connect (m2.c, m3.c); // m2.c and m3.c are inside connectors

and in the model for component m3 (c.x is actnector inside ¢):

connect (c, md.c); I/ isan outside connector, m4.c is an inside connector
connect (c.x, m5.c); /I cx isan outside connector, m5.cis an inside connector
connect (c , d) ; I/ isan outside connector, d isan outside connector

and in the model for component m6:

connect (d, m7.c); /I d isan outside connector, m7.cis an inside connector

9.1.3 Expandable Connectors

If the expandable qualifier is present on a connector definition, all instances of that connector are referred to as
expandable connectors. Instances of connectors that do netspdbss qualifier will be referred to as ron
expandable connectors.
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Before generating connection equations -parameter scalar variables and pamameter array elements
declared in expandable connectors are marked as only being potentially presempakameter array element

may be decl ared with array dimensions fA:0 indicatin
simple types, and variables of structured types.

Then connections containing expandable connectors are elaborated:

1 One connector in the connect equation must reference a declared compodéhthe other connector is
an undeclared elementa@ma declare@xpandable connector itliendled as followélements that are only
potentially present are not seen as dedar

1 The expandable connector instance is automatically augmented with a new component having the
used name and corresponding type.

9 If the undeclared component is subscripted, an array variable is created, and a connection to the
specific array elemens iperformedintroducingelementsn an array gives an array with at least the
specified elements, other elements are either not created or have a default value (i.e. as if they were
only potentially preseit

9 If the variable on the other side of the cortrequation is input or output the new component will be
either input or output to satisfy the restrictions in Seclid®-3 for a norexpandable connectdf
the existing side refers to an inside conne¢ii@: a connector of a component) the new variable will
copy its causality, i.e. input if input and output if output, since the expandable connector must be an
outside connectgr For an array the input/output property can be deduced separately for each ar
element.

1 When two expandable connectors are connected, each is augmented with the variables that are only
declared in the other expandable connector (the new variables are neither input nor output). This is repeated
until all connected expandable conte instances have matching variables.[each of the connector
instances is expanded to be the union of all connector varifbles

9 The variables introduced in the elaboration follow additional rulegdaerating connection sedtgiven in
Section9.292).

1 If a variable appears as an input in one expandable connector, it should appeariapat momt least one
other expandable connector instance in the same augmentatidn aegmentation set sefinddefinedas
the set of connected expandalglennector instances that through the elaboration will have matching
variables.

[Example

expandable connector  EngineBus
end EngineBus;

block Sensor
RealOutput speed; // Output, ie—i.e. ,non -input
end Sensor;

block Actuator
Reallnput speed; /[ Input
end Actuator;

model Engine
EngineBus bus;
Sensor sensor;
Actuator actuator,
equation
connect (bus.speed, sensor.speed); // provides the non -input  from
sensor.speed
connect (bus.speed, actuator.speed);
end Engine;

]
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1 All components in an expandaldennector are seen as connector instances even if they are not declared as
such [.e. it is possible to connect to e.g. a Real varipble

[Example

expandable connector EngineBus // has predefined signals
import  SI=Modelica.Slunits;
Sl.AngularVelocity speed;
Sl.Temperature T,

end EngineBus;

block Sensor
RealOutput speed;
end Sensor;

model Engine
EngineBus bus;
Sensor sensor;

equation
connect (bus.speed, sensor.speed);
/I connection to non - connector speed is possible
/l'in expandable connec tors

end Engine;

]

1 An expandable connector may not contain a component declared with theflprefixbut may contain
nonexpandable connector components itidtv components.

[Example
import  Interfaces=Modelica.Electrical.Analog.Interfaces;

expandable connector ElectricalBus
Interfaces.PositivePin p12, n12; // OK
flow Modelica.Slunits.Current i; // not allowed
end ElectricalBus;

model Battery
Interfaces.PositivePin p42, n42;
ElectricalBus bus;
equation
connect (p42, bus.p42); // Adds new electric al pin
connect (n42, bus.n42); // Adds another pin
end Battery;

]

1 expandable connectors can only be connected to other expandable connectors.

If a connect equation references a potentially present variable, or variable element, in an expandable connector
the variable or variable element is marked as being present, and due to the paedgreplit is possible to

deduce whether the bus variable shall be treated as input, or shall be treated as output in the connect equation.
That input or output prefix iadded if no input/output prefix is present on the declaration

[Example

expandable connector EmptyBus
end EmptyBus;

model Controller
EmptyBus bus1;
EmptyBus bus2;
Reallnput speed;
equation
connect (speed, busl.speed); // ok, only one undeclared
/l 'and it is unsubscripted
connect (busl.pressure, bus2.pressure);
/I not allowed, both undeclared
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connect (speed, bus2.speed[2]);
/I introduces speed array (with element [2]).
end Controller;

]

After this elaboration the expandable connectors asgdd as normal connector instances, and the connections as
normal connectionsand all potentially present variables and array elements that are not actually present are
undefined[a tool may remove them or set them to the default value, e.g. zero foraRableq. It is an error if

there are expressions referring to potentially present variables or array elements that are not actually present or
nondeclared variables [h e e x pr e s s ieadharialdea flom ehe bug thal are actually declaredl an
present in the connector, in order that the types of the variables can be determined in the lodalT$ispe
elaboration implies that expandable connectors can be connected even if they do not contain the same
components.

[Note that the introduction ofariables, as described above, is conceptual and does not necessarily impact the
flatteninghierarchy in any way. Furthermore, it is important to note that these elaboration rules must consider:

1) Expandable connectors nested hierarchically. This mdaaisbioth outside and inside connectors must be
included at every level of the hierarchy in this elaboration process.

2) When processing an expandable connector that possessesethescope qualifier, all outer instances must
also be taken into accountiilg elaboration

Example

Engine system with sensors, controllers, actuator and plant that exchange information via a bus (i.e. via
expandable connectors):

import  SI=Modelica.Slunits;
import  Modelica.Blocks.Interfaces. *Reallnput_;

/l Plant Side

model Spark Plug
Real Input  spark_advance ;
é

end SparkPlug;

expandable connector  EngineBus
/l No minimal set
end EngineBus;

expandable connector  CylinderBus
Real spark_advance;
end CylinderBus;

model Cylinder
CylinderBus cylinder_bus;
SparkPlug spark_plug;

eqL-J.étion
connect (spark_plug.spark_advance, cylinder_bus.spark_advance);
end Cylinder;

model 14
EngineBus engine_bus;
Modelica.Mechanics.Rotational.Sensors.SpeedSensor speed_sensor;

Modelica.Thermal. HeatTransfer . Sensors.TemperatureSensor te mp_sensor;
parameter Integer nCylinder = 4 "Number of cylinders";
Cylinder cylinder [nCylinder];

equation

/l adds engine_speed (as output)
connect (speed_sensor.w, engine_bus.engine_speed);
/l adds engine_temp (as output)
connect (temp_sensor.T, e ngine_bus.engine_temp);
/l adds cylinder_bus1 (a nested bus)
for i in 1:nCylinder loop
connect(cylinder[i].cylinder_bus, engine_bus.cylinder_busi]);
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end for;
end 14;

Due to the above connection, conceptually a connector consisting of theofinibononnectors is introduced.

The engine_bus contains the following variable declarations:

RealOutput engine_speed;
RealOutput engine_temp;

CylinderBus cylinder_bus [1];
CylinderBus cylinder_bus [2];
CylinderBus cylinder_bus [3];
CylinderBus cylinder_bus [4];

9.2 Generation of Connection Equations

When generating connection equatiomger elements are resolved to the correspondingr elements in the
instance hierarchy (see instance hierarchy name lobki#p4). The arguments to eadonnect -equation are
resolved to two connector elements.

For every use of theonnect -equation

connect (a, b);

the primitive components @&f andb form a connection séttogether with an indication of whether they are from
aninside or an outside connectdine primitive elements are of simple typesr of types defined asperator

record (i.e. a component of awperator record type is not split intasubcomponents The elements of the
connection sets are tuples of primitivariables together with an indication of inside or outside; if the same tuple
belongs to two connection sets those two sets are merged, until every tuple is only present in one set. Composite
connector types are broken down into primitive compon@isouter components are handled by mapping the
objects to the correspondirigner componentsi and the inside indication is not influencethe outer

connectors are handled by mapping the objects to the correspamding connectors and they are always

treated as outside connectors.

[Rationale: The inside/outside as part of the connection sets ensure that connections from different hierarchical
levels are treated separately. Connection sets are formed from the primitive elements and not from the
connectors;this handles connections to parts of hierarchical connectors and also makes it easier to generate
equations directly from the connection sets. All variables in one connection set will either be flow variables or
nonflow variables due to restriction on wpectequations The mapping from aouter to aninner element
must occur before merging the sets in order to get oneszeroequation, and ensures that the equations for the
outer el ements are al/l gi ven f or ifhed nadenesticahaéfinedhe otheh e ¢ ¢
Afsi Heo.
The following connection sets with just one member are also present (and merged):

1 Each primitive flowvariable as inside connector.

1 Each flow variableaddedduring augmentation of expandable connectors, both as insidesamatside.
[Note that the flow variable is not directly in the expandable connector, but in a connector inside the
expandable connector.]

[Rationale: If these variables are not connected they will generate a set comprised only of this element, and thus
they will be implicitly set to zero (see below). If connected, this set will be merged and adding this at the start has
no impacf

Each connection set is used to generate equations for potential and flosu@énreariables of the form

f al=a2=..=an ; I neither flow nor stream variables non—flow—
variables—
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1 z1+2z2+( -z3)+..+zn= 0; // flow - variables
The boldface0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

For anoperator record type thisuses the operato' i which must be defined in the operator record; and all
of the flowrvariables forthe operator record must be of the samaperator record type. This implies that

in order to have flow variables of aperator record type theoperator  record must define addition,
negation, and0' ; and these operations should define an additive group.

In order to generate equations for flow variablesirig theflow prefix], the sign used for the connector variable
z; above is +1 for inside connectasd-1 for outside connectorg{in the example aboje

[Example (simple):

model Circuit
Ground ground;

Load load;
Resistor resistor;
equation

connect (load.p , ground.p);
connect (resistor.p, ground.p);
end Circuit;

nodel Load
extends TwoPin;
Resistor resistor;
equation
connect (p, resistor.p);
connect (resistor.n, n);
end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):
{<load.p.i, inside>}
{<load.n.i, inside>}
{<ground.p.i, inside>}
{<load.resistor.p.i, inside>}
{<load.resistor.n.i, inside>}
{<resistor.p.i, inside>}
{<resistor.n.i, inside>}
{<resistor.p.i, inside>, <ground.p.i, inside>}
{<resistor.p.v, inside>, <ground.pinside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.p.i, outside>, <load.resistor.p.i, inside>}
{<load.p.v, outside>, <load.resistor.p.v, inside>}
{<load.n.i, outside>, <load.resistor.n.i, insé&b}
{<load.n.v, outside>, <load.resistor.n.v, inside>}

After merging this gives:
{<load.p.i, outside>, <load.resistor.p.i, inside>}
{<load.p.v, outside>, <load.resistor.p.v, inside>}
{<load.n.i, outside>, <load.resistor.n.i, inside>}
{<load.n.v,outside>, <load.resistor.n.v, inside>}
{<load.p.i, inside>, <ground.p.i, inside>, <resistor.p.i, inside> }
{<load.p.v, inside>, <ground.p.v, inside>, <resistor.p.v, inside>}
{<load.n.i, inside>}
{<resistor.n.i, inside>}

And thus the equations:
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load.p.v = load.resistor.p.v;

load.n.v = load.resistor.n.v;

load.p.v = ground.p.v;

load.p.v = resistor.p.v;

0=( -load.p.i) + load.resistor.p.i;

( -load.n.i) + load.resistor.n.i;
load.p.i + ground.p.i + resistor.p.i;
load.n.i;

= resistor.n.i;

0
0
0
0

Example (outer component):

model Circuit

Ground ground;

Load load;

inner  Resistor resistor;
equation

connect(load.p, ground.p);
end Circuit;

model Load
extends TwoPin;
outer Resistor resistor;
equation
connect (p, resistor.p);
connect (resistor.n, n);
end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):
{<load.p.i, inside>}
{<load.n.i, inside>}
{<ground.p.i, inside>}
{<resistor.p.i, inside>}
{<resistor.n.i, inside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.p.i, outside>, < resistor.p.i, inside>}
{<load.p.v, outside>, <resistor.p.v, inside>}
{<load.n.i, outside>, <esistor.n.i, inside>}
{<load.n.v, outside>, <resistor.n.v, inside>}

After merging this gives:
{<load.p.i, outside>, <resistor.p.i, inside>}
{<load.p.v, outside>, <resistor.p.v, inside>}
{<load.n.i, outside>, <resistor.n.i, inside>}
{<load.n.v, aitside>, <resistor.n.v, inside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.n.i, inside>}

And thus the equations:

load.p.v = resistor.p.v;
load.n.v = resistor.n.v;
load.p.v = ground.p.v;

0= (-load.p.i) + resistor.p.i;
0=( -load.n.i) + resistor.n.i;
0 = load.p.i + ground.p.i;

0 =load.n.i;

This corresponds to a direct connection of the resistor.

]
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9.3 Restrictions of Connections and Connectors

1 The conneckquations (and the special funcsofor overdetermined connectors) may only be used in
equations and may not be used insideqfiations with noiparametric condition, or in whesguations.
[For-equations always have parameter expressions for the array exprgssion

1 A connector component manot be declared with the prefix parameter or constant. In the cesmeation
the primitive components may only connect parameter variables to parameter variables and constant
variables to constant variables.

1 The conneckquation construct only accefigsms of connector references as specified in Seétiithl.

1 In a conneckquation the two connectors must have the same named component elements with the same
dimensions; recursively down to the primitive components. The primitive components with the same name
are matched and belong to the same connectton se

1 The matchedprimitive components of the two connectonsist have the sam@imitive types, and flow
variables may only connect to other flaariables,streamvariables only to other streawariables and
causal variablesnput /output ) only to causal ariables ifput /output ).

9 A connection set of causal variablésput /output ) may at most contaivariables fromone inside
output connector oonepublic outsidenput connector[i.e., a connection set may at most contain one
source of a signdl.

1 At lead one of the following must hold for a connectiggt containing causal variablgsnerated foa non
partial model or block
(1) the connectiorsetincludes variables from an outsigeblic expandable connectg?) the set contains
variables fronprotected outside connector&) it containsvariables fronone insideoutput connector, or
(4) from one public outsidénput connectoy or (6) the set is comprised solely ofe variable fromone
insideinput connector that is not part of an expandable caondce., a connection set mustnless the
model or block is partial contain one source of a signéthe last item(5) coves the case whera
connector ol componenis left unconnected and the source given textuplly)

1 Variables from grotected atside connector must be part of a connection set containing at least one inside
connector orone declared public outside connector (i.e. it may not be an implicitly defined part of an
expandable connector)Otherwise it would not be possible to deduce tlawusality for the expandable
connector element.

1 In a connection set all variables having #esnpty quantity attribute must have the same quantity attribute

9 A connect equationmay not(directly or indirectly connect two connectors ofiter elements[indirectly
is similar to them being part of the same connectiori dedwever, connections tter elements are
fimoved up before forming connection se®®t her wi se the connection sets
information breaking the equation cduor locally balanced models and blodks

9 Subscripts in a connector reference shappdmameteexpressioner t he speci al operato

1 Constants or parameters in connected components yield the appropriate assert statehmeskshat they
have the samealue connections are not generated.

9 For conditional connectors, see Sectiof.54-4-5

931 Balancing Restriction and Size of Connectors Size-Restriction-oh—
Connectors—

For each nospartial connector class the number of flow variables dlediqualto the number of variables that

are neitheparameter , constant ,input ,output ,stream norflow . TheAnumber of variabl es
of all elements in the connector class after expanding all records and arrays to a set of scalars of primitive types.
The number of variables of an overdetermined type or record (JesSection9.4.19-4.]) is the size of the

output argument ahe correspondingqualityConstraint () function

[Examples:
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connector  Pin // a physical connector of Modelica.Electrical .Analog
Real v;
flow Reali;
end Pin;
connector  Plug // a hiera r chical connec  tor of Modelica.Electrical. MultiPhase
parameter Integer m=3;
Pin p[m];
end Plug;
connector | nputReal =input Real; // A causalinput connector
connector  CQutputReal = output  Real; // A causal output connector

connector  Frame_lllegal

Modelica. Slunits.  Position ro[3] "Position vector of frame origin "
Real S[3,3]" Rotation matrix of frame";
Modelica.Slunits. Velocity v[3] "Abs . velocity of frame origin";
Modelica.Slunits. AngularVelocity w[3] "Abs . angular velocity of frame";
Modelica.Slunits. Acceleration a[3] "Abs . acc. offrame origin";
Modelica.Slunits. AngularAcceleration z[3] "Abs . angularacc . offrame";

flow Modelica.Slunits. Force f[3] "Cut force";

flow Modelica.Slu  nits. Torque t[3] "Cut torque ";

end Frame_lllegal ;

The Frame_lllegal connector (intended to be used in a simple MultiBpalgkage without ovedetermined
connectors) is illegal since the number of flow and-fiow variables do not match. The solutis to create two
connector classes, where twes8ctors €.9.,a andz) areacausal Real and the other variables are matching pairs
ofinput andoutput . This ensures that the modetnonly beconnected in a trestructureor r equi-r e a
b r e a kiet fordevejydosed kinematic loop:

connector Frame_a " correct connector

input  Modelica.Slunits.Position ro[3];

input Real S[3, 3];

input  Modelica.Slunits.Velocity V[3];

input  Modelica.Sluni  ts.AngularVelocity wl[3];
Modelica.Slunits.Acceleration a[3];
Modelica.Slunits.AngularAcceleration z[3];

flow Modelica.Slunits.Force f[3];

flow Modelica.Slunits.Torque t3;

end Frame_a;

connector  Frame_b "correct connector "

output  Modelica.Slunits.Position ro[3];

output Real S[3, 3];

output  Modelica.Slunits.Velocity V[3];

output  Modelica.Slunits.AngularVelocity — w[3];
Model ica.Slunits.Acceleration a[3];
Modelica.Slunits.AngularAcceleration z[3];

flow Modelica.Slunits.Force f[3];

flow Modelica.Slunits.Torque t[3];

end Frame_b;

The subsequent connect®isig_Expanded andPIlugE xpanded2 are correct, bulug_Expanded_lllegal
is illegal since the number of ndnl ow and f |l ow v ami abnide dir e s dtikindt €éeare o 0 t
how a tool can detect in general that connectors sudplus Expanded_lllegal are illegal However, it is
always possible to detect this defect after actual values of parameters and constants are provided in the
simulation model.
connector  Plug_Expanded "correct connector”
parameter Integer m=3;
Real v[m];

flow Reali[m];
end Plu g_Expanded;

connector  Plug_Expanded2 "correct connector”
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parameter Integer m=3;
final parameter Integer n=m;
Real v[m];
flow Reali[n];
end Plug_Expanded?2;

connector  Plug_Expanded_lllegal "connector is illegal”
parameter  Integer m=3;
parameter  Integer n=m;
Real v[m];
flow Reali[n];
end Plug_Expanded_lllegal;

9.4 Equation Operators for Overconstrained Connection -Based Equation
Systems

There is a special problem regardingua@iipn systems resulting fromoopsin connection graphs where the
connectors containonflow (i.e., potential) variabledependenbn each other. When a loop structure occurs in
such a graph, the resulting equation system withie¥constrainegi.e, have more equations than variables, since
there are implicit constraints between certain-flow variables in the connector in addition to the connection
equations around the loop. At the current stditthe-art, it is not possible to automatically elirate the unneeded
equations from the resulting equation system without additional information from the model designer.

This section describes a set of equation operators for such overconstrained cobasetibequation systems,
that makes it possible fahe model designer to specify enough information in the model to allow a Modelica
environment to automatically remove the superfluous equations.

[Connectors may contain redundant variables. For example, the orientation between two coordinate systems in 3
dimensions can be described by 3 independent variables. However, every description of orientation with 3
variables has at least one singularity in the region where the variables are defined. It is therefore not possible to
declare only 3 variables in a noector. Instead n variables (n > 3) have to be used. These variables are no
longer independent from each other and there af&gonstraint equations that have to be fulfilled. A proper
description of a redundant set of variables with constraint equatioes no longer have a singularity. A model
that has loops in the connection structure formed by components and connectors with redundant variables, may
lead to a differential algebraic equation system that has more equations than unknown variablepeiffhmss
equations are usually consistent with the rest of the equatioas,a uniqgue mathematical solution exists. Such
models cannot be treated with the currently known symbolic transformation methods. To overcome this situation,
operators are defiad in order that a Modelica translator can remove the superfluous equations. This is
performed by replacing the equality equations of-flow variables from connection sets by a reduced number of
equations in certain situations.

This section handles a d¢ain class of overdetermined systems due to connectors that have a redundant set of
variables. There are other causes of overdetermined systems, e.g., explisitreezquations for flow variables,
that are not handled by the method described hé¢low

9.4.1 Overconstrained Equation Operators for Connection Graphs

A type or record declarati on neguglityGosstwiet(.)a n oop ttihoanta |Is hda
have the following prototype:

typ e Type // overdetermined type
extends <base type>;

function equalityConstraint // non - redundant equality
input Type T1;
input Type T2;
output  Real residue[ <n>];
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algorithm
residue := ...
end equalityConstraint;
end Type;

record Record
< declaration of record fields>

function equalityConstraint // non - redundant equality
input Record R1;
input Record R2;
output Real residue[ <n>];
algorithm
residue := ...
end equalityConstraint;
end Record;

The @reésiod t pequalityConbtraint(.h e function shall have known size, say constant n. The
function shall express the equality between the two type instancasd T2 or the record instancesl andR2,
respectively, wthanonedundant n ueguatems. The re8idubs obtlfiese equations are returned in
vector fresi dueo oredurslanizeguations statigdirats R2t is given by thenequatiord (
characterizes a vector of zeros of appropriate size):

Record R1, R2;

equation
0 = Record.equalityConstraint(R1,R2);

[If the elements of a recordecord ar e not i ndependent frrAmR2 aclonbbahas
redundant equations

A type class with amqualityConstraint function declaration is called overdetermined tyfaaecord class
with an equalityConstraint function definition is called overdetermined record. A connector that contains
instances of overdetermined type and/or record classes is called overdetermined connector. An overdetermined
type or record may neign have flow components nor may be used as a type of flow compolfiemsarray is
used as argument to any of the Connections.* functions it is treated as oh¢hend is no special treatment of
this casé howeverthere is for connedt see sectio®.1

Every instance of an overdetermined type or record in an overdetermined connector is a node in a virtual

connection graph that i s used RLoR2detoegr mihreen whkheen etghue
equalityCo nstraint(R1,R2) Ohas to be us edcoreatf.) t hequatpres.nTeerbanchesaf o f

t he virtual connection g r a pdonnecte)r ed0 i anpxplicittyi byl vy de
Connections.branch(.. .) statements, see table bela®annections is a builtin package in global scope
containing buikin operators. Additionally, corresponding nodes of the virtual connection graph have to be
defined as roots or as potential roots with functions Connections.root(.. .) and
Connections.potentialRoot(.. .), respectiely. In the following tableA andB are connector instances that

may be hierarchically structured, e gmay ke an abbreviation fd&nginePort.Frame

connect(A,B); Defines breakable branchefrom the overdetermined type
record instances in connectioistance A to the correspondi
overdetermined type or record instances in connector insta
for a virtual connection graph. The types of the correspor
overdetermined type or record instances shall be the same

Connections.branch(A.R,B.R); Definesa nontbreakable branchHrom the overdetermined tyj
or record instance R in connector instance A to
corresponding overdetermined type or record instance
connector instance B for a virtual connection graph.

function can be used at all placgkere a connect(..) statem
is allowed E.g., it is not allowed to use this function in a w
clause. This definition shall be used if in a model
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connectors A and B the overdetermined recaxdis and B.R
are algebraically coupled in the model, e.gue toB.R =
f(A.R , <other unknowns>)

Connections.root(A.R); The overdetermined type or record instance R in conn
instance A is a (definitejoot nodein a virtual connectio
graph. [his definition shall be used if in a model w
connectorA the overdetermined record.R is (consistently|
assigned, e.g., from a parameter expresgions

Connections.potentialRoot(A.R); The overdetermined type or record instafcén connecto

instance A is gotentid root nodein a virtual connection gray
Connections.potentialRoot( with ppoi dmpi tOy 0. I f no sec
AR, priority = p); priorityoishalelrobeifia para

Integetr In a virtual connection subgraph without
Connections.root definition, one of the potential roots with
lowest priority number isedected as rodiThis definition ma
be used if in a model with connectarthe overdetermine
record A.R appears differentiated der(A.R) 1 together with
the constraint equationsf A.R, i.e., a norredundant subset
A.R maybe used as stajes

b = Conn ections.isRoot(A.R); Returns true, if the overdetermined type or record instRnng
connector instance A is selected as a root in the v
connection graph.

b = Connections.rooted(A.R); If the operatoConnections.roo  ted(A.R) is usedor the

b = rooted(A.R); // deprecated equivalent but deprecated operataited(A.R) , then there
must be exactly one statement
Connections.branch(A.R,B.R) involving A.R (the
argument ofconnections.rooted must be the first argume
of Connections.branch ). In that case
Connections.rooted(A.R) returns true, iA.R is closer to

theroot of the spanning tree thatR ; otherwise false is
returned. This operator can be used to avoid equation systg
by providing analytic inversesee
Modelica.Mechanics.MultiBody.Parts.Fixedtation]

[Note, thatConnections.branch ~ , Connections.root , Connections.potentialRoot do not generat
equations. They only generatedes and branches in the virtual graph for analysis purppses.

9.4.2 Converting the Connection Graph into Trees and Generatin g Connection

Equations
Beforeconnect(.. .) equations are generated, the virtual connection graph is transformed into a set of spanning
trees by removing breakable branches from the graph. This is performed in the following way:
1. Every r oot n o dCennedtienf.rootf.p d Vi sttate mént is a definit
tree.

2. The virtual connection graph may consist of sets of subgraphs that are not connected together. Every
subgraph in this set shall have at least onemode or one potential root nottea simulation modellf a
graph of this set does not contain any root node, then one potential root node in this subgraph that has the
lowest priority number is selected to be the root of that subgraph. The selectiom icguired in a class
with functionConnections.isRoot(..) , see table above.
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3. If there are n selected roots in a subgraph, then breakable branches have to be removed such that the result
shall be a set of n spanning trees with the selected root nodegsas r

After this analysis, the connémt equations are generated in the following way:

1. For every breakable brancte[,a connect(A,B)  equation] in one of the spanning trees, the conioect
equations are generated according to Seétigth2

2. For every breakable branch not in any of the spanning trees, the ¢omrezpiations are generated
according to Sectiof.23-2, except for overdetermined type or recordanstc e s R. Here the

= R.equalityConstraint(A.R,B.R) 0O are generAR==BR d.nstead of i

9.4.3 Examples of Overconstrained Connection Graphs

[Example:

selected (potential)
root

O node
O root
S

potential roc

nonbreakable branch
(Connections.branch

-------- breakable branct
(connect)
removed breakable
branch to get tree

selected

selected roc

Figure 9-2. Example of a virtual connection graph

9.4.3.1 An Overdetermined Connector for Power Systems

[An overdetermined connector for power systems based on the transformation theory of Park may be defined as:

type AC_Angle "Angle of source, e.g., rotor of generator"
extends Modelica.Slunits.Angle; // AC_Angle is a Real number
[/l with unit = "rad"
function equalityConstraint
input AC_Angle thetal;
input AC_Angle theta2;
output Real residue[0] "No constraints"
algorithm
/* make sure that thetal and theta2 from
joining branches are identical */
assert(abs(thetal I theta2)<1l.e - 10, "Consistent angles" );
end equalityConstraint;
end AC_Angle;

connector AC_Plug "3 - phase alternating current connector"
import S| = Modelica.Slunits;
AC_Angle theta;
Sl.Voltage  Vv[3] "Voltages resolved in AC_Angle frame";
flow Sl.Currenti[3] "Currents resolved in AC_Angle frame";
end AC_Plug;
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The currents and voltagea the connector are defined relatively to the harmonic, Hfighuency signal of a

power source that is essentially described by angle theta of the rotor of the source. This allows much faster
simulations, since the basic high frequency signal of the psewece is not part of the differential equations. For
example, when the source and the rest of the line operates with constant frequency (= nominal case), then
AC_Plug.v and AC_Plug.i are constant. In this case a variable step integrator can select tangesteps. An
element, such as aphase inductor, may be implemented as:

model AC_Inductor
parameter Real X[3,3], Y[3,3]; // component constants
AC_plug p;
AC_plug n;

equation
Connections.branch(p.theta,n.theta); //branch in virtual graph

Il since n.theta = p.theta

n.theta = p.theta; /I pass angle theta between plugs
omega = der (p.theta); I frequency of source
zeros(3) = p.i + n.j;
X*der (p.i) + omega*Y*p.i = p.v T nv;

end AC_Inductor

At the place where the source frequency, i.e., essentially variable theta, is deftwaeations.root(..)
must be present:

AC_plug p;
equation
Connections.root(p.theta);
der (p.theta) = 2*Modelica.Constants.pi*50 // 50 Hz;

The graph analsis performed with the virtual connection graph identifies the connectors, whet€ thagle
needs not to be passed between components, in order to avoid redundant equations.

9.4.3.2 An Overdetermined Connector for 3 -dimensional Mechanical Systems

An overdeternmied connector for-8limensional mechanical systems may be defined as:

type TransformationMatrix = Real[3,3];

type Orientation "Orientation from frame 1 to frame 2"
extends TransformationMatrix ;

function equalityConstraint
input Orientation R1 "R otation from inertial frame to frame 1";
input Orientation R2 "Rotation from inertial frame to frame 2";
output  Real residue[3];
protected
Orientation R_rel "Relative Rotation from frame 1 to frame 2";
algorithm
R_rel = R2*transpose(R1 );
[* If frame_1 and frame_2 are identical, R_rel must be
the unit matrix. If they are close together, R_rel can be
linearized yielding:
R_rel=[ 1, phi3, - phi2;
-phi3, 1, phil;
phi 2, -phil, 1];
where phil, phi2, phi3 are the small rotation angles around
axis x, y, z of frame 1 to rotate frame 1 into frame 2
The atan2 is used to handle large rotation angles, but does not

modify the result f or small angles.
*/
residue := { Modelica.Math.atan2( R_rel[2, 3] , R_rel[1, 1)) ,
Modelica.Math.atan2( R_rel[3, 1], R_rel[2, 2]),
Modelica.Math.atan2( R_rel[1, 2] , R_rel[3, 3)) h

end equalityConstraint;
end Orientat ion;

connector Frame "3 - dimensional mechanical connector"
import S| = Modelica.Slunits;
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Sl.Position  r[3] "Vector from inertial frame to Frame";
Orientation R "Orientation from inertial frame to Frame";

flow Sl.Force f[3] "Cut - force resol ved in Frame";
flow Sl.Torque t[3] "Cut - torque resolved in Frame";
end Frame;

A fixed translation from a fram&to a frameB may be defined as

model FixedTranslation
parameter  Modelica.Slunits.Position r[3];
Frame frame_a, frame_b;
equation
Connections.branch(frame_a.R, frame_b.R);
frame_b.r = frame_a.r + transpose(frame_a.R)*r;
frame_b.R = frame_a.R;
zeros(3) = frame_a.f + frame_b.f;
zeros(3) =frame_a.t + frame_b.t + cross(r, frame_b.f);
end FixedTranslation;

Since the transformation atrix frame_a.R is algebraically coupled witlframe_b.R , a branch in the virtual
connection graph has to be defined. At the inertial system, the orientation is consistently initialized and therefore
the orientation in the inertial system connector hasgaéfined as root

model InertialSystem
Frame frame_b;

equation
Connections.root(frame_b.R);
frame_b.r = zeros(3);
frame_b.R = identity(3);

end InertialSystem;

]
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Chapter 10

Arrays

An array can be regarded as a collection of values, allectame type. Modelica arrays can be multidimensional
and are firectangular, 0 which in the case hakequmahtr i c
length, and all columns have equal length.

Each array has a certain dimensionality, i.e., number of dimensions. The degenerate case of a scalar variable is
not really an array, but can be regarded as an array with zero dimensions. Waetoome dimension, matrices
have two dimensions, etcS¢called row vectors and column vectors do not exist in Modelica and cannot be
distinguished since vectors have only one dimension. If distinguishing these is desired, row matrices and column
matrices are available, being theorresponding twalimensional entities. However, in practice this is seldom
needed since the usual matrix arithmetic and linear algebra operations have been defined to give the expected
behavior when operating on Modelica vectors and matiices.

Modelica isa strongly typed language, which also applies to array types. The number of dimensions of an
array is fixed and cannot be changed at-tne [in order to permit strong type checking and efficient
implementatiory. However, the sizes of array dimensions t& computed at rdtime, [allowing fairly generic
array manipulation code to be written as well as interfacing to standard numeric libraries implemented in other
programming languagels

An array is allocated by declaring an array variable or callingray aonstructor. Elements of an array can be
indexed byinteger , Boolean , orenumeration values.

10.1 Array Declarations

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays of
more than two dimensionsTljere is no distinguishing between a row and column véctor

The following table shows the two possible forms of declarations and defines the terminology. C is a
placeholder for any class, including theilt-in type classes Real, Integer, Boolean, String] anumeration
types. The type of a dimension upper bound expression, e.g. n, m, p,... in the table below, need to be a subtype of
Integer orEB for a clas€B that is arenumeration type or subtype of the Boolean typalon ¢ ) indicates that
the dimensin upper bound is unknown and is a subtype of Integer.

Upper and lower array dimension index bounds are described in SEgtiofi0-1-1

An array indexed by Boolean or enumeration type can only be usealfiltwing ways:

9 Subscripted using expressions of the appropriate type (i.e. Boolean or the enumerated type)

1 Binding equations of the forml = x2 as well as declaration assignments of the fetm= x2 are allowed
for arrays independent of whether thelér types of dimensions are subtypes of Integer, Boolean, or
enumeration types.

Table-10-1-General-formsofeclaration-of arrays.
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Table 10-1. General forms of declaration of arrays.

Modelica form 1 |Modelica form 2 |# dimensiongDesignation |Explanation

Cx; Cx; 0 Scalar Scalar

CIn] x; C X[n]; 1 Vector ni Vector

C[EB] x; C X[EB] 1 Vector Vector index by enumerationor
Booleantype BB

C[n, m] x; C x[n, m]; 2 Matrix n X m Matrix

Cln, np, X |Cx[n, o, ny]; |K Array Array with k dimensiongk>=0).

[The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at
redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 is the
traditional way of array dedrations in languages such as Fortran, C, C++.

Real[:] vi,v2 [/ vectors vl and v2 have unknown sizes. The actual sizes may be different.
It is possible to mix the two declaration foraithough it might be confusing.
Real[3,2] x[4,5]; /I xhast ype Real[4,5,3,2];

The reason for this order is given by examples such as:

type R3=Real[3];
R3 a;

R3 b[1]={a};
Real[3] c[1]=b;

Using a type for fAado and Abo in this way is nor mal,

A vector y indexed bgnumeration values

type TwoEnums = enumeration (one,two);
Real[TwoEnums] y;

]
Zerovalued dimensions are allowed; &x[0]; declares an empty vector ar@k[0,3]; an empty matrix.

[Special cases

Table 10-2. Declaration of arrays asvectors, rowvectors, or columivectors of arrays.

Modelica form 1 |Modelica brm 2 |# dimensiongDesignation |Explanation

C[1] x; C x[1]; 1 Vector 17 Vector, representing a scalar
Cl1,1] x; C x[1, 1]; 2 Matrix 1 x 17 Matrix, representing a scalg
CIn,1] x; C x[n, 1]; 2 Matrix n x 17 Matrix, representing a colun
Cli,n] x; CX[1, n]; 2 Matrix 1 x ni Matrix, representing a row

]

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions
from the component declaration and subsequent dimensions from the maximally expandeakenbitype. A

type is maximally expanded, if it is either one of the Huiltypes (Real, Integer, Boolean, String, enumeration
type) or it is not a type class. Before operator overloading is applied, a type class of a variable is maximally
expanded.

[Example

type Voltage = Real(unit ="V");

type Current = Real(unit = "A");

connector  Pin
Voltage v; /I type class of v = Voltage, type of v = Real
flow Currenti; I type class of i = Current, type of i = Real
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end Pin;
type MultiPin = Pin[5];

MultiPin[4] p; I type class of p is MultiPin, type of p is Pin[4,5];

type Point = Real[3];
Point p1[10];
Real p2[10,3];

The components pl and p2 have identical types.

p2[5] = p1[2]+ p2[4]; // equivalentto p2[5,]] =pl[2,;]+p 2[4,7]
Real r[3] = p1[2]; /l equivalentto r[3] = p1[2,:]

]

[Automatic assertions at simulation time

Let A be a declared array and i be the declared maximum dimension sizedofdireension, then an assert
statemenassert(i>=0, ...) is generatd provided this assertion cannot be checked at compile time. It is a
guality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index df tdenension. Then for evesuch
indexaccess an assert statemessert(i>=1 and i<=size(A,di), ... ) is generated, provided this
assertion cannot be checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.

10.1.1 Array Dimension Lower and Upper Index Bounds

The lower and upper index bounds for a dimension of an array indexegdryr , Boolean , or enumeration
values are as follows:

1 An array dimension indexed by integers has a loweemnd of 1 and an upper bound being the size of the
dimension.

1 An array dimension indexed IBpolean values has the lower boufadse and the upper bourtcie .

1 An array dimension indexed l@pumeration  values of the typ&=enumeration (el, e2, ...,en) has he
lower bouncE.el and the upper bourtlen .

10.2 Flexible Array Sizes

Regarding flexible array sizes and resizing of arrays in functions, see Settidfi2.4-5

10.3 Built -in Array Functions

Modelica provides a number of buiift functions that are applicable to arrays.

The followingpromote function cannot be used in Modelica, but is utilized below to defirer atfnay operators
and functions:

Table 10-3. Promote functiondannot be used illodelica)

promote(A,n) Fills dimensions of size 1 from the right to array A upto dimension n, where
ndims(A)" is requied. Let C = promote(A,n), with nA=ndims(A), then ndims
= n, size(C,j) = size(A,)) for 1 <= j <= nA, size(C,j) = 1 for nA+1 <= j <3
Cli_,l,..,inA Ll .., 1]=A[i_l, .., i nA]

[The functionpromote cannot be used in Modelica, because the nunobalimensions of the returned array
cannot be determined at compile time if n is a variable. Bedmmote is only used for constant n
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Some ramples of using the functiodefinedin the followingSectionl0.3.1#6-3-1to Sectiorl0.3.8:6-3-5

Real x[4,1,6];

size(x,1) = 4;

size(x); /I vector with elements 4, 1, 6
size(2*x+x ) = size(x);

Real[3] v1 = fill(1.0, 3);

Real[3,1] m = matrix(vl);

Real[3] v2 = vec tor(m);

Boolean check[3,4] = fill(true, 3, 4);

10.3.1 Array Dimension and Size Functions

The following builtin functions for array dimensions adiinension sizes are provided:
Iable&@-%—BHHHFaﬁay—mmenaen—and—S%e—fuﬂene. Ht-i i i i ions.

Table 10-4. Built-in array dimension and size functions.

Modelica Explanation

ndims(A) Returns the number of dimensions k of expression A, with R.>

size(A,i) Returns the size of dimension i of array expression A where i shall be > 0 ¢
ndims(A).

size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

10.3.2 Dimensionality Conversion Functions

The following builtin conversion functions convert scalars, vectors, and atoagcalars, vectors, or matrices by
adding or removing-$ized dimensions.

Table 10-516-4. Built-in dimensionality conversion functions.

Modelica Explanation

scalar(A) Returns the single element of array A. size(A,i) = 1 is required for 1 <=
ndims(A).

vector(A) Returns a dvector, if A is a scalar and otherwise returns a vector containir
the elements of the array, provided there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A is a scalar or vector and otherwise returns thenidy
of the first two dimensions as a matrix. size(A,i) = 1 is required for 2 <
ndims(A).

10.3.3 Specialized Array Constructor Functions

An array constructor function constructs and returns an array computed from its arguvesitof the
constructor functions in the table below construct an array by filling in values according to a certain pattern, in
several cases just giving all array elements the same value. The general array constructor witrayniae )

or { é} ibedsin Seai®l.£0-4

Table 10-616-5. Specialized array constructor functions.

Modelica Explanation

identity(n) Returns the n x n Integer identity matrix,thvones on the diagonal and zero
the other places.

diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and ¢
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elements zero.

zeros(n 1,n 5N 3,...

)

Returns the nx n; X Nz X ... Intege array with all elements equal to zerpXr 0).
The function need one or more arguments, that is zeros() is not legal.

ones(n 1,n ,,N 3,...)

Return the px n; X Nz X ... Integer array with all elements equal to one-é0 ).
The function ned one or more arguments, that is ones() is not legal.

fill(s,n N 2N 3,

)

Returns the nx m, X nz x ... array with all elements equal to scalar or a
expression s (n>= 0). The returnedarray has the same type as
Recursive definion: fil  (s,n,mp,ne, ...) = fill  (fil (s, ...), N);

fl (s, n)={s, s, &, s}
The function neesltwo or more argumentghat is fill(s) is not legal.

linspace(x1,x2,n)

Returns a Real vector with n equally spaced elements, such
v=l inspace (x1,x2,n),

V[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <=i <= n. It is required that n >= 2. T
arguments x1 and x2 shall be numeric scalar expressions.

10.3.4 Reduction Functions and Operators

A reduction functioni r e d u ¢ e s dor several scalardpyone value (normally a scalar but the sum

reduction function may give an array as resunldl also be applied to an operator repdxite that none of these

operators (particularly min and max) generate events themselves (buteatgwould generate event3he

restriction on the type of the input in sectidf.3.4:0-3:41 for reduction expressions also apply to the array

elements/scalar inputs for the reduction operator with the same name.

The sum eduction functionboth variantsynay be applied to an operator record, provitexd the operator

recorddefines '0' and '+'. It is then assumed to form an additive group.

The following reduction functions are available:

Table 10-716-6. Array reduction functions and operators.

Modelica Explanation
min(A) Returns thdéeastelement of array expression As defined by <
min(x,y) Returns théeastelement of the scalars x angag definedy <.
min( Also described in Sectioh0.3.4.10.3-4-1
eqi, ... J) for | Returns theleastvalue (as defined by <)f the scalar expression e(i, ...,
; :: \lj) evaluated for all combinations biih u, ..., jin v:
max(A) Returns thgreatestlement of array expression as defined by >
max(x,y) Returns thegreatestlement of the scalars x angag defined by >
max( Also described in Sectioh0.3.4.10.3-4-1
eqi, ... ) for | Returns thegreatestvalue (as defined by >)pf the scalar expression e, ...
; :: \lj) evaluated for all combinti@ns ofiinu, ...,jinv:
sum(A) Returns the scalar sum of all the elements of array expression:
All,...,1]+A[2,..,1]+....+A[end,...,1]+Alend,...,end]
sum( Also described in Sectioh0.3.4.1:0.3-4-1
e, .. ) for | Returns the sum of the expression e(i, ..., j) evaluated for abioaions of i in
! :: \‘j) U, ...,jinv: e(u[1],... WV[1])+e(u[2],... VAN +e(ulend],..
: V[1])+...+e(u[end],..,v[end])
The type of sum(e(i, ..., for i in u, ..., jin v) is the same as the type of e(,...J).
product(A) Returns the sdar product of all the elements of array expression

AlL,...,.1]*A[2,...,1]*....*A[end,...,1]*A[end,...,end]
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product( Also described in Sectioh0.3.4.1.0.3.4-1

eqi, ..., J) for | Returns the product of the scalar expression e(i, ..., j) evaluated f
PNt combindions of i inu, ..., jin v: e(U[1],...,v[1])*e(u[2],....v[1])*...

Joinv) *(ulend],...,v[1])*...*e(u[end],...,v[end])

The type of product(e(i, ..., jor i in u, ..., jin v) is the same athe type of
e(i,...J).

10.3.4.1 Reduction Expressions

An expression:

function - name "(" expressionl for iterators ")"

is a reductiorexpression. The expressions in the iterators of a reduetipression shall be vector expressions.
They are evaluated once for each reductiapression, and are evaluated in the scope immediately enclosing the
reductionexpression.

For an iterator:
IDENT in expression2

the loopvariable,IDENT, is in scope insidexpressionl . The loopvariable may hidether variables, as in for
clauses. The result depends onftinetion - name, and currently the only legal functisrames are the buiih
operatorsarray , sum, product , min, andmax. For array, see SectiolD.410.4. If function - name is sum,
product , min, or max the result is of the same type espressionl and is constructed by evaluating
expressionl  for each value of the loepariable and computing theum, product , min, or max of the
computed elements. For detion of ranges, see Sectidd.2.2.11.2.2.1 and for using types as ranges see
Sectionl11.2.2.21.2.2.2

Table 10-8. Reduction expressions with iterators.

Functionname Restriction on expressionl | Result if expession2 is empty
sum Integer or Real zeros( é)
product Scalarinteger or Real 1
min Scalarenumeration, Greatestalue of type (
Boolean, Integer or Real Modelica.Constants.inf
for Real)
max Scalarenumeration, Leastvalue oftype (
Boolean, Integer or Real - Modelica.Constants.inf
for Real)
[Example
sum(i for i in 1:10) /I Gives ailfli =1+2+...+10=55
/I Read it as: compute the sum of i for iinthe range 1to 10.

2

sum(i*2 for i in {1,3,7,6}) // Gives = 1+9+49+36=95

aii{l 37 6}I
{product(j for j in L) for i in 0:4}// Gives {1,1,2,6,24}
max(i"2 for i in {3,7,6}) /I Gives 49

]
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10.3.5 Matrix and Vector Algebra Functions

The following set of buiin matrix and vector algebrarations are availableThe function transpose can be
applied to any matrix. The functions outerProduct, symmetric, cross and skew require Real/lnteger vector(s) or
matrix as input(s) and returns a Real vector or matrix

Table 10-916-7. Matrix and vector algebra functions.

Modelica Explanation

transpose(A) Permutes the first two dimensions of array A. It is an error, if array A dog
have at least 2 dimensions.

outerProduct(vl,v2 Returns the outer product of vectors vl and v2 ( = maftjipanspose

) matrix(v2) ) ).

symmetric(A) Returns a matrix where the diagonal elements and the elements abg

diagonal are identat to the corresponding elements of matrix A and wher
elements below the diagonal are set equal to the elements above the dia
A, i.e., B := symmetric(A}> BJ[i,j] := A[i,j], if i <=}, B[i,j] := A[j.i], if i >].

cross(x,y) Retuns the cross product of thev8ctors x and v, i.e.
cross(x,y) = vector( [ x[2]*y[3X[3]*y[2]; x[3]*Y[1] -x[1]*Y[3]; x[1]*y[2] -
x[2]*y[1]]);

skew(x) Returns the 3 x 3 skew symmetric matrix agsed with a 3vector, i.e.,

cross(x,y) skew(X)*y; skew(x) = [0;x[3], X[2]; X[3], O, -x[1]; -x[2], x[1], O];

10.4 Vector, Matrix and Array Constructors

The constructor functioarray(A,B,C,...) constructs an array from its arguments according to the following
rules:

1 Size matching: All argumes must have the same sizes, sg(A)=size(B)=size(C)=

9 All arguments must be typesompatible expressions (Secti6rts-6) giving the type of the elementShe
datatype of the result array is the maxilgaexpanded type of the arguments. Real and Integer subtypes
can be mixed resulting in a Real result array where the Integer numbers have been transformed to Real
numbers.

9 Each application of this constructor function adds asined dimension to the teifi the result compared to
the dimensions of the argument arrays., hdims(array(A,B,C)) = ndim s(A) + 1 = ndims(B) +
1, ...

1 {A,B,C,..} is a shorthand notation farray(A, B, C, ...)

1 There must be at least one argumeat,[array() or {} is notdefined.

[Examples
{1,2,3}  is a 3vector of type Integer
{{11,12,13}, {21,22,23}} is a 2x3 matrix of type Integer
{{{1.0, 2.0, 3.0}}} is a 1x1x3 array of type Real
Real[3] v = array(1, 2, 3.0);
type Angle = Real(unit="rad");
parameter Angle alph a=2.0; //type of alphais Real.

/I array(alpha, 2, 3.0) or {alpha, 2, 3.0} isa 3 - vector of type Real.
Angle[3] a = {1.0, alpha, 4}; // type of a is Real[3].

10.4.1 Array Constructor with Iterators

An expression:
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"{" expression for iterators"}"
or
arr ay "(" expression for iterators")"

is an array constructor with iterators. The expressions inside the iterators of an array constructor shall be vector
expressions. They are evaluated once for each array constructés,saa@valuated in the scope imdiately
enclosing the array constructor.

For an iterator:

IDENT in array_expression
the loopvariable,IDENT, is in scope inside expression in the array construction. Thevlotable may hide other
variables, as in feclauses. The loepariable has theame type as the type of the elements of array_exprgssion
and can be simple type as well as a retygpd The loopvariable will have the same type for the entire leap.
for an array_expression {1,3.2} the iterator will have tthetype of the typ-compatible expression (Real) for all

iterations. For deduction of ranges, see Sectibh2.2.11-2.2.1 and for using types as range see Section
11.2.2.23.222

10.4.1.1 Array Constructor with One Iterator

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of the loop
variable and forming an array of the result.

[Example

array(i for i in 1:10)
/I Gives the vector 1:10={1,2,3,...,10}

{r for r in 1.0:15:5.5}
/I Gives the vector 1.0:1.5:5.5={1.0, 2.5, 4.0, 5.5}

{ir2 for i in {1,3,7,6}}
/I Gives the vector {1, 9, 49, 36}
10.4.1.2 Array Constructor with Several Iterators

The notation with several iterators is a shorthand notation for nested array constructors. The notation can be
expanded into the usual form by replacing eachy } for 'and prepending the array constructdth a { .

[Example
Real hilb[:,:]={ U@+ -1) for i in 1in,j in 1:n}
Real hilb2[:,:]={{ U@+ -1) for j in 1in} for i in 1in} ;

10.4.2 Array Concatenation

The functioncat(k,A,B,C,...) concatenates arraysB,C,... along dimension k according to the follogy
rules:

1 Arrays A, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

1 Arrays A, B, C, ... must be typmompatible expressions (Secti6ris-6) giving the type of the elements of
the result.The maximally expanded types should be equivalent. Real and Integer subtypes can be mixed
resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

1 k has to chaacterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C); k shall be an
integer number.

i Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of
dimension k, i.e., size(A,j) = size(B,]), far<= j <= ndims(A) and j <> k.
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[Examples

Real[2,3] rl =cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});
Real[2,6] r2 =cat(2, r1, 2*rl);

]

Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C).sthen
size(R,k) = size(A k) + size(B,k) + size(C,k) + ...

size(R,j) = size(A,)) = size(B,j) = size(C,j) = ....,for1 <=j<=nandj<> k.
R 1, ooy i Ky ooy i N] = A[LL ooy K oy i_n], fOr i_k <= size(AK),
R 1, i K oy i_N] = B[i_1..., i_k-size(A,), ..., i_n], for i_k <= size(Ak) + size(Bk),

where 1 <=i_j<=size(R,)) for 1 <=j<=n.

10.4.2.1 Array Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation alarsj #relfsecond dimensions.

T

1

1

Concatenation along first dimension

[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where

n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessaiz&d dimensions are added to the right of A,

B, C before the operation is carried out, in order that the operands have the same number of dimensions
which will be at least two.

Concatenation along second dimension

[A, B, C, ...] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where

n = max(2 ndims(A), ndims(B), ndims(C), ....). If necessangided dimensions are added to the right of A,

B, C before the operation is carried out, especially that each operand has at least two dimensions.

[c.d]].
[A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a matrix with the
elements of A, if A is a scalar or a vector.

There must be at least one argutr{@r. [] is not defined)

[Examples
Real s1, s2, vi[nl1], v2[n2], M1[m1,n],

M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k], K2[m2,n,K];

[viv2] isa(nl+n2) x 1 matrix
[M1;M2] is a (m1+m2) X n matrix
[M3,M4] is anx (m1+m2) matrix
[K1;K2] isaMml+m2) x n x k array
[s1;s2] is a2 x 1 matrix

[s1,s1] isalXx 2 matrix

[s1 ]is a1l x 1 matrix

[vi]

is anl x 1 matrix

Real[3] v1 = array(1, 2, 3);

Real[3] v2 = {4, 5, 6};

Real[3,2] m1 = [v1, v2];

Real[3,2] m2 = [v1, [4;5;6]]; // m1=m2

Real[2,3] m3 =[1,2,3;4,5,6];
Real[1,3]m4 =[1, 2, 3];
Real[3,1]1 m5 =[1; 2; 3];
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10.4.3 Vector Construction

Vectors can be constructed with the general array constructoReatj3] v = {1,2,3}

The range vector operator or colon operator of siragfgession cabe used instead of or in combination with
this general constructor to construct Real, Integer, Boolean or enumeration type vectors. Semantics of the colon
operator:

1. j:k isthe Integer vector {j, j+1, ..., k}, if j and k are of type Integer.

1 j: k isthe Real vector {j, j+1.0, ... n}, with n = floor{g, if j and/or k are of type Real.

1 j:k is aReal, Integer, Boolean, or enumeration type vector with zero elements, if j > k.

1 j:d:k isthe Integer vector {j, j+d, ..., j+n*d}, with ndiv(k i j, d), if j, d, and k are of type Integer.

1 j:d:k isthe Real vector {j, j+d, ..., j+n*d}, with n = floor¢fi/d), if j, d, or k are of type Realn order to
avoid rounding issue®r the length it is recommended to use {j+d*i for i in O:n}limspaceyf, k, n+1)7 if
the number o&lements are known.

9 j:d:k is aReal or Integer vector with zero elements, ifd >0andj>k orifd<0andj<k.

i false : true is the Boolean vector {false, true}.

T jijis {j} if j is Real, Integer, Boolean, or enumeratitype.

i E.ei : E.ej is the enumeration type vector { E.ei, ... E.ej} where E.ej> E.ei, and ei and ej belong to some
enumeration type E=enumeration(...ei,...ej,...).

[Examples

Real v1[5] = 2.7 : 6.8;

Real v2[5] ={2.7, 3.7, 4.7,5.7, 6.7}, // =same as vl
Boolean b1[2] = false:true;

Colors =  enumeration (red,blue,green);

Colors ec[3] = Colors.red : Colors.green;

10.5 Array Indexing

The array indexing operatoramég ...] is used to access array elements for retrieval of their values or for
updating these value&n indexing operation isubject to upper and lower array dimension index bounds (Section
10.1.16-19). [An indexing operation is assumed to take constant time, i.e., largely independent of the size of the
array.] The indexing operator takes two or more operands, where the first operand is the array to be indexed and
the rest of the operands angléx expressions:

arrayname [ indexexprl indexexpr2...]

A colon is used to denote all indices of one dimension. A vector expression can be used to pick out selected rows,
columns and elements of vectors, matrices, and arrays. The number of dimendiersxpféssion is reduced by

the number of scalar index argumenittshe number ofndex arguments is smaller than the number of dimensions

of the arraythetrailing indices will ise ":".

It is also possible to use the array access operator to assigmentgelements of an array in algorithm
sections. If the index is an array the assignments take place in the order given by the index array. For assignments
to arrays and elements of arrays, the entire 4figimd side and the index on the deéind sides-are evaluated
before any element is assigned a new value.

[Examples
al, jl is a vector of the-jh column of a,

aljl is a vector of thefhrowof a_ alj, 1]

afj : K] is {[a[j], a[j+1], -.. , a[K]}
al:,j : Klis [a[:,j], al:,j+1], ..., a[:,K]],
v[ 2:2:8] =v[{2,4,6,8}] .
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V[{j,k}:={2,3}; // Same as V[j]:=2; v[K]:=3;
v[{1,1}]:={2,3}; // Same as v[1]:=3;

if x is a vectorx[1] is a scalar, but the slice[1:5] is a vector (a vectevalued or colon index expression
causes a vector to be returned)

]

[Examples given the declaratiam,m], v[k], z[i,j,p]

Table 10-10. Examples of scalars vs. array slices created with the colon index.

Expression # dimensions Type of value

X[1, 1] 0 Scalar

X[, 1] 1 ni Vector

X[1, 1] or x[1] 1 mi Vector

v[1:p] 1 pi Vector

X[1:p, ‘] 2 p X mi Matrix
x[1:1, 1] 2 1 x m- "row" matrix
x[{1, 3, 5}, :] 2 3 x mi Matrix

X[:, V] 2 n x ki Matrix
z[:,3,] 2 i X pT Matrix
X[scalar([1]), ‘] 1 mi Vector
x[vector([1]), :] 2 1 x m-"row" matrix

]

10.5.1 Indexing with Boolean or Enumeration Values

Arrays can be indexed using values of enumeration types @otliean type, not only by integer§.he type of
theindex should arrespond to the type used figclaring the dimension of the array

[Example

type ShirtSizes = enumeration  ( small, medium, large, xlarge );
Real[ShirtSizes] w;
Real[Boolean] b2;

algorithm
w[ShirtSizes.large] := 2.28; // Assign a value to an element of w
b2[true] :=10.0;
b2[ShirtSizes.medium 1:= 4/l Error, b2 was declared with Boolean dimensi on

w[1] := 3; // Error, w was declared with ShirtSizes dimension

10.5.2 Indexing with end

The expressiorend may only appear inside array subscripts, and if used in the iith subscript of an array
expressiom it is equivalent tasize(A,i) provided indices to Aare a subtype of Integer. If used inside nested
array subscripts it refers to the most closely nested array.
[Examples

Alend- 1, end] is A[size(A,1) - 1,size(A,2)]

Alv[ end], end]is Alv[size(v,1)],size(A,2)] // since the firsend is referring to end of v.

]
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10.6 Scalar, Vector, Matrix, and Array Operator Functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.
In all contexts that require an expression which is a subtype of Real, an expression whicibtigoa of
Integer can also be used; the Integer expression is automatically converted to Real.
The termnumeric omumeric class is used below for a subtype of the Real or Integer typesclass

10.6.1 Equality and Assignment

Equalitya=b and assignmerd:=b of scalars, vectors, matrices, and arrays is defined elewisatand require

both objects to have the same number of dimensions and corresponding dimension sizes. The operands need to be
type equivalent. This is legal for the simple types and all typesysagighe requirements for a record, and is in

the latter case applied to each compomdenent of the records.

Fable 10-9-Equality and-assignment-of arrays-and-scalars.

Table 10-11. Equality and assignment of arrays and scalars.

Type of a Type of b Resultoh = b Operation(j=1:n, k=1:m)

Scalar Scalar Scalar a=b

Vector[n] Vector|[n] Vector[n] alj] = b[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] a[j, k] = bJj, k]

Arrayl[ n, mArray[n,Array[n, Ja[], k, é]1 = b[]j,

10.6.2 Array Element -wise Addition, Subtraction, and Stri

Addition a+b and subtractiom- b of numeric scalars, vectors, matrices, and arrays is defined etensenarn
and a numeric type fai andb. Unary plus and minus are defined elemeige.
Addition at+bof string salars, vectors, matrices, and arrays is defined as elemigatstring concatenation of
corresponding elements fraarandb, and requireize(a)

requiresize(a)=

size(b)

ng Concatenation

=size(b)

Table 10-12. Array addition, subtraction, and string concatenation.

Type of a Type of b Result of a +/b Operation ¢ :=a + b (j=1:n, k=1:m)
Scalar Scalar Scalar c:=a+tb

Vecta|[n] Vector[n] Vector[n] c[j] := a[j] +/- bl[j]

Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j, K] := a]j, K] +- b[j, K]
Array[n, mArray[n,/Array[n, |c [j, k, é]-bfF, akK

Elementwise additiona.+b and subtractiol. - b of numeric scalars, vectors, matrices or arrays a and b requires
a numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b-\ksreiditiora.+b of

string scalars, vectors, matrices, and arraysldfined as elememtise string concatenation of corresponding
elements from a and b, and require either size(a) = size(b) or scalar a or scalar b.

Table 10-1310-11. Array elemertwise addition subtraction, and string concatenation.

Type of a Type of b Result of a+/ .- b |Operation ¢ := a.+/.- b (j=1:n, k=1:m)
Scalar Scalar Scalar c:=a+tb

Scalar Array[n,/Aray[ n, mcl[j, k, #€-o[,: X],a é
Arrayl[ n, nScalar Array[n, Jc[], k, €] -b= af]j
Array[n, mArray[n,JArray[n, ¢ [j, k, ¢é]-bfF, ak
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Table 10-14. Unary operatorsThe elenentwise(.+, -) and normal+, -) operators give the same results.

Type of a Result oft/ - a Operation ¢ :=+/- a(j=1:n, k=1:m)
Scalar Scalar c:= +ta
Array[n, mArray[n, [c[], kilig] k= €é]

10.6.3 Array Element-wise Multipl ication

Scalar multiplicatiors*a or a*s with numeric scalar s and numeric scalar, vector, matrix or ariaydefined

elementwise:

Table 10-1416-12. Scalar ad scalar to array multiplication of numeric elements

Type of s Type of a Type of s* a and ajOperationc := s*a or c:=a*s (j=1:n, k=1:1
Scalar Scalar Scalar c:=s*a

Scalar Vector [n] Vector [n] c[j] := s* a[j]

Scalar Matrix [n, m] |Matrix [n, m] c[j, k] :=s* a]j, K]

Scalar Array[n, m, ...JArray [n, m, ...] cfj, k, ...] :==s*a]j, k, ...]

Elementwise multiplicationa.*b of numeric scalars, vectors, matrices or arrays a and b requires a numeric type
class for a and b and either g&e= size(b) or scalar a or scalar b.

Table 10-1510-13-. Array elemeniwise multiplication

Type of a Type of b Typeofa* b Operationc:=a.* b (j=1:n, k=1:m)

Scalar Scalar Scalar c:=a*b

Scalar Array[nJArray[n,c[j, k, ¢€&] = a* b
Array][ n, |Scalar Array[n,cl[j, k, ¢é] = afl]j,
Array|[ n, |Arayln,m,..] |Array[n,m,..] [c[j , k, é] =kal[ ¢]

10.6.4 Matrix and Vector Multiplication of

Numeric Arrays

Multiplication a*b of numeric vectors and matrices is defined only for the following combinations:

Table 10-1610-14. Matrix and vectomultiplication ofarrays withnumeric elements.

Type of a Type of b Type of a* hOperation ¢ := a*b
Vector [n] Vector [n] Scalar ¢ := sum(a[k]*b[K]), k=1:n
Vector [n] Matrix [n, m] [Vector[m] |c[j] := sum(a[k]*b[k, j]), j=1:m, k=1:n
Matrix [n, m] |Vector [m] [Vector [n] |c[j] := sum(alj, k]*b[k])
Matrix [n, m] |Matrix [m, p] Matrix [n, p]|c[i, j] = sum(@[i, K]*b[k, j]), i=1:n, k=1:m, j=1:p
[Example
Real A[3,3], X[3], b[3], v[3];
A*X = b;
xX*A = b; /l same as transpose([x])*A*b

[v]*transpose([v])
V*A*v
tranpose([v])*A*v

/I outer product
/Il scalar
/I vector with one element
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10.6.5 Division of Scalars or Numeric Arrays by Numeric Scalars

Division a/s of numeric scalars, vectors, matrices, or areagad numeric scalassis defined elementise. The
result is always of real type. In order to get integer division with truncation use the futiction

Table 10-1746-15. Division of scalars and arrays by numeric elements.

Type of a Type of s Resultofa/s Operation ¢ :=a/ s (j=1:n, k=1:m)
Scalar Scalar Scalar c:=als

Vector[n] Scalar Vector[n] clk] :=alk] /s

Matrix[n, m] Scalar Matrix[n, m] clj,kl:=a[j,k] /s

Arrayl[ n, nScalar Array[n, Jc[], k, €] = alj

10.6.6 Array Element-wise Division

Elementwise divisiona./b of numeric scalars, vectors, matrices or arrays a and b requires a numeriasgpe cl
for a and b and either size(a) = size(b) or scalar a or scaldrebresult is always of real type. In order to get
integer division with truncation use the functidin .

Table 10-1816-16-. Elementwise division of arrays

Type of a Type of b Typeofa./ b |Operationc:=a ./ b (j=1:n, k=1:m)

Scalar Scalar Scalar c:=alb

Scalar Array[nJArray[n,c[j, k, ¢€&] = a [/ b
Array [ n, m, |Scalar Array[n,c[]j, k, é] = afl[]j,
Array|[ n, |Arayln,m,..] |Array[n,m,..] [c[j , k, é] = afl]j,

[Elememwise division bylar (./) and division by scalar (/) are identical: a./s = a/s.

Example:

2. /11,2;3,4] [/l error, since 2.0/[1,2;3,4]

2 ./[1,2;3,4] Il fine, element - wise division
This is a consequence of the parsing rules, sinde &.lexical unit. Using a space aftethe literal solves the
problem]

10.6.7 Exponentiation of Scalars of Numeric Elements

Exponentiation d*b " is defined as pow(double a,double b) in the ANSI C library if bathahd 'b" are Real

scalars. A Real scalar value is returned. If "a" or "b" are Integer scalars, they are automatically promoted to
"Real". Consequences of ext®nal situations, such as (a==@fid b<=0.0, a<0and b is not an integer) or
overflow are undefined

Elementwise exponentiatioa.”b of numeric scalars, vectors, matrices, or arrays a and b requires a humeric type
class for a and b and either size(ajze(b) or scalar a or scalar b.

Table 10-1910-17. Elementwise exponentiation of arrays

Type of a Type of b Typeofa.b |Operationc:=a .* b (j=1:nk=1:m)

Scalar Scalar Scalar c:=a"b

Scalar Array[nJArray[n,c[j, k, €] = a ™~ b
Array][ n, |Scalar Array[n,cl[j, k, é] = afl[]j,
Array[ n, |Arrayln,m,..] |Array[nm,..] [c[j, k, é] = R[] ]e]
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[Example:

2.MN1,2;3,4] |/ error, since 2.0"[1,2;3,4]

2 MN1,2;3,4] I/l fine, element wise exponentiation
This is a consequence of the parsing rules, i.e. since 2. could be a lexical unit it seen as a lexical unit; using a
space after litera solves the problein.

10.6.8 Scalar Exponentiation of Square Matrices of  Numeric Elements

Exponentiatiora”s is defined ifa is a square numeric matrix asds a scalar as a subtype of Integer itk 0.
The exponentiation is done by repeated multiplication

(e.g.:

a"3 = a*a*a; a0 = identity(size(a,1));

assert(size(a,1)==size(a,2),"Matrix must be square");

arl=a ;
[Nonrinteger exponents are forbidden, because this would redeimsmputeomputingthe eigenvalues and
eigenvectors of ehanelenemadyopetatips i s no | ong

10.6.9 Slice O peration

The following holds for slice operations:

1 If a is an array containing scalar components @ansl a component of those components, the expression
a.m is interpreted as a slice operation. It returns the arragraponent$ a[ 1] . m, é}

9 If mis also an array component, the slice operation is valid osilyeifa[1].m)=size(a[2].m)= é

1 The slicing operation can be combined with indexing, e.g. a.m[1]. It returns the array of components
{a[ 1] . m[ 1], a [ oRg notngquiré that stzg(a[1l].m)+side(afR].e number of subscripts
on m musthot be greater thaexactlyeorrespend-tdhe number of array dimension fon_(the numbercan
be smaller, in which casthe missing trailing indices are assumed to be, '‘ahd is only valid if
size(a[l] . m[ é])=size(a[2].m[é]).

[Example: The sizeestriction on the operand is only applicablethe indexing on the second operand uses
vectos or colon as in the example:

constant Integer m=3;

Modelica.Blocks.Cont inuous.LowpassButterworth tf [ nj( n=2:(m+1) );
Real y[ nf;
Realy2 y3;
equation
/I Extract the x1 slice even though different x1's have different lengths
y=tf.x 1[1] ; // Legal, ={tf[1].x 1[1], tf[2].x 1], é t Mk 1[1]}
y2=sum(tf.x 1[:]); // lllegal to extract all elements since they have
/I different lengths . Does not satisfy:
Il size(tf[1].x 1[] ) =size(tf[2].x 1 1) =szet[ nmx 1[:])
y3=sum(tf.x  1[1:2]); /I Legal.
/I  Since x 1 has at least 2 elements in all tf, and
Il size(tf[1].x 1[1:2])=size(tf[2].x [ 1: 2] )=sizf] mx 1[1:2)= {2}

In this example the different x1 vectors have different lepgth it is still possibléo perform some operations on
them]
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10.6.10 Relational Operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types, not for arrays, see
Section3.53.5

10.6.11 Boolean Operators

The operatorsand andor take expressions dBoolean type, which are either scalars or arrays of matching
dimensions. The operatoot takes an expression Bbolean type, which is either scalar or an array. The result is
the elemat-wise logical operation. For sherircuit evaluation oéind andor see Sectio3.33-3.

10.6.12 Vectorized Calls of Functions
See Section2.4.6.24-6

10.7 Empty Arrays

Arrays may have dimension sizes of 0. E.g.
Real x[0]; /l an empty vector
Real A[O, 3], B[5, 0], C[0, O];  // empty matrices
Empty matrices can be constructed withfttie function. E.qg.
Real A[;,;] =fill(0.0, 0, 1); /l a Real 0 x 1 matrix
Boolean B[, :, :] =fill(false, 0, 1, 0); // a Boolean 0 x 1 x 0 matrix

It is not possible to access an element of an empty matrixy[gkg. cannot be evaluatetiv=[] because the
assertion fails that the index must begagthan one.

Sizerequirements of operations, such as, have also to be fulfilled if a dimension is zero. E.g.

Real[3,0] A, B;

Real[0,0] C;

A+ B /lfine, result is an empty matrix
A+ C [l error, sizes do not agree

Multiplication of two emptymatrices results in a zero matik corresponding numeric typethe result matrix
has no zero dimension sizes, i.e.,

Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)
Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)
Real[m,0]*Real[0,n] = fill(0.0, m, n ) (non - empty matrix, with zero elements).

[Example
Real u[p], x[n], y[a], A[n,n], B[n,p], C[q,n], D[a,p];
der (x) = A*x + B*u

y = C*x + D*u

Assume n=0, p>0, g>0: Results ig = D*u

]
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Chapter 11

Statements and Algorithm Sections

Whereas equations are very well suited for physical modeling, there are situations where computations are more
conveniently expressed as algorithms, i.e., sequences of statements. In this chapter we describe the algorithmic
constructs that are aVable in Modelica.

Statements are imperative constructs allowed in algorithm sections.

11.1  Algorithm Sections

Algerithm-seetiondgsAn algorithm section i€omprised otthe keywordalgorithm  followed by a sequence of
statements. Téformal syntax is as follows:

algerithm—seetioh——algorithm - section

[ initial ] algorithm { statement ";" | annotation ";"}

Equation equality= or any other kind of equatiofsee Chapter &hapter-§ shall not be used in an algorithm
section.

11.1.1 Initial Algorithm Sections

See SectioB.68-6for a description oboth initial algorithmsections and initial equation sectsoon

11.1.2 Execution of an algorithm in a model

An algorithm section is conceptually a code fragment that remains together and the statements of an algorithm
section are executed in the order of appearance. Whenever an algorithm section is invoked, all ygésslag a
on the left hand side of the assignment operator ":=" are initialized (at least conceptually):

1 A nondiscrete variable isiitialized with its start value (i.e. the value of the stditibute).

9 A discrete variable v is initialized witbre(v).

1 If at least one element of an array appears on the left hand side of the assignment operator, then the
complete array is initialized in this algorithm section.

[Initialization is performed, in order that an algorithm section cannot introduce a "menmexgé|ft in the case of
discrete states which are explicitly given), which could invalidate the assumptions of a numerical integration
algorithm. Note, a Modelica tool may change the evaluation of an algorithm section, provided the result is
identical to thecase, as if the above conceptual processing is performed

An algorithm section is treated as atomlcvectorequatlon whichis sorted together with all other equations.
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algorithm section with N different leffitand side variables, is treated as atomic Ndimensional vecteequation
containing d variables appearing in the algorithm section. This guarantees that all N equations end up in an
algebraic loop and thstatemert of the algorithm section remain together.

Example:

model Test I wrong Modelica model (has 4 equations for 2 unknowns)
Real x[2](start={ -11, -22);

algorithm /I conceptually: x = {1, -22}
X[1] :=1;

algorithm /I conceptually: x ={ -11,2}
X[2] := 2;

end Test;

11.1.3 Execution of the algorithm in a function

See sectiod2.4.424473 1 ni ti ali zation and Declaration Assignmen!t

11.2 Statements

Statements are imperative constructs allowed in algorithm sec#loffiattened statementis identical to the
correspondingporflattenedstatement.
Names in statements are found as follows:

1 If the name occurs inside an expression: it is first found among the lexically enclosing reduction functions
(seeSection10.3.410:-3-9 in order starting sm the innemmost, and if not found it proceeds as if it were
outside an expression:

1 Names in a statemeatefirst found among the lexically enclosing fstatemergin order starting from the
innermost and if not found:

1 Names in a statement shall berfid by looking up in theartially flattenedenclosing classf the algorithm
section.

The syntax of statements is as follows:

statement :
( ecomponent—reference——component - reference  (":=" expression |
funetion—eallargs—function -call -args )
| (" outp-ut—expression—tist——output - expression -list )" ":="
component—reference——component - reference #uneuen—eau—apgs—functlon -call -args

| break

| return

| #-—statement—if - statement
I

I

for—statement—for - statement
while—statement——while - statement
| when—statement—when- statement )
comment

11.2.1 Simple Assignment Statements

The syntax of simple assignment statement is as follows:

component—referenece——component - reference ":=" expression
The expression is evaluated. The resulting value istored into the variable denoted by

component—reference——component - reference
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11.2.1.1 Assignments from Called Function s with Multiple Results

There is a special form of assignment statement that is used only when tHean@lside contains a call to a
function with multiple results. The leftand side contains a parenthesized, coreeparated list of variables
receiving the results from the function call. A function withesults needm<=n receiving variables on the left
hand sideand the variables are assigned from left to right

(outl , out2, out3):= function_name (inl, in2, in3, ind);

It is possible to omit receiving variables from this list:

(outl ,, out3):= function_name (inl, in2, in3, ind);

[Example: The functioh called below has three results and two inputs
(a, b, ¢) :=1(1.0, 2.0);

(x[1], x[21, X[ 31]) :=1(3,4);
In the second example above x[1] is assigned twice i first with the first output and then
with the third output. For that case t he following will give t he same resul t:

(. x[2], x[ 1)) :=1(3,4);

]

The syntax of m assignmengtatementvith acall to a function with multiple results is as follows:

"(" output—expression—tist———output - expression -list )" "=" component—reference——component -
reference function—eall———args—function -call -args

[Also see SectioB.3.18:-3-Aregarding calling functions with multiple results within equatipns.

11.2.2 For-statement

The syntax of a festatement is as follows:

for fer—indices——for -indices  loop
{ statement ";"}
end for

For-statementsnay opionally use several iteratorg&y—indices—for -indices ), see Sectioil.2.2.31.2.2.3
for more information:

for—indices——for -indices :
for—index—for -index {"" ferindex—for -index }

for—index—for -index :
IDENT[ in expression ]
The following is an example of a prefix of afstatement:

for IDENT in expression loop

Theexpression  of afor-statemenshall be a vector expression. It is evaluated once forfeactatementand

is evaluated in the scope immediately enclosingfdheatatementThe loopvariable (DENT) is in scope inside

the loopconstruct and shall not be assigned to. The-l@ifable has the same type as the type of the elements of
the vector expression.

[Example
for i in 1:10 loop I/l i takes the values 1,2,3,...,10
for r in 10:15:55 loop /I rtakes the values 1.0, 2.5, 4.0, 5.5
for i in {1,3,6,7} loop /l i takes the values 1, 3, 6, 7
for i in TwoEnums loop /l'i  takes the value§woEnums.one, TWoEnums.two

/I for
TwoEnums = enumeration(one,two)

The loopvariable may hide other variables as in the following example. Using another name for the loop
variable is, however, strongly recommended.
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consta nt Integer j=4;

Real x[j];
equation
for j in 1 loop /I The loop - variable j takes the values 1,2,3,4
x[=; /I Uses the loop - variable j
end for ;

11.2.2.1 Implicit lteration Ranges

An iteratorIDENT in range - expr without thein range - expr requires that théDENT appears as the subscript

of one or several subscripted expressions. The dimension size of the array expression in the indexed position is
used to deduce thange - expr as1:size(array - expression,indexpos) if the indices are a subtype of

Integer, or asE.el:E.en if the indices are of an enumeration tyfeeenumer at i on( e lor ag, en)
false:true if the indices are of type Boolean. If it is used to subscript several expressions, their ranges must be
identical. TheDENT may also, inside a reducti@xpression, array constructor expressionstatement, or for

equation occur freely outside of subscript positions, but only as a reference to the vayi@kie and not for

deducing ranges.

[Example

Real x[4];

Real xsquared[:]={x[i]*x[i] for i}
/I Same as: {x[i]*x[i] for i in 1:size(x,1)}

Real xsquared?2[size(x,1)];

Real xsquared3[size(x,1)];

equation
for i loop // Same as: foriin 1:size(x,1) loop
xsquared2[i]=x[i]"2;
end for ;
algorithm

fo riloop // Same as: foriin 1:size(x,1) loop ...
xsquared3[i] := x[i]"2;
end for ;

type FourEnums= enumeration (one,two,three,four);
Real xe[FourEnums]= x;

Real xsquared3[FourEnums]={xe[i]*xel[i] for i}
Real xsquared4[FourEnums]={xe[i]*xel[i] for i in FourEnums}
Real xsquared5[FourEnums]={x[i]*x[i] for i}

]
The size of an array the iteration range is evaluated on entry to theldop andthe array size may not
changeaduring the execution of the féoop.

11.2.2.2 Types as lIteration Ranges

The iteration range can be specifiedBaslean or as an enumeration type. This means iteration over the type
from min to max, i.e. for Boolean it is the samefalse:true and for an enumeration E it is the same as
E.min:Emax. This can be used fior loops and reduction expressions.

[Example

type FourEnums=enumeration (one,two,three,four);
Real x e[FourEnums];
Real xsquared1[FourEnums];

Real xsquared2[FourEnums]={xe[i]*xel[i] for i in FourEnums};
equation
for ii nFourEnums loop

xsquaredl[i]=xe[i]"2;
end for ;
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11.2.2.3 Nested For -Loops and Reduction Expressions with Multiple Iterators

The notation with several iterators is a shorthand notation for neststhfements or feequatias (or reduction
expressions). For festatements or feequations t can be expanded into the usu
Goopfor 6 and adedndforgd .e x Fo a -elpeedsiorstit cam be expanded into the usual form by
repl aci mhy) f@d &anth prepending the reductienx p r e s s funotiaon wriarhebd . 6

[Example

Real x[4,3];
algorithm
for j,i in 1:2 loop
/I The loop - variable j takes the values 1,2,3,4 (due to use)
/I The loop - variable i takes the values 1,2 (givenr ange)
X[j,i] D=
end for ;

11.2.3 While -Statement

The whilestatement has the following syntax:

while expression  loop
{ statement ";"}
end while

Theexpression  of a whilestatemenshall be a scaladBooleanexpression. The whilestatementorresponds to
while-statements in programming languages, and is formally defined as follows:

1. Theexpression of the whilestatemenis evaluated.
2. Iftheexpression of the whilestatemenis false, the execution continueseafthe whilestatement

3. If the expression  of the whilestatements true, the entire body of the whigatementis executed
(except if a brealstatement, see Sectidd.2.4L1.2.4 or a returnstatement, s Sectionl1.2.4-1-2.4 is
executed), and then execution proceeds at step 1.

11.2.4 Break-Statement

The breakstatement breaks the execution of the innermost while dodqr encbsing the breaktatement and
continues execution after the white for-loop. It can only be used in a whiler for-loop in an algorithm section.
It has the following syntax:

break ;

[Example (note this could alternatively use return)

function findvValu e "Returns position of val or 0 if not found"
input  Integer x[];
input  Integer val;
output Integer index;
algorithm
index := size(x,1);
while index >=1 loop
if  x[index]==val then
break ;
else
index := index i1
end if ;
end while;
end findValue;

]
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11.2.5 Return -Statements
Can only be used inside functionegsSectiori2.1.2.2.1.2

11.2.6 If-Statement

If-statements have the following syntax:

if expressio n then

{ statement ";"}

{ elseif expression  then
{ statement ";"}

[ else
{ statement ";"}

1

end if;

The expression  of an it or elseifclause must be scalBooleanexpression. One-iflause, and zero or more
elseitclauses, and an optional elstause together form a list of branches. One or zero of the bodies of these if
elseif and elseclauses is selected, by evaluating the conditions of trend elseHclauses sequentially until a
condition that evaluates to triefound. If none of the conditions evaluate to true the body of theclkalsse is
selected (if an elselause exists, otherwise no body is selected). In an algorithm section, the selected body is then
executed. The bodies that are not selected havéeu en that model evaluation.

11.2.7 When-Statements

A whenstatement has the followirgyntax

when expression  then

{ statement ";"}

{ elsewhen expression then
{ statement ";"}}

end when

The expres sion of a whenstatement shall be a discreétee Boolean scalar or vector expression. The
algorithmic statements within a whestatement are activated when the scalar or asyobrthe elements of the
vectorexpression becomes true.

[Example

Algorithms a&e activated wher becomes > 2:

when x>2 then

y1 := sin(x);
y3 1= 2*x + y1+y2;
end when;

The statements inside the wkstatementare activated when either becomes > 2 osample(0,2) becomes
true or x becomes less than 5:
when {x > 2, sample (0,2), x <5} then
y1 = sin(x);
y3 = 2*x + yl+y2;
end when;
For whenstatementin algorithm sections the order is significant and it is advisable to have only one assignment
within the wherstatement and instead use several algorithestionshaving wherstatements with identical
conditions, e.g.:

algorithm
when x>2 then
y1 = sin(x);

end when;



153

equation
y2 = sin(yl1);

algorithm
when x>2 then
y3 1= 2*X +y1+y?2;
end when;
Merging the wherstatements can lead to less @#int code and different models with differdrghavior
depending on the order of the assignmenftitandy3 in the algorithm.

]

11.2.7.1 Restrictions on When-Statements

1 A whenstatement shall not be used within a function.

1 When-statements may not occur inside initial algorithms.

1 Whenstatements cannot be nested.

1 Whenstatements may not occur inside while, if, anddiauses in algorithms.

[Example

The followingnestedvhenstatement is invalid:

when x>2 then
when y1> 3 then
y2 :=sin(x);
end when;
end when;

]

11.2.7.2 Defining When -Statements by If -Statements

A whenstatement:

algorithm
when {x>1, ..., y>p} then
eIséWhen X > y.start then
ent-iu when;
is similar to the bllowing special ifstatement, wher®oolean b1[N]; and Boolean b2; are necessary

because thedge() operator can only be applied to variables

Boolean b1[N](start={x.start>1, ..., y.start>p});
Boolean b2(start=x.start>y.start);
algorithm
bl:={x>1, .. . Y>pk
b2:=x>y.start;

if edge(b1[1]) or edge(b1[2]) or ...edge(b1[N]) then
els.élif edge(b2) then
end"if ;

with edge(A)= A and not pre(A) and the additional guarantee, that tatementsvithin this special #
statement are onlgvaluated at event instanhe differene compared to the whestatement$ s t hat e . g.
may only be used on continuetise real variables inside the body of a wintsuse and not inside these if
statements.
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11.2.8 Special Statements

These special statems have the same form and semantics as the corresponding equations, apart from the general
difference in semantics between equations and statements.
11.2.8.1 Assert Statement

See SectioB.3.8-3-7. A failed assert stops the execution of the current algorithm.

11.2.8.2 Terminate Statement

See SectioR.3.8-3-8 The terminate statement may not beundtions;In an algorithm outside a functidgdoes
not stop the execution of the current algorithm.
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Chapter 12

Functions

This chapter describes the Modelica function construct.

12.1 Function Declaration

A Modelica functionis a specializedclass (Sectiorl2.2:2.2 using the keywordunction . The body of a
Modelica function isan algorithm section that contains procedural algorithmic code to be executed when the
function is called or alternatively an external function specifier (Sectichdt2.9. Formal parameters are
specified using thénput keyword, whereas results are denoted usingothyeut keyword. This makes the
syntax of function definitions quite close to Modelica class definitions, but using the kefywetion  instead

of class .

[The structure of a typical function declaration is sketched by the following schematic function example:

function  functionname
input Typell inl;
input Typel2 in2;
input Typel3in3 := default exprl "Comment" annotation (...);

'c;ﬁtput TypeOLl outl;
output TypeO2 out2 := default expr2;

protected
<local variables

alg-(.).rithm
<statements

end functionname
]

Optional explicit default values can be associated with any input or output foanaaheter through declaration
assignments.Juch defaults are shown for the third input parameter and the second output parameter in our
exampld. Comment strings and annotations can be given for any formal parameter declaration, as usual in
Modelica decleations.

[All internal parts of a function are optional; i.e., the following is also a legal functio

function functionname
end functionname

]
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12.1.1 Ordering of Formal Parameters

The relative ordering between input formal parametedladations is significant since that determines the
matching between actual arguments and formal parameters at function calls with positional parameter passing.
Likewise, the relative ordering between the declarations of the outputs is significant sindetédrmines the
matching with receiving variables at function calls of functions with multiple results. However, the declarations of
the inputs and outputs can be intermixed as long as these internal orderings are préigivedlgclarations in

thisway is not recommended, however, since it makes the code hard {o read.

[Example:

function  <functionname
output  TypeOl outl; // Intermixed declarations of inputs and outputs
input Typell inl; /I not recommended since code becomes hard to read
inp ut  Typel2in2;

Bﬁtput TypeO2 out2;
input Typel3 in3;

end <functionname;

12.1.2 Function Return -Statement

The returnstatement terminates the current function call, see Seididgh2.-4 It can only be used in an algorithm
section of a function. It has the following form:

return ;

[Example (note this could alternatively use break)

function findValue "Returns position of val or 0O if not f ound"”
input  Integer x[];
input  Integer val;
output Integer index;
algorithm
for i in 1lsize(x,1) loop
if  x[i] == val then
index :=i;
return ;
end if;
end for ;
index := 0;
return ;
end findValue;

]

12.1.3 Inheritance of Function s

It is allowed for a function to inherand/or modifyanother function following the usualles for inheritance of
classes Chapter ZChapter-). [For example, it is possible to modify and extend a function class to add default
values for input variablep

12.2 Function as a Specialized Class

The function concept in Modelida aspecializectlass(Section4.64-6). [The syntax and semantics of a function
have many similarities to those of thleck specializectlass. A function has many of the properties of a general
class, e.g. being able to inherit other functionstooredeclare or modify elements of a function declaraion.

Modelica tuinctionshavethe following restrictions compared to a general Modeligss :
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9 Each inpufformal parameter of the function must be prefixed by the keywgydt, and each resulorma
parameter by the keywomltput All public variablesare formal parameters.

1 Inputformal parameters are reamhly after being bound to the actual arguments or default valeesthey
may not be assigned values e tbody of the function.

{__A function maynot be used in connectigmaaynot havene-equationsmaynot havene-initial algorithms.

1 A function-anrdcan have at mosine algorithmsectionor one external function interfa¢eot both) which,
if present, istie body of the function.

1 A function may only contain componentstbe restricted classstype , record , operator record , and
function ;i.e. nomodel orblock components.

9 The elements of a function may not have prefikasr , or outer.

1 A function may haveero or one external function interface, which, if present, is the external definition of
the function.

1 For a function to be calleich a simulation modekhe function may not be partial, and the outyariables
must be assignddside the functioreithe in declaration assignments or in an algorithm section, or have an
external function interface as its body, or be defined as a function partial derivative. Thesarifjins of
a function should be computedt {s a quality of implementation how mueahalysis a tool performs in
order to determine if the outpuariables are computdd A function cannot contaircalls to the Modelica
built-in operators der , initial , terminal , sample, pre, edge, change, reinit , delay ,
cardinality , inS tream , actualStream , to the operators of thauilt-in packageConnections , to the
operators defined i€hapter 1&hapter-1and Chapter 1€hapter17and is not allowed to contain when
statements.

1 The dimensionsizs not declared with:() of each array result or array local variable., a norinput
componery of a functionmust be either given by the input formal parameters, or given by constant or
parameter expressions, or by expressiamsaining combinations of those (Sectith4.4L2-4-9).

9 For initialization of Fhe-local variables of a functiogeeare-not-automatically-initialized-to-the-implicit
de#auh—v&tue&ef—meuda&a—ty@ectlonlz 4. 42—4—4) {(&g—@%ﬁeag—feppe#emqane&reasens—n—is—the

e-they are

1 Components of a function will inside the function behave as though#ualiscretetime variability.
Modelica functions havthe followingenrancementsompared to a general Modelidass :

1 Functions can be calledeel2.412-4
0 The calls can use a mix of positional and named arguments, see $8ctibh2.4-1
o Instances of functions have a special meaning, see sgétib@-2.4-2
0 The lookup of the function cta to be called is extended, see sediGii5-3-2
9 A function can beecursive
1 A formal parameter or local variable may be initialized througlessignmenbinding (-=) of a default
value in its declaratignnitialization-through-an-equationis-notpossibdel2.4.4 Using assignment=)
is deprecatedf a norrinput component in the function uses a record class that contain one or more binding
equations they are viewed as initializatidritmse component of the record component.
1 A function is dynamically instantiated when it is called rather than being statically instantiated by an
instance declaration, which is the case for other kinds of classes.
A function may have an external funcatioterface specifier as its body.
A function may have a return statement in its algorithm section body.
A function allows dimension sizes declared with 1o be resized for neimput array variables, see Section
12.4.82.4.5
1 A function may be defined in a short function definition to be a function partial derivative.

= =4 =4

12.3 Pure Modelica Functions

Modelica functions areormally purewhich makes it easy for humans to reason about the aockethey behave

as mathematical functions, and possible for compilers to optintiegare-sidecffectfreewith-respeetto-the
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eptional case

$—Pure Modelica functionslways give the same output values or errors for the same input values and only
the output values influence the S|mulat|0n result i. e. is seen as equivalent to a mathematical map from input
values to atput valuesare-m g . always
give-the-sameresultSome input values mawap to errcs. Pure functlons are thus allowed to fail by
calling assert, or ModelicaError in€dde, or dividing bywero.Such errors will only be reported when and

if the function is called.

9 PureModelica functionsre not assumed to be thresafe.

1 A Modelica function which does not have thare function properties iBnpureand-needs-to-be-declared as
stoted-below

The declaration of functiorfsllow these rules:

9 _Functions defined in Modelica (neaxternal) arenormally assumed to be pur@he exception is the
deprecated case belpwf they are impure they shall be marked with the impure keywiindy can be
explicitly marked as purgHowever,since functions as default are pure it is not recommended to explicitly
declare them as puse

9_External functions must be explicitly declared with pure or impure.

1 _A deprecatedemanticss that external functionsidfunctions defined in Modelica diregtbr indirectly
calling them)without pure or impure keywordre assumed to be impurebut without any restriction on
calling them Except for the function Modelica.Utilities.Streams.print diagnostics must be given if called in
a simulation model.

Calls d pure functions used inside expression may be skipped if the resulting expression will not depend on the
possible returned value; ignoring the possibility of the function generating an error.

A call to a function with no declared outputs is assumed ve Hasired sideffects or assertion checks tool
shall thus not remove such function calls, with exception ctnmuoered assert calls. A pure function, used in an
expression or used with a nempty left hand side, need not be called if the output the function call do not
mathematically influence the simulation result, even if errors would be generated if it were called.]

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes it possible for
Modelica ompilers to freely perform algebraic manipulation of expressions containing function calls while still
preserving their semanticBor example, a tool may use common subexpress@ninatioreliminationto call a

pure function just once, if it is calledvagal times with identical input argumentsowever, since functions may

fail we cane.g.only move a&ommorfunction call from inside a loop to outside the loop if the loop is run at least

OI’]C8|

[Comment 2: The Modelica translator is responsible for ma#&img this property for pure neexternal
functions. Regarding external functions, the external fundtigslementoris responsible. Note that external
functions can have sideffects as long as they do not influence the internal Modelica simulatian stat
caching variables for performance or printing trace output to a lod file.

With the prefix keywordmpure it is stated that a Modelica functionimspureand it is only allowed to call such
a function from within:

9 another function marked with thegfix impure esimpure—orpure-
1 a whenequationgr

{_a whenstatement
f pure(i mpur eFunct i-avhichaallows éalling impure functions in any pure context,
9 in initial equations and initial algorithms,
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9 in bindingsfor variables declared as paramdterhich is seen as syntactic sugar for havinoppeameter
with fixed=false and the binding as an initial equaftbiois there is no guarantee that parameter is equal to
the impure function call afténitialization] i and in constructing external objects

For initial equationsinitial algorithns, and bindings it is an error if the function calls are part of systems of
equations and thus have to be called multiple times.

[A tool is not allowed to perform any optimizations on function calls to an impure function, e.g., reordering calls
from different statements in an algorithm or common subexpressigrniatioreliminationis not allowed.

It is possible to mark a function formal parameteingaure . Only if the function formal parameter is marked
impure , it is allowed to pass ampure function to it. A function having a formal function parameter marked
impure must be markedure orimpure .

[Comment: The semanticare undefined if the function catif an impure functions part of an algebraic
loop]

[Examples:

function evaluateLinear // pure function
input Real a0;
input Real ai;
input Real x;
output Realy;
algorithm
y=a0 + al*x;
end evaluateLinear;

impure function receiveRealSignal // impure function
input HardwareDriverID id;
output Realy;
external "C"y = receiveSignal(id);

end receiveRealSignal;

Example ofallowedoptimizationof pure functions

model M // Assume sin, cos, asin are pure functions with normal derivatives.
input  Real x[2];
input  Real w;
Real y[2]=[cos(w),sin(w); - sin(w),cos(W)]*x;
Real z[2]=  der (y);
Real a=0*asin(w);
end M;

A tool only need#® generateone call ofthe pure functiortos(w)in the model M to handle the two elements of
the matrixabove and for the derivative of that matriA tool may also skip the possible error for asin(w) and
assume that a is zero.

Example ofrestrictions on optimizing pure functians

Real x=if noEvent(ab s(x))<1 then asin(x) else 0;// May not move asin(x) out of then

algorithm
assertCheck(p, T); // Must call function

algorithm
if b then
y:=2* someOtherFunction(x);
end if ;
y:= y+asin(x);
y:= y+someOtherFunction(x);
/I May not evaluate someOtherFunctio n(x) before asin(x) I unless b is true
/| The reason is that asin(x) may fail and someOtherFunction may hang
/[ and it might be possible to recover from this error.
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12.4 Function Call

Function classes and record constructd®.6) and enumeration type conversiors8(5.3 can be called as
described in this section.

12.4.1 Positional or Named Input Arguments of Functions

A function call has optional positional arguments followed by zero, one or more named arguments, such as
(3.5, 5.76, arg3=5, arg6=8.3);

The formal syntax of a function cd@llimplified by removingeduction expression, secti®0.3.4.1:

pri mary :

hRame—component - reference funetion—eall—args—function - call - args

function—eallargs——function -call -args :
""[ funetion—argument——function - argument s]")"

function—argument——function - argument s:
funetion—argument——function - argument ["" funetion—a—rgumentfunction - argument s]
| Ramed—argument-named- argument s

Ramed—argument—named- argument s: pamed—argument-named- argument [ "" Ramed—argument-named-
argument s]
named—argument—named- argument : IDENT "=" function—argument——function - argument

function—argument——fun ction - argument : function name "(" [ hamed—argument-named- argument s ]

BN expr_ession

The interpretation of a functiooall is as follows: First, a list of unfilled slots is created for all formal input
parameters. If there are N positional argumentsy #re placed in the first N slots, where the order of the
parameters is given by the order of the component declarations in the function defiettnfor each named
argumentidentifier = expression , theidentifier is used to determine the correspoigdgtot. This slot
shall be not filled gtherwise an error occutsand the value of the argument is placed in the slot, filling it. When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value of
the function definitionThe default values may depmd on other inputs (these dependencies must be acyclical in
the function)i the values for those other inputs will then be substituted into the default values (this process may
be repeated if the defaulalue for that input depend on another input). The default valugagots may not
depend on noinput variables in the functionThere shall be no remaining unfilled slotgHerwise an error
occurg and the list of filled slots is used as the arguntishfor the call.

Special purpose operators with function syntax defined in the specification may not be called with named
arguments, unless otherwise noted

The type of each argument must agree with the type of the corresponding parameter, excéipt \stzerdard
type coercions can be used to make the types agree. (See also Beétigi2-4-6on applying scalar functions to
arrays.)

[Example

Assume a functioRealToString  is defined as follows to contex Real number to a String:

function RealToString
input Real number;
input Real precision : = 6 "number of significantdigits";
input Real length : = 0 "minimum length of field";
output  String string "number as string";

enc.i" RealToString;



161

Then the following applications are equivalent:

RealToString(2.0);

RealToString(2.0, 6, 0);

RealToString(2.0, 6);

RealToString(2.0, precision=6);

RealToString(2.0, length=0);

RealToString(2.0, 6, precision=6); // error: slot is used twice

12.4.2 Function al Input Arguments to Functions

A functional input argument to a function is an argument of function fipe.declared type auchan input
formal parameter in a function can be the clzem®e of a partial function that has no replaceable elements. It
cannotbe the clasmame of a recordr enumeratiorfi.e., record constructor functiorsnd enumeration type
conversionsare not allowed in this contekiSuch an input formal parameter of function type alohave an
optionalfunctionaldefault value.

[Exampe:

function quadrature "Integrate function y=integrand(x) from x1 to x2"
input Real x1;
input Real x2;

input Integrand  integrand; // Integrand is a partial function, see below
/I With default: input  Integrand integrand := Modelica.Math.sin;
output  Real integral;

algorithm
integral :=(x2 - x1)*(integrand(x1) + integrand(x2))/2;

end quadrature;

partial function Integrand
input Real x;
output Realy;

end Integrand;

]

A functional argument can be provided in one of the following forms tpdssed to acalarformal parameter of
function type in a function call:

a) as a function namgParabola example belojy

b) as a function partial application (Sectibh.4.2.12.4-2-1below),

c) as a function that ia component,

d) as a function partial application of a function that is a component (example in SEttioh. 12.4-2-1
below).

In all cases the proviymgedmpatnicl i a5 ttnBaescortedpandiry foumalc t i o
parameter of function type.

[Example:

A function as a positional input argument according to case (a)

function Parabola
extends Integrand;
algorithm
Yy = X*X;
end Parabola;

area = quadrature(0, 1, Parabola);

Thequadratu re2 example below uses a functionegrand  that is a component as input argument according
to case (c):
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function quadrature?2 "Integrate function y=integrand(x) from x1 to x2"
input Real x1;
input Real x2;

input Integrand integrand; // Integrand is a partial function type
output Real integral;
algorithm
integral := quadrature(x1, (x1+x2)/2, integrand)+

quadrature((x1+x2)/2, x2, integrand);
end quadrature 2;

12.4.2.1 Function Pa rtial Application

A function partial application isimilar toa function call with certain formal parameters bound to expressions
specific rules are specified in this section and are not identical to the ones for functiori2adl InA function

partial application returns a partially evaluated function that is also a function, with the remaining not bound
formal parameters still present in the same order as in the original function declaration. A function partial
application is specified by théunction  keyword followed by a function call tlunc _name giving named

formal parameter associations for the formal parameters to be bound, e.g.:

function func_name(..., formal_parameter_name = expr, ...)

[Note that the keyworflunction in a function partial applicationdifferentiates the syntax from a normal
function call where some parameters have been left out, and instead supplied via defau]t values

The function created by the function partial application acts as the éfigntdion but with the bound formal
input parameters(s) removed, i.e., they cannot be supplied arguments at function call. The binding occurs when
the partially evaluated function is cr eatseedSetionA part
6.55-5) to the same function where all bound arguments are remdied, [for checking function type
compatibility, bound formal parameters are igndred

[Exampleof function partial application as argument, positional argument pasaitgprding to case {tabove

model Test
parameter Integer N;
Real area;
algorithm
area :=0;
for i in 1:N loop
area :=area + quadrature(0, 1, function Sine(A=2, w=i*time));
end for ;
end Test;

function Sine "y = Sine(x,A,w)"
extends Integrand ;
input Real A;
input Real w;
algorithm
y:=A*Modelica.Math.sin(w*x);
end Sine;

Call with function partial applicatioms named input argument:

area := area + quadrature(0, 1, integrand = function Sine(A=2, w=i*time));
]

[Example showing that function type® anatching after removing the bound argumextmdw in a function
partial application:

function Sine2 "y = Sine2(A,w,x)"
input Real A;
input Real w;
input  Real x; // Note: x is now last in argument list.
output Realy;
algorithm
y:=A*Modelic  a.Math.sin(w*x);
end Sine2;
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area = quadrature(0, 1, integrand = function Sine2(A=2, w=3));

The partially evaluate&ine2 has only one argument:ixand is thus type compatible wititegrand

]

[Example of a function partial application of a functiontttsaa component, according to case (d) above

partial function Surfacelntegrand
input Real x;
input Realy;

output Real z;
end Surfacelntegrand;

function guadratureOnce
input  Real x;

input  Real y1;
input  Real y2;
input  Surfacelntegrand integrand;
output Real z;
algorithm
z = quadrature(yl, y2, function integrand(y=x));

/I This is according to case (d) and needs to bind the 2nd argument
end quadratureOnce;

function surfaceQuadrature
input Real x1;
input Real x2;
input Realy 1;
input  Real y2;
input  Surfacelntegrand integrand;
output Real integral;

algorithm
integral := quadrature(x1, x2,
function quadratureOnce(y1l=y1l, y2=y2, integrand=integrand) );

/I Case (b) and (c)
end surfaceQuadrature;

]

12.4.3 Output Formal Parameters of Functions

A function may have more than one output component, corresponding to multiple return'Maduesly way to

use more than the first return value of such a function is to make the function call the right hand side of an
equation or ssignment. In this case, the left hand side of the equation or assignment shall contain a list of
component references within parentheses

(outl, out2, out3) = f(...);

The component references are associated with the output components according tsitiogirippthe list. Thus
output component i is set equal to, or assigned to, component reference i in the list, where the order of the output
components is given by the order of the component declarations in the function definition. The type of each
comporent reference in the list must agree with the type of the corresponding output component.

A function application may be used as expression whose value and type is given by the value and type of the
first output component, it leasone return result isrpvided.

It is possible to omit left hand side component references and/or truncate the left hand side list in order to
discard outputs from a function call.

[Optimizationsto avoid computation of unused output resoéia be automatically deduced ag optimizing
compilef.

[Example

Function 'eigen " to compute eigenvalues and optionally eigenvectors may be called in the following ways:
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ev = eigen(A); / calculate eigenvalues
X =isStable(eigen(A)); // used in an ex pression
(ev, vr) = eigen(A) /I calculate eigenvectors
(ev,vrvl) = eigen(A) // and also left eigenvectors
(ev,,vl) =eigen(A) /I no right eigenvectors

The function may be defined as:

function eigen "calculate eigenvalues and optionally eigenvectors"
input Real A[, size(A,1)];
output Real eigenValues| size(A,1) ,2];
output Real rightEigenVectors| size(A,1),size(A,1) I;
output Real leftEigenVectors [ size(A,1),size(A,1) 1;
algorithm
/I The output v ariables are computed separately (and not, e.g., by one

/I call of a Fortran function) in order that an optimizing compiler can remove
/I unnecessary computations, if one or more output arguments are missing

1 compute eigenvalues

1l compute r ight eigenvectors using the computed eigenvalues

1 compute left eigenvectors using the computed eigenvalues
end eigen;

]

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it is used as
the left had side of an equation or assignment where the right hand side is an application of a function.

[Example The following are illegal

(x+1, 3.0, zly) = (1.0, 2.0); /I Not a list of component references.
X, ¥,2) + (u, v, w) /I Not LHS of suitable egn/ass ignment.

]

12.4.4 Initialization and Declaration Assignments of Components in Functions

Components im functioncan be divided into three groups

9 Public components which are input formal parameters
9 Public components which amutput formal parameters.
1 Protectel components which are local variablparametersor constants

When a function is called components of a function do not haveastidoutes. However, a declaration
assignment€ expression ) with an expressiomay be present for a component.

A declaation assignment for a nénput componentnitializes the componertb thisexpression at the start
of every function invocation (before executing the algorithm section or calling the external funttiesg
bindings must be executed in an order wteeneriable is not used before its declaration assignment has been
executed; it is an error if no suokderexists (i.e. the binding must be acyclic).

Declaration assignments can only be used for components of a function. If no declaration assignueent is gi
for a noninput componenits-value-at-the-start-of the-function-invocation-is-undefimedariable is uninitialized
(except for record components where modifiers may also initialize that compdnisrdh error to uséor returr)
an uninitializedvariable in a functionIt is recommended to check this staticalli/this is not possible a warning
is recommended combined with a4time checl His-a-quality-ofimplementationissue-to-diaghese-thisfor non
externalfunetionsDeclaration assignems for input formal parameterare interpreted as default arguments, as
described in Sectioh2.4.1-2-4-1.

[The properties of components in functions described in this section are also briefly descrileetioin S
12.22:2]

12.4.5 Flexible Array Sizes and Resizing of Arrays in Functions

[Flexiblesetting ofarray dimension sizes of arrays in functions is also briefly described in SggtigR-2]
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A dimension size not specified with colohfor a norinput array component of a function must be given by the
inputs or be constant.
[Example

function joinThreeVectors
input Real v1[:],v2[:],v3[];

output Real vres[size(vl, 1)+size(v2,1)+size(v3,1)];
algorithm
vres ;= cat (1,v1,v2,v3);

end joinThreeVectors;

]

A nonrinput array component declared in a function with a dimension size specified by colon(:) and no

declaratlon assmnment can chanqe S|ze accordlnq to these $phasmen+npakawayshe—fbmetrenaﬁay

wing-rules:

1 Prior to execution of the function algorithm the dimension size is zero.

1 The entire array (without any subscripts) may be assigned with a corresponding array with arbitrary
dimension se (the array variable is-szed).

These rules also apply if the array component is an element of a record conparfeniction

[Example: A function to collect the positive elements in a vector:
function collectPositive
input  Real x[];
output  Real xpos[:];
algorithm
for i in 1lsize(x,1) loop
if Xx[i[>0 then
xpos:=cat(1,xpos,X][i:i]);
end if ;
end for ;
end collectPositive;

]

12.4.6 Scalar Functions Applied to Array Arguments

Functions with one scalaeturn value can be applied to arrays elemésé, e.g. ifA is a vector of reals, then
sin(A) is a vector where each element is the result of applying the furtiioto the corresponding element in
A. Only function classethat are transitively nereplaceablgSection6.2.16-21 and 7.1.422-4) may be called
vectorized.

Consider the expressidtargl,...,argn) , an application of the functioh to the argumentargl ,
argn is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding formal
parameter of the function.

1. If the types match, nothing is done.
2. If the types do not match, and a type conversiorbeagplied, it is applied. Continugith step 1.

3. If the types do not match, and no type conversion is applicable, the passed argument type is checked to see
if it is an ndimensional array of the formal parameter type. If it is not, the function caWadd. If it is,
we call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, the
function call is invalid.
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5. If no foreach argument exists, the function is applied in the normal fagimdnthe result has the type
specified by the function definition.

6. The result of the function call expression is adimensional array with the same dimension sizes as the
foreach arguments. Each element ei,..,j is the result of applying f to argumestsucted from the
original arguments in the following way:

9 If the argument is not a foreach argument, it is uses. as
9 If the argument is a foreach argument, the element at index [i,...,j] is used.

If more than one argument is an array, all of themeha be the same size, and they are traversed in parallel.

[Examples
sin({a, b, c}) ={sin(a), sin(b), sin(c)} // argument is a vector
sin([a,b,c]) = [sin(a),sin(b),sin(c)] /[ argument may be a matrix
atan({a,b,c},{d,e,f}) = {atan (a,d), atan(b,e), atan(c,f)}

This works even if the function is declared to take an array as one of its arguments. s defined as a
function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual
argument which is a twdimensional array (a vector of vectors). The result type in this case will be a vector of
Real.

pval([1,2;3,4]) = [pval([1,2]); pval([3,4])]
sin([1,2;3,4]) = [sin({1,2}); sin({3,4})]
= [sin(1), sin(2); sin(3), sin(4)]
function Add
input Real el, e2;
output Real sumi;

algorithm
suml:=el + e2;
end Add;
Add(1, [1,2,3) adds one to each of the elements of the second argument giving the[zgsylt .
However, it is illegal to write + [1,2,3] , because the rulder the builtin operators are more restrictivie.

12.4.7 Empty Function Calls

An fAemptyo function call i s Aam entpty kdll is of tinaited useoneModelitad t 1
since a function call without results dorot contribute to the simulation, and is not allowed to haveedfdets
that influence the simulation stdte.

An empty <call can occur either asegaaskithe eémptyg ¢allsfion ul |
eigen() in the example belaw

equation

Modelica.Math.Matrices. eigen(A); // Empty function call as an equation
algorithm

Modelica.Math.Matrices. eigen(A); // Empty function call as a statement

12.5 Built -in Functions

There are basicallpur groups of buikin functions in Modelica:

9 Intrinsic mathematicadnd conversiofunctions, see Sectidgh7.13.-7-1.

9 Derivative and gecial operatora/ith function syntaxsee Sectiof.7.3-7-2

1 Eventrelated operators with function syntax, see Se@&i@r3-7-3

{_Built-in array functions, see Sectid).3t6-3
L Note that when the specificatioeferences a function having the name of a{iiftinction it reference
the builtin function, not a usedefined functiorhavingthe same name.
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12.6 Record Constructor Functions

Whenever a record is defined, a record constructor function with the same mérmethe same scope as the
record class is implicitly defined according to the following rules:

The declaration of the record jmrtially flattenedincluding inheritance, modifications, redeclarations, and
expansion of all names referring to declaratioumtside of the scope of the record to their fully qualified naimes [
order to remove potentially conflicting import statements in the record constructor function due to flattening the
inheritance treg

All record elementsife., components and localasls definitionsof the partially flattenedrecord declaration
are used as declarations in the record constructor function with the following exceptions:

9 Component declarations which do not allow a modificatismcl asconstant Real c=1 or final
paramete r Real ] are declared as protected components in the record constructor function.

9 Prefixes ¢onstant , parameter , final , discrete ,...) of the remaining record components are removed.

9 The prefixinput is added to the public components of the record conetriiatction.

An instance of the record is declared as output parametiig[a name, not appearing in the redoragether

with a modification. In the modification, all input parameters are used to set the corresponding record variables.
A record constrator can only be called if the referenced record class is found in the global scope, and thus

cannot be modified.

[This allows to construct an instance of a record, with an optional modification, at all places where a function
call is allowed. Examples

re cord Complex "Complex number"
Real re "real part”;
Real im "imaginary part";

end Complex;

function add

input Complex u, v;

output Complex w(re=u.re + v.re, im=u.im+v.re);
end add,;

Complex cl, c2;
equation
c2 = add(c1, Complex(sin(time), cos( time));

In the following example, a convenient data sheet library of components is built up:

package Motors
record MotorData "Data sheet of a motor"
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;
end MotorData;

model Motor "Motor model" // using the generic MotorData
MotorData data;

equation
end Motor;

record Motorl123 = MotorData( // data of a specific motor
inertia =0.001,
nominalT orque = 10,
maxTorque = 20,
maxSpeed = 3600) "Data sheet of motor 1123";

record Motorl145 = MotorData( // data of another specific motor
inertia = 0.0015,
nominalTorque = 15,























































































































































































































































































































































































































































































