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Abstract 
This document defines the Modelica1 language, version 3.33.4, which is developed by the Modelica 

Association, a non-profit organization with seat in Linköping, Sweden. Modelica is a freely 

available, object-oriented language for modeling of large, complex, and heterogeneous systems. It is 

suited for multi-domain modeling, for example, mechatronic models in robotics, automotive and 

aerospace applications involving mechanical, electrical, hydraulic control and state machine 

subsystems, process oriented applications and generation and distribution of electric power. Models 

in Modelica are mathematically described by differential, algebraic and discrete equations. No 

particular variable needs to be solved for manually. A Modelica tool will have enough information 

to decide that automatically. Modelica is designed such that available, specialized algorithms can be 

utilized to enable efficient handling of large models having more than one hundred thousand 

equations. Modelica is suited and used for hardware-in-the-loop simulations and for embedded 

control systems. More information is available at http://www.Modelica.org/  

 

Version 3.3 Revision 1 clarifies and fixes issues of the specification text. In particular it includes all 

updates made in Version 3.2 Revision 2.

                                                 
1 Modelica is a registered trademark of the Modelica Association 
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Preface  

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous 

physical systems. From a userôs point of view, models are described by schematics, also called object diagrams. 

Examples are shown in the next figure: 

 

 
 

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has 

ñconnectorsò (often also called ñportsò) that describe the interaction possibilities, e.g., an electrical pin, a 

mechanical flange, or an input signal. By drawing connection lines between connectors a physical system or block 

diagram model is constructed. Internally a component is defined by another schematic or on ñbottomò level, by an 

equation based description of the model in Modelica syntax. 

The Modelica language is a textual description to define all parts of a model and to structure model 

components in libraries, called packages. An appropriate Modelica simulation environment is needed to 

graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model) and to 

perform model simulations and other analysis. Information about such environments is available at 

www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic and 

discrete equations. There are no language elements to describe directly partial differential equations, although 

some types of discretized partial differential equations can be reasonably defined, e.g., based on the finite volume 

method and there are Modelica libraries to import results of finite-element programs. 

This document defines the details of the Modelica language. It is not intended to learn the Modelica language 

with this text. There are better alternatives, such as the Modelica books referenced at 

www.modelica.org/publications. This specification is used by computer scientist to implement a Modelica 

translator and by modelers who want to understand the exact details of a particular language element. 

The Modelica language has been developed since 1996. This document describes revision 1 of version 3.3 4 of 

the Modelica language. With respect to version 3.2 new features are introduced such as synchronous language 

elements to describe controllers and synchronous state machines. A complete summary is available in Appendix 

E.1 E.1.  

May, 9, 2012April 10, 2017, The Modelica Association (revision on July 11, 2014) 

 

electrical circuits electrical machines 

drive trains, e.g. planetary gears 

hydraulic circuits 
thermo-fluid pipe flow, e.g.  

power plants, air conditioning systems 

block diagrams 
state machines 3-dim. mechanical systems 

http://www.modelica.org/tools
http://www.modelica.org/publications




13 

Chapter 1   
 
 
Introduction  

1.1 Overview of Modelica  

Modelica is a language for modeling of physical systems, designed to support effective library development and 

model exchange. It is a modern language built on acausal modeling with mathematical equations and object-

oriented constructs to facilitate reuse of modeling knowledge. 

1.2 Scope of the Specification  

The semantics of the Modelica language is specified by means of a set of rules for translating any class described 

in the Modelica language to a flat Modelica structure.  

A class (of specialized class model, class or block) intended to be simulated on its own is called a simulation 

model. must have additional properties in order that its flat Modelica structure can be further transformed into a 

set of differential, algebraic and discrete equations (= flat hybrid DAE). Such classes are called simulation 

models. 

The flat Modelica structure is also defined for other cases than simulation models; including functions (can 

be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial models (used as 

base-models). This allows correctness to be verified for those classes, before using them to build the simulation 

modelThis allows correctness to be verified before building the simulation model. 

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they 

allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete 

equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that the model can 

be initialized from the initial conditions and simulated. 

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically 

every Modelica language construct to continuous or instantaneous equations in the flat Modelica structure. Many 

Modelica models, especially in the associated Modelica Standard Library, are higher index systems, and can only 

be reasonably simulated if symbolic index reduction is performed, i.e., equations are differentiated and 

appropriate variables are selected as states, so that the resulting system of equations can be transformed to state 

space form (at least locally numerically), i.e., a hybrid DAE of index zero. In order to allow this structural 

analysis, a tool may reject simulating a model if parameters cannot be evaluated during translation - due to calls of 

external functions or initial equations/initial algorithms for fixed=false parameters. Accepting such models is a 

quality of implementation issue. The Modelica specification does not define how to simulate a model. However, it 

defines a set of equations that the simulation result should satisfy as well as possible. 

The key issues of the translation (or flattening) are:  

¶ Expansion of inherited base classes  

¶ Parameterization of base classes, local classes and components  

¶ Generation of connection equations from connect-equations  

The flat hybrid DAE form consists of:  
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¶ Declarations of variables with the appropriate basic types, prefixes and attributes, such as "parameter 

Real v=5 ".  

¶ Equations from equation sections.  

¶ Function invocations where an invocation is treated as a set of equations which involves all input and all 

result variables (number of equations = number of basic result variables).  

¶ Algorithm sections where every section is treated as a set of equations which involves the variables 

occurring in the algorithm section (number of equations = number of different assigned variables).  

¶ When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also called 

instantaneous equations, which are functions of the variables occurring in the clause (number of equations = 

number of different assigned variables).  

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only conditionally 

evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition becomes true). 

Initial setup of the model is specified using start-values and instantaneous equations that hold at the initial time 

only.  

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical representations 

of the class (icon and diagram), documentation text for the class, and version information.  

 

1.3 Some Definitions  

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e., 

examples and comments, are enclosed in [ ]; comments are set in italics. Additional terms are explained in the 

glossary in Appendix A Appendix A. Some important terms are: 

Term Definition 

Component An element defined by the production component _clause component - clause  in the 

Modelica grammar 

(basically a variable or an instance of a class) 

Element Class definitions, extends-clauses and component-clauses declared in a class 

(basically a class reference or a component in a declaration). 

Flattening The translation of a model described in Modelica to the corresponding model described as a 

hybrid DAE, involving expansion of inherited base classes, parameterization of base 

classes, local classes and components, and generation of connection equations from 

connect-equations (basically, mapping the hierarchical structure of a model into a set of 

differential, algebraic and discrete equations together with the corresponding variable 

declarations and function definitions from the model). 

1.4 Notation and Grammar  

The following syntactic meta symbols (of the extended BNF-grammar) are defined in B.1.used (extended BNF):  

[ ]  optional 

{ }  repeat zero or more times 

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used as 

identifiers, with the exception of initial  which is a keyword in section headings, and der  which is a keyword 

for declaration functions, but it is also possible to call the functions initial() and der(é). 

See Appendix B Appendix B for a full lexical specification and grammar. 
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Chapter 2   
 
Lexical Structure  

 

This chapter describes several of the basic building blocks of Modelica such as characters and lexical units 

including identifiers and literals. Without question, the smallest building blocks in Modelica are single characters 

belonging to a character set. Characters are combined to form lexical units, also called tokens. These tokens are 

detected by the lexical analysis part of the Modelica translator. Examples of tokens are literal constants, 

identifiers, and operators. Comments are not really lexical units since they are eventually discarded. On the other 

hand, comments are detected by the lexical analyzer before being thrown away. 

The information presented here is derived from the more formal specification in Appendix B Appendix B. 

2.1 Character Set  

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corresponding to 

7-bit ASCII characters in several places; for details see Appendix B.1 B.1. 

2.2 Comments  

There are two kinds of comments in Modelica which are not lexical units in the language and therefore are treated 

as whitespace by a Modelica translator. The whitespace characters are space, tabulator, and line separators 

(carriage return and line feed); and whitespace cannot occur inside tokens, e.g., <= must be written as two 

characters without space or comments between them. [The comment syntax is identical to that of C++ ]. The 

following comment variants are available: 

 

// comment  Characters from //  to the end of the line are ignored. 

/* comment */  Characters between /*  and */  are ignored, including line terminators. 

Modelica comments do not nest, i.e., /* */  cannot be embedded within /* */ . The following is invalid: 

/* Commented out -  erroneous comment, invalid nesting of comments!  

  /* This is a n interesting model */  

  model  interesting  

  ...  

  end  interesting;  

*/  

There is also a kind of ñdocumentation comment,ò really a documentation string that is part of the Modelica 

language and therefore not ignored by the Modelica translator. Such ñcommentsò may occur at the ends of 

declarations, equations, or statements or at the beginning of class definitions. For example: 

model  TempResistor  "Temperature dependent resistor"  

  ...  

  parameter  Real R  "Resistance for reference temp.";  

  ...  
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end  TempResistor;  

2.3 Identifiers, Names , and Keywords  

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for naming 

various items in the language. Certain combinations of letters are keywords represented as reserved words in the 

Modelica grammar and are therefore not available as identifiers. 

2.3.1 Identifiers  

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms. The first 

form always starts with a letter or underscore (_), followed by any number of letters, digits, or underscores. Case 

is significant, i.e., the names Inductor  and inductor  are different. The second form (Q- IDENT) starts with a 

single quote, followed by a sequence of any printable ASCII character, where single-quote must be preceded by 

backslash, and terminated by a single quote, e.g. '12H' , '13 \ 'H' , '+foo' . Control characters in quoted 

identifiers have to use string escapes. The single quotes are part of the identifier, i.e., 'x'  and x  are distinct 

identifiers, but the redundant escapes  (' \ ?'  and ' \ " ' ) are the same as the corresponding non-escaped 

variants ('? '  and '" ' ) . The following BNF-like rules define Modelica identifiers, where curly brackets {} 

indicate repetition zero or more times, and vertical bar | indicates alternatives. A full BNF definition of the 

Modelica syntax and lexical units is available in Appendix B Appendix B. 

IDENT    = NONDIGIT { DIGIT | NONDIGIT }  |  Q - IDENT 

Q- IDENT  = " ô" { Q - CHAR | S - ESCAPE | " " "  } " ô"  

NONDIGIT = " _" | letters " a" to " z" | letters " A" to " Z"  

DI GIT    = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9  

Q- CHAR = NONDIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" | "+" | "," |     

         " - " | "." | "/" | ":" | ";" | "<" | ">" | "=" | "?" | "@" | "[" | "]" | "^" |  

         "{" | "}"  | "|" | " ~" | " " _ 

S- ESCAPE = " \ ô" | " \ " " | " \ ?" | " \ \ " |  

           " \ a" | " \ b" | " \ f " | " \ n" | " \ r " | " \ t " | " \ v"  

2.3.2 Names 

A name is an identifier with a certain interpretation or meaning. For example, a name may denote an Integer  

variable, a Real  variable, a function, a type, etc. A name may have different meanings in different parts of the 

code, i.e., different scopes. The interpretation of identifiers as names is described in more detail in Chapter 

5 Chapter 5. The meaning of package names is described in more detail in Chapter 13 Chapter 13. 

2.3.3 Modelica Keywords  

The following Modelica keywords are reserved words and may not be used as identifiers, except as listed in 

Appendix B.1 B.1: 

algorithm  discrete  false  loop  pure  

and  each  final  model  record  

annotation  else  flow  not  re declare  

 elseif  for  operator  replaceable  

block  elsewhen  function  or  return  

break  encapsulated  if  outer  stream  

class  end  import  output  then  

connect  enumeration  impure  package  true  

connector  equation  in  parameter  type  

constant  expandable  initial  partial  when 

constrainedby  extends  inner  protected  while  

der  external  input  public  within  
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2.4 Literal Constants  

Literal constants are unnamed constants that have different forms depending on their type. Each of the predefined 

types in Modelica has a way of expressing unnamed constants of the corresponding type, which is presented in the 

ensuing subsections. Additionally, array literals and record literals can be expressed. 

2.4.1 Floating  Point Numbers  

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits optionally 

followed by a decimal point, optionally followed by an exponent. At least one digit must be present. The exponent 

is indicated by an E or e, followed by an optional sign (+ or -) and one or more decimal digits. The minimal 

recommended range is that of IEEE double precision floating point numbers, for which the largest representable 

positive number is 1.7976931348623157E+308 and the smallest positive number is 2.2250738585072014E-308. 

For example, the following are floating point number literal constants: 

22.5 ,  3.141592653589793 ,  1.2E - 35 

The same floating point number can be represented by different literals. For example, all of the following literals 

denote the same number: 

13. ,  13E0,  1.3e1 ,  0.13E2  

2.4.2 Integer  Literals  

Literals of type Integer  are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100 , 30030044 . 

[Negative numbers are formed by unary minus followed by an integer literal]. The minimal recommended number 

range is from -2147483648 to +2147483647 for a twoôs-complement 32-bit integer implementation. 

2.4.3 Boolean  Literals  

The two Boolean  literal values are true  and false . 

2.4.4 String s 

String literals appear between double quotes as in "between" . Any character in the Modelica language character 

set (see appendix B.1 B.1 for allowed characters) apart from double quote (" ) and backslash (\ ), including new-

line, can be directly included in a string without using an escape code. Certain characters in string literals can be 

represented using escape codes, i.e., the character is preceded by a backslash (\ ) within the string. Those 

characters are: 

 

\ '  single quote½may also appear without backslash in string constants. 

\ "  double quote 

\ ? question-mark½may also appear without backslash in string constants. 

\ \  backslash itself 

\ a alert (bell, code 7, ctrl-G) 

\ b backspace (code 8, ctrl-H) 

\ f  form feed (code 12, ctrl-L) 

\ n new-line (code 10, ctrl-J), same as literal newline 

\ r  carriage return (code 13, ctrl-M) 
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\ t  horizontal tab (code 9, ctrl-I) 

\ v  vertical tab (code 11, ctrl-K) 

 

For example, a string literal containing a tab, the words: This  is , double quote, space, the word: between , 

double quote, space, the word: us , and new-line, would appear as follows: 

" \ tThis is \ " between \ " us \ n"  

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the + operator in 

Modelica, e.g. "a"  + "b"  becomes "ab" . This is useful for expressing long string literals that need to be written 

on several lines. 

The " \ n"  character is used to conceptually indicate the end of a line within a Modelica string. Any Modelica 

program that needs to recognize line endings can check for a single " \ n"  character to do so on any platform. It is 

the responsibility of a Modelica implementation to make any necessary transformations to other representations 

when writing to or reading from a text file. [For example, a " \ n"  is written and read as-is in a Unix or Linux 

implementation, but written as " \ r \ n"  pair, and converted back to " \ n"  when read, in a Windows 

implementation.]  

[Note, if the contents of a file is read into a Modelica string, it is assumed that the reading function is responsible 

to handle the different line ending symbols on file (e.g. on Linux systems to have a ñnewlineò character at the end 

of a line and on Windows systems to have a ñnewlineò and a ñcarriage returnò character. As usual in 

programming languages, the content of a file in a Modelica string only contains the ñnewlineò character.  

For long string comments, e.g., the ñinfoò annotation to store the documentation of a model, it would be very 

inconvenient, if the string concatenation operator would have to be used for every line of documentation. It is 

assumed that a Modelica tool supports the non-printable ñnewlineò character when browsing or editing a string 

literal. For example, the following statement defines one string that contains (non-printable) newline characters: 

  assert ( noEvent (length > s_small), "  

The distance between the origin of frame_a and the origin of frame_b  

of a  LineForceWithMass component became smaller as parameter s_small  

(= a small number, defined in the \ "Advanced \ " menu). The distance is  

set to s_small, although it is smaller, to avoid a division by zero  

when computing the direction of the line force.",  

lev el = AssertionLevel.warning );  

] 

2.5 Operator  Symbols  

The predefined operator symbols are formally defined on page 281255 and summarized in the table of operators 

in Section 3.2 3.2.  
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Chapter 3   
 
 
Operators  and Expressions  

The lexical units are combined to form even larger building blocks such as expressions according to the rules 

given by the expression part of the Modelica grammar in Appendix B Appendix B. 

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in 

mathematical operators and functions, and the built-in special Modelica operators with function syntax. 

Expressions can contain variables and constants, which have types, predefined or user defined. The predefined 

built-in types of Modelica are Real , Integer , Boolean , String , and enumeration types which are presented in 

more detail in Section 4.8 4.8. [The abbreviated predefined type information below is given as background 

information for the rest of the presentation.] 

3.1 Expressions  

Modelica equations, assignments and declaration equations contain expressions. 

Expressions can contain basic operations, +, -, *, /, ^, etc. with normal precedence as defined in the Table in 

Section 3.2 3.2 and the grammar in Appendix B Appendix B. The semantics of the operations is defined for both 

scalar and array arguments in Section 10.6 10.6.  

It is also possible to define functions and call them in a normal fashion. The function call syntax for both 

positional and named arguments is described in Section 12.4.1 12.4.1 and for vectorized calls in Section 

12.4.4 12.4.4. The built-in array functions are given in Section 10.1.1 10.1.1 and other built-in operators in Section 

3.7 3.7. 

3.2 Operator Precedence  and Associativity  

Operator precedence determines the order of evaluation of operators in an expression. An operator with higher 

precedence is evaluated before an operator with lower precedence in the same expression. 

The following table presents all the expression operators in order of precedence from highest to lowest, as 

derived from the Modelica grammar in Appendix B Appendix B. All operators are binary except the postfix 

operators and those shown as unary together with expr, the conditional operator, the array construction operator {} 

and concatenation operator [ ], and the array range constructor which is either binary or ternary. Operators with 

the same precedence occur at the same line of the table:  

Table 3-1 3-1. Operators. 

Operator Group Operator Syntax Examples 

postfix array index operator []  arr[index]  

postfix access operator .  a.b  

postfix function call funcName(function-

argumentsfunction-arguments) 

sin(4.36)  

array construct/concat { expressions}    [expressions]   {2,3}  [5,6]  
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[expressions;  expressions...] [2,3; 7,8]  

exponentiation ^  2^3  

multiplicative and array 

elementwise multiplicative 

*   /   .*   ./  2*3   2/3  

[1,2;3,4].*[2,3;5,6]  

additive and array 

elementwise additive 

+  -   +expr  - expr 

.+  .-  

a+b ,  a- b, +a, - a 

[1,2;3,4].+[2,3;5,6]  

relational <  <=  >  >=  ==  <> a<b ,  a<=b, a>b, ...  

unary negation not  expr not b1  

logical and and  b1 and b2  

logical or or  b1 or  b2  

array range expr  :   expr   

expr  :   expr  :   expr 

1:5  

start:step: stop  

conditional if   expr  then   expr  else   expr if b then 3 else x  

named argument ident  =  expr   x = 2.26  

The conditional operator may also include elseif-clauses. Equality = and assignment :=  are not expression 

operators since they are allowed only in equations and in assignment statements respectively. All binary 

expression operators are left associative, except exponentiation which is non-associative. The array range operator 

is non-associative. 

[The unary minus and plus in Modelica is slightly different than in Mathematica and in MATLAB2, since the 

following expressions are illegal (whereas in Mathematica3 and in MATLAB these are valid expressions): 

2* - 2  // = - 4 in Mathematica/ MATLAB; is illegal in Modelica  

-- 2   // =  2 in Mathematica/ MATLAB; is illegal in Modelica  

++2   // =  2 in Mathematica/ MATLAB; is illegal in Modelica  

2-- 2  // =  4 in Mathematica/ MATLAB; is illega l in Modelica  

 

Non- associative exponent i ation and array range operator:  

  x^y^z   // Not legal , use parenthesis to make it cl ear  

  a:b:c:d:e:f:g  // Not legal, and scalar arguments gives no legal interpretation.  

] 

3.3 Evaluation Order  

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do not 

influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and if-expressions 

guarantee that their clauses are only evaluated if the appropriate condition is true, but relational operators 

generating state or time events will during continuous integration have the value from the most recent event. 

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically 

convert the number to another type with greater precision. 

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation  

 [Example. If one wants to guard an expression against incorrect evaluation, it should be guarded by an if: 

  Boolean v[n];  

  Boolean b;  

  Integer I;  

equation  

  x=v[I] and  (I>=1 and  I<=n); // Invalid  

  x= if  (I>=1 and  I<=n) then  v[I] else  false; // Correct  

To guard square against square root of negative number use noEvent : 

                                                 
2 MATLAB is a registered trademark of MathWorks Inc. 
3 Mathematica is a registered trademark of Wolfram Research Inc. 
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  der (h) =if  h>0 then  ïc*sqrt(h) else  0; // Incorrect  

  der (h)= if  noEvent(h>0) then  ïc*sqrt(h) else  0; // Correct  

] 

3.4 Arithmetic Operators  

Modelica supports five binary arithmetic operators that operate on any numerical type: 

 

^  Exponentiation 

*  Multiplication 

/  Division 

+ Addition 

-  Subtraction 

Some of these operators can also be applied to a combination of a scalar type and an array type, see Section 

10.6 10.6. 

The syntax of these operators is defined by the following rules from the Modelica grammar: 
 

arithmetic_expression arithmetic - expression  :  

   [ add_op add- operator  ] term { add_op add- operator  term }  

 

add_op add- operator  :  

   "+" | " - "  

 

term :  

   factor  { mul_op mul - operator  factor }  

 

mul_op mul - operator  :  

   "*" | "/"  

 

factor :  

   primary [ "^" primary ]  

3.5 Equality , Relational , and Logical  Operators  

Modelica supports the standard set of relational and logical operators, all of which produce the standard boolean 

values true  or false . 

 

> greater than 

>= greater than or equal 

< less than 

<= less than or equal to 

== equality within expressions 

<> Inequality 

A single equals sign = is never used in relational expressions, only in equations (Chapter 8 Chapter 8, Section 

10.6.1 10.6.1) and in function calls using named parameter passing (Section 12.4.1 12.4.1). 

The following logical operators are defined: 

 

not  negation, unary operator 

and  logical and 

or  logical or 

The grammar rules define the syntax of the relational and logical operators. 

logical_expression logica l - expression  :  

   logical_term logical - term  { or  logical_term logical - term  }  
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logical_term logical - term  :  

   logical_factor logical - factor  { and  logical_factor logical - factor  }  

 

logical_factor logical - factor  :  

   [ not  ] relation  

 

relation :  

   arithmetic_expres sion arithmetic - expression  [ rel_op relational - operator  

arithmetic_expression arithmetic - expression  ]  

 

rel_op relational - operator  :  

   "<" | "<=" | ">" | ">=" | "==" | "<>"  

The following holds for relational operators: 

¶ Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types. The result is 

Boolean and is true or false if the relation is fulfilled or not, respectively. 

¶ For operands of type String , str1 op str2  is for each relational operator, op, defined in terms of the C-

function strcmp  as strcmp(str1,str2) op 0 .  

¶ For operands of type Boolean, false <true . 

¶ For operands of enumeration types, the order is given by the order of declaration of the enumeration literals. 

¶ In relations of the form v1 == v2 or v1 <> v2, v1 or v2 shall, unless used in a function, not be a subtype of 

Real. [The reason for this rule is that relations with Real arguments are transformed to state events (see 

Events, Section 8.5 8.5) and this transformation becomes unnecessarily complicated for the == and <> 

relational operators (e.g. two crossing functions instead of one crossing function needed, epsilon strategy 

needed even at event instants). Furthermore, testing on equality of Real variables is questionable on 

machines where the number length in registers is different to number length in main memory]. 

¶ Relational operators can generate events, see section 3.8.3.Relations of the form ñv1 rel_op v2 ò, with v1  

and v2  variables and rel_op  a relational operator are called elementary relations. If either v1  or v2  or both 

variables are a subtype of Real, the relation is called a Real elementary relation. 

3.6 Miscellaneous  Operators and Variables  

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical operators. 

These are described below, including time , which is a built-in variable, not an operator. 

3.6.1 String Concatenation  

Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica [e.g. "a"  + "b"  

becomes "ab" ] . 

3.6.2 Array Constructor Operator  

The array constructor operator { ... } is described in Section 10.4 10.4. 

3.6.3 Array Concatenation Operator  

The array concatenation operator [ ... ] is described in Section 10.4.2 10.4.2. 

3.6.4 Array Range Operator  

The array range constructor operator :  is described in Section 10.4.3 10.4.3. 
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3.6.5 If-Expression s 

An expression 

if  expression1 then  expression2 else  expression3  

is one example of if-expression. First expression1 , which must be boolean expression, is evaluated. If 

expression1  is true expression2  is evaluated and is the value of the if-expression, else expression3  is 

evaluated and is the value of the if-expression. The two expressions, expression2  and expression3 , must be 

type compatible expressions (Section 6.6 6.6) giving the type of the if-expression. If-expressions with elseif  are 

defined by replacing elseif  by else if . [Note: elseif  has been added for symmetry with if-clauses.] For 

short-circuit evaluation see Section 3.3 3.3. 

[Example: 

Integer i;  

Integer sign_of_i1= if  i<0 then  - 1 elseif  i==0 then  0 else  1;  

Integer sign_of_i2= if  i<0 then  - 1 else  if  i==0 then  0 else  1;  

] 

3.6.6 Member Access Operator  

It is possible to access members of a class instance using dot notation, i.e., the . operator. 

[Example: R1.R  for accessing the resistance component R of resistor R1. Another use of dot notation: local 

classes which are members of a class can of course also be accessed using dot notation on the name of the class, 

not on instances of the class.] 

 

3.6.7 Built -in  Variable time  

All declared variables are functions of the independent variable time . The variable time  is a built-in variable 

available in all models and blocks, which is treated as an input variable. It is implicitly defined as:  

input  Real time ( final  quantity = "Time",  

                 final  unit     = "s");  

The value of the start attribute of time  is set to the time instant at which the simulation is started.  

[Example:  

encapsulated  model  SineSource  

  import  Modelica.Math.sin;  

  connector  OutPort= output  Real;  

  OutPort y=sin(time); // Uses the built - in variable time.  

end  SineSource;  

]  

3.7 Built -in Intrinsic Operators  with Function Sy ntax  

Certain built-in operators of Modelica have the same syntax as a function call. However, they do not behave as a 

mathematical function, because the result depends not only on the input arguments but also on the status of the 

simulation.  

There are also built-in functions that depend only on the input argument, but also may trigger events in 

addition to returning a value. Intrinsic means that they are defined at the Modelica language level, not in the 

Modelica library. The following built-in intrinsic operators/functions are available: 

¶ Mathematical functions and conversion functions, see Section 3.7.1 3.7.1 below. 

¶ Derivative and special purpose operators with function syntax, see Section 3.7.2 3.7.2 below. 
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¶ Event-related operators with function syntax, see Section 3.7.3 3.7.3 below. 

¶ Array operators/functions, see Section 10.1.1 10.1.1. 

Note that when the specification references a function having the name of a built-in function it references the 

built-in function, not a user-defined function having the same name, see also section 12.5. With exception of built-

in operator String (..), all operators in this section can only be called with positional arguments. 

3.7.1 Numeric Functions  and Conversion  Functions  

The following mathematical operators and functions, also including some conversion functions, are predefined in 

Modelica, and are vectorizable according to Section 12.4.6 12.4.6, except for the String  function. The functions 

which do not trigger events are described in the table below, whereas the event-triggering mathematical functions 

are described in Section 3.7.1.1 3.7.1.1. 

abs(v)  Is expanded into ñnoEvent (if  v >= 0 then  v else  ïv) ò. 

Argument v needs to be an Integer or Real expression. 

sign(v)  Is expanded into ñnoEvent (if  v>0 then  1 else if  v<0 

then  ï1 else  0)ò. Argument v  needs to be an Integer or Real 

expression. 

sqrt(v)  Returns the square root of v if v>=0, otherwise an error occurs. 

Argument v needs to be an Integer or Real expression. 

Integer(e)  Returns the ordinal number of the expression e of enumeration 

type that evaluates to the enumeration value E.enumvalue , 

where Integer(E.e1)=1 , Integer(E.en)=  n, for an 

enumeration type E=enumeration(e1,  ... ,  en) . See also 

Section 4.8.5.2 4.8.5.2. 

EnumTypeName(i)  
For any enumeration type EnumTypeName, returns the 

enumeration value EnumTypeName.e  such that 

Integer( EnumTypeName.e) = i . Refer to the definition of 

Inte ger  above.  

 

It is an error to attempt to convert values of i  that do not 

correspond to values of the enumeration type. See also Section 

4.8.5.3. 

String(b, <options>)  

String(i, <options>)  

String(r,  

       significantDigits=d,  

       <options>)  

String(r, format=s)  

String(e, <options>)  

Convert a scalar non-String expression to a String representation. 

The first argument may be a Boolean b , an Integer i , a 

Real  r  or an Enumeration e  (Section 4.8.5.2 4.8.5.2). The 

other arguments must use named arguments. The optional 

<options>  are: 

Integer minimumLength=0 : minimum length of the 

resulting string. If necessary, the blank character is used to fill up 

unused space. 

Boolean leftJustified  = tr ue: if true, the converted 

result is left justified in the string; if false it is right justified in 

the string. 

For Real expressions the output shall be according to the 

Modelica grammar. Integer significantDigits =6: defines 

the number of significant digits in the result string. [Examples: 

"12.3456 ", "0.0123456 ", "12345600 ", "1.23456E - 10"].  
The format string corresponding to options is: 
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¶ for Reals: (if leftJustified then " - " else 

"")+String(minimumLength)+"."+ 

String(signficantDigits)+"g" , 

¶ for Integers: (i f leftJustified then " - " else 

"")+String(minimumLength)+"d" .  

Format string: According to ANSI-C the format string specifies 

one conversion specifier (excluding the leading %), may not 

contain length modifiers, and may not use "* " for width and/or 

precision. For all numeric values the format specifiers f , e, E, 

g, G are allowed. For integral values it is also allowed to use 

the d, i, o, x, X, u, and c-format specifiers (for non-integral 

values a tool may round, truncate or use a different format if the 

integer conversion characters are used).  

The x,X-formats (hexa-decimal) and c (character) for Integers 

does not lead to input that agrees with the Modelica-grammar. 

 

3.7.1.1 Event Triggering Mathematical Functions  

The built-in operators in this section trigger state events if used outside of a when-clause and outside of a clocked 

discrete-time partition (see Section 16.8.1 16.8.1). These expression for div, ceil, floor, and integer are event 

generating expression. The event generating expression for mod(x,y) is floor(x/y), and for rem(x,y) it is div(x,y) - 

i.e. events are not generated when mod or rem changes continuously in an interval, but when they change 

discontinuously from one interval to the next. [ If this is not desired, the noEvent  function can be applied to 

them. E.g. noEvent( integer (v))  ] 

 

div(x,y)  Returns the algebraic quotient x/y  with any fractional part discarded (also known as 

truncation toward zero). [Note: this is defined for / in C99; in C89 the result for 

negative numbers is implementation-defined, so the standard function div()  must 

be used.]. Result and arguments shall have type Real or Integer. If either of the 

arguments is Real the result is Real otherwise Integer. 

mod(x,y)  Returns the integer modulus of x/y , i.e. mod(x,y)=x - floor(x/y)*y . Result and 

arguments shall have type Real or Integer. If either of the arguments is Real the 

result is Real otherwise Integer. [Note, outside of a when-clause state events are 

triggered when the return value changes discontinuously. Examples 

mod(3,1.4)=0.2 , mod(- 3,1.4)=1.2 , mod(3, - 1.4)= - 1.2 ] 

rem(x,y)  Returns the integer remainder of x/y , such that div(x,y)*y + rem(x, y) = 

x . Result and arguments shall have type Real or Integer. If either of the arguments is 

Real the result is Real otherwise Integer. [Note, outside of a when-clause state events 

are triggered when the return value changes discontinuously. Examples 

rem(3,1.4)=0.2 , rem( - 3,1.4)= - 0.2 ] 

ceil(x)  Returns the smallest integer not less than x . Result and argument shall have type 

Real. [Note, outside of a when-clause state events are triggered when the return 

value changes discontinuously.] 

floor(x)  Returns the largest integer not greater than x . Result and argument shall have type 

Real. [Note, outside of a when-clause state events are triggered when the return 

value changes discontinuously.]. 

intege r(x)  Returns the largest integer not greater than x . The argument shall have type Real. 

The result has type Integer.  

[Note, outside of a when-clause state events are triggered when the return value 
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changes discontinuously.]. 

 

3.7.1.2 Built -in  Mathematical Functions  and External Built -in  Functions  

The following built-in mathematical functions are available in Modelica and can be called directly without any 

package prefix added to the function name. They are also available as external built-in functions in the 

Modelica.Math  library. 

 

sin( x)  sine 

cos( x)  cosine 

tan( x)  tangent (x shall not be: ...,  - /́2, ́ /2, 3́ /2, ...) 

asin ( x )  inverse sine  (-1 Ò x Ò 1) 

acos ( x )  inverse cosine (-1 Ò x Ò 1) 

atan ( x )  inverse tangent 

atan2( y , x )  

the atan2(y, x) function calculates the principal 

value of the arc tangent of y/x, using the signs 

of the 

two arguments to determine the quadrant of 

the result 

sinh( x )  hyperbolic sine 

cosh( x )  hyperbolic cosine 

tanh( x )  hyperbolic tangent 

exp( x)  exponential, base e 

log( x)  natural (base e) logarithm (x > 0) 

log10( x)  base 10 logarithm (x > 0) 

 

3.7.2 Derivative and Special Purpose  Operators  with Function Syntax  

The following derivative operator and special purpose operators with function syntax are predefined. The special 

purpose operators with function syntax where the call below uses named arguments can be called with named 

arguments (with the specified names), or with positional arguments (the inputs of the functions are in the order 

given in the calls below).: 

 

der (expr) The time derivative of expr . If the expression expr  is a scalar it needs to 

be a subtype of Real. The expression and all its subexpressions must be 

differentiable. If expr  is an array, the operator is applied to all elements of 

the array. For non-scalar arguments the function is vectorized according to 

Section 10.6.12 10.6.12. [For Real parameters and constants the result is a 

zero scalar or array of the same size as the variable.] 
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delay(expr,delayTime,  

      delayMax )  

 

delay(expr,delayTime)  

Returns: expr(time ïdelayTime)  for   time>time.start + 

delayTime  and expr(time.start)  for time <= time.start + 

delayTime . The arguments, i.e., expr , delayTime  and delayMax , need 

to be subtypes of Real. DelayMax  needs to be additionally a parameter 

expression. The following relation shall hold: 0 <= delayTime <= 

delayMax , otherwise an error occurs. If delayMax  is not supplied in the 

argument list, delayTime  needs to be a parameter expression. See also 

Section 3.7.2.1 3.7.2.1. For non-scalar arguments the function is vectorized 

according to Section 10.6.12 10.6.12. 

cardinality(c)  

 
[This is a deprecated operator. It should no longer be used, since it will be 

removed in one of the next Modelica releases.] 

Returns the number of (inside and outside) occurrences of connector 

instance c in a connect-equation as an Integer number. See also Section 

3.7.2.3 3.7.2.3. 

homotopy(actual=a ctual ,  

   simplified=s implified )  
The scalar expressions ñactualò and ñsimplifiedò are subtypes of Real. A 

Modelica translator should map this operator into either of the two forms: 

1. Returns ñactualò [a trivial i mplementation]. 

2. In order to solve algebraic systems of equations, the operator might 

during the solution process return a combination of the two arguments, 

ending at actual, [e.g.,  

       actual*lambda + simplified*(1 - lambda) , 

where lambda  is a homotopy parameter going from 0 to 1]. 

The solution must fulfill the equations for  homotopy returning 

ñactualò. 

See also Section 3.7.2.4 3.7.2.4. For non-scalar arguments the function is 

vectorized according to Section 12.4.6 12.4.6. 

semiLinear(x,  

  positiveSlope,  

  negativeSlope)  

Returns:  

smooth(0, if x>=0 then positiveSl ope*x else 

negativeSlope*x ) .  

The result is of type Real. See Section 3.7.2.5 3.7.2.5 [especially in  the 

case when x = 0]. For non-scalar arguments the function is vectorized 

according to Section 10.6.12 10.6.12. 

inStream(v)  The operator inStream(v)  is only allowed on stream variables v  defined 

in stream connectors, and is the value of the stream variable v close to the 

connection point assuming that the flow is from the connection point into 

the component. This value is computed from the stream connection 

equations of the flow variables and of the stream variables. The operator is 

vectorizable. For more details see Section 15.2 15.2. 

actualStream(v)  The actualStream(v)  operator returns the actual value of the stream 

variable v for any flow direction. The operator is vectorizable. For more 

details, see Section 15.3 15.3. 

spatialDistribution (  

 in0 =in0 , in1= in1, x=x, 

positiveVelocity= épv ,  

initialPoints= éiP ,  

initialValues= éiV )  

The spatialDistr i bution (é)  operator allows approximation of 

variable-speed transport of properties, see Section 3.7.2.2 3.7.2.2. 

getInstanceName ()  Returns a string with the name of the model/block that is simulated, 

appended with the fully qualified name of the instance in which this 

function is called, see Section 3.7.2.6 3.7.2.6. 
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A few of these operators are described in more detail in the following. 

3.7.2.1 delay  

[The delay()  operator allows a numerical sound implementation by interpolating in the (internal) integrator 

polynomials, as well as a more simple realization by interpolating linearly in a buffer containing past values of 

expression expr. Without further information, the complete time history of the delayed signals needs to be stored, 

because the delay time may change during simulation. To avoid excessive storage requirements and to enhance 

efficiency, the maximum allowed delay time has to be given via delayMax .  

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time 

simulation where fixed step size integrators are used, this information is sufficient to allocate the necessary 

storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer size is 

dynamic during integration. In principle, a delay  operator could break algebraic loops. For simplicity, this is 

not supported because the minimum delay time has to be give as additional argument to be fixed at compile time. 

Furthermore, the maximum step size of the integrator is limited by this minimum delay time in order to avoid 

extrapolation in the delay buffer.] 

3.7.2.2 spatialDistribution  

[Many applications involve the modelling of variable-speed transport of properties. One option to model this 

infinite-dimensional system is to approximate it by an ODE, but this requires a large number of state variables 

and might introduce either numerical diffusion or numerical oscillations. Another option is to use a built-in 

operator that keeps track of the spatial distribution of z(yx, t), by suitable sampling, interpolation, and shifting of 

the stored distribution. In this case, the internal state of the operator is hidden from the ODE solver.] 

 

The spatialDistribution () operator allows to approximate efficiently the solution of the infinite-dimensional 

problem 
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where z(yx, t) is the transported quantity, y x is the normalized spatial coordinate (0.0 ¢ yx ¢ 1.0), t is the time, 

v(t)=der (x) is the normalized transport velocity and the boundary conditions are set at either xy = 0.0 or xy = 1.0, 

depending on the sign of the velocity. The calling syntax is: 

(out 0, out 1) = spatialDistribution(in0, in1, x,  positiveVelocity  

                                   initialPoints = {0.0, 1.0},  

                                   initialValues = {0.0, 0.0 } );  

where in0 , in1 , out0 , out1 , x , v  are all subtypes of Real, positiveVelocity  is a Boolean, initialPoints  

and initi alValues  are arrays of subtypes of Real of equal size, containing the y coordinates and the z values of 

a finite set of points describing the initial distribution of z(y, t0). The out0  and out1  are given by the solutions at 

z(0.0, t) and z(1.0, t); and in0  and in1  are the boundary conditions at z(0.0, t) and z(1.0, t) (at each point in time 

only one of in0  and in1  is used). Elements in the initialPoints  array must be sorted in non-descending 

order. The operator can not be vectorized according to the vectorization rules described in section 12.4.6 12.4.6. 

The operator can be vectorized only with respect to the arguments in0  and in1  (which must have the same size), 

returning vectorized outputs out0  and out1  of the same size; the arguments initialPoints  and 

initialValues  are vectorized accordingly. 

The solution, z(..), can be described in terms of characteristics: 
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t
 = z(y, t), for allb, as long as staying inside the domain. 

This allows to directly compute the solution based on interpolating the boundary conditions.  
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The spatialDistribution  operator can be described in terms of the pseudo-code given as a block: 

block  spatialDistribution  

  input  Real in0;  

  input  Real in1;  

  input  Real x;  

  input  Boolean positiveVelocity;  

  parameter  Real initialPoints [:] ( each  min=0, each  max=1) [:]  = {0.0, 1.0};  

  parameter  Real initialValues[:] = {0.0, 0.0};  

  output  Real out0;  

  output  Real out1;  

protected  

  Real points[:];  

  Real values[:];  

  Real x0;  

  Integer m;  

algorithm  

  if  positiveVelocity then  

    out1:=interpolate(po ints, values, 1 ð(x - x0));  

    out0:=values[1];   // similar to in0 but avoiding algebraic loop  

  else  

    out0:=interpolate(points, values, (x - x0));  

    out1:=values[end]; // similar to in1 but avoiding algebraic loop  

  end  if ;  

  when <acceptedStep > then  

     if  x>x0 then  

      m:=size(points,1);  

      while  (if m>0 then  points[m]+(x - x0)>=1 else false) then  loop   

        m:=m- 1;  

      end  while ;  

       values:=cat(1, {in0}, values[1:m], {interpolate(points, values,1 - (x - x0))} );  

       points:=cat(1, {0}, p oints [1:m]  .+ (x1 - x0) , {1}  );  

     elseif  x<x0 then  

      m:=1;  

      while  (if m<size(points,1) then points[m]+(x - x0)<=0 else false) then     loop       

         m:=m+1;  

      end  while ;  

       values:=cat(1, {interpolate(points, values, 0 - (x - x0))},values[m :end],{in1});  

       points:=cat(1, {0}, points[m:end] .+ (x1 - x0), {1});  

     end  if ;  

    x0:=x;  

  end when ;  

initial algorithm  

  x0:=x;  

  points:=initialPoints;  

  values:=initialValues;  

end  spatialDistribution;  

[Note that the implementation has an internal state and thus cannot be described as a function in Modelica; 

initialPoints and initialValues are declared as parameters to indicate that they are only used during initialization.  

 

[The infinite-dimensional problem stated above can then be formulated in the following way: 

der (x) = v;  

(out 0, out 1) = spatialDistribution (in0, in1, x,  v>=0  

                               initialPoints, initialValues);  

Events are generated at the exact instants when the velocity changes sign ï if this is not needed, noEvent () can 

be used to suppress event generation. 

If the velocity is known to be always positive, then out0  can be omitted, e.g.: 

der(x) = v;  

(, out 1)  = spatialDistribution(in 0, 0, x, true, initialPoints, initialValues);  

Technically relevant use cases for the use of the spatialDistribution () operator are modeling of electrical 

transmission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems, impulse 
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propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is needed for pipelines 

where more than one quantity is transported with velocity v in the example above.] 

3.7.2.3 cardinality  (deprecated)  

[The cardinality operator is deprecated for the following reasons and will be removed in a future release: 

¶ Reflective operator may make early type checking more difficult. 

¶ Almost always abused in strange ways 

¶ Not used for Bond graphs even though it was originally introduced for that purpose. 

] 

 [The cardinality()  operator allows the definition of connection dependent equations in a model, for example: 

connector  Pin  

  Real      v;  

  flow  Real i;  

end  Pin;  

model  Resistor  

  Pin p, n;  

equation  

  assert(cardinality(p) > 0 and cardinality(n) > 0,  

         "Connectors p and n of Resistor must be connected");  

  // Equations of r esistor  

  ...  

end  Resistor;  

] 

The cardinality is counted after removing conditional components. and may not be applied to expandable 

connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the scalar 

elements of array of connectors). The cardinality operator should only be used in the condition of assert and if-

statements ï that do not contain connect (and similar operators ï see section 8.3.3 8.3.3). 

3.7.2.4 homotopy  

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear systems of 

equations must be solved by means of an iterative solver. The convergence of such solvers critically depends on 

the choice of initial guesses for the unknown variables. The process can be made more robust by providing an 

alternative, simplified version of the model, such that convergence is possible even without accurate initial guess 

values, and then by continuously transforming the simplified model into the actual model. This transformation can 

be formulated using expressions of this kind: 

       lambda*actual + (1-lambda)*simplified 

in the formulation of the system equations, and is usually called a homotopy transformation. If the simplified 

expression is chosen carefully, the solution of the problem changes continuously with lambda, so by taking small 

enough steps it is possible to eventually obtain the solution of the actual problem. 

The operator can be called with ordered arguments or preferably with named arguments for improved 

readability. 

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not several 

homotopy iterations over the respective non-linear algebraic equation systems. The reason is that the following 

structure can be present: 

w = f1(x)    // has homotopy operator 

0 = f2(der(x), x, z, w)  

Here, a non-linear equation system f2 is present. The homotopy operator is, however used on a variable that is an 

ñinputò to the non-linear algebraic equation system, and modifies the characteristics of the non-linear algebraic 

equation system. The only useful way is to perform the homotopy iteration over f1 and f2 together. 
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The suggested approach is ñconceptualò, because more efficient implementations are possible, e.g. by 

determining the smallest iteration loop, that contains the equations of the first BLT block in which a homotopy 

operator is present and all equations up to the last BLT block that describes a non-linear algebraic equation 

system. 

A trivial implementation of the homotopy operator is obtained by defining the following function in the global 

scope: 
 

function  homotopy  

  input  Real actual;  

  input  Real simplified;  

  output  Real y;  

algorithm  

  y := actual;  

  annotation (Inline = true);  

end  homotopy;  

 

Example 1: 

In electrical systems it is often difficult to solve non-linear algebraic equations if switches are part of the 

algebraic loop. An idealized diode model might be implemented in the following way, by starting with a ñflatò 

diode characteristic and then move with the homotopy operator to the desired ñsteepò characteristic: 
 
model  IdealDiode  

  ...  

  parameter  Real Goff = 1e - 5;  

protected  

  Real Goff_ flat  = max(0.01, Goff);  

  Real Goff2;  

equation  

  off   = s <  0;  

  Goff2 = homotopy ( actual= Goff, simplified= Goff_ flat );  

  u = s*( if  off then  1     else  Ron2) + Vknee;  

  i = s*( if  off then  Goff2 else  1   ) + Goff2*Vknee;  

  ...  

end  IdealDiode;  

 

 
 

Example 2: 

In electrical systems it is often useful that all voltage sources start with zero voltage and all current sources with 

zero current, since steady state initialization with zero sources can be easily obtained. A typical voltage source 

would then be defined as: 

model  ConstantVoltageSource  

   extends  Modelica.Electrica l.Analog.Interfaces.OnePort;  

   parameter  Modelica.SIunits.Voltage V;  

equation  

   v = homotopy (actual=V, simplified=0.0);  

end  ConstantVoltageSource;  

 

Example 3: 

In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to the quadratic terms and 

due to the dependency on fluid properties. A simplified linear model, tuned on the nominal operating point, can be 

used to make the overall model less nonlinear and thus easier to solve without accurate start values. Named 

arguments are used here in order to further improve the readability. 
 

model  PressureLoss  

  import  SI = Modelica.SIunits;  
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  ...  

  parameter  SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";  

  parameter  SI.Pressure     dp_nominal     "Nominal pressure drop";  

  SI. Density          rho    "Upstream density";  

  SI.DynamicViscosity lambda "Upstream viscosity";  

equation  

  ...  

  m_flow = homotopy (actual     = turbulentFlow_dp(dp, rho, lambda),  

                    simplified = dp/dp_nominal*m_flow_nominal);  

  ...  

end  Pre ssureLoss;  

 

Example 4: 

Note that the homotopy operator shall not be used to combine unrelated expressions, since this can generate 

singular systems from combining two well-defined systems. 
 

model  DoNotUse  

   Real x;  

   parameter  Real x0 = 0;  

equation  

   der(x) = 1 - x;  

initial equation  

   0 = homotopy( der (x), x -  x0);  

end  DoNotUse ;  

The initial equation is expanded into 

0 = lambda*der(x) + (1-lambda)*(x-x0) 

and you can solve the two equations to give 

x = (lambda+(lambda-1)*x0)/(2*lambda - 1) 

which has the correct value of x0 at lambda = 0 and of 1 at lambda = 1, but unfortunately has a singularity at 

lambda = 0.5. 

]  

3.7.2.5 semiLinear  

 (See definition of semiLinear  in Section 3.7.2 3.7.2). In some situations, equations with the semiLinear()  

function become underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number of 

solutions. It is recommended that the following rules are used to transform the equations during the translation 

phase in order to select one meaningful solution in such cases: 

Rule 1: The equations 

y = semiLinear(x, sa, s1);  

y = semiLinear(x, s1, s2);  

y = semiLinear(x, s2, s3);  

   ...  

y = semiLinear(x, sN, sb);  

   ...  

may be replaced by 

s1 = if  x >= 0 then  sa else  sb  

s2 = s1;  

s3 = s2;  

   ...  

sN = s N-1;  

y = semiLinear(x, sa, sb);  

Rule 2: The equations 

x = 0;  

y = 0;  
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y = semiLinear(x, sa, sb);   

may be replaced by 

x = 0  

y = 0;  

sa = sb;  

 [For symbolic transformations, the following property is useful (this follows from the definition): 

semiLinear(m_flow , port_h, h);  

is identical to : 

- semiLinear( - m_flow , h, port_h);  

The semiLinear  function is designed to handle reversing flow in fluid systems, such as 

H_flow =semiLinear(m_flow , port.h, h);  

i.e., the enthalpy flow rate H_flow is computed from the mass flow rate m_flow and the upstream specific 

enthalpy depending on the flow direction.  

] 

3.7.2.6 getInstanceName  

Returns a string with the name of the model/block that is simulated, appended with the fully qualified name of the 

instance in which this function is called. 

 

[Example: 

package  MyLib  

  model  Vehicle  

     Engine engine;  

     ...  

  end  Vehicle;  

 

  model  Engine  

     Controller controller;  

     ...  

  end  Engine;  

 

  model  Controller  

  equation  

    Modelica.Utilities.Streams.print ("I nfo from: " + getInstanceName());  

  end  Controller;  

end  MyLib;  

If MyLib.Vehicle is simulated, the call of getInstanceName() returns:"Vehicle.engine.controller" 

] 

 

If this function is not called inside a model or block (e.g. the function is called in a function or in a constant of 

a package), the return value is not specified. 

[The simulation result should not depend on the return value of this function. ] 

3.7.3 Event -Related Operators with Function Syntax  

The following event-related operators with function syntax are supported. The operators noEvent , pre , edge , 

and change , are vectorizable according to Section 12.4.6 12.4.6 

 

initial ()  Returns true  during the initialization phase and false  otherwise [thereby 
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triggering a time event at the beginning of a simulation]. 

terminal ()  Returns true at the end of a successful analysis [thereby ensuring an event 

at the end of successful simulation].  

noEvent(expr)  
Real elementary relations within expr  are taken literally, i.e., no state or 

time event is triggered. See also Section 3.7.3.2 3.7.3.2 and Section 8.5 8.5. 

smooth(p, expr)  

 

If p>=0 smooth(p,expr)  returns expr  and states that expr  is p times 

continuously differentiable, i.e.: expr  is continuous in all real variables 

appearing in the expression and all partial derivatives with respect to all 

appearing real variables exist and are continuous up to order p. 

The argument p should be a scalar integer parameter expression. The only 

allowed types for expr  in smooth  are: real expressions, arrays of allowed 

expressions, and records containing only components of allowed 

expressions. See also Section 3.7.3.2 3.7.3.2. 

sample(start,interval )  

Returns true and triggers time events at time instants  start + 

i*interval (i=0,1,...) . During continuous integration the operator 

returns always false. The starting time start  and the sample interval 

inter val  need to be parameter expressions and need to be a subtype of 

Real or Integer. The sample interval interval must be a positive number. 

pre(y)  

Returns the ñleft limitò y(t
pre

) of variable y(t) at a time instant t. At an event 

instant, y(t
pre

) is the value of y after the last event iteration at time instant t 

(see comment below). The pre()  operator can be applied if the following 

three conditions are fulfilled simultaneously: (a) variable y is either a 

subtype of a simple type or is a record component, (b) y is a discrete-time 

expression (c) the operator is not applied in a function class. [Note: This 

can be applied to continuous-time variables in when-clauses, see Section 

3.8.3 3.8.3 for the definition of discrete-time expression.] The first value of 

pre(y)  is determined in the initialization phase. See also Section 

3.7.3.1 3.7.3.1. 

edge(b)  

Is expanded into ñ(b and not pre(b)) ò for Boolean variable b. The 

same restrictions as for the pre()  operator apply (e.g. not to be used in 

function classes). 

change(v)  
Is expanded into ñ(v<>pre(v)) ò. The same restrictions as for the pre() 

operator apply. 

reinit(x, expr)  

In the body of a when clause, reinitializes x  with expr  at an event instant. 

x  is a Real  variable (or an array of Real variables) that is implicitly defined 

to have StateSelect.always [so must be selected as a state, and it is an 

error, if this is not possible]. expr  needs to be type-compatible with x . The 

reinit operator can only be applied once for the same variable - either as an 

individual variable or as part of an array of variables. It can only be applied 

in the body of a when clause in an equation section. See also Section 

8.3.6 8.3.6 .  

A few of these operators are described in more detail in the following. 

3.7.3.1 pre  

A new event is triggered if at least for one variable v  ñpre(v) <> v ò after the active model equations are 

evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence is called 

ñevent iterationò. The integration is restarted, if for all v  used in pre-operators the following condition holds: 

ñpre(v) == v ò. 
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[If v  and pre(v)  are only used in when-clauses, the translator might mask event iteration for variable v since v 

cannot change during event iteration. It is a ñquality of implementationò to find the minimal loops for event 

iteration, i.e., not all parts of the model need to be reevaluated.  

The language allows mixed algebraic systems of equations where the unknown variables are of type Real, 

Integer, Boolean, or an enumeration. These systems of equations can be solved by a global fix point iteration 

scheme, similarly to the event iteration, by fixing the Boolean, Integer, and/or enumeration unknowns during one 

iteration. Again, it is a quality of implementation to solve these systems more efficiently, e.g., by applying the fix 

point iteration scheme to a subset of the model equations.] 

3.7.3.2 noEvent and smooth  

The noEvent  operator implies that real elementary expressions relations/functions are taken literally instead of 

generating crossing functions, Section 8.5 8.5. The smooth  operator should be used instead of noEvent , in order 

to avoid events for efficiency reasons. A tool is free to not generate events for expressions inside smooth . 

However, smooth  does not guarantee that no events will be generated, and thus it can be necessary to use 

noEvent  inside smooth . [Note that smooth  does not guarantee a smooth output if any of the occurring variables 

change discontinuously.] 

[Example: 

  Real x,y,z;  

  parameter  Real p;  

equation  

  x = if  time<1 then  2 else  time - 2;  

  z = smooth(0, if  time<0 then  0 else  time);  

  y = smooth(1, noEvent( if  x<0 then  0 els e sqrt(x)*x));  

  // noEvent is necessary.  

] 

3.8 Variability of Expressions  

The concept of variability of an expression indicates to what extent the expression can vary over time. See also 

Section 4.4.4 4.4.4 regarding the concept of variability. There are four levels of variability of expressions, starting 

from the least variable: 

¶ constant variability 

¶ parameter variability 

¶ discrete-time variability 

¶ continuous-time variability 

For an assignment v:=expr  or binding equation v=expr , v  must be declared to be at least as variable as expr.  

¶ The right-hand side expression in a binding equation [that is, expr ] of a parameter component and of the 

base type attributes [such as start ] needs to be a parameter or constant expression. 

¶ If v is a discrete-time component then expr needs to be a discrete-time expression. 

3.8.1 Constant Expression s 

Constant expressions are:  

¶ Real, Integer, Boolean, String, and enumeration literals.  

¶ Variables declared as constant. 

¶ Except for the special built-in operators initial , terminal , der , edge , change , sample , and pre ,  a 

function or operator with constant subexpressions as argument (and no parameters defined in the function) 

is a constant expression. 
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Components declared as constant shall have an associated declaration equation with a constant expression, if the 

constant is directly in the simulation model, or used in the simulation model. The value of a constant can be 

modified after it has been given a value, unless the constant is declared final or modified with a final modifier. A 

constant without an associated declaration equation can be given one by using a modifier. 

3.8.2 Parameter  Expressions  

Parameter expressions are:  

¶ Constant expressions.  

¶ Variables declared as parameter.  

¶ Except for the special built-in operators initial , terminal , der , edge , change , sample , and pre ,  a 

function or operator with parameter subexpressions is a parameter expression. 

¶ Some function calls are parameter expressions even if the arguments are not: 

o ndims(A)  

o cardinality(c) , see restrictions for use in 3.7.2.3. 

o end  in A[éendé ] if A is variable declared in a non-function class. 

o size(A)  (including size(A, j)  where j  is parameter expression) if A is variable declared 

in a non-function class 

o Connections.isRoot( A.R)  

o Connections.rooted( A.R)  

¶  

3.8.3 Discrete -Time Expressions  

Discrete-time expressions are: 

¶ Parameter expressions.  

¶ Discrete-time variables, i.e., In teger , Boolean , String  variables and enumeration  variables, as well 

as Real  variables assigned in when-clauses 

¶ Function calls where all input arguments of the function are discrete-time expressions. 

¶ Expressions where all the subexpressions are discrete-time expressions. 

¶ Expressions in the body of a when-clause, initial equation, or initial algorithm. 

¶ Unless inside noEvent : Ordered relations (>,<,>=,<=) if at least one operand is a subtype of Real (i.e. Real 

elementary relations, see Section  3.5) and the event generating functions ceil , floor , div , and 

integer , mod, rem . if at least one argument is non-discrete time expression and subtype of Real. [These 

will generate events, see section 8.5. Note that rem and mod generate events but are not discrete-time 

expressions.These will generate events if at least one subexpression is not a discrete-time expression.  [In 

other words, relations inside noEvent() , such as noEvent(x>1) , are not discrete-time expressions.]. 

¶ The functions pre , edge , and change  result in discrete-time expressions. 

¶ Expressions in functions behave as though they were discrete-time expressions. 

For an equation expr1 = expr2  where neither expression is of base type Real , both expressions must be 

discrete-time expressions. For record equations the equation is split into basic types before applying this test. [This 

restriction guarantees that the noEvent()  operator cannot be applied to Boolean , Integer , String , or 

enumeration equations outside of a when-clause, because then one of the two expressions is not discrete-time] 

Inside an if-expression, if-clause, while-statement or for-clause, that is controlled by a non-discrete-time (that 

is continuous-time, but not discrete-time) switching expression and not in the body of a when-clause, it is not legal 

to have assignments to discrete variables, equations between discrete-time expressions, or real elementary 

relations/functions that should generate events. [This restriction is necessary in order to guarantee that there all 

equations for discrete variable are discrete-time expressions, and to ensure that crossing functions do not become 

active between events.] 
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[Example: 

model  Constants  

   parameter  Real p1 = 1;  

   constant   Real c1 = p1 + 2;   // er ror, no constant expression  

   parameter  Real p2 = p1 + 2;   // fine  

end  Constants;  

 

model  Test  

   Constants c1(p1=3);   // fine  

   Constants c2(p2=7);   // fine, declaration equation can be modified  

   Boolean b;  

   Real    x;  

equation  

   b = noEvent(x > 1) // error, since b is a discrete - time expr. and  

                      // noEvent(x > 1) is not a discrete - time expr .  

end  Test;  

] 

3.8.4 Continuous -Time Expressions  

All expressions are continuous-time expressions including constant, parameter and discrete expressions. The term 

ñnon-discrete-time expressionò refers to expressions that are not constant, parameter or discrete expressions. 
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Chapter 4   
 
Classes, Predefined Types, and Declarations  

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure for objects, 

also known as instances. Classes can contain equations which provide the basis for the executable code that is 

used for computation in Modelica. Conventional algorithmic code can also be part of classes. All data objects in 

Modelica are instantiated from classes, including the basic data typesðReal , Integer , String , Boolean ðand 

enumeration types, which are built-in classes or class schemata. 

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components). 

4.1 Access Control  ï Public and Protected Elements  

Members of a Modelica class can have two levels of visibility: public  or protected . The default is public  if 

nothing else is specified 

A protected element, P, in classes and components may not be accessed via dot notation (e.g., A.P, a.P, a[1].P, 

a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They may not be modified or 

redeclared except for modifiers applied to protected elements in a base-class modification (not inside any 

component or class) and the modifier on the declaration of the protected element. 

[Example 
package  A 

  model  B 

  protected  

    parameter  Real x;  

  end  B;  

 protected  

model  C end  C;  

 public  

model  D 

   C c;  // Legal use of protected class C from enclosing scope  

     extends  A.B(x=2); // Legal modifier for x in derived  class  

                       // also x.start=2 and x(start=2) are legal.  

     Real y=x; // Legal use of x in derived class  

end  D;  

 

model  E 

    A.B a(x=2);  // Illegal modifier, also x.start=2 and x( start=2) are illegal  

    A.C c;       // Illegal use of protected class C  

    model  F=A.C; // Illegal use of protected class C  

end  E;  

end A;  

]  

 

All elements defined under the heading protected  are regarded as protected. All other elements [i.e., defined 

under the heading public , without headings or in a separate file] are public [i.e. not protected]. Regarding 

inheritance of protected and public elements, see Section 7.1.2 7.1.2. 
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4.2 Double Declaration not Allowed  

The name of a declared element shall not have the same name as any other element in its partially flattened 

enclosing class. A component shall not have the same name as its type specifier. However, the internal flattening 

of a class can in some cases be interpreted as having two elements with the same name; these cases are described 

in Section 5.5 5.5, and Section 7.3 7.3. 

[Example: 
 

record R 

  Real x ;  

end R;  

 

model  M   // wrong Modelica model  

  R R;    // not co rrect, since component name and type specifier are identical  

equation  

  R.x = 0;  

end  M;  

] 

4.3 Declaration Order and Usage before Declaration  

Variables and classes can be used before they are declared. 

[In fact, declaration order is only significant for: 

¶ Functions with more than one input variable called with positional arguments, Section 12.4.1 12.4.1. 

¶ Functions with more than one output variable, Section 12.4.3 12.4.3. 

¶ Records that are used as arguments to external functions, Section 12.9.1.3 12.9.1.3 

¶ Enumeration literal order within enumeration types, Section 4.8.5 4.8.5. 

] 

4.4 Component  Declarations  

Component declarations are described in this section. 

4.4.1 Syntax and Examples of Component Declarations  

The formal syntax of a component declaration clause is given by the following syntactic rules: 

component_clause component - clause :  

   type_prefix type - prefix  type_specifier type - specifier  [ array_subscripts array -

subs cripts  ] component_list component - list  

 

type_prefix type - prefix  :  

   [ flow  | stream  ]  

   [ discrete  | parameter  | constant  ] [ input  | output  ]  

 

type_specifier type - specifier  :  

   name 

 

component_list component - list  :  

   component_declaration component - declaration  { "," component_declaration component -

declaration  }  

 

component_declaration component - declaration  :  

   declaration [ condition_attribute condition - attribute  ] comment  

 

condi tion_attribute condition - attribute :  
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   if  expression  

 

declaration :  

   IDENT [ arra y_subscripts array - subscripts  ] [ modification ]  

[The declaration of a component states the type, access, variability, data flow, and other properties of the 

component. A component_clause component - clause  i.e., the whole declaration, contains type prefixes 

followed by a type_specifier type - specifier  with optional array_subscripts array - subscripts  

followed by a component_list component - list . 

There is no semantic difference between variables declared in a single declaration or in multiple declarations. 

For example, regard the following single declaration ( component_clause component - clause ) of two matrix 

variables: 

Real[2,2]  A, B;  

That declaration has the same meaning as the following two declarations together: 

Real[2,2]  A;  

Real[2,2]  B;  

The array dimension descriptors may instead be placed after the variable name, giving the two declarations 

below, with the same meaning as in the previous example: 

Real  A[2,2];  

Real  B[2,2];  

The following declaration is different, meaning that the variable a is a scalar but B is a matrix as above: 

Real  a, B[2,2];  

] 

4.4.2 Component Declaration  Static Semantics  

If the type _specifier type - specifier  of the component declaration denotes a built-in type (RealType , 

IntegerType , etc.), the flattened or instantiated component has the same type.  

If the type _specifier type - specifier  of the component does not denote a built-in type, the name of the 

type is looked up (Section 5.3 5.3). The found type is flattened with a new environment and the partially flattened 

enclosing class of the component. It is an error if the type is partial in a simulation model, or if a simulation model 

itself is partial. The new environment is the result of merging  

¶ the modification of enclosing class element-modification with the same name as the component  

¶ the modification of the component declaration  

in that order.  

Array dimensions shall be non-negative parameter expressions, or the colon operator denoting that the array 

dimension is left unspecified.  

The rules for components in functions are described in Section 12.2 12.2. 

Conditional declarations of components are described in Section 4.4.5 4.4.5. 

4.4.2.1 Declaration Equations  

An environment that defines the value of a component of built-in type is said to define a declaration equation 

associated with the declared component. For declarations of vectors and matrices, declaration equations are 

associated with each element.  

4.4.2.2 Prefix Rules  

Variables declared with the flow  or the stream  type prefix shall be a subtype of Real.  

Type prefixes (that is , flow , stream , discrete , parameter , constant , input , output ) shall only be 

applied for type, record and connector components ï see also record specialized class, Section 4.6 4.6.  
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In addition components of classes extending from ExternalObject may in addition have type prefixes 

parameter  and constant , and in functions also type prefixes input  and output  - see Section  12.9.7. An 

exception is input  for components whose type is of the special class function type (these can only be used for 

function formal parameters and has special semantics, see Section 12.4.2 12.4.2), and the input  prefix is not 

applied to the elements of the component and is allowed even if the elements have input or output prefix. 

In addition, instances of classes extending from ExternalObject may have type prefixes parameter  and 

constant , and in functions also type prefixes input  and output  - see Section 12.9.7. 

The type prefixes flow , stream , input  and output  of a structured component (except as described above) 

are also applied to the elements of the component (this is done after verifying that the type prefixes occurring on 

elements of the component are correct; e.g. the flow  prefix can be used on a record component and all the record 

elements will generate zero-sum equations, even if elements of a record may not be declared with the flow  

prefix). When any of the type prefixesThe type prefixes flow , stream , input  and output  are applied for a 

structured component, no element of the component may have any of these type prefixes.shall only be applied for 

a structured component, if no element of the component has a corresponding type prefix of the same category (the 

two categories are input/output and flow/stream). [For example, input  can only be used, if none of the elements 

has an flow, stream,  input  or output  type prefix]. The corresponding rules for the type prefixes 

discrete , parameter  and constant  are described in Section 4.4.4.1 4.4.4.1 for structured components. 

The prefixes input  and output  have a slightly different semantic meaning depending on the context where 

they are used: 

¶ In functions, these prefixes define the computational causality of the function body, i.e., given the variables 

declared as input , the variables declared as output  are computed in the function body, see Section 

12.4 12.4. 

¶ In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated), these 

prefixes define the interaction with the environment where the simulation model or block is used. 

Especially, the input  prefix defines that values for such a variable have to be provided from the simulation 

environment and the output  prefix defines that the values of the corresponding variable can be directly 

utilized in the simulation environment, see the notion of Globally balanced in Section 4.7 4.7. 

¶ In component models and blocks, the input  prefix defines that a binding equation has to be provided for 

the corresponding variable when the component is utilized in order to guarantee a locally balanced model 

(i.e., the number of local equations is identical to the local number of unknowns), see Section 4.7 4.7. 

Example: 

block  FirstOrder  

   input  Real u;  

     ...  

end  FirstOrder;  

 

model  UseFirstOrder  

   FirstOrder firstOrder(u=time); // binding equation for u  

    ...  

end  UseFirstOrder;  

The output  prefix does not have a particular effect in a model or block component and is ignored. 

¶ In connectors, prefixes input  and output  define that the corresponding connectors can only be connected 

according to block diagram semantics, see Section 9.1 9.1 (e.g., a connector with an output  variable can 

only be connected to a connector where the corresponding variable is declared as input ). There is the 

restriction that connectors which have at least one variable declared as input  must be externally connected, 

see Section 4.7 4.7 (in order to get a locally balanced model, where the number of local unknowns is 

identical to the number of unknown equations). Together with the block diagram semantics rule this means, 

that such connectors must be connected exactly once externally. 

¶ In records, prefixes input  and output  are not allowed, since otherwise a record could not be, e.g., passed 

as input argument to a function. 
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4.4.3 Acyclic Bindings  of Constants and Parameters  

The unexpanded binding equations for parameters and constants in the translated model must be acyclic after 

flattening; except that cycles are allowed if the cycles disappear when evaluating parameters having annotation 

Evaluate=true that are not part of the cycle. Thus it is not possible to introduce equations for parameters by cyclic 

dependencies.  

[Example: 

constant  Real p=2*q;  

constant  Real q=sin(p); // Illegal since p=2*q, q=sin(p) are cyclical  

 

model  ABCD 

  parameter  Real A[n,n];  

  parameter  Integer n=si ze(A,1);  

end  ABCD;  

 

final  ABCD a;  

// Illegal since cyclic dependencies between size(a.A,1) and a.n  

ABCD b( redeclare  Real A[2,2]=[1,2;3,4]);  

// Legal since size of A is no longer dependent on n.  

ABCD c(n=2); // Legal since n is no longer dependent on the  size of A.  

 

parameter  Real r = 2*sin(r);  // Illegal, since r = 2*sin(r) is cyclic  

 

partial  model  PartialLumpedVolume  

  parameter  Boolean  use_T_start = true "= true, use T_start, otherwise h_start"  

    annotation (Dialog(tab = "Initialization"), Evaluate=t rue);  

  parameter  Medium.Temperature T_start=if use_T_start then system.T_start else         

      Medium.temperature_phX(p_start,h_start,X_start)  

   annotation (Dialog(tab = "Initialization", enable = use_T_start));  

parameter  Medium.SpecificEnthalpy h_sta rt=if use_T_start then   

    Medium.specificEnthalpy_pTX(p_start, T_start, X_start) else Medium.h_default  

   annotation (Dialog(tab = "Initialization", enable = not use_T_start));  

end  PartialLumpedVolume;  

// Cycle for T_start and h_start, but ok since disa ppears  

// when evaluating use_T_start  

 

// Illegal since the unexpanded bindings have cycles  for both x and y  

// (even if they would disappear if bindings were expanded ).  

model  HasCycle s 

  parameter Integer n =10;  

  final constant  Real A[3,3]=[0,0,0;1,0,0;2 ,3,0];  

  parameter  Real y[3]=A*y+ones(3);  

  parameter  Real x[n]=cat(1,  { 3.4 } ,  x[1:(n - 1)] ) ;  

end  HasCycle s;  

] 

4.4.4 Component Variability Prefix es discrete , parameter , constant  

The prefixes discrete , parameter , constant  of a component declaration are called variability prefixes and 

define in which situation the variable values of a component are initialized (see Section 8.5 8.5 and Section 8.6 8.6) 

and when they are changed in transient analysis (= solution of initial value problem of the hybrid DAE): 

¶ A variable vc  declared with the parameter or constant prefixes remains constant during transient analysis.  

¶ A discrete-time variable vd  has a vanishing time derivative (informally der(vd)=0 , but it is not legal to 

apply the der()  operator to discrete-time variables) and can change its values only at event instants during 

transient analysis (see Section 8.5 8.5). 

¶ A continuous-time variable vn  may have a non-vanishing time derivative (der(vn)<>0  possible) and may 

also change its value discontinuously at any time during transient analysis (see Section 8.5 8.5). If there are 

any discontinuities the variable is not differentiable.  
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If a Real variable is declared with the prefix discrete it must in a simulation model be assigned in a when-clause, 

either by an assignment or an equation. The variable assigned in a when-clause may not be defined in a sub-

component of model or block specialized class. [This is to keep the property of balanced models] 

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared with the 

prefix discre te . A Real variable not assigned in any when-clause and without any type prefix is a continuous-

time variable. 

The default variability for Integer , String , Boolean , or enumeration  variables is discrete-time, and it is 

not possible to declare continuous-time Integer , String , Boolean , or enumeration  variables. [A Modelica 

translator is able to guarantee this property due to restrictions imposed on discrete expressions, see Section 

3.8 3.8] 

The variability of expressions and restrictions on variability for definition equations is given in Section 3.8 3.8. 

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants during 

simulation. Such types of variables are needed in order that special algorithms, such as the algorithm of 

Pantelides for index reduction, can be applied (it must be known that the time derivative of these variables is 

identical to zero). Furthermore, memory requirements can be reduced in the simulation environment, if it is 

known that a component can only change at event instants.  

A parameter variable is constant during simulation. This prefix gives the library designer the possibility to 

express that the physical equations in a library are only valid if some of the used components are constant during 

simulation. The same also holds for discrete-time and constant variables. Additionally, the parameter prefix 

allows a convenient graphical user interface in an experiment environment, to support quick changes of the most 

important constants of a compiled model. In combination with an if-clause, a parameter prefix allows to remove 

parts of a model before the symbolic processing of a model takes place in order to avoid variable causalities in 

the model (similar to #ifdef in C). Class parameters can be sometimes used as an alternative. Example:  

model  Inertia  

  parameter  Boolean state = true;  

  ...  

equation  

  J*a = t1 ï t2;  

  if  state then      // code which is removed during symbolic  

    der (v) = a;    // processing, if state=false  

    der (r) = v;  

  end  if ;  

end  Inertia;  

A constant variable is similar to a parameter with the difference that constants cannot be changed after 

translation and usually not changed after they have been given a value. It can be used to represent mathematical 

constants, e.g.  

final constant  Real PI=4*atan(1);  

There are no continuous-time Boolean , Integer  or String  variables. In the rare cases they are needed they 

can be faked by using Real  variables, e.g.: 

  Boolean off1, off1a;  

  Real off2;  

equation  

  off1  = s1 < 0;  

  off1a = noEvent(s1 < 0);   // error, since off1a is discrete  

  off2  = if  noEvent(s2 < 0) then  1 else  0;   // possible  

  u1 = if  off1 then  s1 else  0;   // state events  

  u2 = if  noEvent(off2 > 0.5) then  s2 else  0;   // no state events  

Since off1  is a discrete-time variable, state events are generated such that off1  is only changed at event 

instants. Variable off2  may change its value during continuous integration. Therefore, u1  is guaranteed to be 

continuous during continuous integration whereas no such guarantee exists for u2. 

] 
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4.4.4.1 Variability of Structured Entities  

For elements of structured entities with variability prefixes the most restrictive of the variability prefix and the 

variability of the component wins (using the default variability for the component if there is no variability prefix 

on the component). 

[Example: 

record  A 

  constant  Real pi=3.14;  

  Real y;  

  Integer i;  

end  A;  

parameter  A a;  

  //  a.pi is a constant  

  // a.y and a.i are parameters  

  A b;  

  // b.pi is a constant  

  // b.y is a continuous - time variable  

  // b.i is a di screte - time variable  

] 

4.4.5 Conditional Component Declaration  

A component declaration can have a condition_attribute condition - attribute : "if " expression. 

[Example: 

  parameter  Integer level (min=1) =1;  

  Motor  motor;  

  Level1 component1(J=J) if  level==1 "Conditional component";  

  Level2  component2 if  lev el==2  "Conditional component";  

  Level3 component3 (J=component1.J)  if  level <2 "Conditional component" ;  

// Illegal modifier on component3 since component1.J is conditional  

// Even if we can see that component1 always exist if component3 exist  

equation  

conne ct (component1..., ...) "Connection to conditional component  1";  

  connect (component 2.n , motor.n ) "Connection to conditional component  2";  

  connect (component 3.n , motor.n ) "Connection to conditional component  3";  

  component1.u=0; // Illegal  

] 

The expression must be a Boolean scalar expression, and must be a parameter-expression [that can be evaluated 

at compile time]. 

A redeclaration of a component may not include a condition attribute; and the condition attribute is kept from 

the original declaration (see Section 6.3 6.3). 

If the Boolean expression is false the component (including its modifier) is removed from the flattened DAE , and 

connections to/from the component are removedthe component is not present in the flattened DAE [its modifier is 

ignored], and connections to/from the component are removed. [Adding the component and then removing it 

ensures that the component is valid.]A component declared with a condition_attributecondition-attribute can only 

be modified and/or used in connections. If the condition is false, the component, its modifiers, and any connect-

equations involving the component, are removed. [If a connect statement defines the connection of a non-

conditional component c1 with a conditional component c2 and c2 is de-activated, then c1 must still be a declared 

element.] 

If the condition is true for a public connector containing flow variables the connector must be connected from 

the outside. [The reason for this restriction is that the default flow equation is probably incorrect (since it could 

otherwise be an unconditional connector) and the model cannot check that connector is connected.] 
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4.5 Class Declarations  

Essentially everything in Modelica is a class, from the predefined classes In teger  and Real , to large packages 

such as the Modelica standard library. 

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing a 

number of declarations followed by a number of equations in an equation section. 

class  ClassName 

  Declaration1 

  Declaration2 
  ...  

equation  

  equation1 

  equation2 
  ...  

end  ClassName;  

] 

The following is the formal syntax of class definitions, including the special variants described in later sections. 

class_definition class - defi nition  :  

   [ encapsulated  ]  class_prefixes class - prefixes   

   class_specifier class - specifier  

 

class_prefixes class - prefixes  :  

   [ partial  ]  

   ( class  | model  | [ operator  ] record  | block  | [ expandable  ] connector  | type  |  

     package  | [ ( pure  | imp ure  ) ] [ operator  ] function  | operator  )  

 

class_specifier class - specifier :  

   long_class_specifier long - class - specifier  | short_class_specifier short - class - specifier  

| der_class_specifier der - class - specifier  

 

long_class_specifie r long - class - specifier  :  

     IDENT string_comment string - comment composition end  IDENT  

   | extends IDENT [ class_modification class - modification  ] string_comment string - comment 

composition  

             end  IDENT 

 

short_class_specifier short - class - specifier  :  

     IDENT "=" base_prefix base - prefix  name [ array_subscripts array - subscripts  ]  

               [ class_modification class - modification  ] comment  

   | IDENT "=" enumeration  "(" ( [ enum_list enum- list ] | ":" ) ")" comment  

 

der_class_specifier der - class - specifier  :  

     IDENT "=" der  "( " name "," IDENT { "," IDENT } ")" comment  

   

base_prefix base - prefix  :  

 [ input  | output  ] type_prefix  

 

enum_list enum- list    : enumeration_literal enumeration - literal  { "," 

enumeration_literal enumeration - literal }  

 

enumeration_literal enumeration - literal  : ID ENT comment  

 

composition  :  

   element_list element - list   

   { public  element_list element - list  |  

     protected  element_list element - list  |  

     equation_section equation - section  |  

     algorithm_section algorithm - section  

   }  

   [ external  [ language_specif ication language - specification  ]  

              [ external_function_call external - function - call  ] [ annotation  ]  ";" ]  

              [ annotation  ";" ]  
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4.5.1 Short Class Definition s 

A class definition of the form  

class  IDENT1 = IDENT2 class_modification class - modification ;  

is identical, except that IDENT2 may be replaceable and for the lexical scope of modifiers, where the short class 

definition does not introduce an additional lexical scope for modifiers, to the longer form  

class  IDENT1 

  extends  IDENT2 class_modification class - modification ;  

end  IDENT1;  

[Example: demonstrating the difference in scopes: 

model  Resistor  

  parameter  Real R;  

  ...  

end  Resistor;  

 

model  A 

  parameter  Real R;  

  replaceable  model  Load=Resistor(R=R) constraine dby TwoPin;  

  // Correct, sets the R in Resistor to R from model A.  

 

  replaceable  model  LoadError  

    extends  Resistor(R=R);  

    // Gives the singular equation R=R, since the right - hand side R  

    // is searched for in Lo adError and found in its base - class Resistor.  

  end  LoadError constraine dby  TwoPin;  

  Load a,b,c;  

  ConstantSource ...;  

  ...  

end  A;  

] 

A short class definition of the form 

type  TN = T[N] (op tional modifier) ;  

where N represents arbitrary array dimensions, conceptually yields an array class 

ôarrayô TN 

  T[n] _ (optional modifiers);  

ôendô TN; 

Such an array class has exactly one anonymous component (_); see also section 4.5.2 4.5.2. When a component of 

such an array class type is flattened, the resulting flattened component type is an array type with the same 

dimensions as _ and with the optional modifier applied. 

[Example: 
type  Force = Real[3](unit={"Nm","Nm","Nm"});  

Force f 1;  

Real f2[3](unit={"Nm","Nm","Nm"});  

the types of f1  and f2  are identical.] 

If a short class definition inherits from a partial class the new class definition will be partial, regardless of whether 

it is declared with the keyword partial or not.  

[Example: 

replaceable  model  Load=TwoPin;  

Load R; // Error unless Load is redeclared since TwoPin is a partial class.  

] 

If a short class definition does not specify any specialized class the new class definition will inherit the specialized 

class (this rule applies iteratively and also for redeclare). 
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A base-prefix applied in the short-class definition does not influence its type, but is applied to components 

declared of this type or types derived from it; see also section 4.5.2 4.5.2.  

[Example: 

type  InArgument  = input  Real;  

type  OutArgument = output  Real[3];  

function  foo  

  InArgument u;  // Same as: input Real u  

  OutArgument y; // Same as: output Real[3] y  

algorithm  

  y:=fill(u,3);  

end  foo;  

Real x[:]=foo(time);  

] 

4.5.2 Restriction  on combining base -classes and other elements  

It is not legal to combine other components or base-classes with an extends from an array class, a class with non-

empty base-prefix, a simple type (Real, Boolean, Integer, String and enumeration types), or any class transitively 

extending from an array class, a class with non-empty base-prefix, or a simple type (Real, Boolean, Integer, String 

and enumeration types). 

[Example: 

model  Integrator  

  input  Real u;  

  output  Real y=x;  

   Real x;  

 equation  

   der (x)=u;  

 end  Integrator;  

model Integrators = Integrator[3];  // Legal  

 

model Illegal Model  

  extends Integrators;  

  Real x; // Illegal combination of component and array class  

end  Illegal Model ;  

 

connector  Illegal Connector  

   extends  Real;  

   Real y; // Illegal combin ation of component and simple type  

end  Illegal Connector ;  

] 

 

4.5.3 Local Class Definitions  ï  Nested Classes  

The local class should be statically flattenable with the partially flattened enclosing class of the local class apart 

from local class components that are partial or outer . The environment is the modification of any enclosing class 

element modification with the same name as the local class, or an empty environment. 

The unflattened local class together with its environment becomes an element of the flattened enclosing class.  

[The following example demonstrates parameterization of a local class:  

class  model  C1  

  class  type  Voltage = Real(nominal=1);  

  Voltage v1, v2;  

end  C1;  

class  model  C2  
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  extends  C1(Voltage(nominal=1000));  

end  C2;  

Flattening of class C2 yields a local class Voltage with nominal-modifier 1000. The variables v1  and v2  are 

instances of this local class and thus have a nominal value of 1000. 

]  

4.6  Specialized Classes  

Specialized kinds of classes [Earlier known as restricted classes] record, type, model, block, 

package, function, and conne ctor  have the properties of a general class, apart from restrictions. 

Moreover, they have additional properties called enhancements. The following table summarizes the definition of 

the specialized classes (additional restrictions on inheritance are in section 7.1.3): 

 

record  Only public sections are allowed in the definition or in any of its components 

(i.e., equation, algorithm, initial equation, initial algorithm and protected 

sections are not allowed). The elements of a record may not have prefixes 

input , output , inner , outer , stream,  or flow .  Enhanced with implicitly 

available record constructor function, see Section 12.6 12.6. Additionally, record 

components can be used as component references in expressions and in the left 

hand side of assignments, subject to normal type compatibility rules. The 

components directly declared in a record may only be of specialized class record 

and type.May only contain components of specialized class record and type. 

type  May only be predefined types, enumerations, array of type, or classes extending 

from type. Enhanced to extend from predefined types. [No other specialized 

class has this property] 

model  Identical to class , the basic class concept, i.e., no restrictions and no 

enhancements. 

block  Same as model  with the restriction that each connector component of a block  

must have prefixes input  and/or output  for all connector variables. [The 

purpose is to model input/output blocks of block diagrams. Due to the 

restrictions on input and output prefixes, connections between blocks are only 

possible according to block diagram semantic] 

function  See Section 12.2 12.2 for restrictions and enhancements of functions. 

Enhanced to allow the function to contain an external function interface. [Non-

function specialized classes do not have this property.] 

connector  Only public sections are allowed in the definition or in any of its components 

(i.e., equation, algorithm, initial equation, initial algorithm and protected 

sections are not allowed).  

Enhanced to allow connect (..) to components of connector classes. The 

elements of a connector may not have prefixes inner , or outer.  May only 

contain components of specialized class connector, record and type. 

package  May only contain declarations of classes and constants. Enhanced to allow 

import  of elements of packages. (See also Chapter 13 Chapter 13 on packages.) 

oper ator record  Similar to record; but operator overloading is possible, and due to this the typing 

rules are different ï see Chapter 6 Chapter 6. It is not legal to extend from an 

operator record (or connector inheriting from operator record), except if the new 

class is an operator record or connector that is declared as a short class 

definition, whose modifier is either empty or only modify the default attributes 

for the component elements directly inside the operator recordIt is not legal to 
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extend from an operator record , except if the new class is an operator 

record that is declared as a short class definition modifying the default attributes 

for the component elements directly inside the operator record. An operator 

record can only extend from an operator record [as short class definition, and 

not from another specialized class]. It is not legal to extend from any of its 

enclosing scopes. (See Chapter 14 Chapter 14). 

operator  Similar to package; but may only contain declarations of functions. May only be 

placed directly in an operator record. (See also Chapter 14 Chapter 14). 

operator function  Shorthand for an operator with exactly one function; same restriction as function 

class and in addition may only be placed directly in an operator record.  

[ñoperator function  foo é end  foo; ò is conceptually treated as 

ñoperator  foo function  foo1 é end foo1 ; end  foo; ò] 

[Example for òoperatorò:  

operator record  Complex  

  Real re;  

  Real im;  

  ...  

  encapsulated  operator  function  ǋ*ǋ 

    import  Complex;  

     input   Complex c1;  

     input   Complex c2;  

     output  Complex result  

  algorithm  

     result = Complex(re=c1.re*c2.re ï c1.im*c2.im,  

                      im=c1.re*c2.im + c1.im*c2.re);  

  end  ǋ*ǋ; 

end  Complex;  

 

record  MyComplex  

  extends  Complex;    // not allowed, since extending from enclosing scope  

  Real k;  

end  MyComplex;  

operator record  ComplexVoltage = Complex(re(unit= " V" ),im(unit= " V" ));  // allowed  

] 

4.7 Balanced Models  

[In this section restrictions for model and block classes are present, in order that missing or too many equations 

can be detected and localized by a Modelica translator before using the respective model or block class. A non-

trivial case is demonstrated in the following example: 

 
partial  model  BaseCorrelation  

  input  Real x;  

  Real y;  

end  BaseCorrelation;  

 

model  SpecialCorrelation // correct in Modelica 2.2 and 3.0  

   extends  BaseCorrelation(x=2);  

equation  

    y=2/x;  

end  SpecialCorrelation;  

 

model  UseCorre lation  // correct according to Modelica 2.2  

                     // not valid according to Modelica 3.0  

   replaceable  model  Correlation=BaseCorrelation;  

   Correlation correlation;  

equation  
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   correlation.y=time;  

end  UseCorrelation;  

 

model  Broken  // after  redeclaration, there is 1 equation too much in Modelica 2.2  

   UseCorrelation example( redeclare  Correlation=SpecialCorrelation);  

end  Broken;  

In this case one can argue that both UseCorrelation  (adding an acausal equation) and 

SpecialCorrelation  (adding a default to an input) are correct, but still when combined they lead to a model 

with too many equations ï and it is not possible to determine which model is incorrect without strict rules, as the 

ones defined here. 

In Modelica 2.2, model Broken  will work with some models. However, by just redeclaring it to model 

SpecialCorrelation , an error will occur and it will be very difficult in a larger model to figure out the source 

of this error.  

In Modelica 3.0, model UseCorrelation  is no longer allowed and the translator will give an error. In fact, it 

is guaranteed that a redeclaration cannot lead to an unbalanced model any more. 

]. 

The restrictions below apply after flattening ï i.e. inherited components are included ï possibly modified. The 

corresponding restrictions on connectors and connections are in Section 9.3 9.3. 

Definition 1: Local Number of Unknowns 

The local number of unknowns of a model or block class is the sum based on the components: 

¶ For each declared component of specialized class type  (Real, Integer, String, Boolean, enumeration and 

arrays of those, etcetc.) or record , or operator r ecord  not declared as outer , it is the ñnumber of 

unknown variablesò inside it (i.e., excluding parameters and constants and counting the elements after 

expanding all records, operator record, and arrays to a set of scalars of primitive types).  

¶ Each declared component of specialized class type  or record declared as outer  is ignored [i.e., all 

variables inside the component are treated as known]. 

¶ For each declared component of specialized class connector  component, it is the ñnumber of unknown 

variablesò inside it (i.e., excluding parameters and constants and counting the elements after expanding all 

records and arrays to a set of scalars of primitive types). 

¶ For each declared component of specialized class block  or model, it is the ñsum of the number of inputs 

and flow variablesò in the (top level) public connector components of these components (and counting the 

elements after expanding all records and arrays to a set of scalars of primitive types). 

Definition 2: Local Equation Size  

The local equation size of a model or block class is the sum of the following numbers:  

¶ The number of equations defined locally (i.e. not in any model or block component), including binding 

equations, and equations generated from connect-equations. This includes the proper count for when-

clauses (see Section 8.3.5 8.3.5), and algorithms (see Section 11.1 11.1), and is also used for the flat Hybrid 

DAE formulation (see Appendix C Appendix C). 

¶ The number of input and flow-variables present in each (top-level) public connector component. [This 

represents the number of connection equations that will be provided when the class is used.] 

¶ The number of (top level) public input variables that neither are connectors nor have binding equations 

[i.e., top-level inputs are treated as known variables. This represents the number of binding equations that 

will be provided when the class is used.]. 

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical 

to declaration equation, but binding equations also include the case where another model extends M and 

has a modifier on óuô giving the value): 

 
model  M 

  input  Real u;  

  input  Real u2=2;  

end  M;  
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Here óuô and óu2ô are top-level inputs and not connectors. The variable u2 has a binding equation, but u 

does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied 

when using the model. 

] 

Definition 3: Locally Balanced 

A model or block class is ñlocally balancedò if the ñlocal number of unknownsò is identical to the ñlocal 

equation sizeò for all legal values of constants and parameters [respecting final bindings and min/max-

restrictions. A tool shall verify the ñlocally balancedò property for the actual values of parameters and 

constants in the simulation model. It is a quality of implementation for a tool to verify this property in general, 

due to arrays of (locally) undefined sizes, conditional declarations, for loops etcetc.]. 

Definition 4: Globally Balanced 

Similarly as locally balanced, but including all unknowns and equations from all components. The global 

number of unknowns is computed by expanding all unknowns (i.e. excluding parameters and constants) into a 

set of scalars of primitive types. This should match the global equation size defined as: 

 

¶ The number of equations defined (included in any model or block component), including equations 

generated from connect-equations. 

¶ The number of input and flow-variables present in each (top-level) public connector component. 

¶ The number of (top level) public input variables that neither are connectors nor have binding equations 

[i.e., top-level inputs are treated as known variables]. 

The following restrictions hold:  

¶ In a non-partial model or block, all non-connector inputs of model or block components must have binding 

equations. [E.g. if the model contains a component, firstOrder  (of specialized class model ) and 

firstOrder  has óinput Real u ô then there must be a binding equation for firstOrder.u .]  

¶ A component declared with the inner  or outer  prefix shall not be of a class having top-level public 

connectors containing inputs. 

¶ In a declaration of a component of a record, connector, or simple type, modifiers can be applied to any 

element ï and these are also considered for the equation count.  

[Example: 

   Flange support(phi=phi, tau=torque1+torque2) if  use_support;   

If use_support=true, there are two additional equations for support.phi and support.tau via the modifier] 

¶ In other cases (declaration of a component of a model or block type, modifiers on extends, and modifier on 

short-class-definitions): modifiers for components shall only contain redeclarations of replaceable 

elements and binding equations. The binding equations in modifiers for components may in these cases 

only be for parameters, constants, inputs and variables having a default binding equation. 

¶ All non-partial model and block classes must be locally balanced [this means that the local number of 

unknowns equals the local equation size]. 

Based on these restrictions, the following strong guarantee can be given for simulation models and blocks: 

Proposition 1: 

All simulation models and blocks are globally balanced.  

[Therefore the number of unknowns equal to the number of equations of a simulation model or block, provided 

that every used non-partial model or block class is locally balanced.]  

 

[Example 1: 
connector  Pin  

   Real v;  

   flow Real i;  

end  Pin;  

 

model  Capacitor  
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   parameter  Real C;  

   Pin  p,  n;  

   Real u;  

equation  

   0 = p.i + n.i;  

   u = p.v ï n.v;  

   C*der (u) = p.i;  

end  Capacitor;  

 

Model Capacitor  is a locally balanced model according to the following analysis: 

Locally unknown variables: p.i, p.v, n.i, n.v, u  

Local equations:        0 = p.i + n.i;  

                    u = p.v ï n.v;  

                    C*der (u) = p.i;  

                     and 2 equations corresponding to the 2 flow-variables p.i  and n.i.  

These are 5 equations in 5 unknowns (locally balanced model). A more detailed analysis would reveal that this is 

structurally non-singular, i.e. that the hybrid DAE will not contain a singularity independent of actual values. 

If the equation ñu = p.v ï n.vò would be missing in the Capacitor model, there would be 4 equations in 5 

unknowns and the model would be locally unbalanced and thus simulation models in which this model is used 

would be usually structurally singular and thus not solvable. 

If the equation ñu = p.v ï n.v ò would be replaced by the equation ñu = 0 ò and the equation C*der(u) 

= p.i  would be replaced by the equation ñC*der(u) = 0 ò, there would be 5 equations in 5 unknowns (locally 

balanced), but the equations would be singular, regardless of how the equations corresponding to the flow-

variables are constructed because the information that ñuò is constant is given twice in a slightly different form. 

 

Example 2: 
connector  Pin  

   Real v;  

   flow  Real i;  

end  Pin;  

 

partial  model  TwoPin  

   Pin p,n;  

end  TwoPin;  

 

model  Capacitor  

   parameter  Real C;  

   extends  TwoPin;  

   Real u;  

equation  

   0 = p.i + n.i;  

   u = p.v ï n.v;  

   C*der (u) = p.i;  

end  Capacitor;  

 

model  Circuit  

   extends  TwoPin;  

   replaceable  TwoPin t;  

   Capacitor c(C=12);  

equation  

   connect (p , t.p);  

   connect (t.n, c.p);  

   connect (c.n, n);  

end  Circuit;  

Since t is partial we cannot check whether this is a globally balanced model, but we can check that Circuit  is 

locally balanced. 

Counting on model Circuit  results in the following balance sheet: 

Locally unknown variables (8): p.i, p.v, n.i, n.v , and 2 flow variables for t (t.p.i, t.n.i)    

                                                   and 2 flow variable for c (c.p.i, c.n.i).  
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Local equations:           p.v = t.p.v;  

                       0 =  p.i - t.p.i;  

                   c.p.v = load.n.v;  

                       0 = c.p.i+load.n.i;  

                     n.v = c.n.v;  

                       0 = n.i - c.n.i;  

                           and 2 equation corresponding to the flow variables p.i, n.i 

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this feature holds 

for any models used for the replaceable component ñtò).  

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular. However, 

this does not provide any guarantees for the global set of equations, and specific combinations of models that are 

ñlocally non-singularò may lead to a globally non-singular model.] 

Example 3: 

import  SI = Modelica.SIunits;  

partial mod el  BaseProperties  

   "Interface of medium model for all type of media"  

   parameter  Boolean preferredMediumStates= false ;  

   constant   Integer nXi "Number of independent mass fractions";  

   InputAbsolutePressure     p;  

   InputSpecificEnthalpy     h;  

   Inp utMassFraction         Xi[nXi];  

   SI.Temperature            T;  

   SI.Density                d;  

   SI.SpecificInternalEnergy u;  

 

   connector  InputAbsolutePressure = input  SI.AbsolutePressure;  

   connector  InputSpecificEnthalpy = input  SI.SpecificEnthalpy;  

   connector  InputMassFraction = input  SI.MassFraction;  

end  BaseProperties;  

The use of connector here is a special design pattern. The variables p, h, Xi are marked as input to get correct 

equation count. Since they are connectors they should neither be given binding equations in derived classes nor 

when using the model. The design pattern is to give textual equations for them (as below); using connect-

equations for these connectors would be possible (and would work) but is not part of the design. 

This partial model defines that T,d,u  can be computed from the medium model, provided p,h,Xi  are given. 

Every medium with one or multiple substances and one or multiple phases, including incompressible media, has 

the property that T,d,u  can be computed from p,h,Xi . A particular medium may have different ñindependent 

variablesò from which all other intrinsic thermodynamic variables can be recursively computed. For example, a 

simple air model could be defined as: 

model  SimpleAir "Medium model of simple air. Independe nt variables: p,T"  

   extends  BaseProperties(nXi = 0,   

        p(stateSelect = if preferredMediumStates  then StateSelect.prefer  

                                   else  StateSelect.default),  

        T(stateSelect = if  preferredMediumStates then  StateSelec t.prefer  

                                   else  StateSelect.default));  

   constant  SI.SpecificHeatCapacity R  = 287;  

   constant  SI.SpecificHeatCapacity cp = 1005.45;  

   constant  SI.Temperature          T0 = 298.15  

equation  

   d = p/(R*T);  

   h = cp*(T - T0);  

   u = h ï p/d;  

end  SimpleAir;  

The local number of unknowns in model SimpleAir  (after flattening) is: 

¶ 3 (T, d, u: variables defined in BaseProperties  and inherited in SimpleAir ), plus 



      55 

¶ 2+nXi  (p, h, Xi : variables inside connectors defined in BaseProperti es  and inherited in 

SimpleAir ) 

resulting in 5+nXi  unknowns. The local equation size is: 

¶ 3 (equations defined in SimpleAir), plus 

¶ 2+nXi  (input variables in the connectors inherited from BaseProperties) 

Therefore, the model is locally balanced.  

The generic medium model BaseProperties  is used as a replaceable model in different components, like a 

dynamic volume or a fixed boundary condition: 
 

import  SI = Modelica.SIunits  

connector FluidPort  

  replaceable  model  Medium = BaseProperties;  

  

  SI.AbsolutePressure  p;  

  flow  SI.MassFlowRate m_flow;  

   

  SI.SpecificEnthalpy      h;  

  flow  SI.EnthalpyFlowRate H_flow;  

   

  SI.MassFraction       Xi     [Medium.nXi] "Independent mixture mass fractions";  

  flow  SI.MassFlowRate mXi_flow[Medium.nXi] "Independent subst. mass  flow rates";  

end  FluidPort;  

   

model  DynamicVolume  

   parameter  SI.Volume V;  

   replaceable model  Medium = BaseProperties;  

   FluidPort port(redeclare model Medium = Medium);  

   Medium    medium(preferredMediumStates= true) ; // No modifier for p,h,Xi  

   SI .InternalEnergy U;  

   SI.Mass           M;  

   SI.Mass           MXi[medium.nXi];  

equation  

   U   = medium.u*M;  

   M   = medium.d*V;  

   MXi = medium.Xi*M;  

   der (U)   = port.H_flow;   // Energy balance  

   der (M)   = port.m_flow;   // Mass balance  

   der (MXi) = port.mXi_flow; // Substance mass balance  

 

// Equations binding to medium (inputs)  

   medium.p  = port.p;  

   medium.h  = port.h;  

   medium.Xi = port.Xi;  

end  DynamicVolume;  

The local number of unknowns of DynamicVolume  is: 

¶ 4+2*nXi  (inside the port  connector), plus 

¶ 2+nXi  (variables U, M and MXi), plus 

¶ 2+nXi  (the input variables in the connectors of the medium model) 

resulting in 8+4*nXi unknowns ; the local equation size is  

¶ 6+3*nXi  from the equation section, plus 

¶ 2+nXi  flow variables in the port  connector.  

Therefore, DynamicVolume  is a locally balanced model. 

Note, when the DynamicVolume  is used and the Medium model is redeclared to ñSimpleAir ò, then a tool will 

try to select p,T  as states, since these variables have StateSelect.prefer  in the SimpleA ir  model (this 

means that the default states U,M are derived quantities). If this state selection is performed, all intrinsic medium 

variables are computed from medium.p  and medium.T , although p and h are the input arguments to the medium 

model. This demonstrates that in Modelica input/output does not define the computational causality. Instead, it 
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defines that equations have to be provided here for p,h,Xi , in order that the equation count is correct. The 

actual computational causality can be different as it is demonstrated with the SimpleAir  model. 

model  FixedBoundary_pTX  

   parameter  SI.AbsolutePressure p "Predefined boundary pressure";  

   parameter  SI.Temperature      T "Predefined boundary temperature";  

   parameter  SI.MassFraction     Xi[medium.nXi]  

                                   "Predefined boundary mass fraction";  

   replaceable model  Medium = BaseProperties;  

   FluidPort port(redeclare model Medium = Medium);  

   Medium medium;  

equation  

   port.p        = p;  

   port.H_flow   = semiLinear (port.m_fl ow, port.h , medium.h);  

   port.MXi_flow = semiLinear (port.m_flow, port.Xi, medium.Xi);  

 

// Equations binding to medium (note: T is not an input).  

   medium.p  = p;  

   medium.T  = T;  

   medium.Xi = Xi;  

end  FixedBoundary_pTX;  

The number of local variables i n FixedBoundary_pTX  is: 

¶ 4+2*nXi  (inside the port  connector), plus 

¶ 2+nXi  (the input variables in the connectors of the medium model) 

resulting in 6+3*nXi unknowns, while the local equation size is 

¶ 4+2*nXi  from the equation section, plus 

¶ 2+nXi  flow variables in the port connector.  

Therefore, FixedBoundary_pTX  is a locally balanced model. The predefined boundary variables p and Xi  are 

provided via equations to the input arguments medium.p  and medium.Xi , in addition there is an equation for T 

in the same way ï even though T is not an input. Depending on the flow direction, either the specific enthalpy in 

the port (port.h ) or h is used to compute the enthalpy flow rate H_flow . ñhò is provided as binding equation to 

the medium. With the equation ñmedium.T = T ò, the specific enthalpy ñhò of the reservoir is indirectly 

computed via the medium equations. Again, this demonstrates, that an ñinputò just defines the number of 

equations have to be provided, but that it not necessarily defines the computational causality.  

] 

4.8 Predefined Types  and Classes  

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types are 

described below with Modelica syntax although they are predefined. The attributes of the predefined variable 

types and enumeration types are described below with Modelica syntax although they are predefined. Attributes 

cannot be accessed using dot notation, and are not constrained by equations and algorithm sections. E.g. in Real 

x(unit="kg") = y; only the values of x and y are declared to be equal, but not their unit attributes, nor any other 

attribute of x and y. It is not possible to combine extends from the predefined types, enumeration types, or this 

Clock type with other components. The names Real, Integer, Boolean and String are reserved such that it is illegal 

to declare an element with these names.Redeclaration of any of these types is an error, and the names are reserved 

such that it is illegal to declare an element with these names. It is furthermore not possible to combine extends 

from the predefined types with other components. [Thus it is possible to define a normal class called Clock in a 

package and extend from it.] The definitions use RealType , IntegerType , BooleanType , StringType , 

EnumType as mnemonics corresponding to machine representations. [Hence the only way to declare a subtype of 

e.g. Real  is to use the extends  mechanism.]  

4.8.1 Real Type 

The following is the predefined Real  type: 
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type  Real // Note: Defined with Model ica syntax although predefined  

  RealType value;                       // Accessed without dot - notation  

  parameter  StringType  quantity    = "";  

  parameter  StringType  unit        = ""  "Unit used in equations";  

  parameter  StringType  displayUnit = ""  "Default display unit";  

  parameter  RealType    min= - Inf, max=+Inf;  // Inf denotes a large value  

  parameter  RealType    start = 0;           // Initial value  

  parameter  BooleanType fixed = true,  // default for parameter/constant;  

                              = false; // default for other variables    

  parameter  RealType    nominal;             // Nominal value  

  parameter BooleanType unbounded=false;     // For error control  

  parameter  StateSelect stateSelect = StateSelect.default;  

equation  

  assert (value >= min and  value <= max, "Variable value out of limit");  

  assert(nominal >= min and  nominal <= max, "Nominal value out of limit");  

end  Real;  

The nominal attribute is meant to be used for scaling purposes and to define tolerances in relative terms, see 

section 4.8.7. 

4.8.2 Integer  Type  

The following is the predefined Integer  type: 

type  Integer // Note: Defined with Modelica syntax although predefined  

  In tegerType value;                   // Accessed without dot - notation  

  parameter  StringType  quantity    = "";  

  parameter  IntegerType min= - Inf, max=+Inf;  

  parameter  IntegerType start = 0;     // Initial value  

  parameter  BooleanType fixed = true,  // defa ult for parameter/constant;  

                              = false; // default for other variables  

equation  

  assert(value >= min and  value <= max, "Variable value out of limit");  

end  Integer;  

4.8.3 Boolean  Type  

The following is the predefined Boolean  type: 

type  Boolean // Note: Defined with Modelica syntax although predefined  

  BooleanType value;                   // Accessed without dot - notation  

  parameter  StringType  quantity    = "";  

  parameter  BooleanType start = false;  // Initial value  

  parameter  BooleanType fixed = true,  // default for parameter/constant;  

                              = false, // default for other variables  

end  Boolean;  

4.8.4 String  Type  

The following is the predefined String  type: 

type  String // Note: Defined with Modelica syntax although predefined  

  StringType value;                    // Accessed without dot - notation  

  parameter  StringType  quantity    = "";  

  parameter  StringType start = "";     // Initial value  

  parameter  BooleanType fixed = true,  // default for parameter/constant;  

                              = false, // default for other variables  

end  String;  

4.8.5 Enumeration  Types  

A declaration of the form 
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  type  E = enumeration ([ enum_list enum- list ]);  

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration literals 

shall be distinct within the enumeration type. The names of the enumeration literals are defined inside the scope of 

E. Each enumeration literal in the enum_list enum- list  has type E. 

[Example: 

type  Size = enumeration (small, medium, large, xlarge);  

 Size t_shirt_size = Size.medium;  

]. 

An optional comment string can be specified with each enumeration literal: 

[Example: 

type  Size2 = enumeration (small "1st", medium "2nd", large "3rd", xlarge "4th");  

] 

An enumeration type is a simple type and the attributes are defined in Section 4.8.5.1 4.8.5.1. The Boolean type 

name or an enumeration type name can be used to specify the dimension range for a dimension in an array 

declaration and to specify the range in a for loop range expression; see Section 11.2.2.2 11.2.2.2. An element of an 

enumeration type can be accessed in an expression [e.g. an array index value]. 

[Example: 

type  DigitalCurrentChoices = enumeration (zero, one);   

// Similar to Real, Integer  

Setting attributes:  

type  DigitalCurrent = DigitalCurrentChoices(quantity="Current",  

                              start = DigitalCurrentChoices. one, fixed = true);  

DigitalCurrent c(start = DigitalCurrent.one, fixed = true);  

DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);  

] 

Using enumeration types as Accessing attribute values in expressions: 

Real x[DigitalCurrentChoices];  

// Example using the type  name to represent the range  

for  e in  DigitalCurrentChoices loop    

  x[e] := 0.;  

end  for ;  

 

for  e loop       // Equivalent example using short form  

  x[e] := 0.;  

end  for ;  

 

// Equivalent ex ample using the colon range constructor  

for  e in  DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop  

  x[e] := 0.;  

end  for ;  

 

model  Mixing1 "Mixing of multi - substance flows, alternative 1"  

  replaceable  type  E=enumeration (:)"Substances in Fluid";  

  input   Real c1[E], c2[E], mdot1, mdot2;  

  output  Real c3[E], mdot3;  

equation  

  0 = mdot1 + mdot2 + mdot3;  

  for  e in  E loop  

     0 = mdot1*c1[e] + mdot2*c2[e]+ mdot3*c3[e];  

  end  for ;  

  /* Array operations on enumerations are NOT (yet) possible:  

       zer os(n) = mdot1*c1 + mdot2*c2 + mdot3*c3 // error  

  */  
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end  Mixing1;  

 

model  Mixing2 "Mixing of multi - substance flows, alternative 2"  

  replaceable  type  E=enumeration (:)"Substances in Fluid";  

  input   Real c1[E], c2[E], mdot1, mdot2;  

  output  Real c3[E], mdot3 ;  

protected  

  // No efficiency loss, since cc1, cc2, cc3  

  // may be removed during translation  

  Real cc1[:]=c1, cc2[:]=c2, cc3[:]=c3;  

  final  parameter  Integer n = size(cc1,1);  

equation  

         0 = mdot1 + mdot2 + mdot3;  

  zeros(n) = mdot1*cc1 + mdot2 *cc2 + mdot3*cc3  

end  Mixing2;  

] 

4.8.5.1 Attributes of Enumeration Types  

For each enumeration: 

type  E=enumeration (e1, e2, ..., en);  

a new simple type is conceptually defined as 
 

type  E // Note: Defined with Modelica syntax although predefined  

  EnumType value;                   // Accessed without dot - notation  

  parameter  StringType  quantity    = "";  

  parameter  EnumType min=e1, max=en;  

  parameter  EnumType start = e1;     // Initial value  

  parameter  BooleanType fixed = true,  // default for parameter/constant;  

                              = false; // default for other variables  

  constant  EnumType e1=...;  

  ...  

  constant  EnumType en=...;  

equation  

  assert(value >= min and  value <= max, "Variable value out of limit");  

end  E;  

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumeration 

attribute names (quantity, min, max, start, fixed) as enumeration literals] 

4.8.5.2 Type Conversion of Enumeration Values to String or Integer  

The type conversion function Integer ( <expressi on of enumeration type> )  returns the ordinal number 

of the enumeration value E.enumvalue , to which the expression is evaluated, where Integer(E.e1) =1 , 

Integer(E.en) =  n, for an enumeration type E=enumeration(e1, é, en). 

String(E.enumvalue)  gives the string representation of the enumeration value. [Example: String(E.Small)  

gives "Small ".] 

See also Section 3.7.1 3.7.1. 

4.8.5.3 Type Conversion of Integer to Enumeration Values  

Whenever an enumeration type is defined, a type conversion function with the same name and in the same scope 

as the enumeration type is implicitly defined. This function can be used in an expression to convert an integer 

value to the corresponding (as described in section 4.8.5.2) enumeration value.  

For an enumeration type named EnumTypeName, the expression EnumTypeName(<Integer expression>)  

returns the enumeration value EnumTypeName.e such that Integer(EnumTypeName.e)  is equal to the original 

integer expression.  

Attempting to convert an integer argument that does not correspond to a value of the enumeration type is an error.  
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[Example:  
   type Colors = enumeration ( RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW );  

Converting from Integer to Colors:  
   c = Colors(i);  

   c = Col ors(10); // An error  

]  

4.8.5.34.8.5.4 Unspecified enumeration  

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable enumeration 

type that can be freely redeclared to any enumeration type. There can be no enumeration variables declared using 

enumeration(:) in a simulation model. 

4.8.6 Clock Type s 

See Sections 16.2.1 16.2.1 and 16.3 16.3. 

4.8.7 Attributes start , fixed , and nomi nal , and unbounded  

The attributes start  and fixed  define the initial conditions for a variable. ñfixed=false ò means an initial 

guess, i.e., value may be changed by static analyzer. ñfixed=true ò means a required value. The resulting 

consistent set of values for ALL model variables is used as initial values for the analysis to be performed.  

The attribute nominal  gives the nominal value for the variable. The user need not set it even though the 

standard does not define a default value. The lack of default allows the tool to propagate the nominal attribute 

based on equations, and if there is no value to propagate the tool should use a non-zero value, it may use 

additional information (e.g. min-attribute) to find a suitable value, and as last resort use 1. If ñunbounded =true ò 

it indicates that the state may grow without bound, and the error in absolute terms shall be controlled. [The 

nominal value can be used by an analysis tool to determine appropriate tolerances or epsilons, or may be used for 

scaling. For example, the absolute tolerance for an integrator could be computed as 

ñt ol *( absTol= abs(nominal) * relTol /100 +( if x.unbounded then 0 else abs(x) ) )ò.  A default 

value is not provided in order that in cases such as ña=bò, where ñbò has a nominal value but not ñaò, the 

nominal value can be propagated to the other variable).] [For external functions in C89, RealType  by default 

maps to double and IntegerType by default maps to int . In the mapping proposed in Annex F of the C99 

standard, RealType/double  matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format. Typically 

IntegerType  represents a 32-bit 2-complement signed integer.] 

4.8.8 Other  Predefined Types  

4.8.8.1 StateSelect  

The predefined StateSelect  enumeration type is the type of the st ateSelect  attribute of the Real  type. It is 

used to explicitly control state selection. 

type  StateSelect = enumeration (  

 never "Do not use as state at all.",  

 avoid "Use as state, if it cannot be avoided (but only if variable appears  

   differentiated and no other potential state with attribute  

   default, prefer, or always can be selected).",  

 default "Use as state if appropriate, but only if variable appears  

   differentiated.",  

 prefer "Prefer it as state over those having the default value  

 (also vari ables can be selected, which do not appear  

 differentiated). ",  

 always "Do use it as a state."  

);  



      61 

 

4.8.8.2 ExternalObject  

See Section 12.9.7 12.9.7 for information about the predefined type ExternalObject . 

 

4.8.8.3 AssertionLevel  

The predefined AssertionLevel  enumeration type is used together with assert , section 8.3.7 8.3.7. 

 

type  AssertionLevel= enumeration (warning, error );  

4.8.8.4 Connections  

The package Connections is used for over-constrained connection graphs,  section 9.4. 

4.8.8.44.8.8.5 Graphical Annotation Types  

A number of ñpredefinedò record types and enumeration types for graphical annotations are described in Chapter 

18 Chapter 18. These types are not predefined in the usual sense since they cannot be referenced in ordinary 

Modelica code, only within annotations. 
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Chapter 5   
 
Scoping , Name Lookup , and Flattening  

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica. 

5.1 Flattening  Context  

Flattening is made in a context which consists of a modification environment (Section 7.2.2 7.2.2) and an ordered 

set of enclosing classes.  

5.2 Enclosing Classes  

The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside another 

class definition (the enclosing class) precedes its enclosing class definition in this set. 

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions, and 

not-yet read classes defined externally as described in Section 13.2.2 13.2.2. The order of top-level class 

definitions in the unnamed enclosing class is undefined. 

During flattening, the enclosing class of an element being flattened is a partially flattened class. [For example, 

this means that a declaration can refer to a name inherited through an extends-clause.]  

 [Example:  

class  C1 ... end  C1;  

class  C2 ... end  C2;  

class  C3  

  Real x=3;  

  C1 y;  

  class  C4 

    Real z;  

  end  C4;  

end  C3;  

The unnamed enclosing class of class definition C3 contains C1, C2, and C3 in arbitrary order. When flattening 

class definition C3, the set of enclosing classes of the declaration of x is the partially flattened class C3 followed 

by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of z is C4, C3 and the unnamed 

enclosing class in that order.]  

5.3 Static Name Lookup  

Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly defined 

names of record constructor functions and enumeration type conversion functions are ignored during type name 

lookup [since a record and the implicitly created record constructor function, see Section 12.6 12.6, , and an 

enumeration type and the implicitly created conversion function (Section 4.8.5.3), have the same name]. Names of 

record classes and enumeration types are ignored during function name lookup. 
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5.3.1 Simple Name Lookup  

When an element, equation, or section is flattened, any simple name [not composed using dot notation] is looked 

up sequentially in each member of the ordered set of instance scopes (see section 5.6.1.1) corresponding to 

lexically enclosing classes until a match is found or an enclosing class is encapsulated. In the latter case the 

lookup stops except for the predefined types, functions and operators defined in this specification. 

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as 

constant. The values of modifiers are thus resolved in the instance scope of which the modifier appears; if the use 

is in a modifier on a short class definition, 

This lookup in each instance scope is performed as follows  

¶ Among declared named elements (class - definition  and component - declaration ) of the class 

(including elements inherited from base-classes).  

¶ Among the import names of qualified import statements in the instance scope. The import name of 

import A.B.C ; is C and the import name of import D=A.B.C; is D.  

¶ Among the public members of packages imported via unqualified import-statements in the instance 

scope. It is an error if this step produces matches from several unqualified imports.  

Import statements defined in inherited classes are ignored for the lookup, i.e. import statements are not 

inherited. 

For a simple name [not composed using dot-notation] lookup is performed as follows: 

¶ First look for implicitly declared iteration variables if inside the body of a for-loop, Section  8.3.2 and 

Section  11.2.2, or if inside the body of a reduction expression, Section  10.3.4. 

¶ When an element, equation, or section is flattened, any name is looked up sequentially in each member of 

the ordered set of enclosing classes until a match is found or an enclosing class is encapsulated. In the latter 

case the lookup stops except for the predefined types, functions and operators defined in this specification. 

For these cases the lookup continues in the global scope, where they are defined. [E.g. abs  is searched 

upwards in the hierarchy as usual. If an encapsulated boundary is reached, abs  is searched in the global 

scope instead. The operator abs  cannot be redefined in the global scope, because an existing class cannot 

be redefined at the same level.]  

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as 

constant. The values of modifiers are thus resolved in the scope of which the modifier appears; if the use is in a 

modifier on a short class definition, see Section  4.5.1.  

[Example: 

package  A  

  constant  Real x=2;   

  model  B  

    Real x;   

    function  foo   

      output  Real y ;    

    algorithm  y :=  x; // Illegal since reference to non - constant x in B.  

] 

This lookup in each scope is performed as follows 

¶ Among declared named elements (class_definition  and component_declaration ) of the class 

(including elements inherited from base-classes). 

¶ Among the import names of qualified import statements in the lexical scope. The import name of import 

A.B.C ; is C and the import name of import D= A.B.C;  is D. 

¶ Among the public members of packages imported via unqualified import-statements in the lexical scope. It 

is an error if this step produces matches from several unqualified imports. 
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[Note, that import statements defined in inherited classes are ignored for the lookup, i.e. import statements are not 

inherited.] 

5.3.2 Composite Name Lookup  

For a composite name of the form A.B  or A.B.C , etc. lookup is performed as follows: 

¶ The first identifier (A) is looked up as defined above.  

¶ If the first identifier denotes a component, the rest of the name (e.g., B or B.C ) is looked up among the 

declared named component elements of the component. 

¶ If not found, and if the first identifier denotes a scalar component, or component[j] where component is an 

array of components and the indices j can be evaluated at translation time and component[j] is a scalar; and 

if the composite name is used as a function call, the lookup is also performed among the declared named 

class elements of the scalar component, and must find a non-operator function. All identifiers of the rest of 

the name (e.g., B and B.C] must be classes. 

¶ If the identifier denotes a class, that class is temporarily flattened (as if instantiating a component without 

modifiers of this class, see Section 7.2.2 7.2.2) and using the enclosing classes of the denoted class. The rest 

of the name (e.g., B or B.C ] is looked up among the declared named elements of the temporary flattened 

class. If the class does not satisfy the requirements for a package, the lookup is restricted to encapsulated 

elements only. The class we look inside may not be partial in a simulation model.  

[The temporary class flattening performed for composite names follow the same rules as class flattening of the 

base class in an extends-clause, local classes and the type in a component clause, except that the environment is 

empty. See also MoistAir2  example in Section 7.3 7.3 for further explanations regarding looking inside partial 

packages.] 

5.3.3 Global Name Lookup  

For a name starting with dot, e.g.: .A  [or .A.B , .A.B.C  etc.] lookup is performed as follows: 

¶ The first identifier [A] is looked up in the global scope. This is possible even if the class is encapsulated and 

import statements are not used for this. If there does not exist a class A in global scope this is an error. 

¶ If the name is simple then the class A is the result of lookup. 

¶ If the name is a composite name then the class A is temporarily flattened with an empty environment (i.e. 

no modifiers, see Section 7.2.2 7.2.2) and using the enclosing classes of the denoted class. The rest of the 

name [e.g., B or B.C ] is looked up among the declared named elements of the temporary flattened class. If 

the class does not satisfy the requirements for a package, the lookup is restricted to encapsulated elements 

only. The class we look inside may not be partial.  

[The package-restriction ensures that global name lookup of component references can only find global 

constants.] 

5.3.4 Lookup of Imported Names  

See Section 13.2.1.1 13.2.1.1. 

5.4 Instance Hierarchy Name Lookup  of Inner Declarations  

An element declared with the prefix outer  references an element instance with the same name but using the 

prefix inner  which is nearest in the enclosing instance hierarchy of the outer  element declaration.  
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There shall exist at least one corresponding inner  element declaration for anAn outer  element reference in a 

simulation model requires that one corresponding inner  element declaration exist or can be created in a unique 

way:.  

¶ If there are two (or more) outer  declarations with the same name, both lacking matching inner  

declarations, and the outer  declarations are not of the same class it is in error. 

¶ If there is one (or more) outer  declarations of a partial class it is an error. 

¶ In other cases, i.e. if a unique non-partial class is used for all outer  declarations of the same name lacking 

a matching inner  declaration, then an inner  declaration of that class is automatically added at the top of 

the model and diagnostics is given. 

¶ The annotations defined in 18.618.7 does not affect this process, other than that:  

o missingInnerMessage can be used for the diagnostic (and possibly error messages) 

An outer  element component may be of a partial class [but the referenced inner  component must be of a non-

partial class]. [i nner /outer  components may be used to model simple fields, where some physical quantities, 

such as gravity vector, environment temperature or environment pressure, are accessible from all components in 

a specific model hierarchy. Inner components are accessible throughout the model, if they are not ñshadowedò by 

a corresponding inner  declaration in a more deeply nested level of the model hierarchy.] 

 [Simple Example: 

class  A  

  oute r  Real T0;  

  ...  

end  A;  

 

class  B 

  inner  Real T0;  

  A a1, a2;    // B.T0, B.a1.T0 and B.a2.T0 is the same variable  

  ...  

end  B;  

More complicated example: 

class  A  

  outer  Real TI;  

  class  B 

    Real TI;  

    class  C 

      Real TI;  

      class  D 

        oute r  Real TI;  //  

      end  D;  

      D d;  

    end  C;  

    C c;  

  end  B;  

  B b;  

end  A;  

 

class  E  

  inner  Real TI;  

  class  F 

    inner  Real TI;  

    class  G 

      Real TI;  

      class  H 

        A a;  

      end  H;  

      H h;  

    end  G;  

    G g;  

  end  F;  

  F f;  

end  E;  
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class  I  

  inner  Real TI;  

  E       e;    

// e.f.g.h.a.TI, e.f.g.h.a.b.c.d.TI, and e.f.TI is the same variable  

// But e.f.TI, e.TI and TI are different variables  

   A a;   // a.TI, a.b.c.d.TI, and TI is the same variable    

end  I;  

] 

The inner  component shall be a subtype of the corresponding outer  component. [If the two types are not 

identical, the type of the inner  component defines the instance and the outer  component references just part of 

the inner  component]. 

 [Example: 

class  A  

  inner  Real TI;  

  class  B 

    outer  Integer TI;  // error, since A.TI is no subtype of A.B.TI  

  end  B;  

end  A;  

] 

5.4.1 Example of Field Functions using Inner/Outer  

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.: 

partial function  A 

  input   Real u;  

  output  Real y;  

end  A;  

 

function  B      // B is a subtype of A  

  extends  A;  

algorithm  

  ...  

end  B;  

 

class  D  

   outer  function  fc = A;   

   ...  

 equation  

   y = fc(u);   

 end  D;  

 

class  C 

  inner  function  fc = B;   // define fu nction to be actually used  

  D d; // The equation is now treated as y = B(u)  

end  C;  

 

] 

5.5 Simultaneous Inner /Outer  Declarations  

An element declared with both the prefixes inner  and outer  conceptually introduces two declarations with the 

same name: one that follows the above rules for inner  and another that follows the rules for outer . [Local 

references for elements with both the prefix inner  and outer  references the outer  element. That in turn 

references the corresponding element in an enclosing scope with the prefix inner .] 

Outer component declarations may only have modifications [including declaration equations] if they also have 

the inner  prefix. Outer class declarations should be defined using short-class definitions which only may have 
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modifications if they also have the inner  prefix. For both cases those modifications are only applied to the 

inner  declaration. 

[Example: 

class  A 

  outer  parameter  Real p=2;  // error, since modification  

end  A;  

Intent of the following example: Propagate enabled  through the hierarchy, and also be able to disable 

subsystems locally. 

model  ConditionalIntegrator "Simple differential equation if isEnabled"  

  outer  Boolean isEnabled;  

  Real x(start=1);  

equation  

  der (x)= if  isEnabled then  ïx else  0;  

end  ConditionalIntegrator;  

 

model  SubSystem "subsystem that 'enable' its conditional integrators"  

  Boolean enableMe = time<=1;  

  // Set inner isEnabled to outer isEnabled and enableMe  

  inner  outer  Boolean isEnabled = isEnabled and  enableMe;  

  ConditionalIntegr ator conditionalIntegrator;  

  ConditionalIntegrator conditionalIntegrator2;  

end  SubSystem;  

 

model  System  

  SubSystem subSystem;  

  inner  Boolean isEnabled = time>=0.5;  

  // subSystem.conditionalIntegrator.isEnabled will be  

  // 'isEnabled and subSystem.e nableMe'  

end  System;  

] 

5.6 Flattening Process  

In order to guarantee that elements can be used before they are declared and that elements do not depend on the 

order of their declaration (Section 4.3) in the enclosing class, the flattening proceeds in the following two major 

steps: 

1. Instantiation process 

2. Generation of the flat equation system 

The result is an equation system of all equations/algorithms, initial equations/algorithms and instances of 

referenced functions. Modifications of constants, parameters and variables are included in the form of equations. 

The constants, parameters and variables are defined by globally unique identifiers and all references are resolved 

to the identifier of the referenced variable. No other transformations are performed. 

5.6.1 Instant iation  

The instantiation is performed in two steps. First a class tree is created and then from that an instance tree for a 

particular model is built up. This forms the basis for derivation of the flat equation system. 

An implementation may delay and/or omit building parts of these trees, which means that the different steps can 

be interleaved. If an error occurs in a part of the tree that is not used for the model to be instantiated the 

corresponding diagnostics can be omitted (or be given). However, errors that should only be reported in a 

simulation model must be omitted there, since they are not part of the simulation model. 
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5.6.1.1 The Class Tree  

All necessary libraries including the model which is to be instantiated are loaded from e.g. file system and form a 

so called class tree. This tree represents the syntactic information from the class definitions. It contains also all 

modifications at their original locations in syntactic form. [The class tree is built up directly during parsing of the 

Modelica texts. For each class a local tree is created which is then merged into the one big tree, according to the 

location of the class in the class hierarchy. This tree can be seen as the abstract syntax tree (AST) of the loaded 

libraries.]. The builtin classes are put into the unnamed root of the class tree. 

5.6.1.2 The Instance Tree  

The output of the instantiation process is an instance tree. The instance tree consists of nodes representing the 

elements of a class definition from the class tree. For a component the subtree of a particular node is created using 

the information from the class of the component clause and a new modification environment as result of merging 

the current modification environment with the modifications from the current element declaration (see 7.2.3). 

The instance tree has the following properties: 

- It contains the instantiated elements of the class definitions, with redeclarations taken into account and 

merged modifications applied. 

- Each instance knows its source class definition from the class tree and its modification environment.  

- Each modification knows its instance scope. 

The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on the 

structure of the class tree with respect to the class definitions. The builtin classes are instantiated and put in the 

unnamed root prior to the instantiation of the user classes, to be able to find them. 

[The existence of the two separate trees (instance tree and class tree) is conceptual. Whether they really exist or 

are merged into only one tree or the needed information is held completely differently is an implementation detail. 

It is also a matter of implementation to have only these classes instantiated which are needed to instantiate the 

class of interest.]  

A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in the class it 

is instantiated from. The instance scope is the starting point for name lookup. [If the name is not found the lookup 

is continued in the instance scope corresponding to the lexically enclosing class. Extends clauses are treated as 

unnamed nodes in the instance tree ï when searching for an element in an instance scope the search also 

recursively examines the elements of the extends clauses. Except that inherited import-statements are ignored.] 

5.6.1.3 The Instantiation Procedure.  

The instantiation is a recursive procedure with the following inputs:  

- the class to be instantiated  (current class) 

- the modification environment with all applicable redeclarations and merged modifications (initially 

empty) 

- a reference to the node of the instance tree, which the new instance should go into (parent instance) 

The instantiation starts with the class to be instantiated, an empty modification environment, and an unnamed root 

node as parent node.  

During instantiation all lookup is performed using the instance tree, starting from the instance scope of the current 

element. References in modifications and equations are resolved later (during generation of flat equation system) 

using the same lookup. 

5.6.1.4 Steps of Instantiation  

The element itself 
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A partially instantiated class or component is an element that is ready to be instantiated; a partially instantiated 

element (i.e. class or component) is comprised of a reference to the original element (from the class tree) and the 

modifiers for that element (including a possible redeclaration). 

The possible redeclaration of the element itself takes effect.  

The class of a partially instantiated component is found in the instance tree (using the redeclaration if any), 

modifiers merged to that class forming a new partially instantiated class that is instantiated as below. 

The local contents of the element 

For local classes and components in the current class, instance nodes are created and inserted into the current 

instance. Modifiers (including class redeclarations) are merged and associated with the instance and the element is 

partially instantiated. [The partially instantiated elements are used later for lookup during the generation of the 

flat equation system and are instantiated fully, if necessary, using the stored modification environment.] 

Equations, algorithms, and annotations of the class and the component declaration are copied to the instance 

without merging. [The annotations can be relevant for simulations, e.g. annotations for code generation (18.3.), 

simulation experiments (18.4) or functions(12.7, 12.8 and 12.9).]  

Extends clauses are not looked up, but empty extends clause nodes are created and inserted into the current 

instance ï to be able to preserve the declaration order of components. 

The inherited contents of the element 

Classes of extends clauses of the current class are looked up in the instance tree, modifiers (including 

redeclarations) are merged, the contents of these classes are partially instantiated using the new modification 

environment, and are inserted into an extends clause node, which is an unnamed node in the current instance that 

only contains the inherited contents from that base-class. 

The classes of extends-clauses are looked up before and after handling extends-clauses; and it is an error if those 

lookups generate different results. 

At the end, the current instance is checked whether their children (including children of extends-clauses) with the 

same name are identical and only the first one of them is kept. [This is important for function arguments where 

the order matters.] It is an error if they are not identical.  

Recursive instantiation of components 

Components (local and inherited) are recursively instantiated. 

[  

As an example consider:  

model  M 

    model  B 

      A a;  

      replaceable  model  A=C;  

      type E=Boolean;  

    end  B;  

    B b( redeclare  model  A=D(p=1));  

    partial  model  C 

      E e;  

    end  C;  

    model  D 

      extends  C;  

      parameter  E p;  

      type E=Integer;  

    end  D;  

    type E=Real;  

  end  M;  
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To recursively instantiate M allowing the generation of flat equation system we have the following steps (not 

including checks): 

1. Instantiate M: which partially instantiates B, b, C, D, E. 

2. Instantiate M.b:  

2.1. First find the class B in M (the partially instantiated elements have correct name allowing lookup) 

2.2. instantiate the partially instantiated M.B with the modifier "redeclare model A=D(p=1)" 

2.3. partially instantiate M.b.a (no modifier), and M.b.A (with modifier "=D(p=1)") 

3. Instantiate M.b.a 

3.1. First find the class A in M.b (the partially instantiated elements have correct name allowing lookup) 

3.2. Instantiate the partially instantiated M.b.A with the modifier "=D(p=1)". 

3.2.1. Find the base-class "=D" from the modifier. This performs lookup for D in M, and finds the 

partially instantiated class D 

3.2.2. Instantiate the base-class M.D with modifier p=1, and insert as unnamed node in M.b.A. 

3.2.2.1. Partially instantiate the component p with modifier "=1" 

3.2.2.2. Find the base-class "C" in M.D. Since there is no local element called "C" the search is then 

continued in M and finds the partially instantiated class M.C 

3.2.2.3. Instantiate the base-class M.C as below 

4. Instantiate the base-class M.C inserting the result into unnamed node in M.b.a 

4.1. Partially instantiate "e" 

4.2. Instantiate "e" which requires finding "E". First looking for "E" in the un-named node for extends "M.C", 

and, since there is no local element "E" the search is then continued in "M" (which lexically encloses 

M.C) and finds "E" class inheriting from Real. The "e" is then instantiated using class "E" inheriting 

from "Real". 

5. Instantiate M.b.a.p 

5.1. First the class "E" in M.b.a finding "E" class inheriting from Integer. 

5.2. Instantiate the "M.b.a.p" using the class "E" inheriting from Integer with modifier "=1" 

5.3. Instantiate the base-class Integer with modifier "=1", and insert as unnamed node in "M.b.a.p". 

An implementation can use different heuristics to be more efficient by re-using instantiated elements as long as 

the resulting flat equation system is identical.  

Note that if "D" was consistently replaced by "A" in the example above the result would be identical (but 

harder to read due to two different classes called "A").  

]  

5.6.2 Generation of the  flat equation system  

During this process, all references by name in conditional declarations, modifications, dimension definitions, 

annotations, equations and algorithms are resolved to the real instance to which they are referring to, and the 

names are replaced by the global unique identifier of the instance. [This identifier is normally constructed from 

the names of the instances along a path in the instance tree (and omitting the unnamed nodes of extends clauses), 

separated by dots. Either the referenced instance belongs to the model to be simulated the path starts at the model 

itself, or if not, it starts at the unnamed root of the instance tree, e.g. in case of a constant in a package.] 

[To resolve the names, a name lookup using the instance tree is performed, starting at the instance scope 

(unless the name is fully qualified) of the modification, algorithm or equation. If it is not found locally the search 
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is continued at the instance of the lexically enclosing  class of the scope [this is normally not equal to the parent 

of the current instance], and then continued with their parents as described in section 5.3. If the found component 

is an outer declaration, the search is continued using the direct parents in the instance tree (see section é). If the 

lookup has to look into a class which is not instantiated yet [or only partially instantiated], it is instantiated in 

place.]  

The flat equation system consists of a list of variables with dimensions, flattened equations and algorithms, and a 

list of called functions which are flattened separately. A flattened function consists of algorithm or external clause 

and top-level variables (variables directly declared in the function or one of its base-classes) ï which recursively 

can contain other variables; the list of non-top level variables is not needed. 

The instance tree is recursively walked through as follows for elements of the class (if necessary a partially 

instantiated component is first instantiated):  

- At each visited component instance, the name is inserted into the variables list. Then the conditional 

declaration expression is evaluated if applicable.  

o The variable list is updated with the actual instance 

o The variability information and all other properties from the declaration are attached to this variable.  

o Dimension information from the declaration and all enclosing instances are resolved and attached to 

the variable to define their complete dimension.  

o If it is of record or simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject): 

Á In the modifications of value attribute references are resolved using the instance scope of the 

modification. An equation is formed from a reference to the name of the instance and the 

resolved modification value of the instance, and included into the equation system. Except if 

the value for an element of a record is overridden by the value for an entire record; section 

7.2.3. 

o If it is of simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject):  

Á In the modifications of non-value attributes, e.g. start, fixed etc. references are resolved 

using the instance scope of the modification. An equation is formed from a reference to the 

name of the instance appended by a dot and the attribute name and the resolved modification 

value of the instance, and included into the equation system. 

o If it is of a non-simple type the instance is recursively handled. 

- If there are equation or algorithm sections in the class definition of the instance, references are resolved using 

the instance scope of the instance and are included in the equation system. Some references ï in particular to 

non simple, non record objects like connectors in connect statements and states in transition statements are 

not resolved yet and handled afterwards. 

- Instances of local classes are ignored. 

- The unnamed nodes corresponding to extends-clauses are recursively handled. 

- If there are function calls encountered during this process, the call is filled up with default arguments as 

defined in 12.4.1. These are built from the modifications of input arguments which are resolved using their 

instance scope. The called function itself is looked up in the instance tree. All used functions are flattened and 

put into the list of functions. 

- Conditional components with false condition are removed afterwards and they are not part of the simulation 

model. [Thus e.g. parameters don't need values in them. However, type-error can be detected.] 

- Each reference is checked, whether it is a valid reference, e.g. the referenced object belongs to or is an 

instance, where all existing conditional declaration expressions evaluate to true or it is a constant in a 

package. [Conditional components can be used in connect-statements, and if the component is conditionally 

disabled the connect-statement is removed.] 
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This leads to a flattened equation system, except for connect and transition statements. These have to be 

transformed as described in Chapter 9 and Chapter 17. This may lead to further changes in the instance tree [e.g. 

from expandable connectors (section 9.1.3)]  and additional equations in the flattened equation system [e.g. 

connect equations (section 9.2), generated equations for state machine semantics (section 17.3.4)] . 

[After flattening, the resulting equation system is self contained and covers all information needed to transform it 

to a simulatable model, but the class and instance trees are still needed: in the transformation process, there 

might be the need to instantiate further functions, e.g. from derivative  annotation or from inverse  

annotation etc., on demand.] 

In order to guarantee that elements can be used before they are declared and that elements do not depend on the 

order of their declaration (Section  4.3) in the enclosing class, the flattening proceeds in the following three steps, 

described in Section  5.6.1, Section  5.6.2, and Section  5.6.3, respectively. 

5.6.1 Partial Flattening  

First the names of declared local classes and components are found. Here modifiers are merged to the local 

elements and redeclarations take effect (including redeclared elements, see Section  7.3). Then base-classes are 

looked up, flattened and inserted into the class. The lookup of the base-classes should be independent of the order 

in which they are handled, and a name used for a base-class may not be inherited from any base-class.  

[The lookup of the names of extended classes should give the same result before and after flattening the extends-

clauses. One should not find any element used during this flattening by lookup through the extends-clauses. It 

should be possible to flatten all extends-clauses in a class before inserting the result of flattening. Local classes 

used for extends should be possible to flatten before inserting the result of flattening the extends-clauses.] 

5.6.2 Flattening  

Partially flatten the class, apply the modifiers (Section  7.2) and flatten all local elements. 

5.6.3 Check of Flattening  

Check that duplicate elements [due to multiple inheritance] are identical after flattening. 
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Chapter 6    
 
 
Interface  or Type Relationships   

A class or component, e.g. denoted A, can in some cases be used at a location designed for another class or 

component, e.g. denoted B. In Modelica this is the case for replaceable classes (see Section 7.3 7.3) and for 

inner /outer  elements (see Section 5.4 5.4). Replaceable classes are the primary mechanism to create very 

flexible models. In this chapter, the precise rules are defined when A can be used at a location designed for B. The 

restrictions are defined in terms of compatibility rules (Sections 6.3 6.3 and 6.4 6.4) between òinterfacesò (Section 

6.1 6.1); this can also be viewed as sub-typing (Section 6.1 6.1). 

In this chapter, two kinds of terminology is used for identical concepts to get better understanding [e.g. by both 

engineers and computer scientists]. A short summary of the terms is given in the following table. The details are 

defined in the rest of this chapter. 

 

term description 

type or 

interface 

The ñessentialò part of the public declaration sections of a class that is 

needed to decide whether A can be used instead of B [E.g. a declaration 

ñReal  xò is part of the type, also called interface, but ñimport  Aò is 

not]. 

class type or 

inheritance interface 

The ñessentialò part of the public and protected declaration sections of a 

class that is needed to decide whether A can be used instead of B. The 

class type , also called inheritance interface, is needed when inheritance 

takes place, since then the protected declarations have to be taken into 

account. 

subtype or 

compatible interface 

A is a subtype of B, or equivalently, the interface of A is compatible to 

the interface of B, if the ñessentialò part of the public declaration 

sections of B is also available in A [E.g., if B has a declaration ñReal 

xò, this declaration must also be present in A. If A has a declaration 

ñReal yò, this declaration must not be present in B]. 

restricted subtype or 

plug compatible interface 

A is a restricted subtype of B, or equivalently, the interface of A is plug 

compatible to the interface of B, if A is a subtype of B and if connector 

components in A that are not in B, are default connectable. [E.g. it is not 

allowed that these connectors have variables with the ñinputò prefix, 

because then they must be connected.] A model or block A cannot be 

used instead of B, if the particular situation does not allow to make a 

connection to these additional connectors. In such a case the stricter 

ñplug compatibleò is required for a redeclaration. 

function subtype or 

function compatible 

interface 

A is a function subtype of B, or equivalently, the interface of A is 

function compatible to the interface of B, if A is a subtype of B and if 

the additional arguments of function A that are not in function B are 

defined in such a way, that A can be called at places where B is called. 

[E.g. an additional argument must have a default value.] 
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6.1 The Concepts of Type , Interface  and Subtype  

A type can conceptually be viewed as a set of values. When we say that the variable x  has the type Real , we mean 

that the value of x  belongs to the set of values represented by the type Real  i.e., roughly the set of floating point 

numbers representable by Real , for the moment ignoring the fact that Real  is also viewed as a class with certain 

attributes. Analogously, the variable b having Boolean  type means that the value of b belongs to the set of values 

{ false , true }. The built-in types Real , Integer , String , Boolean  are considered to be distinct types.  

The subtype relation between types is analogous to the subset relation between sets. A type A1 being a subtype 

of type A means that the set of values corresponding to type A1 is a subset of the set of values corresponding to 

type A.  

The type Integer  is not a subtype of Real  in Modelica even though the set of primitive integer values is a 

subset of the primitive real values since there are some attributes of Real  that are not part of Integer  (Section 

4.8 4.8). 

The concept of interface as defined in Section 6.2 6.2 and used in this document is equivalent to the notion of 

type based on sets in the following sense: 

An element is characterized by its interface defined by some attributes (Section 6.2 6.2). The type of the 

element is the set of values having the same interface, i.e. the same attributes. 

A subtype A1 in relation to another type A, means that the elements of the set corresponding to A1 is a subset 

of the set corresponding to A, characterized by the elements of that subset having additional properties. 

[Example: 

A record R: record R Boolean b; Real x; end R;    

Another record called R2: R2 Boolean b; Real x; Real y; end R2;  

An instance r:  R r;  

An instance r2 :  R2 r2;  

The type R of r  can be viewed as the set of all record values having the attributes defined by the interface of 

R, e.g. the infinite set {R(b=false,x=1.2) , R(b=false , x=3.4) , R(b=true , x=1 .2 ), R(b=true , x=1.2, 

y=2), R(b=true , x=1.2, a= 2), ...) . The statement that r  has the type (or interface) R means that the value 

of r  belongs to this infinite set. 

The type R2 is a subtype of R since its instances fulfill the additional property of having the component Real 

y;  in all its values.] 

     

     

Type R: Records with at least  
components named x and b  

R2: Records with at least 
components x, b, y 

instance r 

instance r2 

 

Figure 6-1.  The type R can be defined as the set of record values containing x and b. The subtype R2 is the subset 

of values that all contain x, b, and y. 

] 
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6.2 Interface  or Type  

Based on a flattened class or component we can construct an interface for that flattened class or component. The 

interface or type [the terms interface and type are equivalent and can be used interchangeably] is defined as the 

following information about the flattened element itself: 

¶ Whether it is replaceable or not. 

¶ Whether the class itself or the class of the component is transitively non-replaceable (Section 6.2.1 6.2.1), 

and if not, the reference to the replaceable class it refers to. 

¶ Whether it is a component or a class. 

¶ Additional information about the element: 

o The flow- or stream-prefix. 

o Declared variability (constant, parameter, discrete). 

o The prefixes input and output. 

o The prefixes inner  and/or outer . 

o Whether the declaration is final, and in that case its semantics contents. 

o Array sizes (if any). 

o Condition of conditional components (if any). 

o Which kind of specialized class. 

o For an enumeration type or component of enumeration type the names of the enumeration 

literals in order. 

o Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or 

BooleanType). 

¶ Only for an operator record  class and classes derived from ExternalObject: the full name of the 

operator record base-class (i.e. the one containing the operations), or the derived class. See Chapter 

14 Chapter 14 and Section 12.9.7 12.9.7.  

The following item does not apply for an operator record  class or class derived from ExternalObject, 

since the type is already uniquely defined by the full name. 

¶ For each named public element of the class or component (including both local and inherited named 

elements) a tuple comprised of: 

o Name of the element. 

o Interface or type of the element. This might have been modified by modifiers and is thus not 

necessarily identical to the interface of the original declaration. 

The corresponding constraining interface is constructed based on the constraining type (Section 7.3.2 7.3.2) of 

the declaration (if replaceable ï otherwise same as actual type) and with the constraining interface for the named 

elements.  

In a class all references to elements of that class should be limited to their constraining interface (i.e. only 

public elements and if the declaration is replaceable limited to the constraining interface).  

[The public interface does not contain all of the information about the class or component. When using a class 

as a base-class we also need protected elements, and for internal type-checking we need e.g. import-elements. 

However, the information is sufficient for checking compatibility and for using the class to flatten components.] 

6.2.1 Transit ively non -Replaceable  

[In several cases it is important that no new elements can be added to the interface of a class, especially 

considering short class definitions. Such classes are defined as transitively non-replaceable.] 

A class reference is transitively non-replaceable iff (i.e. ñif and only ifò) all parts of the name satisfy the 

following: 

¶ If the class definition is long it is transitively non-replaceable if not declared replaceable. 
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¶ If the class definition is short (i.e. óclass A=P.B ô) it is transitively non-replaceable if it is non-

replaceable and equal to class reference (ñP.Bò) that is transitively non-replaceable. 

[According to section 7.1.4 7.1.4, for a hierarchical name all parts of the name must be transitively non-

replaceable, i.e. in ñextends A.B.C ò this implies that A.B.C  must be transitively non-replaceable, as well as A 

and A.B, with the exception of the ñclass extends redeclaration mechanismò see Section 7.3.1 7.3.1] 

6.2.2 Inheritance Interface or Class Type  

For inheritance the interface also must include protected elements; this is the only change compared to above. 

Based on a flattened class we can construct an inheritance interface or class type for that flattened class. The 

inheritance interface or class type is defined as the following information about the flattened element itself: 

¶ Whether it is replaceable or not. 

¶ Whether the class itself or the class of the component is transitively non-replaceable (Section 6.2.1 6.2.1), 

and if not the reference to replaceable class it refers to.  

¶ For each named element of the class (including both local and inherited named elements) a tuple comprised 

of: 

o Name of the element. 

o Whether the element is component or a class. 

o For elements that are classes: Inheritance interface or class type of the element. This might have 

been modified by modifiers and is thus not necessarily identical to the interface of the original 

declaration. 

o For elements that are components: interface or type of the element. This might have been 

modified by modifiers and is thus not necessarily identical to the interface of the original 

declaration. 

¶ Additional information about the element: 

o The flow - or stream -prefix. 

o Declared variability (constant , parameter , dis crete ). 

o The prefixes input  and output . 

o The prefixes inner  and/or outer . 

o Whether the declaration is final , and in that case its semantics contents. 

o Array sizes (if any). 

o Condition of conditional components (if any). 

o Which kind of specialized class. 

o For an enumeration type or component of enumeration type the names of the enumeration literals 

in order. 

o Whether it is a built-in type and the built-in type (RealType , IntegerType , StringType  or 

BooleanType ). 

o Visibility (public or protected). 

6.3 Interface  Compatibili ty or Subtyping    

An interface of a class or component A is compatible with an interface of a class or component B (or the 

constraining interface of B), or equivalently that the type of A is a subtype of the type of B, iff  [intuitively all 

important elements of B must be present in A ]: 

¶ A is a class if and only if B is a class (and thus: A is a component if and only if B is a component). 

¶ If A has an operator record  base-class then B must also have one and it must be the same. If A does not 

have an operator record base-class then B may not have one. See Chapter 14 Chapter 14. 
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¶ If A is derived from ExternalObject, then B must also be derived from ExternalObject and have the same 

full name. If A is not derived from ExternalObject then B may not derived from ExternalObject. See 

Section 12.9.7 12.9.7. 

¶ If B is not replaceable then A may not be replaceable. 

¶ If B is transitively non-replaceable then A must be transitively non-replaceable (Section 6.2.1 6.2.1). For all 

elements of the inheritance interface of B there must exist a compatible element with the same name and 

visibility in the inheritance interface of A. The interface of A may not contain any other elements. [We 

might even extend this to say that A and B should have the same contents, as in the additional restrictions 

below.] 

¶ If B is replaceable then for all elements of the component interface of B there must exist a plug-compatible 

element with the same name in the component interface of A. 

¶ If B is neither transitively non-replaceable nor replaceable then A must be linked to the same class, and for 

all elements of the component interface of B there must thus exist a plug-compatible element with the same 

name in the component interface of A. 

¶ Additional restrictions on the additional information. These elements should either match or have a natural 

total order: 

o If B is a non-replaceable long class definition A must also be a long class definition. 

o The flow-or stream -prefix should be matched for compatibility. 

o Variability is ordered constant< parameter< discrete< (no prefix: continuous-time for Real), and 

A is only compatible with B if the declared variability in A is less than or equal the variability in 

B. For a redeclaration of an element the variability prefix is as default inherited by the 

redeclaration (i.e. no need to repeat óparameterô when redeclaring a parameter). 

o The input and output prefixes must be matched. This ensures that the rules regarding 

inputs/outputs for matching connectors and (non-connector inputs) are preserved, as well as the 

restriction on blocks. For a redeclaration of an element the input or output prefix is inherited 

from the original declaration. 

o The inner  and/or outer  prefixes should be matched. For a redeclaration of an element the 

inner  and/or outer  prefixes are inherited from the original declaration (since it is not possible 

to have inner  and/or outer  as part of a redeclare).  

o If B is final A must also be final and have the same semantic contents. 

o The number of array dimensions in A and B must be matched. Furthermore the following must 

be valid for each array dimension: either the array size in B is unspecified (ñ:ò) or the content of 

the array dimension in A is identical to the one in B. 

o Conditional components are only compatible with conditional components. The conditions must 

have equivalent contents (similar as array sizes ï except there is no ñ:ò for conditional 

components). For a redeclaration of an element the conditional part is inherited from the 

original. 

o A function class is only compatible with a function class, a package class only compatible with a 

package class, a connector class only with a connector class, a model or block class only 

compatible with a model or block class, and a type or record class only compatible with a type or 

record class. 

o If B is an enumeration type A must also be an enumeration type and vice versa. If B is an 

enumeration type not defined as (:) then A must have the same enumeration literals in the same 

order; if B is an enumeration type defined as (:) then there is no restriction on the enumeration 

type A. 

o If B is a built-in type then A must also be of the same built-in type and vice versa. 

Plug-compatibility is a further restriction of compatibility (subtyping) defined in Section 6.4 6.4, and further 

restricted for functions, see Section 6.5 6.5. For a replaceable declaration or modifier the default class must be 

compatible with the constraining class. 

For a modifier the following must apply: 

¶ The modified element should exist in the element being modified. 
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¶ The modifier should be compatible with the element being modified, and in most cases also plug-

compatible, Section 6.4 6.4. 

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of 

class/component), and modifiers legal as above ï then the resulting flat class will be legal (no references to 

unknown elements and no illegal use of class/component and compatible with original constraining class) and 

references refer to similar entities.] 

6.4 Plug -Comp atib ili ty or  Restricted Subtyping  

[If a sub-component is redeclared, see Section 7.3 7.3, it is impossible to connect to any new connector. A 

connector with input prefix must be connected to, and since one cannot connect across hierarchies, one should 

not be allowed to introduce such a connector at a level where a connection is not possible. Therefore all public 

components present in the interface A that are not present in B must be connected by default.] 

Definition 5: Plug-compatibility  (= restricted subtyping) 

An interface A is plug-compatible with (a restricted subtype of) an interface B (or the constraining interface of 

B) iff: 

¶ A is compatible with (subtype of) B. 

¶ All public components present in A but not in B must be default-connectable (as defined below). 

 

Definition 6: Default connectable 

A component of an interface is default-connectable iff: 

¶ All of its components are default connectable.  

¶ A connector component must not be an input. [Otherwise a connection to the input will be missing.] 

¶ A connector component must not be of an expandable connector class. [The expandable connector does 

potentially have inputs.] 

¶ A parameter, constant, or non-connector input must either have a binding equation or all of its sub-

components must have binding equations. 

Based on the above definitions, there are the following restrictions:  

¶ A redeclaration of an inherited top-level component must be compatible with (subtype of) the constraining 

interface of the element being redeclared. 

¶ In all other cases redeclarations must be plug-compatible with the constraining interface of the element 

being redeclared. 

[The reason for the difference is that for an inherited top-level component it is possible to connect to the 

additional connectors, either in this class or in a derived class. 

 

Example: 

partial model TwoFlanges  

   Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;  

   Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;  

end  TwoFlanges;  

partial model  FrictionElement  

  extends  TwoFlanges;  

...  

end  FrictionEleme nt;  

 

model  Clutch  "compatible ï but not plug - compatible with FrictionElement"  

  Modelica.Blocks.Interfaces.RealInput  pressure;  

  extends  FrictionElement;  

...  

end  Clutch;  
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model  DriveLineBase  

  extends  TwoFlanges;  

  Inertia J1;  

  replaceable  FrictionElemen t fric tion ;  

equation  

  connect (flange_a, J1.flange_a);  

  connect (J1.flange_b, fric tion .flange_a);  

  connect (fric tion .flange_b, flange_b);  

end  DriveLineBase;  

 

model  DriveLine  

  extends  DriveLineBase( redeclare  Clutch fric tion );  

  Constant const;  

equation   

  connect (const.y, fri tion .pressure);  

  // Legal connection to new input connector.  

end  DriveLine;  

 

model  UseDriveLine  "illegal model"  

  DriveLineBase base( redeclare  Clutch fric tion );  

  // Cannot connect to fric tion .pressure  

end  UseDriveLine;  

 

If a subcomponent is redeclared, it is impossible to connect to any new connector. Thus any new connectors must 

work without being connected, i.e., the default connection of flow-variables. That fails for inputs (and expandable 

connectors may contain inputs). For parameters and non-connector inputs it would be possible to provide 

bindings in a derived class, but that would require hierarchical modifiers and it would be bad modeling practice 

that a hierarchical modifier must be used in order to make a model valid. A replaceable class might be used as the 

class for a sub-component, therefore plug-compatibility is required not only for replaceable sub-components, but 

also for replaceable classes.] 

6.5 Function -Compatibility  or Function -Subtyping  for Functions   

[Functions may be called with either named or positional arguments, and thus both the name and order is 

significant. If a function is redeclared, see Section 7.3 7.3, any new arguments must have defaults (and be at the 

end) in order to preserve the meaning of existing calls.] 

Definition 7: Function-Compatibility or Function-Subtyping for Functions 

A function class A is function-compatible with or a function subtype of function class B iff, [The terms 

function-compatible and function subtype of are synonyms and used interchangeably]: 

¶ A is compatible to (subtype of) B. 

¶ All public input components of B have correspondingly named public input components of A in the same 

order and preceding any additional public input components of A. 

¶ All public output components of B have correspondingly named public output components of A in the same 

order and preceding any additional public output components of A. 

¶ A public input component of A must have a binding assignment if the corresponding named element has a 

binding assignment in B. 

¶ A public input component of A not present in B must have a binding assignment.  

Based on the above definition the following restriction holds:  

¶ The interface of a redeclared function must be function-compatible with or a function subtype of the 

constraining interface of the function being redeclared. 

 

[Example: Demonstrating a redeclaration using a function-compatible function 

function  GravityInterface  

  input   Modelica.SIunits. Position      position[3];  

  output  Modelica.SIunits. Acceleration acceleration[3];  
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end  GravityInterface;  

   

function  PointMassGravity  

  extends  GravityInterface;  

  input  Modelica.SIunits. Mass m;  

algor ithm  

  acceleration:=  - Modelica.Constants. G*m*position/ (position *position)^1.5 ;  

end  PointMas sGravity ;  

 

model  Body  

  Modelica.Mechanics.MultiBody.Interface. Frame_a frame _a;  

  replaceable function  gravity=GravityInterface;  

equation  

  frame _a.f  = gravity(fram e_a.r0);  // or gravity(position=frame _a.r0);  

  frame _a.t  = zeros(3);  

end  Body;  

 

model  PlanetSimulation  

   function  sunGravity = PointMassGravity(m=2e30);  

   Body planet 1( redeclare function  gravity= sunGravity );  

   Body planet2( redeclare function  gravity=Poi ntMassGravity(m=2e30));  

     ...  

end  PlanetSimulation;  

Note: PointMassGravity  is not function-compatible with GravityInterface  (no default for m), but 

sunGravity  inside PlanetSimulation  is function-compatible with GravityInterface .] 

6.6 Type Compatible Express ion s   

Certain expressions consist of an operator applied to two or more type compatible sub-expressions (A and B), 

including binary operators, e.g. A + B, if -expressions, e.g. if x then A else B , and array expressions, e.g. 

{A,B} . The resulting type of the expression in case of two type compatible subexpressions A and B is defined as 

follows: 

¶ If A is a record-expression B must also be a record-expression with the same named elements. The type 

compatible expression is a record comprised of named elements that are compatible with the corresponding 

named elements of both A and B. 

¶ If A is an array expression then B must also be an array expression, and ndims (A)=ndims (B). The type 

compatible expression is an array expression with elements compatible with the elements of both A and B. 

If both size (A) and size (B) are known and size (A)=size (B) then this defines the size of the type 

compatible expression, otherwise the size of the expression is not known until the expression is about to be 

evaluated. In case of an if-expression the size of the type compatible expression is defined based on the 

branch selected, and for other cases size (A)=size (B) must hold at this point.. 

¶ If A is a scalar expression of a simple type B must also be a scalar expression of a simple type. 

¶ If A is a Real expression then B must be a Real or Integer expression and the type compatible expression is 

Real. 

¶ If A is an Integer expression then B must be a Real or Integer expression. For exponentiation and division 

the type compatible expression is Real (even if both A and B are Integer) see 10.610.6, in other cases  and 

tthe type compatible expression is Real or Integer (same as B).. 

¶ If A is a Boolean expression then B must be a Boolean expression and the type compatible expression is 

Boolean. 

¶ If A is a String expression then B must be a String expression and the type compatible expression is String. 

¶ If A is an enumeration expression then B must be an enumeration expression and the type compatible 

expression is enumeration expression, and all enumeration expressions must be defined in terms of an 

enumeration type with the same enumeration literals in the same order. 

¶ If A has an operator record  base-class then B must also have an operator record  base-class, and it 

must be the same, and otherwise neither A nor B may have an operator record  base-class. This is also 

the operator record  base-class for the expression e.g. for óif (cond) then A else Bô. 
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¶ If A is derived from ExternalObject then B must also be derived from ExternalObject and they must have 

the same full name; and otherwise neither A nor B may be derived from ExternalObject. The common full 

name also defines the type of the expression, e.g. for óif (cond) then A else Bô. 
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Chapter 7   
 
 
Inheritance , Modification , and Redeclaration  

One of the major benefits of object-orientation is the ability to extend the behavior and properties of an existing 

class. The original class, known as the base class, is extended to create a more specialized version of that class, 

known as the derived class or subclass. In this process, the data and behavior of the original class in the form of 

variable declarations, equations, and certain other contents are reused, or inherited, by the subclass. In fact, the 

inherited contents is copied from the superclass into the subclass, but before copying certain operations, such as 

type expansion, checking, and modification, are performed on the inherited contents when appropriate. This 

chapter describes the inheritance concept in Modelica, together with the related concepts modification and 

redeclaration. 

7.1 Inheritance ðExtends Clause  

The extends-clause is used to specify inheritance from a base class into an (enclosing) class containing the 

extends-clause. The syntax of the extends-clause is as follows: 

extends_clause extends - clause  :  

   extends  name [ class_modification class - modification  ] [annotation]  

The name of the base class is looked up in the partially flattened enclosing class (Section 5.2 5.2) of the extends-

clause. The found base class is flattened with a new environment and the partially flattened enclosing class of the 

extends-clause. The new environment is the result of merging  

¶ arguments of all enclosing class environments that match names in the flattened base class  

¶ the optional class _modification class - modification  of the extends-clause 

in that order.  

[Example:  

clas s  A  

  parameter  Real a, b;  

end  A;  

class  B  

  extends  A(b=2);  

end  B;  

class  C  

  extends  B(a=1);  

end  C;  

]  

The elements of the flattened base class become elements of the flattened enclosing class, and are added at the 

place of the extends-clause: specifically components and classes, the equation sections, algorithm sections, 

optional external clause, and the contents of the annotation at the end of the class, but excluding import-

clausesThe elements of the flattened base class become elements of the flattened enclosing class, and are added at 



86  Modelica Language Specification 3.3 Revision 13.4 

the place of the extends-clause [e.g., including equation sections and algorithm sections, but excluding import-

clauses]. 

[From the example above we get the following flattened class:  

class  Cinstance  

  parameter  Real  a=1;  

  parameter  Real b=2;  

end  Cinstance;  

The ordering of the merging rules ensures that, given classes A and B defined above,  

class  C2  

  B bcomp(b=3);  

end  C2;  

yields an instance with bcomp.b=3 , which overrides b=2 .]  

The declaration elements of the flattened base class shall either  

¶ Not already exist in the partially flattened enclosing class [i.e., have different names] .  

¶ The new element is a long form of redeclare or uses the óclass  extends  Aô syntax, see Section 7.3 7.3. 

¶ Be exactly identical to any element of the flattened enclosing class with the same name and the same level 

of protection (public or protected) and same contents. In this case, the first element in order (can be either 

inherited or local) is kept. It is recommended to give a warning for this case; unless it can be guaranteed that 

the identical contents will behave in the same way. 

Otherwise the model is incorrect.  

[Clarifiying order: 

     function A 

    input Real a; 

    input Real b; 

end A; 

 

function B 

    extends A; 

    input Real a; 

end B; 

// The inputs of B are "a, b" in that order; and the "input Real a;" is ignored. 

]  

Equations of the flattened base class that are syntactically equivalent to equations in the flattened enclosing class 

are discarded. This feature is deprecated, and it is recommend to give a warning when discarding them and for the 

future give a warning about all forms of equivalent equations due to inheritance. [Note: equations that are 

mathematically equivalent but not syntactically equivalent are not discarded, hence yield an overdetermined 

system of equations.]  

7.1.1 Multiple Inheritance  

Multiple inheritance is possible since multiple extends-clauses can be present in a class. 

7.1.2 Inheritance of Protected and Public Elements  

If an extends-clause is used under the protected  heading, all elements of the base class become protected 

elements of the current class. If an extends-clause is a public element, all elements of the base class are inherited 

with their own protection. The eventual headings protected  and public  from the base class do not affect the 

consequent elements of the current class (i.e., headings protected  and public  are not inherited).   
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7.1.3 Restrictions on the Kind of Base Class  

Since specialized classes of different kinds have different properties, see Section 4.6 4.6, only specialized classes 

that are ñin some sense compatibleò to each other can be derived from each other via inheritance. The following 

table shows which kind of specialized class can be used in an extends clause of another kind of specialized class 

(the ñgreyò cells mark the few exceptional cases, where a specialized class can be derived from a specialized class 

of another kind): 

 

 Base Class 

Derived 

Class 

package operator function operator 

function 

type record operator 

record 

expandable 

connector 

connector block model class 

package yes           yes 

operator  yes          yes 

function   yes         yes 

operator  

function 

  yes yes        yes 

type     yes       yes 

record      yes      yes 

operator 

record 

      yes     yes 

expandable 

connector 

       yes  

 

  yes 

connector     yes yes yes yes yes   yes 

block      yes     yes  yes 

model      yes     yes yes yes 

class            yes 

 

If a derived class is inherited from another type of specialized class, then the result is a specialized class of the 

derived class type. [For example, if a block  inherits from a r ecord , then the result is a block .] 

All specialized classes can be derived from class  [provided the resulting class fulfills the restriction of the 

specialized class. It is recommended to use the most specific specialized class.] A class  may only contain class-

definitions, annotations, and extends-clauses (having any other contents is deprecated). 

The specialized classes package , operator , function , type ,  record , operator record ,  and 

expandable connector  can only be derived from their own kind [(e.g. a package can only be base class for 

packages. All other kinds of classes can use the import statement to use the contents of a package)] and from 

class . 

 

[Examples:  

record  RecordA  

   ...  

end  RecordA;  

 

package  PackageA  

   ...  

end  PackageA;  

 

package  PackageB  

   extends  PackageA;  // fine  

end  PackageB;  

 

model  ModelA  

  extends  RecordA;  // fine  

end  ModelA;  
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model  ModelB  

   extends  PackageA;  // error, inheritance not allowed  

end  ModelB;  

]  

 

7.1.4 Restrictions on Base Classe s and Constraining Types  to be Transitively 
Non-Replaceable  

The class name used after extends for base-classes and for constraining classes must use a class reference 

considered transitively non-replaceable, see definition in Section 6.2.1 6.2.1. [This formulation excludes the long 

form of redeclare, i.e. óredeclare model extends Méô where M must be an inherited replaceable class.] For a 

replaceable component declaration without constraining clause the class must use a class reference considered 

transitively non-replaceable. [This implies that constraining classes are always transitively non-replaceable ï 

both if explicitly given or implicitly by the declaration.]  

7.2 Modifi cations  

There are three kinds of constructs in the Modelica language in which modifications can occur: 

¶ Variable declarations. 

¶ Short class declarations. 

¶ Extends-clauses. 

A modifier modifies one or more declarations from a class by changing some aspect(s) of the declarations. The 

most common kind of modifier just changes the default value or the start value in a binding equation; the value 

and/or start-value should be compatible with the variable according to Section 6.6 6.6.  

[Example: Modifying the default start  value of the altitude  variable: 

Real altitude(start= 59404);  

] 

A modification (i.e. C1 c1(x = 5) is considered a modification equation, if the modified variable is a non-

parameter (here: c1.x) variable. [This equation is created, if the modified component (here: c1) is also created (see 

section 4.5 4.54.4.5 4.4.5). In most cases a modification equation for a non-parameter variable requires that the 

variable was declared with a declaration equation, see section 4.7 4.7; in those cases the declaration equation is 

replaced by the modification equation.] 

A more dramatic change is to modify the type and/or the prefixes and possibly the dimension sizes of a declared 

element. This kind of modification is called a redeclaration (Section 7.3 7.3) and requires the special keyword 

redeclare  to be used in the modifier in order to reduce the risk for accidental modeling errors. In most cases a 

declaration that can be redeclared must include the prefix replaceable  (Section 7.3 7.3). The modifier value 

(and class for redeclarations) is found in the context in which the modifier occurs, see also section 5.3.1 5.3.1. 

[Example: Scope for modifiers 

model  B 

   parameter  Real x;  

   package  Medium=Modelica.Media.PartialMedium;  

end  B;  

 

model  C 

   parameter  Real x=2;  

   package  Medium=Modelica.Media.PartialMedium;  

   B b(x=x, redeclare package  Medium=Medi um);  

   // The óxô and óMediumô being modified are declared in the model B.  

   // The modifiers ó=xô and ó=Mediumô are found in the model C. 

end  C;  
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model  D 

   parameter  Real x= 3;  

   package  Medium=Modelica.Media.PartialMedium;  

   C c(b(x=x, redeclare pack age  Medium=Medium));  

   // The óxô and óMediumô being modified are declared in the model B.  

   // The modifiers ó=xô and ó=Mediumô are found in the model D. 

end  D;  

] 

 

7.2.1 Syntax of Modifications and Redeclarations  

The syntax is defined in the grammar, Section B.2.5 B.2.5. 

7.2.2 Modification Environment  

The modification environment contains arguments which modify elements of the class (e.g., parameter changes). 

The modification environment is built by merging class modifications, where outer modifications override inner 

modifications. [Note: this should not be confused with inner  outer  prefixes described in Section 5.4 5.4] 

7.2.3 Merging of Modifications  

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hierarchical, and a 

value for an entire non-simple component overrides value modifiers for all components, and it is an error if this 

overrides a final prefix for a component, or if value for a simple component would override part of the value of a 

non-simple component. When merging modifiers each modification keeps its own each-prefix. 

 [The following larger example demonstrates several aspects:  

class  C1  

  class  C11  

    parameter  Real x;  

  end  C11;  

end  C1;  

class  C2  

  class  C21 

    ...  

  end  C21;  

end  C2;  

class  C3  

  extends  C1;  

  C11 t(x=3);        // ok, C11 has been inherited from C1  

  C21 u;             // ok, even though C21 is inherited below  

  extends  C2;  

end  C3;  

 

The following example demonstrates overriding part of non-simple component:  
 

  record  A 

    parameter  Real x,y;  

  end  A;  

  model  B 

    parameter  A a=A(2,3);  

  end  B;  

  model  C 

    B b1(a(x=4));  

    // Error since attempting to override value for a.x when a has a value.  

  end  C;  
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The modification environment of the declaration of t  is (x=3 ). The modification environment is built by merging 

class modifications, as shown by:  

class  C1 

  parameter  Real a;  

end  C1;  

class  C2  

  parameter  Real b,c;  

end  C2;  

class  C3  

  parameter  Real x1;       // No default value  

  parameter  Real x2 = 2;   // Default value 2  

  parameter  C1 x3;         // No default value for x3.a  

  parameter  C2 x4(b=4);    // x4.b has default value 4  

  parameter  C1 x5(a=5);    // x5.a has default value 5  

  extends  C1;              // No default value for inherited element a  

  extends  C2(b=6,c=77);    // Inherited b has default value 6  

end  C3;  

class  C4  

  extends  C3(x2=22, x3(a=33), x4(c=44), x5=x3, a=55, b=66);  

end  C4;  

Outer modifications override inner modifications, e.g., b=66  overrides the nested class modification of extends 

C2(b=6) . This is known as merging of modifications: merge((b=66), (b=6))  becomes (b=66) .  

A flattening of class C4 will give an object with the following variables:    

 

Variable Default value 
x1  none  

x2  22 

x3.a  33 

x4.b  4 

x4.c  44 

x5.a  x3.a  

a 55 

b 66 

c 77 

]  

7.2.4 Single Modification  

Two arguments of a modification shall not modify the same element, attribute, or string-comment. When using 

qualified names the different qualified names starting with the same identifier are merged into one modifier. If a 

modifier with a qualified name has the each or final-prefix that prefix is only seen as applied to the final part of 

the name. 

[Example:  

class  C1 

  Real x[3];  

end  C1;  

class  C2 = C1( x=ones(3), x=ones(3) );  // Error: x designated twice  

class  C3 

  class  C4 

    Real x;  

  end  C4;  

  C4 a( final x.unit = "V", x.displayUnit="mV",  x=5.0);  

// Ok, different attributes designated (unit, displayUnit and value)  

// identical to:  

  C4 b(x( final uni t = "V", displayUnit="mV") = 5.0));  

end  C3;  

 

The following examples are incorrect: 
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m1(r=1.5, r=1.6) // Multiple modifier for r (its value)  

m1(r=1.5, r=1.5) // Multiple modifier for r (its value) -  even if identical  

m1(r.start=2, r(start=3)) // Multiple mo difier for r.start  

m1(x.r=1.5 "x", x.r(start=2.0) "y")) // Multiple string - comment for x.r  

m1(r=R(), r(y=2)) // Multiple modifier for r.y -  both direct value and part of record  

 

The following examples are correct: 
m1(r=1.5, r(start=2.0))  

m1(r=1.6, r "x")  

m1(r=R(), r(y(min=2)))  

]  

7.2.5 Modifiers for Array Elements  

The following rules applies apply to modifiers: 

¶ The each  keyword on a modifier requires that it is applied in an array declaration/modification, and the 

modifier is applied individually to each element of the array (in case of nested modifiers this implies it is 

applied individually to each element of each element of the enclosing array; see example). If the modified 

element is a vector and the modifier does not contain the each -prefix, the modification is split such that the 

first element in the vector is applied to the first element of the vector of elements, the second to the second 

element, until the last element of the vector-expression is applied to the last element of the array; it is an 

error if these sizes do not match. Matrices and general arrays of elements are treated by viewing those as a 

vectors of vectors etc. 

¶ If a nested modifier is split, the split is propagated to all elements of the nested modifier, and if they are 

modified by the each -keyword the split is inhibited for those elements. If the nested modifier that is split in 

this way contains re-declarations that are split it is illegal. 

[Example: 

model  C 

  parameter  Real a [3];  

  parameter  Real d;  

end  C;  

model  B 

  C c[5]( each  a ={1,2,3} , d={1,2,3,4,5});  

  parameter  Real b=0;  

end  B;  

 

This implies that c[i].a[j]=j , and c[i].d=i . 
 

model  D 

  B b( each  c.a={3,4,5} , c.d={2,3,4,5 ,6 } ) ;  

  // Equivalent to:  

  B b2(c( each  a={3,4,5} , d={2,3,4,5,6}));  

end  D;  

 

This implies that c[i].a[j]=j , and c[i].d= i .b.c[i].a[j]=2+j  and b.c [i].d= 1+i  

 

model  E 

  B b[2] ( each  c( each  a={1,2,3}, d= {1,2,3,4,5} ) , p= { 1,2 } ) ;  

  // Without the first each one would have to use:  

  B b2[2](c( each  a={1,2,3}, d= fill( {1,2,3,4,5} , 2) ), p= { 1,2 } );  

end  E;  

 

This implies that b[k] .c[i].a[j]= j  and b[k] .c [i].d= i and b[k].p =k  

For 'c.a' the additional (outer) each has no effect, but it is necessary for 'c.d'. 

] 
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7.2.6 Final Element Modification  Prevention  

An element defined as final by the final  prefix in an element modification or declaration cannot be modified by 

a modification or by a redeclaration. All elements of a final element are also final. [Setting the value of a 

parameter in an experiment environment is conceptually treated as a modification. This implies that a final 

modification equation of a parameter cannot be changed in a simulation environment].  

[Examples: 

type  Angle = Real( final  quantity="Angle", final  unit ="rad",  

                                          displayUnit="deg");  

Angle a1(unit="deg");          // error, since unit declared as final!  

Angle a2(displayUnit="rad");   // fine  

 

model  TransferFunction  

  parameter  Real b[:] = {1}   "numerator coefficient vector";  

  parameter  Real a[:] = {1,1} "denominator coefficient vector";  

  ...  

end  TransferFunction;  

 

model  PI "PI controller";  

  parameter  Real k=1 "gain";  

  parameter  Real T=1 "time constant";  

  TransferFunction tf( final  b=k*{T,1},  final  a={T,0});  

end  PI;  

 

model  Test  

  PI c1(k=2, T=3);   // fine , will indirectly change tf.b to 2*{3,1}  

  PI c2( tf( b={1} ) );  // error, b is declared as  final  

end  Test;  

] 

7.3 Redeclaration  

A redeclare construct in a modifier replaces the declaration of a local class or component with another declaration. 

A redeclare construct as an element replaces the declaration of a local class or component with another 

declaration. Both redeclare constructs work in the same way. The redeclare construct as an element requires that 

the element is inherited, and cannot be combined with a modifier of the same element in the extends-clause. For 

modifiers the redeclare of classes uses a special short-class-definition construct; that is a subset of normal class 

definitions and semantically behave as the corresponding class-definition. 

A modifier with the keyword replaceable  is automatically seen as being a redeclare. 

In redeclarations some parts of the original declaration is automatically inherited by the new declaration. This 

is intended to make it easier to write declarations by not having to repeat common parts of the declarations, and 

does in particular apply to prefixes that must be identical. The inheritance only applies to the declaration itself and 

not to elements of the declaration.  

The general rule is that if no prefix within one of the following groups is present in the new declaration the old 

prefixes of that kind are preserved. 

The groups that are valid for both classes and components: 

¶ public, protected 

¶ inner , outer  

¶ constraining type according to rules in Section 7.3.2 7.3.2. 

The groups that are only valid for components: 

¶ flow, stream 

¶ discrete, parameter, constant 

¶ input, output 

¶ array dimensions 



      93 

Note that if the old declaration was a short class definition with array dimensions the array dimensions are not 

automatically preserved, and thus have to be repeated in the few cases they are used. 

Replaceable component array declarations with array sizes on the left of the component are seen as syntactic 

sugar for having all arrays sizes on the right of the component; and thus can be redeclared in a consistent way. 

[Note: The inheritance is from the original declaration. In most cases replaced or original does not matter. It does 

matter if a user redeclares a variable to be a parameter and then redeclares it without parameter.] 

[Example of modifiers: 

class A  

  parameter Real x;  

end A; 

class B  

  parameter Real x=3.14, y;    // B is a subtype of A 

end B; 

class C  

  replaceable A a(x=1); 

end C; 

class D  

  extends C(redeclare B a(y=2)); 

end D; 

which is equivalent to defining D as  

class D  

  B a(x=1, y=2); 

end D; 

model  HeatExchanger  

  replaceable  parameter  GeometryRecord geometry;  

  replaceable  input  Real u[2];  

end  HeatExchanger;  

HeatExchanger(  

   /*redeclare*/ replaceable  /*parameter */ GeoHorizontal geometry,  

   redeclare  /* input */ Modelica.SIunits.Angle u /*[2] */);  

// The semantics ensure that parts in /*.*/ are automatically added  

// from the declarations in HeatExchanger.  

 

Example of arrays on the left of the component name: 
 

  model  M 

    replaceable  Real [4] x[2];  

    // Seen as syntactic sugar for "replacea ble Real x[2,4];"  

    // Note the order.  

  end  M; 

  M m( redeclare  Modelica.SIunits.Length x[2,4]);  // Valid redeclare of the type  

] 
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7.3.1 The class extends  Redeclaration Mechanism  

A class declaration of the type óredeclare class extends B(é)ô , where class as usual can be replaced 

by any other specialized class, replaces the inherited class B with another declaration that extends the inherited 

class where the optional class-modification is applied to the inherited class. [Since this implies that all 

declarations are inherited with modifications applied there is no need to apply modifiers to the new declaration.] 

Inherited B here means that the class containing redeclare class extends  B(é) should also inherit another 

declaration of B from one of its extends-clauses. The new declaration should explicitly include redeclare . 

For óredeclare class extends B(é)ô the inherited class is subject to the same restrictions as a redeclare 

of the inherited element, and the original class B should be replaceable, and the new element is only replaceable if 

the new definition is replaceable. In contrast to normal extends it is not subject to the restriction that B should be 

transitively non-replaceable (since B should be replaceable). 

The syntax rule for class  extends  construct is in the definition of the class_specifier  class -

specifier nonterminal (see also class declarations in Section 4.5 4.5): 

class_definition class - definition  :  

   [ encapsulated  ]  class_prefixes class - prefixes  

   class_specifier class - specifier  

 

class_specifier class - specifier :  long_class_specifier long - class - specifier  | ...  

 

long_class_specifier long - class - specifier  :   ...  

   | extends  IDENT [ class_modification class - modification  ] string_comment string -

comment composition end  IDENT 

The nonterminal class_definition class - definition  is referenced in several places in the grammar, 

including the following case which is used in some examples below, including package extends  and model 

extends : 

element :  

   import_clause import - clause  |  

   extends_clause extends - clause  |  

   [ redeclare  ]  

   [ final  ]  

   [ inner  ] [ outer  ]  

   ( ( class_definition class - definition  | component_clause component - clause ) |  

     replaceable  ( class_definition class - definition  | component_clause component - clause )             

        [ constraining_clause constraining - clause  comment])  

 [Example to extend from existing packages: 

package  PowerTrain      // library fr om someone else  

  replaceable  package  GearBoxes  

    ...  

  end  GearBoxes;  

end  PowerTrain;  

 

package  MyPowerTrain  

  extends  PowerTrain;   // use all classes from PowerTrain  

 

  redeclare package  extends  GearBoxes   // add classes to sublibrary  

    ...  

  end  GearBoxes ;  

end  MyPowerTrain;  

Example for an advanced type of package structuring with constraining types: 

partial  package  PartialMedium ǌGeneric medium interfaceǌ 

  constant  Integer nX ǌnumber of substancesǌ;  

 

  replaceable  partial  model  BaseProperties   

    Real X[nX];  

    ...  

  end  BaseProperties;  

 

  replaceable  partial  function  dynamicViscosity  
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     input   Real p;  

     output  Real eta; ...  

  end  dynamicViscosity;  

end  PartialMedium;  

 

package  Moist Air ǌSpecial type of mediumǌ 

   extends  PartialMedium(nX = 2);  

 

   redeclare  model  extends  BaseProperties (T(stateSelect=StateSelect.prefer))  

      // replaces BaseProperties by a new implementation and  

      // extends from Baseproperties with modification  

      // note, nX = 2 (!)  

   equation  

       X = {0, 1};  

       ...  

   end  BaseProperties ;   

 

   redeclare  function  extends  dynamicViscosity  

      // replaces dynamicViscosity by a new implementation  and  

      // extends from dynamicViscosity  

   algorithm  

      eta = 2*p;   

   end  dynamicViscosity;  

end  Moist Air;  

 

Note, since MostAir  extends from PartialMedium , constant nX=2 in package MoistAir  and the model 

BaseProperties  and the function dynamicViscosity  is present in MoistAir . By the following definitions, 

the available BaseProperties  model is replaced by another implementation which extends from the 

BaseProperties  model that has been temporarily constructed during the extends of package MoistAir  from 

PartialMedium . The redeclared BaseProperties  model references constant nX which is 2, since by 

construction the redeclared BaseProperties  model is in a package with nX = 2. 

This definition is compact but is difficult to understand. At a first glance an alternative exists that is more 

straightforward and easier to understand:  

 
package  MoistAir2 "Alternative definition  that does not work"  

   extends  PartialMedium(nX = 2,  

       redeclare model  BaseProperties = MoistAir_BaseProperties,  

       redeclare function  dynamicViscosity = MoistAir_dynamicViscosity);  

   

   model  MoistAir_BaseProperties // wrong model since nX has  no value  

     extends  PartialMedium.BaseProperties;  

   equation  

      X = {1,0};  

   end  MoistAir_BaseProperties;  

   

   model  MoistAir_dynamicViscosity  

     extends  PartialMedium.dynamicViscosity;  

   algorithm  

     eta :=p;  

   end  MoistAir_dynamicViscos ity;  

end  MoistAir2;  

Here, the usual approach is used to extend (here from PartialMedium ) and in the modifier perform all 

redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of 

PartialMedium  have to be given under a different name, such as MoistAir2.MoistAir _BaseProperties , 

since the name BaseProperties  already exists due to ñextends  PartialMedium ò. Then it is possible in the 

modifier to redeclare PartialMedium.BaseProperties  to MoistAir2.MoistAir _BaseProperties. Besides 

the drawback that the namespace is polluted by elements that have different names but the same implementation 

(e.g. MoistAir2.BaseProperties  is identical to MoistAir2.MoistAir _BaseProperties ) the whole 

construction does not work if arrays are present that depend on constants in PartialMedium , such as X[nX] : 

The problem is that MoistAir _BaseProperties extends from PartialMedium.BaseProperties  where the 
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constant nX does not yet have a value. This means that the dimension of array X is undefined and model 

MoistAir_BaseProperties is wrong. With this construction, all constant definitions have to be repeated whenever 

these constants shall be used, especially in MoistAir_BasePropertie s and MoistAir_dynamicViscosity . 

For larger models this is not practical and therefore the only practically useful definition is the complicated 

construction in the previous example with ñredeclare model extends  BaseProperties ò. 

To detect this issue the rule on lookup of composite names (Section 5.3.2 5.3.2) ensures that 

óPartialMedium.dynamicViscosity ô is incorrect in a simulation model. 

]  

7.3.2 Constraining Type  

In a replaceable declaration the optional constraining_clause constraining - clause  defines a 

constraining type. Any modifications following the constraining type name are applied both for the purpose of 

defining the actual constraining type and they are automatically applied in the declaration and in any subsequent 

redeclaration. The precedence order is that declaration modifiers override constraining type modifiers.  

If the constraining_clause constraining - clause  is not present in the original declaration (i.e., the non-

redeclared declaration): 

¶ T, the type of the declaration is also used as a constraining type. 

¶ The modifiers for subsequent redeclarations and constraining type are the modifiers on the component or 

short-class-definition if that is used in the original declaration, otherwise empty and modifications affect 

the constraining type and are applied in subsequent redeclarations. 

The syntax of a constraining_clauseconstraining-clause is as follows: 

constraining_clause constraining - clause  :  

   constrainedby  name [ class_modification class - modification  ]  

 [Example of merging of modifiers: 

class  A  

  parameter  Real x;  

end  A;  

class  B  

  parameter  Real x=3.14, y;    // B is a subtype of A  

end  B;  

class  C  

  replaceable  A a(x=1);  

end  C;  

class  D  

  extends  C( redeclare  B a(y=2));  

end  D;  

which is equivalent to defining D as  

class  D  

  B a(x=1, y=2);  

end  D;  

Example: 

A modification of the constraining type is automatically applied in subsequent redeclarations: 

model  ElectricalSource  

   replaceable  Sine Source source constrainedby  MO(final  n=5);  

   ...  

end  ElectricalSource;  

 

model  Trapezo idalSource  

  extends  ElectricalSource(  

    redeclare  Trapezoidal source); // source.n=5  

end  TrapezoidalSource;  
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A modification of the base type without a constraining type is automatically applied in subsequent redeclarations: 

model  Circuit  

   replaceable  model  NonlinearResistor = Resistor(R=100);  

   ...  

end  Circuit;  

 

model  Circuit2  

  extends  Circuit(  

    redeclare  replaceable  model  NonlinearResistor  

                           = ThermoResistor(T0=300));  

       // As a result of the modification on the base type,  

       // the default value of R is 100  

end  Circuit2;  

 

model  Circuit3  

  extends  Circuit2(  

    redeclare  replaceable  model  NonlinearResistor  

                                      = Resistor(R=200));  

    // The T0 modification is not applied because i t did not  

    // appear in the original declaration  

end  Circuit3;  

Circuit2 is intended to illustrate that a user can still select any resistor model, including the original one - as is 

done in Circuit3, since the constraining type is kept from the original declaration if not specified in the redeclare. 

Thus it is easy to select an advanced resistor model, without limiting the possible future changes.  

A redeclaration can redefine the constraining type: 

model  Circuit4  

  extends  Circuit2(  

    redeclare  replac eable  model  NonlinearResistor  

                      = ThermoResistor constrainedby  ThermoResistor);  

end  Circuit4;  

 

model  Circuit5  

  extends  Circuit4(  

    redeclare  replaceable  model  NonlinearResistor = Resistor); // illegal  

end  Circuit5;  

] 

The class or type of component shall be a subtype of the constraining type. In a redeclaration of a replaceable 

element, the class or type of a component must be a subtype of the constraining type. The constraining type of a 

replaceable redeclaration must be a subtype of the constraining type of the declaration it redeclares. In an element 

modification of a replaceable element, the modifications are applied both to the actual type and to the constraining 

type. 

In an element- redeclaration of a replaceable element the modifiers of the replaced constraining type are 

merged to both the new declaration and to the new constraining type, using the normal rules where outer 

modifiers override inner modifiers. 

When a class is flattened as a constraining type, the flattening of its replaceable elements will use the 

constraining type and not the actual default types. 

The number of dimension in the constraining type should correspond to the number of dimensions in the type-

part. Similarly the type used in a redeclaration must have the same number of dimensions as the type of redeclared 

element. 

[Examples: 
  replaceable  T1 x[n] constrainedby  T2;  

  replaceable  type  T=T1[n] constrainedby  T2;  

  replaceable  T1[n] x constrainedby  T2;  

In these examples the number of dimensions must be the same in T1 and T2, as well as in a redeclaration. 

Normally T1 and T2 are scalar types, but both could also be defined as array types ï with the same number of 

dimensions. Thus if T2 is a scalar type (e.g. type T2= Real) then T1 must also be a scalar type; and if T2 is 

defined as vector type (e.g. type T2=Real[3]) then T1 must also be vector type.] 
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7.3.2.1 Constraining -clause annotations  

Description and annotations on the constraining-clause are applied to the entire declaration, and it is an error if 

they also appear on the definition. [The intent is that the description and/or annotation are at the end of the 

declaration, but it is not straightforward to specify this in the grammar.] 

[Examples: 
  replaceable  model  Load 1=Resistor  constrainedby  TwoPin  " The Load " ;  // Recommended 

  replaceable  model  Load2=Resistor  "The Load" constrainedby  TwoPin ;  //Identical to Load 1 

  replaceable  model  Load3=Resistor  "The Load" constrainedby  TwoPin "The Load" ;  //Error  

 

  replaceable  Resistor  load1 constrainedby  TwoPin  "The Load" ;  //Recommen ded  

  replaceable  Resistor  load2 "The Load" constrainedby  TwoPin ;  //Identical to load1  

  replaceable  Resistor  load3 "The Load" constrainedby  TwoPin "The Load ! " ;  //Error  

]  

See also the examples in section 7.3.4. 

7.3.3 Restrictions on Redeclarations  

The following additional constraints apply to redeclarations (after prefixes are inherited, Section 7.3 7.3):  

Only classes and components declared as replaceable can be redeclared with a new type [redeclaration with 

the same type can be used to restrict variability and/or change array dimensions], which must have an interface 

compatible with the constraining interface of the original declaration, and to allow further redeclarations one must 

use ñr edeclare replaceable ò 

¶ an element declared as constant cannot be redeclared  

¶ an element declared as final may not be modified, and thus not redeclared 

¶ Modelica does not allow a protected element to be redeclared as public, or a public element to be redeclared 

as protected.  

¶ Array dimensions may be redeclared; provided the sub-typing rules in 6.3 are satisfied. [This is one example 

of redeclare of non-replaceable elements.]  

7.3.4 Annotation Choices for Suggested Redeclarations and Modifications  

A declaration can have an annotation ñchoices ò containing modifiers on choice , where each of them indicates 

a suitable redeclaration or modifications of the element.  

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable 

redeclaration, where the string comments on the choice declaration can be used as textual explanations of the 

choices. The annotation is not restricted to replaceable elements but can also be applied to non-replaceable 

elements, enumeration types, and simple variables. For a Boolean variable, a choices annotation may contain the 

definition checkbox check Box = true , meaning to display a checkbox to input the values false  or true  in 

the graphical user interface. 

Choices menus of replaceable elements can be automatically constructed showing the names of all classes that 

are either directly or indirectly derived by inheritance from the constraining class of the declaration. This can be 

recommended by having annotation  choicesAllMatching = true ; and disabled by having annotation  

choicesAllMatching = false . The behavior when choicesAllMatching  is not specified; ideally it should 

present (at least) the same choices as for choicesAllMatching = true ; but if it takes (too long) time to 

present the list it is better to have choicesAllMatching = false . 

 

[Example: 

replaceable  model  MyResistor=Resistor  

  annotation (choices(  

              choice( redeclare  model MyResistor=lib2.Resistor(a={2}) "é"), 

              choice( redeclare  model MyResistor=lib2.Resistor2 "é"))); 

 

replacea ble  Resistor Load(R=2) constrainedby  TwoPin  
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  annotation (choices(  

              choice( redeclare  lib2.Resistor Load(a={2}) "é"), 

              choice( redeclare  Capacitor Load(L=3) "é"))); 

 

replaceable  FrictionFunction a(func=exp) constrainedby  Friction  

  annotation (choices(  

             choice( redeclare  ConstantFriction a(c=1) "é"), 

             choice( redeclare  TableFriction a(table="é") "é"), 

             choice( redeclare  FunctionFriction a(func=exp) "é")))); 

 

replaceable  package  Medium = Modelica.Media. Water.ConstantPropertyLiquidWater  

                                constrainedby  Modelica.Media.Interfaces.PartialMedium  

                                    annotation  (choicesAllMatching=true);  

 

It can also be applied to nonreplaceable declarations, e.g. to describe enumerations. 

type  KindOfController=Integer(min=1,max=3)  

   annotation (choices(  

                choice=1 "P",  

                choice=2 "PI",  

                choice=3 "PID"));  

 

model  A 

  KindOfController x;  

end  A;  

A a(x=3 "PID");  

It can also be applied to Boolean variables to define a check box. 

parameter  Boolean useHeatPort=false annotation (choices(checkBox=true));  

 

] 
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Chapter 8   
 
 
Equations  

8.1 Equation Categories  

Equations in Modelica can be classified into different categories depending on the syntactic context in which they 

occur: 

¶ Normal equality equations occurring in equation sections, including connect-equations and other equation 

types of special syntactic form (Section 8.3 8.3) 

¶ Declaration equations, which are part of variable, parameter, or constant declarations (Section 

4.4.2.1 4.4.2.1). 

¶ Modification equations, which are commonly used to modify attributes of classes (Section 7.2 7.2) 

¶ Binding equations, include both declaration equations and modification equations (for the value itself). 

¶ Initial equations, which are used to express equations for solving initialization problems (Section 8.6 8.6) 

8.2 Flattening  and Lookup in Equations  

A flattened equation is identical to the corresponding nonflattened equation.  

Names in an equation shall be found by looking up in the partially flattened enclosing class of the equation.  

8.3 Equations in Equation  Sections  

The following kinds of equations may occur in equation sections. The syntax is defined as follows: 

equation :  

  ( simple_expression simple - expression  "=" expression   

 

    | if_equation if - equation  

    | for_equation for - equation  

    | connect_clause connect - clause  

    | when_equation when- equation  

    | name component - reference  function_call_args function - call - args  )  

 

  comment 

No statements are allowed in equation sections, including the assignment statement using the :=  operator.  

8.3.1 Simple Equality Equations  

Simple equality equations are the traditional kinds of equations known from mathematics that express an equality 

relation between two expressions. There are two syntactic forms of such equations in Modelica. The first form 
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below is equality equations between two expressions, whereas the second form is used when calling a function 

with several results. The syntax for simple equality equations is as follows: 

simple_expression simple - expression  "=" expression   

The types of the left-hand-side and the right-hand-side of an equation need to be compatible in the same way as 

two arguments of binary operators (Section 6.6 6.6). 

Three examples: 

¶ simple_ expr1 = expr2;  

¶ ( if  pred then  alt1 else  alt2) = expr2;  

¶ (out1, out2, out3) = function_name(inexpr1, inexpr2);  

[Note: According to the grammar the if-then-else expression in the second example needs to be enclosed in 

parentheses to avoid parsing ambiguities. Also compare with Section 11.2.1.1 11.2.1.1 about calling functions with 

several results in assignment statements.] 

8.3.2 For-Equations  ï Repetitive Equat ion  Structures  

The syntax of a for-equation is as follows: 

for  for_indices for - indices  loop  

     { equation ";" }  

end  for  ";"  

For-equations may optionally use several iterators (for_indices for - indices ), see Section 11.2.2.3 11.2.2.3 

for more information: 
 

for_indices for - indices :  

  for_index for - index  {"," for_index for - index }  

 

for_index for - index :  

  IDENT [ in  expression ]  

The following is one example of a prefix of a for-equation: 

 for  IDENT in  expression loop  

The expressio n of a for-equation shall be a vector expression. It is evaluated once for each for-equation, and is 

evaluated in the scope immediately enclosing the for-equation. The expression of a for-equation shall be a 

parameter expression. The iteration range of a for-equation can also be specified as Boolean or as an enumeration 

type, see Section 11.2.2.2 for more information. The loop-variable (IDENT) is in scope inside the loop-construct 

and shall not be assigned to. The loop-variable has the same type as the type of the elements of the vector 

expression. 

[Example: 

for  i in  1:10 loop              // i takes the values 1,2,3,...,10  

for  r in  1.0 : 1.5 : 5.5 loop   // r takes the values 1.0, 2.5, 4.0, 5.5  

for  i in  {1,3,6,7} loop         // i takes the values 1, 3, 6, 7  

for  i in  TwoEnums loop          // i  takes the values TwoEnums.one, TwoEnums.two  

                               // for TwoEnums = enumeration(one,two)  

The loop-variable may hide other variables as in the following example. Using another name for the loop-

variable is, however, strongly recommended. 

  constant  Integer j=4;  

  Real x[j];  

equation  

  for  j in  1:j loop   // The loop - variable j takes the values 1,2,3,4  

    x[j]=j;          // Uses the loop - variable j  

  end  for ;  

] 
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8.3.2.1 Implicit Iteration Ranges  of For -Equations  

The iteration range of a loop variable may sometimes be inferred from its use as an array index. See Section 

11.2.2.1 11.2.2.1 for more information. 

[Example: 

Real x[n],y[n];  

for  i loop           // Same as:  for  i in  1:size( x 

,1) loop   

  x[i] = 2*y[i];  

end  for ;  

] 

8.3.3 Connect -Equation s 

A connect-equation has the following syntax: 

connect  "(" componen t_reference component - reference  "," component_reference component -

reference  ")"  ";"  

These can be placed inside for-equations and if-equations; provided the indices of the for-loop and conditions of 

the if-clause are parameter expressions that do not depend on cardinality, rooted, Connections.rooted, or 

Connections.isRoot. The for-equations/if-equations are expanded. Connect-equations are described in detail in 

Section 9.1 9.1. 

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot; which after 

expansion are handled according to section 9.4 9.4. 

8.3.4 If-Equations  

If -equations have the following syntax: 

   if  expression then  

     { equation ";" }  

   { elseif  expression then  

     { equation ";" }  

   }  

   [ else  

     { equation ";" }  

   ]  

   end  if  ";"  

The expression  of an if- or elseif-clause must be a scalar Boolean expression. One if-clause, and zero or more 

elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies of these if-, 

elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses sequentially until a 

condition that evaluates to true is found. If none of the conditions evaluate to true the body of the else-clause is 

selected (if an else-clause exists, otherwise no body is selected). In an equation section, the equations in the body 

are seen as equations that must be satisfied. The bodies that are not selected have no effect on that model 

evaluation. 

If -equations in equation sections which do not have exclusively parameter expressions as switching conditions 

shall have the same number of equations in each branch (a missing else is counted as zero equations and the 

number of equations is defined after expanding the equations to scalar equations). [If this condition is violated, the 

single assignment rule would not hold, because the number of equations may change during simulation although 

the number of unknowns remains the same]. 

8.3.5 When-Equations  

When-equations have the following syntax: 
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  when expression then  

    { equation ";" }  

  { elsewhen  expression then  

    {  equation ";" } }  

  end  when ";"  

The expression  of a when-equation shall be a discrete-time Boolean scalar or vector expression. The statements 

within a when-equation are activated when the scalar expression or any of the elements of the vector expression 

becomes true.  

[Example: 

The order between the equations in a when-equation does not matter, e.g. 
 

equation  

  when x > 2 then   

    y3 = 2*x +y1+y2; // Order of y1 and y3 equations does not matter  

    y1 = sin(x);   

  end  when;  

  y2 = sin(y1);  

] 

8.3.5.1 Defining Wh en-Equations by If -Expressions in Equality Equations  

A when-equation: 

equation  

  when x>2 then  

    v1 = expr1 ;  

    v2 = expr2 ;  

  end  when;  

is conceptually equivalent to the following equations containing special if-expressions 
 

// Not correct Modelica  

   Boolean b(start=x.start>2);  

  equation  

    b  = x>2;  

    v1 = if  edge(b) then  expr1 else  pre(v1);  

    v2 = if  edge(b) then  expr2 else  pre(v2);  

 

[The equivalence is conceptual since pre()  of a non discrete-time Real variable or expression can only be used 

within a when-clause. Example: 

  /* discrete*/ Real x;  

  input  Real  u;  

  output Real y;  

equation  

  when sample() then  

    x = a*pre(x)+b*pre(u);  

  end  when;  

  y = x ;  

In this example x is a discrete-time variable (whether it is declared with the discrete prefix or not), but u and y 

cannot be discrete-time variables (since they are not assigned in when-clauses). However, pre(u) is legal within 

the when-clause, since the body of the when-clause is only evaluated at events, and thus all expressions are 

discrete-time expressions.]  

The start-values of the introduced Boolean variables are defined by the taking the start-value of the when-

condition, as above where b is a parameter variable. The start-values of the special functions ini tial , 

terminal , and sample  is false. 

8.3.5.2 Restrictions on Equations within When-Equations  

¶ When-statements may not occur inside initial equations. 
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¶ When-equations cannot be nested. 

 [Example: 

The following when-equation is invalid: 

when x > 2 then   

   when y1 > 3 then  

    y2 = sin(x);   

  end  when;  

end  when;  

] 

The equations within the when-equation must have one of the following forms: 

¶ v = expr;  

¶ (out1, out2, out3, ...) = function_call _name(in1, in2, ...);  

¶ operators assert() , ter minate() , reinit()  

¶ For- and if-equations if the equations within the for- and if-equations satisfy these requirements. 

¶ The different branches of when/elsewhen must have the same set of component references on the left-hand 

side.  

¶ The branches of an if-then-else clause inside when-equations must have the same set of component 

references on the left-hand side, unless the if-then-else have exclusively parameter expressions as switching 

conditions. 

Any left hand side reference, (v , out1 , é), in a when-clause must be a component reference, and any indices 

must be parameter expressions. 

[The needed restrictions on equations within a when-equation becomes apparent with the following example:  

  Real x, y;  

equation  

  x + y = 5;  

  when condition  then  

    2*x + y = 7;          // error: not valid Modelica  

  end  when;  

When the equations of the when-equation are not activated it is not clear which variable to hold constant, either x 

or y . A corrected version of this example is:  

   Real x,y;  

equation  

  x + y = 5;  

  when condition  then  

    y = 7 ï 2*x;       // fine  

  end  when;  

Here, variable y  is held constant when the when-equation is deactivated and x  is computed from the first equation 

using the value of y  from the previous event instant. 

] 

8.3.5.3 Application of the Single -ass ignment Rule to  When-Equations  

The Modelica single-assignment rule (Section 8.4 8.4) has implications for when-equations: 

¶ Two when-equations may not define the same variable.  

[Without this rule this may actually happen for the erroneous model DoubleWhenConflict  below, since there 

are two equations (close = true; close = false; ) defining the same variable close . A conflict between 

the equations will occur if both conditions would become true  at the same time instant. 

model  DoubleWhenConflict  

  Boolean close;   // Erroneous model: close defined by two equations!  

equation  

  ...  
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  when condition1  then  

    close = true;  

  end  when;  

  when condition2  then  

    close = false;  

  end  when;  

  ...  

end  DoubleWhenConflict  

One way to resolve the conflict would be to give one of the two when-equations higher priority. This is possible by 

rewriting the when-equation using elsewhen , as in the WhenPriority  model below or using the statement 

version of the when-construct, see Section 11.2.7 11.2.7.] 

¶ When-equations involving elsewhen-parts can be used to resolve assignment conflicts since the first of the 

when/elsewhen parts are given higher priority than later ones: 

[Below it is well defined what happens if both conditions become true  at the same time instant since 

condition1  with associated conditional equations has a higher priority than condition2 . 

model  WhenPriority  

  Boolean close;   // Correct model: close defined by two equations!  

algorithm  

  ...  

  when condition1  then  

    close = tru e;  

  elsewhen  condition2  then  

    close = false;  

  end  when;  

  ...  

end  WhenPriority;  

] 

8.3.6 reinit  

The reinit  operator can only be used in the body of a when-equation. It has the following syntax: 

reinit(x, expr);  

The operator reinitializes x  with expr  at an event instant. x  is a Real  variable (or an array of Real  variables) that 

must be selected as a state (resp., states) , i.e. reinit on x implies stateSelect=StateSelect.always on x. expr  needs 

to be type-compatible with x . The reinit operator can for the same variable (resp. array of variables) only be 

applied (either as an individual variable or as part of an array of variables) in one equation (having reinit of the 

same variable in when and else-when of the same variable is allowed). In case of reinit active during initialization 

(due to when initial), see section 8.6 8.6. 

The reinit operator does not break the single assignment rule, because reinit(x,expr) in equations evaluates expr to 

a value (value), then at the end of the current event iteration step it assigns this value to x (this copying from 

values to reinitialized state(s) is done after all other evaluations of the model and before copying x to pre(x)).   

 [If a higher index system is present, i.e., constraints between state variables, some state variables need to be 

redefined to non-state variables. During simulation, non-state variables should be chosen in such a way that 

variables with an applied reinit  operator are selected as states at least when the corresponding when-clauses 

become active. If this is not possible, an error occurs, since otherwise the reinit operator would be applied on a 

non-state variable. 

Example for the usage of the reinit  operator: 

Bouncing ball: 

der (h) = v;  

der (v) = if  flying the n - g else  0;  

flying = not (h<=0 and  v<=0);  
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when h < 0 then  

  reinit(v, - e* pre ( v) );  

end when;  

] 

8.3.7 assert  

An equation or statement of one of the following forms: 

  assert(condition, message);  // Uses level=Asser tionLevel.error  

  assert(condition, message, assertionLevel);  

  assert(condition, message , level = assertionLevel );  

is an assertion, where condition  is a Boolean expression, message  is a string expression, and level  is a built-

in enumeration with a default value. It can be used in equation sections or algorithm sections. [This means that 

assert can be called as if it were a function with three formal parameters, the third formal parameter has the 

name 'level' and the default value AssertionLevel.error.] 

If the condition  of an assertion is true, message  is not evaluated and the procedure call is ignored. If the 

condition  evaluates to false different actions are taken depending on the level input: 

 level = AssertionLevel.error : The current evaluation is aborted. The simulation may continue 

with another evaluation [e.g., with a shorter step-size, or by changing the values of iteration variables]. If 

the simulation is aborted, message  indicates the cause of the error.  

      Failed assertions takes precedence over successful termination, such that if the model first triggers the 

end of successful analysis by reaching the stop-time or explicitly with terminate() , but the evaluation 

with terminal()=true  triggers an assert, the analysis failed.  

¶ level = AssertionLevel .warning : The current evaluation is not aborted. message  indicates the 

cause of the warning [It is recommended to report the warning only once when the condition becomes false, 

and it is reported that the condition is no longer violated when the condition returns to true. The assert (..) 

statement shall have no influence on the behavior of the model. For example, by evaluating the condition 

and reporting the message only after accepted integrator steps. condition  needs to be implicitly treated 

with noEvent(..) since otherwise events might be triggered that can lead to slightly changed simulation 

results]. 

[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity; for instance, 

a function to compute the saturated liquid temperature cannot be called with a pressure lower than the triple 

point value. 

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance, a fluid 

property model based on a polynomial interpolation curve might give accurate results between temperatures of 

250 K and 400 K, but still give reasonable results in the range 200 K and 500 K. When the temperature gets out of 

the smaller interval, but still stays in the largest one, the user should be warned, but the simulation should 

continue without any further action. The corresponding code would be 

assert (T > 250 and  T < 400, "Medium model outside full accuracy range",  

       AssertionLevel.warning);  

assert (T > 200 and  T < 500, "Medium model outside feasible region");  

] 

 

8.3.8 terminate  

The terminate(...)  equation or statement [using function syntax] successfully terminates the analysis which 

was carried out, see also Section 8.3.7 8.3.7. The termination is not immediate at the place where it is defined since 

not all variable results might be available that are necessary for a successful stop. Instead, the termination actually 

takes place when the current integrator step is successfully finalized or at an event instant after the event handling 

has been completed before restarting the integration. 
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The terminate clause has a string argument indicating the reason for the success. [The intention is to give more 

complex stopping criteria than a fixed point in time. Example: 

model  ThrowingBall  

 Real x(start=0);  

 Real y(start=1);  

equation  

  der (x)=...  

  der (y)=...  

algorithm  

  when y<0 then  

     terminate("The ball touches the ground");  

  end  when;  

end  ThrowingBall;  

] 

8.3.9 Equation Operators  for Overconstrained  Connection -Based Equation 
Systems  

See Section 9.4 9.4 for a description of this topic. 

8.4 Synchronous Data -flow  Principle and Single Assignment Rule  

Modelica is based on the synchronous data flow principle and the single assignment rule, which are defined in the 

following way: 

1. All variables keep their actual values until these values are explicitly changed. Variable values can be 

accessed at any time instant during continuous integration and at event instants. 

2. At every time instant, during continuous integration and at event instants, the active equations express 

relations between variables which have to be fulfilled concurrently (equations are not active if the 

corresponding if-branch, when-clause or block in which the equation is present is not active). 

3. Computation and communication at an event instant does not take time. [If computation or communication 

time has to be simulated, this property has to be explicitly modeled]. 

4. The total number of equations is identical to the total ñnumber of unknown variablesò (= single assignment 

rule). 

8.5 Events and Synchronizati on  

The integration is halted and an event occurs whenever an event generation expressionReal elementary relation, 

e.g. ñx > 2 ò o or floor(x) , changes its value. An event generating expression has an internal buffer, and the 

value of the expression can only be changed at event instants. If the evaluated expression is inconsistent with the 

buffer, that will trigger an event and the buffer will be updated with a new value at the event instantThe value of 

such a relation can only be changed at event instants [in other words, Real elementary relations induce state or 

time events]. The relation which triggered an event changes its value when evaluated literally before the model is 

processed at the event instant [in other words, a root finding mechanism is needed which determines a small time 

interval in which the relation expression changes its value; the event occurs at the right side of this interval]. 

Relations in the body of a when-clause are always taken literally. During continuous integration event generation 

expression has the constant value of the expression from the last event instant.During continuous integration a 

Real elementary relation has the constant value of the relation from the last event instant. 

[Example: 

   y = if  u > uMax then  uMax else  if  u < uMin then  uMin else  u;  
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During continuous integration always the same if-branch is evaluated. The integration is halted whenever u-

uMax or u- uMin  crosses zero. At the event instant, the correct if-branch is selected and the integration is 

restarted. 

Numerical integration methods of order n (n>=1) require continuous model equations which are differentiable 

up to order n. This requirement can be fulfilled if Real elementary relations are not treated literally but as defined 

above, because discontinuous changes can only occur at event instants and no longer during continuous 

integration. 

] 

[It is a quality of implementation issue that the following special relations 

     time >= discrete expression  

     time <  discrete expression  

trigger a time event at ñtime = discrete expressionò, i.e., the event instant is known in advance and no iteration is 

needed to find the exact event instant. 

] 

Relations are taken literally also during continuous integration, if the relation or the expression in which the 

relation is present, are the argument of the noEvent(..)  function. The smooth(p,x)  operator also allows 

relations used as argument to be taken literally. The noEvent  feature is propagated to all subrelations in the scope 

of the noEvent  function. For smooth  the liberty to not allow literal evaluation is propagated to all subrelations, 

but the smooth-property itself is not propagated. 

[Example:  

x = if  noEvent(u > uMax) then  uMax elseif  noEvent(u < uMin) then  uMin else  u;  

y = noEvent(  if  u > uMax then  uMax elseif  u < uM in then  uMin else  u);  

z = smooth(0, if  u > uMax then  uMax elseif  u < uMin then  uMin else  u);  

In this case x=y=z, but a tool might generate events for z. The if-expression is taken literally without inducing 

state events. 

The smooth  function is useful, if e.g. the modeler can guarantee that the used if-clauses fulfill at least the 

continuity requirement of integrators. In this case the simulation speed is improved, since no state event iterations 

occur during integration. The noEvent function is used to guard against ñoutside domainò errors, e.g. y = if 

noEvent(x >= 0) then sqrt(x) else 0 .] 

All equations and assignment statements within when-clauses and all assignment statements within function 

classes are implicitly treated with the noEvent function, i.e., relations within the scope of these operators never 

induce state or time events. [Using state events in when-clauses is unnecessary because the body of a when-clause 

is not evaluated during continuous integration.] 

[Example: 

Limit1 = noEvent(x1 > 1);  

// Er ror since Limit1 is a discrete - time variable  

 

when noEvent(x1>1) or  x2>10 then   

  // error, when - conditions is not a discrete - time expression  

  Close = true;  

end  when;  

] 

Modelica is based on the synchronous data flow principle (Section 8.4 8.4). 

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique set of 

equations. It is not possible that a variable is e.g. defined by two equations, which would give rise to conflicts or 

non-deterministic behavior. Furthermore, the continuous and the discrete parts of a model are always 

automatically ñsynchronizedò. Example: 

equation  // Illegal example  

  when condition1 then  

    close = true;  

  end  when;  
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  when condition2 then  

    close = fals e;  

  end  when;  

This is not a valid model because rule 4 is violated since there are two equations for the single unknown variable 

close. If this would be a valid model, a conflict occurs when both conditions become true at the same time instant, 

since no priorities between the two equations are assigned. To become valid, the model has to be changed to: 

equation  

  when condition1 then  

    close = true;  

  elsewhen  condition2 then  

    close = false;  

  end  when;  

Here, it is well-defined if both conditions become true at the same time instant (condition1  has a higher 

priority than condition2 ). 

] 

There is no guarantee that two different events occur at the same time instant. 

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via counters. 

Example: 

  Boolean fastSample, slowSample;  

  Integer ticks(start=0);  

equation  

  fastSample = sample(0,1);  

algorithm  

  when fastSample then  

    ticks      := if  pre(ticks) < 5 then  pre(ticks)+1 else  0;  

    slowSample := pre(ticks) == 0;  

  end  when;  

algorithm  

  when fastSample then    // fast sampling  

    ...  

  end  when;  

algorithm  

  when slowSample then    // slow sampling (5 - times slower)  

    ...  

  end  when;  

The slowSample  when-clause is evaluated at every 5th occurrence of the fastSample  when-clause. 

] 

[The single assignment rule and the requirement to explicitly program the synchronization of events allow a 

certain degree of model verification already at compile time.]   

 

8.6 Initialization , initial equation , and initial  algorithm  

Before any operation is carried out with a Modelica model [e.g., simulation or linearization], initialization takes 

place to assign consistent values for all variables present in the model. During this phase, also the derivatives, 

der(..) , and the pre-variables, pre(..) , are interpreted as unknown algebraic variables. The initialization uses 

all equations and algorithms that are utilized in the intended operation [such as simulation or linearization]. The 

equations of a when-clause are active during initialization, if and only if they are explicitly enabled with the 

initial()  operator; and only in one of the two forms when initial() then  or when {é,initial(),é} 

then . In this case, the when-clause equations remain active during the whole initialization phase. [If a when-

clause equation v  = expr;  is not active during the initialization phase, the equation v  = pre(v)  is added for 

initialization. This follows from the mapping rule of when-clause equations. If the condition of the when-clause 

contains initial(), but not in one of the specific forms, the when-clause is not active during initialization: when not 
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initial() then print("simulation started");end when; ]. In case of a reinit(x,expr) being active during initialization 

(due to being inside when initial()) this is interpreted as adding x=expr (the reinit-equation) as an initial equation. 

Further constraints, necessary to determine the initial values of all variables, can be defined in the following ways: 

(1) As equations in an initial  equation  section or as assignments in an initial  algorithm  section. The 

equations and assignments in these initial sections are purely algebraic, stating constraints between the 

variables at the initial time instant. It is not allowed to use when-clauses in these sections.  

(2) For all non-discrete (that is continuous-time) Real variables vc , the equation pre (v c) = v c  is added to the 

initialization equations. [If pre (v c)  is not present in the flattened model, a tool may choose not to introduce 

this equation, or if it was introduced it can eliminate it (to avoid the introduction of many dummy variables 

pre (v c) ).] 

(3) Implicitly by using the attributes start=value  and fixed=true  in the declaration of variables:  

¶ For all non-discrete (that is continuous-time) Real variables vc , the equation vc  = startExpression  is 

added to the initialization equations, if start = startExpression  and fixed = true .  

¶ For all discrete variables vd , the equation pre(vd) = startExpression  is added to the initialization 

equations, if start = startExpression  and fixed = true .  

¶ For all variables declared as constant and parameter, with fixed = true ; no equation is added to the 

initialization equations. 

For constants and parameters, the attribute fixed is by default true. For other variables fixed is by default false. For 

all variables declared as constant it is an error to have fixed = false . 

Start-values of variables having fixed = false can be used as initial guesses, in case iterative solvers are used in 

the initialization phase. [In case of iterative solver failure, it is recommended to specially report those variables 

for which the solver needs an initial guess, but which only have the default value of the start attribute as defined 

in Section 4.8 4.8, since the lack of appropriate initial guesses is a likely cause of the solver failure.] 

If a parameter has a modifier for the start -expressionattribute, does not have fixed=false , and neither has a 

binding equation nor is part of a record having a binding equation, the modifier for the start -expressionattribute 

can be used to add a parameter binding equation assigning the parameter to that start-modifier. In this case a 

diagnostic message is recommended in a simulation modelas parameter-expression although a diagnostic message 

is recommended when initializing the model without setting the parameter value. [This is used in libraries to give 

non-zero defaults so that users can quickly combine models and simulate without setting parameters; but still 

easily find the parameters that need to be set. String parameters are also covered by this, since they lack a 

fixed -attribute they can never have fixed=false .] 

All variables declared as parameter having fixed = false  are treated as unknowns during the initialization 

phase, i.e. there must be additional equations for them ï and the start-value can be used as a guess-value during 

initialization. 

[ In the case a parameter has both a binding equation and fixed = false  a diagnostics is recommended, but 

the parameter should be solved from the binding equation. 

Non-discrete (that is continuous-time) Real variables vc  have exactly one initialization value since the rules 

above assure that during initialization vc = pre (v c) = v c.startExpression  (if fixed= true). 

Before the start of the integration, it must be guaranteed that for all variables v , v = pre (v) . If this is not the 

case for some variables vi , ñpre (vi) := vi ò must be set and an event iteration at the initial time must follow, 

so the model is re-evaluated, until this condition is fulfilled. 

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to state 

space form. This may require to differentiate equations for index reduction, i.e., additional equations and, in some 

cases, additional unknown variables are introduced. This whole set of equations, together with the additional 

constraints defined above, should lead to an algebraic system of equations where the number of equations and the 

number of all variables (including der(..)  and pre(..)  variables) is equal. Often, this is a nonlinear system 

of equations and therefore it may be necessary to provide appropriate guess values (i.e., start  values and 

fixed=false ) in order to compute a solution numerically. 
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It may be difficult for a user to figure out how many initial equations have to be added, especially if the system 

has a higher index. A tool may add or remove initial equations automatically such that the resulting system is 

structurally nonsingular. In these cases diagnostics are appropriate since the result is not unique and may not be 

what the user expects. A missing initial value of a discrete variable which does not influence the simulation result, 

may be automatically set to the start value or its default without informing the user. For example, variables 

assigned in a when-clause which are not accessed outside of the when-clause and where the pre()  operator is 

not explicitly used on these variables, do not have an effect on the simulation. 

Examples: 

Continuous time controller initialized in steady-state: 

  Real y(fixed = false);  // fixed=false is redundant    

equation  

  der (y) = a*y + b*u;  

initial  equation  

  der (y) = 0;  

This has the following solution at initialization: 

  der (y) = 0;  

  y = - b/a *u;  

Continuous time controller initialized either in steady-state or by providing a start value for state y: 

    parameter  Boolean steadyState = true;  

    parameter  Real y0 = 0 "start value for y, if not steadyState";  

    Real y;  

  equation  

    der (y) = a*y + b*u;  

  initial  equation  

    if  steadyState then  

      der (y)=0;  

    else  

      y = y0;  

    end  if ;  

This can also be written as follows (this form is less clear): 

    parameter  Boolean steadyState=true;  

    Real y    (start=0, fixed= not  steadyState);  

    Real der_y(start =0, fixed=steadyState) = der (y);  

  equation  

    der (y) = a*y + b*u;  

Discrete time controller initialized in steady-state: 

    discrete Real y;  

  equation  

    when { initial (), sampleTrigger} then  

      y = a*pre(y) + b*u;  

    end  when;  

  initial  equation  

    y = pre(y);  

This leads to the following equations during initialization: 

  y = a*pre(y) + b*u;  

  y = pre(y);  

With the solution: 

  y := (b*u)/(1 - a)  

  pre(y) := y;  

] 
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8.6.1 The Number of Equations Needed for Initialization  

[In general, for the case of a pure (first order) ordinary differential equation (ODE) system with n state variables 

and m output variables, we will have n+m unknowns in the simulation problem. The ODE initialization problem 

has n additional unknowns corresponding to the derivative variables. At initialization of an ODE we will need to 

find the values of 2n+m variables, in contrast to just n+m variables to be solved for during simulation. 

Example: Consider the following simple equation system: 

der (x1) = f1(x1);  

der (x2) = f2(x2);  

y = x1+x2+u;  

Here we have three variables with unknown values: two dynamic variables that also are state variables, x1  and 

x2 , i.e., n=2, one output variable y , i.e., m=1, and one input variable u with known value. A consistent solution of 

the initial value problem providing initial values for x1 , x2 , der(x1) , der(x2) , and y  needs to be found. Two 

additional initial equations thus need to be provided to solve the initialization problem. 

Regarding DAEs, only that at most n additional equations are needed to arrive at 2n+m equations in the 

initialization system. The reason is that in a higher index DAE problem the number of dynamic continuous-time 

state variables might be less than the number of state variables n. As noted in Section 8.6 8.6 a tool may 

add/remove initial equations to fulfill this requirement, if appropriate diagnostics are given.  

] 

8.6.2 Recommended selection of start -values  

In general many variables have start-values that are not fixed and selecting a sub-set of these can give a 

consistent set of start-values close to the user-expectations. The following gives a non-normative procedure for 

finding such a sub-set. 

 [A model has a hierarchical component structure. Each component of a model can be given a unique model 

component hierarchy level number. The top level model has a level number of 1. The level number increases by 1 

for each level down in the model component hierarchy. The model component hierarchy level number is used to 

give start values a confidence number, where a lower number means that the start value is more confident. 

Loosely, if the start value is set or modified on level i then the confidence number is i. If a start value is set by a 

possibly hierarchical modifier at the top level, then this start value has the highest confidence, namely 1 

irrespectively on what level, the variable itself is declared.] 
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Chapter 9   
 
 
Connectors  and Connections  

This chapter covers connectors, connect-equations, and connections.  

The special functions cardinality, rooted [ deprecated], Connections.isRoot, and Connections.rooted may not be 

used to control them.  

9.1 Connect -Equations and Connectors  

Connections between objects are introduced by connect-equations in the equation part of a class. A connect-

equation has the following syntax: 

connect  "(" component_reference component - reference  "," component_reference component -

reference  ")" ";"  

The connect-equation construct takes two references to connectors [a connector is an instance of a connector 

class], each of which is either of the following forms: 

¶ c1. c2 é cn, where c1 is a connector of the class, n>=1 and ci+1 is a connector element of ci for i=1:(n - 1) . 

¶ m.c , where m is a non-connector element in the class and c  is a connector element of m. 

There may optionally be array subscripts on any of the components; the array subscripts shall be parameter 

expressions or the special operator ñ:ò. If the connect construct references array of connectors, the array 

dimensions must match, and each corresponding pair of elements from the arrays is connected as a pair of scalar 

connectors.  

[Example of array usage: 

  connector  InPort   = input   Real;  

  connector  OutPort  = output  Real;  

  block  MatrixGain  

    input   InPort  u[ size(A, 2)];  

    output  OutPort y[size(A, 1)] ;  

    parameter  Real A[:,:] = [1] ;  

   equation  

     y=A*u;  

  end  MatrixGain;  

 

  Modelica.Blocks.Sources.Sine  sinSource[5];  

  MatrixGain gain  (A  = 5*identity(5));  

  MatrixGain gain2(A  = ones( 2,5 ));  

  OutPort x[2];  

equation  

  connect (sinSource.y, gain.u); // Legal  

  connect (gain.y, gain2.u);     // Legal  

  connect (gain2.y, x);          // Legal  

   ] 
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The three main tasks are to:  

¶ Elaborate expandable connectors. 

¶ Build connection sets from connect-equations.  

¶ Generate equations for the complete model.  

9.1.1 Connection Sets 

A connection set is a set of variables connected by means of connect-equations. A connection set shall contain 

either only flow variables or only non-flow variables. 

9.1.2 Inside and Outside Connectors  

In an element instance M, each connector element of M is called an outside connector with respect to M. All other 

connector elements that are hierarchically inside M, but not in one of the outside connectors of M, is called an 

inside connector with respect to M. This is done before resolving outer  elements to corresponding inner  ones. 

[Example: 

 

 

 

The figure visualizes the following connect  equations to the connector c in the models mi. Consider the following 

connect  equations found in the model for component m0: 

connect (m1.c, m3.c); // m1.c and m3.c are inside connectors  

connect (m2.c, m3.c); // m2.c and m3.c are inside connectors  

and in the model for component m3 (c.x is a sub-connector inside c): 

connect (c,   m4.c);  // c    is an outside  connector, m4.c is an inside connector  

connect (c.x, m5.c);  // c.x  is an outside  connector, m5.c is an inside connector  

connect (c  , d)  ;  // c    is an outside  connector, d is an outside  connector  

and in the model for component m6: 

connect ( d, m7.c);  // d i s an outside  connector, m7.c is an inside connector  

] 

9.1.3 Expandable Connectors  

If the expandable  qualifier is present on a connector definition, all instances of that connector are referred to as 

expandable connectors. Instances of connectors that do not possess this qualifier will be referred to as non-

expandable connectors.  

m1 

m2 

m4 

c 

m3 

m5 

m0 

Figure 2 Example for inside and outside connectors 
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inner d 

m7 
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Before generating connection equations non-parameter scalar variables and non-parameter array elements 

declared in expandable connectors are marked as only being potentially present. A non-parameter array element 

may be declared with array dimensions ñ:ò indicating that the size is unknown. This applies to both variables of 

simple types, and variables of structured types.  

Then connections containing expandable connectors are elaborated: 

¶ One connector in the connect equation must reference a declared component, and if the other connector is 

an undeclared element in an a declared expandable connector it is handled as follows (elements that are only 

potentially present are not seen as declared):  

¶ The expandable connector instance is automatically augmented with a new component having the 

used name and corresponding type.  

¶ If the undeclared component is subscripted, an array variable is created, and a connection to the 

specific array element is performed. Introducing elements in an array gives an array with at least the 

specified elements, other elements are either not created or have a default value (i.e. as if they were 

only potentially present). 

¶ If the variable on the other side of the connect-equation is input or output the new component will be 

either input or output to satisfy the restrictions in Section 9.3 9.3 for a non-expandable connector. [If 

the existing side refers to an inside connector (i.e. a connector of a component) the new variable will 

copy its causality, i.e. input if input and output if output, since the expandable connector must be an 

outside connector]. For an array the input/output property can be deduced separately for each array 

element. 

¶ When two expandable connectors are connected, each is augmented with the variables that are only 

declared in the other expandable connector (the new variables are neither input nor output). This is repeated 

until all connected expandable connector instances have matching variables [i.e. each of the connector 

instances is expanded to be the union of all connector variables.] 

¶ The variables introduced in the elaboration follow additional rules for generating connection sets (given in 

Section 9.2 9.2). 

¶ If a variable appears as an input in one expandable connector, it should appear as a non-input in at least one 

other expandable connector instance in the same augmentation set. An augmentation set is definddefined as 

the set of connected expandable connector instances that through the elaboration will have matching 

variables. 

 [Example: 

expandable  connector  EngineBus  

end  EngineBus;  

block  Sensor  

  RealOutput speed;   // Output, ie. i.e. , non - input  

end  Sensor;  

block  Actuator  

  RealInput speed;   // Input  

end  Actuator;  

model  Engine  

  EngineBus bus;  

  Sensor sensor;  

  Actuator actuator;  

equation  

  connect (bus.speed, sensor.speed); // provides the non - input  from 

sensor.speed  

  connect (bus.speed, actuator.speed);  

end  Engine;  

] 
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¶ All components in an expandable connector are seen as connector instances even if they are not declared as 

such [i.e. it is possible to connect to e.g. a Real variable].  

[Example: 

expandable  connector  EngineBus // has predefined signals  

  import  SI=Modelica.SIunits;  

  SI.AngularVelocity  speed;  

  SI.Temperature T;  

end  EngineBus;  

block  Sensor  

  RealOutput speed;  

end  Sensor;  

model  Engine  

  EngineBus bus;  

  Sensor sensor;  

equation  

  connect (bus.speed, sensor.speed);  

  // connection to non - connector speed is possible  

  // in expandable connec tors  

end  Engine;  

] 

¶ An expandable connector may not contain a component declared with the prefix flow , but may contain 

non-expandable connector components with flow  components. 

[Example: 

import  Interfaces=Modelica.Electrical.Analog.Interfaces;  

expandable  co nnector  ElectricalBus  

  Interfaces.PositivePin p12, n12; // OK  

  flow  Modelica.SIunits.Current i; // not allowed  

end  ElectricalBus;  

model  Battery  

  Interfaces.PositivePin p42, n42;  

  ElectricalBus bus;  

equation  

  connect (p42, bus.p42); // Adds new electric al pin  

  connect (n42, bus.n42); // Adds another pin  

end  Battery;  

] 

¶ expandable connectors can only be connected to other expandable connectors. 

 

If a connect equation references a potentially present variable, or variable element, in an expandable connector 

the variable or variable element is marked as being present, and due to the paragraphs above it is possible to 

deduce whether the bus variable shall be treated as input, or shall be treated as output in the connect equation. 

That input or output prefix is added if no input/output prefix is present on the declaration 

 

[Example: 

expandable  connector  EmptyBus  

end  EmptyBus;  

model  Controller  

  EmptyBus bus1;  

  EmptyBus bus2;  

  RealInput speed;  

equation  

  connect (speed, bus1.speed); // ok, only one undeclared  

  // and it is unsubscripted  

  connect (bus1.pressure, bus2.pressure);  

  // not allowed, both undeclared  
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  connect (speed, bus2.speed[2]);  

  // introduces speed array (with element [2]).  

end  Controller;  

] 

After this elaboration the expandable connectors are treated as normal connector instances, and the connections as 

normal connections, and all potentially present variables and array elements that are not actually present are 

undefined [a tool may remove them or set them to the default value, e.g. zero for Real variables]. It is an error if 

there are expressions referring to potentially present variables or array elements that are not actually present or 

non-declared variables [the expressions can only ñreadò variables from the bus that are actually declared and 

present in the connector, in order that the types of the variables can be determined in the local scope]. This 

elaboration implies that expandable connectors can be connected even if they do not contain the same 

components. 

[Note that the introduction of variables, as described above, is conceptual and does not necessarily impact the 

flattening hierarchy in any way. Furthermore, it is important to note that these elaboration rules must consider: 

1) Expandable connectors nested hierarchically. This means that both outside and inside connectors must be 

included at every level of the hierarchy in this elaboration process. 

2) When processing an expandable connector that possesses the inner  scope qualifier, all outer instances must 

also be taken into account during elaboration. 

Example: 

Engine system with sensors, controllers, actuator and plant that exchange information via a bus (i.e. via 

expandable connectors): 

import  SI=Modelica.SIunits;  

import  Modelica.Blocks.Interfaces. * RealInput ;  

// Plant Side  

model  Spark Plug  

  Real Input  spark_advance ;  

  é 

end  SparkPlug;  

expandable  connector  EngineBus  

  // No minimal set  

end  EngineBus;  

expandable  connector  CylinderBus  

  Real spark_advance;  

end  CylinderBus;  

model  Cylinder  

  CylinderBus cylinder_bus;  

  SparkPlug spark_plug;  

  ...  

equation  

 

  connect (spark_plug.spark_advance, cylinder_bus.spark_advance);  

end  Cylinder;  

model  I4  

  EngineBus engine_bus;  

  Modelica.Mechanics.Rotational.Sensors.SpeedSensor speed_sensor;  

  Modelica.Thermal. HeatTransfer . Sensors.TemperatureSensor te mp_sensor;  

  parameter Integer nCylinder = 4 "Number of cylinders";  

  Cylinder cylinder [nCylinder];  

equation  

  // adds engine_speed (as output)  

  connect (speed_sensor.w, engine_bus.engine_speed);  

  // adds engine_temp (as output)  

  connect (temp_sensor.T, e ngine_bus.engine_temp);  

  // adds cylinder_bus1 (a nested bus)  

  for i in 1:nCylinder loop  

     connect(cylinder[i].cylinder_bus, engine_bus.cylinder_bus[i]);  
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  end for;  

end  I4;  

Due to the above connection, conceptually a connector consisting of the union of all connectors is introduced. 

The engine_bus contains the following variable declarations: 

RealOutput engine_speed;  

RealOutput engine_temp;  

CylinderBus cylinder_bus [ 1] ;  

CylinderBus cylinder_bus [ 2] ;  

CylinderBus cylinder_bus [ 3] ;  

CylinderBus cylinder_bus [ 4] ;  

] 

9.2 Generation of Connection Equations  

When generating connection equations, outer  elements are resolved to the corresponding inner  elements in the 

instance hierarchy (see instance hierarchy name lookup 5.4 5.4). The arguments to each connect -equation are 

resolved to two connector elements. 

For every use of the connect -equation  

connect (a, b);  

the primitive components of a and b form a connection set ï together with an indication of whether they are from 

an inside or an outside connector; the primitive elements are of simple types ï or of types defined as operator 

record  (i.e. a component of an operator record  type is not split into sub-components). The elements of the 

connection sets are tuples of primitive variables together with an indication of inside or outside; if the same tuple 

belongs to two connection sets those two sets are merged, until every tuple is only present in one set. Composite 

connector types are broken down into primitive components. The outer  components are handled by mapping the 

objects to the corresponding inner  components ï and the inside indication is not influenced. The outer  

connectors are handled by mapping the objects to the corresponding inner  connectors ï and they are always 

treated as outside connectors. 

[Rationale: The inside/outside as part of the connection sets ensure that connections from different hierarchical 

levels are treated separately. Connection sets are formed from the primitive elements and not from the 

connectors; this handles connections to parts of hierarchical connectors and also makes it easier to generate 

equations directly from the connection sets. All variables in one connection set will either be flow variables or 

non-flow variables due to restriction on connect-equations. The mapping from an outer  to an inner  element 

must occur before merging the sets in order to get one zero-sum equation, and ensures that the equations for the 

outer  elements are all given for ñone sideò of the connector, and the inner  element can define the other 

ñsideò.] 

The following connection sets with just one member are also present (and merged): 

¶ Each primitive flow-variable as inside connector. 

¶ Each flow variable added during augmentation of expandable connectors, both as inside and as outside. 

[Note that the flow variable is not directly in the expandable connector, but in a connector inside the 

expandable connector.] 

 

[Rationale: If these variables are not connected they will generate a set comprised only of this element, and thus 

they will be implicitly set to zero (see below). If connected, this set will be merged and adding this at the start has 

no impact.] 

Each connection set is used to generate equations for potential and flow (zero-sum) variables of the form  

¶ a1 = a2 = ... = an ;             // neither flow nor stream variables non - flow 

variables  
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¶ z1 + z2 + ( - z3) + ... + zn = 0; // flow - variables  

The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).  

For an operator record  type this uses the operator ' 0'  ï which must be defined in the operator record; and all 

of the flow-variables for the operator record  must be of the same operator record  type. This implies that 

in order to have flow variables of an operator record  type the operator  record  must define addition, 

negation, and ' 0' ; and these operations should define an additive group. 

In order to generate equations for flow variables [using the flow  prefix], the sign used for the connector variable 

z i  above is +1 for inside connectors and -1 for outside connectors [z3 in the example above]. 

 

[Example (simple): 

  model  Circuit  

    Ground   ground;  

    Load     load;  

    Resistor resistor;  

  equation  

    connect (load.p    , ground.p);  

    connect (resistor.p, ground.p);  

  end  Circuit;  

 

  model  Load  

    extends  TwoPin;  

    Resistor resistor;  

  equation  

    connect (p, resistor.p);  

    connect (resistor.n, n);  

  end  Load;  

 

The connection sets are before merging (note that one part of the load and resistor is not connected): 

  {<load.p.i, inside>}  

  {<load.n.i, inside>} 

  {<ground.p.i, inside>} 

  {<load.resistor.p.i, inside>} 

  {<load.resistor.n.i, inside>} 

  {<resistor.p.i, inside>} 

  {<resistor.n.i, inside>} 

  {<resistor.p.i, inside>, <ground.p.i, inside>} 

  {<resistor.p.v, inside>, <ground.p.v, inside>} 

  {<load.p.i, inside>, <ground.p.i, inside>} 

  {<load.p.v, inside>, <ground.p.v, inside>} 

  {<load.p.i, outside>, <load.resistor.p.i, inside>} 

  {<load.p.v, outside>, <load.resistor.p.v, inside>} 

  {<load.n.i, outside>, <load.resistor.n.i, inside>} 

  {<load.n.v, outside>, <load.resistor.n.v, inside>} 

 

After merging this gives: 

  {<load.p.i, outside>, <load.resistor.p.i, inside>} 

  {<load.p.v, outside>, <load.resistor.p.v, inside>} 

  {<load.n.i, outside>, <load.resistor.n.i, inside>} 

  {<load.n.v, outside>, <load.resistor.n.v, inside>} 

  {<load.p.i, inside>, <ground.p.i, inside>, <resistor.p.i, inside> } 

  {<load.p.v, inside>, <ground.p.v, inside>, <resistor.p.v, inside>} 

  {<load.n.i, inside>} 

  {<resistor.n.i, inside>} 

 

And thus the equations: 
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  load.p.v = load.resistor.p.v;  

  load.n.v = load.resistor.n.v;  

  load.p.v = ground.p.v;  

  load.p.v = resistor.p.v;  

  0 = ( - load.p.i) + load.resistor.p.i;  

  0 = ( - load.n.i) + load.resistor.n.i;  

  0 = load.p.i + ground.p.i + resistor.p.i;  

  0 = load.n.i;  

  0 = resistor.n.i;  

 

Example (outer component): 

  model  Circuit  

    Ground ground;  

    Load   load;  

    inner  Resistor resistor;  

  equation  

    connect(load.p, ground.p);  

  end  Circuit;  

 

  model  Load  

    extends  TwoPin;  

    outer  Resistor resistor;  

  equation  

    connect (p, resistor.p);  

    connect (resistor.n, n);  

  end  Load;  

 

The connection sets are before merging (note that one part of the load and resistor is not connected): 

   {<load.p.i, inside>} 

  {<load.n.i, inside>} 

  {<ground.p.i, inside>} 

  {<resistor.p.i, inside>} 

  {<resistor.n.i, inside>} 

  {<load.p.i, inside>, <ground.p.i, inside>} 

  {<load.p.v, inside>, <ground.p.v, inside>} 

  {<load.p.i, outside>, < resistor.p.i, inside>} 

  {<load.p.v, outside>, <resistor.p.v, inside>} 

  {<load.n.i, outside>, <resistor.n.i, inside>} 

  {<load.n.v, outside>, <resistor.n.v, inside>} 

 

After merging this gives: 

  {<load.p.i, outside>, <resistor.p.i, inside>} 

  {<load.p.v, outside>, <resistor.p.v, inside>} 

  {<load.n.i, outside>, <resistor.n.i, inside>} 

  {<load.n.v, outside>, <resistor.n.v, inside>} 

  {<load.p.i, inside>, <ground.p.i, inside>} 

  {<load.p.v, inside>, <ground.p.v, inside>} 

  {<load.n.i, inside>} 

 

And thus the equations: 

  load.p.v = resistor.p.v;  

  load.n.v = resistor.n.v;  

  load.p.v = ground.p.v;  

  0 = ( - load.p.i) + resistor.p.i;  

  0 = ( - load.n.i) + resistor.n.i;  

  0 = load.p.i + ground.p.i;  

  0 = load.n.i;  

This corresponds to a direct connection of the resistor. 

] 
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9.3 Restrictions  of Connections and Connectors  

¶ The connect-equations (and the special functions for overdetermined connectors) may only be used in 

equations and may not be used inside if-equations with non-parametric condition, or in when-equations. 

[For-equations always have parameter expressions for the array expression.] 

¶ A connector component may not be declared with the prefix parameter or constant. In the connect-equation 

the primitive components may only connect parameter variables to parameter variables and constant 

variables to constant variables. 

¶ The connect-equation construct only accepts forms of connector references as specified in Section 9.1 9.1. 

¶ In a connect-equation the two connectors must have the same named component elements with the same 

dimensions; recursively down to the primitive components. The primitive components with the same name 

are matched and belong to the same connection set. 

¶ The matched primitive components of the two connectors must have the same primitive types, and flow-

variables may only connect to other flow-variables, stream-variables only to other stream-variables, and 

causal variables (input /output ) only to causal variables (input /output ).  

¶ A connection set of causal variables (input /output ) may at most contain variables from one inside 

output  connector or one public outside input  connector. [i.e., a connection set may at most contain one 

source of a signal.] 

¶ At least one of the following must hold for a connection set containing causal variables generated for a non-

partial model or block:  

 (1) the connection set includes variables from an outside public expandable connector, (2) the set contains 

variables from protected outside connectors, (3) it contains variables from one inside output  connector, or 

(4) from one public outside input  connector, or (5) the set is comprised solely of one variable from one 

inside input  connector that is not part of an expandable connector. [i.e., a connection set must ï unless the 

model or block is partial - contain one source of a signal (the last item (5) covers the case where a 

connector of a component is left unconnected and the source given textually).] 

¶ Variables from a protected outside connector must be part of a connection set containing at least one inside 

connector or one declared public outside connector (i.e. it may not be an implicitly defined part of an 

expandable connector). [Otherwise it would not be possible to deduce the causality for the expandable 

connector element.]  

¶ In a connection set all variables having non-empty quantity attribute must have the same quantity attribute. 

¶ A connect  equation may not (directly or indirectly) connect two connectors of outer  elements. [indirectly 

is similar to them being part of the same connection set ï however, connections to outer  elements are 

ñmoved upò before forming connection sets. Otherwise the connection sets could contain ñredundantò 

information breaking the equation count for locally balanced models and blocks.] 

¶ Subscripts in a connector reference shall be parameter expressions or the special operator ñ:ò.  

¶ Constants or parameters in connected components yield the appropriate assert statements to check that they 

have the same value; connections are not generated.  

¶ For conditional connectors, see Section 4.4.5 4.4.5. 

 

9.3.1 Balancing Restriction and Size of Connectors Size Restriction on 
Connectors  

For each non-partial connector class the number of flow variables shall be equal to the number of variables that 

are neither parameter , constant , input , output , stream  nor flow . The ñnumber of variablesò is the number 

of all elements in the connector class after expanding all records and arrays to a set of scalars of primitive types. 

The number of variables of an overdetermined type or record class (see Section 9.4.1 9.4.1) is the size of the 

output argument of the corresponding equalityConstraint () function. 

[Examples: 
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connector  Pin // a physical connector of Modelica.Electrical .Analog  

   Real      v;  

   flow  Real i;  

end  Pin;  

 

connector  Plug // a hiera r chical connec tor of Modelica.Electrical. MultiPhase  

   parameter  Integer m=3;  

   Pin p[m];  

end  Plug;  

 

connector I nputReal  = input Real;   // A causal input  connector  

 

connector  OutputReal = output  Real; // A causal output  connector  

 

connector  Frame_Illegal   

  Modelica. SIunits. Position         r0[3]    "Position vector of  frame origin ";  

  Real                             S[3, 3] " Rotation matrix  of frame";  

  Modelica.SIunits. Velocity        v[3]    "Abs .  velocity of frame origin";  

  Modelica.SIunits. AngularVelocity w[3]     "Abs . angular velocity of frame";  

  Modelica.SIunits. Acceleration    a[3]    "Abs .  acc . of frame origin";  

  Modelica.SIunits. AngularAcceleration z[3]  "Abs .  angular acc .  of frame";  

  flow  Modelica.SIunits. Force       f[3]     "Cut force";  

  flow  Modelica.SIu nits. Torque     t[3]     "Cut torque " ;  

end  Frame_Illegal ;  

The Frame_Illegal  connector (intended to be used in a simple MultiBody-package without over-determined 

connectors) is illegal since the number of flow and non-flow variables do not match. The solution is to create two 

connector classes, where two 3-vectors (e.g., a and z) are acausal Real and the other variables are matching pairs 

of input  and output . This ensures that the models can only be connected in a tree-structure or require a ñloop-

breakerò joint for every closed kinematic loop: 
 

connector  Frame_a " correct connector "  

  input  Modelica.SIunits.Position            r0[3];  

  input  Real                                 S[3, 3];  

  input  Modelica.SIunits.Velocity            v[3];  

  input  Modelica.SIuni ts.AngularVelocity     w[3];  

        Modelica.SIunits.Acceleration        a[3];  

        Modelica.SIunits.AngularAcceleration z[3];  

  flow   Modelica.SIunits.Force               f[3];  

  flow   Modelica.SIunits.Torque              t[3];  

end  Frame_a;  

 

connector  Frame_b "correct  connector "  

  output  Modelica.SIunits.Position            r0[3];  

  output  Real                                 S[3, 3];  

  output  Modelica.SIunits.Velocity            v[3];  

  output  Modelica.SIunits.AngularVelocity     w[3];  

         Model ica.SIunits.Acceleration        a[3];  

         Modelica.SIunits.AngularAcceleration z[3];  

  flow    Modelica.SIunits.Force               f[3];  

  flow    Modelica.SIunits.Torque              t[3];  

end  Frame_b;  

The subsequent connectors Plug_Expanded  and PlugE xpanded2  are correct, but Plug_Expanded_Illegal  

is illegal since the number of non-flow and flow variables is different if ñnò and ñmò are different. It is not clear 

how a tool can detect in general that connectors such as Plug_Expanded_Illegal  are illegal. However, it is 

always possible to detect this defect after actual values of parameters and constants are provided in the 

simulation model. 

connector  Plug_Expanded  "correct connector"  

   parameter  Integer m=3;  

   Real       v[m];  

   flow  Real i[m];  

end  Plu g_Expanded;  

 

connector  Plug_Expanded2  "correct connector"  



      125 

   parameter  Integer m=3;  

   final parameter Integer n=m;  

   Real      v[m];  

   flow  Real i[n];  

end  Plug_Expanded2;  

 

connector  Plug_Expanded_Illegal  "connector is illegal"  

   parameter  Integer m=3;  

   parameter Integer n=m;  

   Real      v[m];  

   flow  Real i[n];  

end  Plug_Expanded_Illegal;  

] 

9.4 Equation Operators  for Overconstrained  Connection -Based Equation 
Systems  

There is a special problem regarding equation systems resulting from loops in connection graphs where the 

connectors contain non-flow (i.e., potential) variables dependent on each other. When a loop structure occurs in 

such a graph, the resulting equation system will be overconstrained, i.e., have more equations than variables, since 

there are implicit constraints between certain non-flow variables in the connector in addition to the connection 

equations around the loop. At the current state-of-the-art, it is not possible to automatically eliminate the unneeded 

equations from the resulting equation system without additional information from the model designer.  

This section describes a set of equation operators for such overconstrained connection-based equation systems, 

that makes it possible for the model designer to specify enough information in the model to allow a Modelica 

environment to automatically remove the superfluous equations.  

[Connectors may contain redundant variables. For example, the orientation between two coordinate systems in 3 

dimensions can be described by 3 independent variables. However, every description of orientation with 3 

variables has at least one singularity in the region where the variables are defined. It is therefore not possible to 

declare only 3 variables in a connector. Instead n variables (n > 3) have to be used. These variables are no 

longer independent from each other and there are n-3 constraint equations that have to be fulfilled. A proper 

description of a redundant set of variables with constraint equations does no longer have a singularity. A model 

that has loops in the connection structure formed by components and connectors with redundant variables, may 

lead to a differential algebraic equation system that has more equations than unknown variables. The superfluous 

equations are usually consistent with the rest of the equations, i .e., a unique mathematical solution exists. Such 

models cannot be treated with the currently known symbolic transformation methods. To overcome this situation, 

operators are defined in order that a Modelica translator can remove the superfluous equations. This is 

performed by replacing the equality equations of non-flow variables from connection sets by a reduced number of 

equations in certain situations. 

This section handles a certain class of overdetermined systems due to connectors that have a redundant set of 

variables. There are other causes of overdetermined systems, e.g., explicit zero-sum equations for flow variables, 

that are not handled by the method described below.] 

9.4.1 Overconstrained Equation Operators for Connection Graphs  

A type or record declaration may have an optional definition of function ñequalityConstraint(..) ò that shall 

have the following prototype: 

typ e Type // overdetermined type  

  extends  <base type>;  

 

  function  equalityConstraint // non - redundant equality  

    input   Type T1;  

    input   Type T2;  

    output  Real residue[ <n> ];  
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  algorithm  

    residue := ...  

  end  equalityConstraint;  

end  Type;  

 

record  Record  

  < declaration of record fields>  

 

  function  equalityConstraint // non - redundant equality  

    input   Record R1;  

     input   Record R2;  

     output  Real residue[ <n> ];  

  algorithm  

    residue := ...  

  end  equalityConstraint;  

end  Record;  

The ñresidueò output of the equalityConstraint(..)  function shall have known size, say constant n. The 

function shall express the equality between the two type instances T1 and T2 or the record instances R1 and R2, 

respectively, with a non-redundant number n Ó 0 of equations. The residues of these equations are returned in 

vector ñresidueò of size n. The set of n non-redundant equations stating that R1 = R2  is given by the equation (0 

characterizes a vector of zeros of appropriate size): 

  Record R1, R2;  

equation  

  0 = Record.equalityConstraint(R1,R2);  

 

[If the elements of a record Record  are not independent from each other, the equation ñR1 = R2ò contains 

redundant equations].  

A type class with an equalityConstraint  function declaration is called overdetermined type. A record class 

with an equalityConstraint  function definition is called overdetermined record. A connector that contains 

instances of overdetermined type and/or record classes is called overdetermined connector. An overdetermined 

type or record may neither have flow components nor may be used as a type of flow components. If an array is 

used as argument to any of the Connections.* functions it is treated as one unit ï there is no special treatment of 

this case ï however, there is for connect ï see section 9.1. 

Every instance of an overdetermined type or record in an overdetermined connector is a node in a virtual 

connection graph that is used to determine when the standard equation ñR1 = R2 ò or when the equation ñ0 = 

equalityCo nstraint(R1,R2) òhas to be used for the generation of connect(...)  equations. The branches of 

the virtual connection graph are implicitly defined by ñconnect(..) ò and explicitly by 

Connections.branch(.. . )  statements, see table below. Connections  is a built-in package in global scope 

containing built-in operators. Additionally, corresponding nodes of the virtual connection graph have to be 

defined as roots or as potential roots with functions Connections.root(.. . )  and 

Connections.potentialRoot(.. . ) , respectively. In the following table, A and B are connector instances that 

may be hierarchically structured, e.g., A may be an abbreviation for EnginePort.Frame . 

 

connect(A,B);  Defines breakable branches from the overdetermined type or 

record instances in connector instance A to the corresponding 

overdetermined type or record instances in connector instance B 

for a virtual connection graph. The types of the corresponding 

overdetermined type or record instances shall be the same. 

Connections.branch(A.R,B.R);  Defines a non-breakable branch from the overdetermined type 

or record instance R in connector instance A to the 

corresponding overdetermined type or record instance R in 

connector instance B for a virtual connection graph. This 

function can be used at all places where a connect(..) statement 

is allowed [e.g., it is not allowed to use this function in a when-

clause. This definition shall be used if in a model with 
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connectors A and B the overdetermined records A.R  and B.R  

are algebraically coupled in the model, e.g., due to B.R = 

f(A.R , <other unknowns>)]. 

Connections.root(A.R);  The overdetermined type or record instance R in connector 

instance A is a (definite) root node in a virtual connection 

graph. [This definition shall be used if in a model with 

connector A the overdetermined record A.R  is (consistently) 

assigned, e.g.,  from a parameter expressions] 

Connections.potentialRoot(A.R);  

 

Connections.potentialRoot(  

A.R, priority = p);  

The overdetermined type or record instance R in connector 

instance A is a potential root node in a virtual connection graph 

with priority ñpò (p Ó 0). If no second argument is provided, the 

priority is zero. ñpò shall be a parameter expression of type 

Integer. In a virtual connection subgraph without a 

Connections.root definition, one of the potential roots with the 

lowest priority number is selected as root [This definition may 

be used if in a model with connector A the overdetermined 

record A.R  appears differentiated ï der(A.R)  ï together with 

the constraint equations of A.R , i.e., a non-redundant subset of 

A.R  maybe used as states] 

b = Conn ections.isRoot(A.R);  Returns true, if the overdetermined type or record instance R in 

connector instance A is selected as a root in the virtual 

connection graph. 

b = Connections.rooted(A.R);  

b = rooted(A.R);  // deprecated  

 

If the operator Connections.roo ted(A.R)  is used, or the 

equivalent but deprecated operator rooted(A.R) , then there 

must be exactly one statement 

Connections.branch(A.R,B.R)  involving A.R  (the 

argument of Connections.rooted  must be the first argument 

of Connections.branch ). In that case 

Connections.rooted(A.R)  returns true, if A.R  is closer to 

the root of the spanning tree than B.R ; otherwise false is 

returned. [This operator can be used to avoid equation systems 

by providing analytic inverses, see 

Modelica.Mechanics.MultiBody.Parts.FixedRotation.] 

 

 [Note, that Connections.branch , Connections.root , Connections.potentialRoot  do not generate 

equations. They only generate nodes and branches in the virtual graph for analysis purposes.] 

9.4.2 Converting the Connection Graph into Trees and Generatin g Connection 
Equations  

Before connect(.. . )  equations are generated, the virtual connection graph is transformed into a set of spanning 

trees by removing breakable branches from the graph. This is performed in the following way: 

1. Every root node defined via the ñConnections.root(..) ò statement is a definite root of one spanning 

tree. 

2. The virtual connection graph may consist of sets of subgraphs that are not connected together. Every 

subgraph in this set shall have at least one root node or one potential root node in a simulation model. If a 

graph of this set does not contain any root node, then one potential root node in this subgraph that has the 

lowest priority number is selected to be the root of that subgraph. The selection can be inquired in a class 

with function Connections.isRoot(..) , see table above. 
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3. If there are n selected roots in a subgraph, then breakable branches have to be removed such that the result 

shall be a set of n spanning trees with the selected root nodes as roots. 

After this analysis, the connection equations are generated in the following way: 

1. For every breakable branch [i.e., a connect(A,B)  equation,] in one of the spanning trees, the connection 

equations are generated according to Section 9.2 9.2. 

2. For every breakable branch not in any of the spanning trees, the connection equations are generated 

according to Section 9.2 9.2, except for overdetermined type or record instances R. Here the equations ñ0 

= R.equalityConstraint(A.R,B.R) ò are generated instead of ñA.R = B.R ò. 

9.4.3 Examples of Overconstrained Connection Graphs  

 [Example: 

  

 

Figure 9-2.  Example of a virtual connection graph. 

] 

9.4.3.1 An Overdetermined Connector for Power Systems  

[An overdetermined connector for power systems based on the transformation theory of Park may be defined as: 
 

type  AC_Angle "Angle of source, e.g., rotor of generator"  

  extends  Modelica.SIunits.Angle; // AC_Angle is a Real number  

                                  // with unit = "rad"  

   function  equalityConstraint  

    input   AC_Angle theta1;  

    input   AC_Angle theta2;  

    output  Real residue[0] "No constraints"  

  algorithm  

    /* make sure that theta1 and theta2 from  

       joining branches are identical */  

    assert(abs(theta1 ï theta2) < 1.e - 10, "Consistent angles" );  

  end  equalityConstraint;  

end  AC_Angle;  

 

connector  AC_Plug "3 - phase alternating current connector"  

  import  SI = Modelica.SIunits;  

  AC_Angle        theta;  

  SI.Voltage      v[3] "Voltages resolved in AC_Angle frame";  

  flow  SI.Current i[3] "Currents resolved in AC_Angle frame";  

end  AC_Plug;  

root 

potential root 

node 

nonbreakable branch 

(Connections.branch) 

breakable branch 

(connect) 

 removed breakable  

branch to get tree 
selected root selected 

root 

selected (potential) 

root 
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The currents and voltages in the connector are defined relatively to the harmonic, high-frequency signal of a 

power source that is essentially described by angle theta of the rotor of the source. This allows much faster 

simulations, since the basic high frequency signal of the power source is not part of the differential equations. For 

example, when the source and the rest of the line operates with constant frequency (= nominal case), then 

AC_Plug.v  and AC_Plug.i  are constant. In this case a variable step integrator can select large time steps. An 

element, such as a 3-phase inductor, may be implemented as: 

model  AC_Inductor  

  parameter  Real X[3,3], Y[3,3];  // component constants  

  AC_plug p;  

  AC_plug n;  

equation  

  Connections.branch(p.theta,n.theta); //branch in virtual graph  

                                       // since n.theta = p.theta  

  n.theta  = p.theta;            // pass angle theta between plugs  

  omega    = der (p.theta);       // frequency of source  

  zeros(3) = p.i + n.i;  

  X* der (p.i) + omega*Y*p.i = p.v ï n.v;  

end  AC_In ductor  

At the place where the source frequency, i.e., essentially variable theta, is defined, a Connections.root(..)  

must be present: 

  AC_plug p;  

equation  

  Connections.root(p.theta);  

  der (p.theta) = 2*Modelica.Constants.pi*50   // 50 Hz;  

The graph analysis performed with the virtual connection graph identifies the connectors, where the AC_Angle  

needs not to be passed between components, in order to avoid redundant equations. 

9.4.3.2 An Overdetermined Connector for 3 -dimensional Mechanical Systems  

An overdetermined connector for 3-dimensional mechanical systems may be defined as: 

type  TransformationMatrix = Real[3,3];  

 

type  Orientation "Orientation from frame 1 to frame 2"  

  extends TransformationMatrix ;  

 

  function  equalityConstraint  

    input   Orientation R1 "R otation from inertial frame to frame 1";  

    input   Orientation R2 "Rotation from inertial frame to frame 2";  

    output  Real residue[3];  

  protected  

    Orientation R_rel "Relative Rotation from frame 1 to frame 2";  

  algorithm  

    R_rel = R2*transpose(R1 );  

    /* If frame_1 and frame_2 are identical, R_rel must be  

       the unit matrix. If they are close together, R_rel can be  

       linearized yielding:  

         R_rel = [    1,  phi3, - phi2;  

                  - phi3,     1,  phi1;  

                   phi 2, - phi1,     1 ];  

       where phi1, phi2, phi3 are the small rotation angles around  

       axis x, y, z of frame 1 to rotate frame 1 into frame 2 .  

       The atan2 is used to handle large rotation angles, but does not           

       modify the result f or small angles.  

    */  

    residue := {  Modelica.Math.atan2( R_rel[2, 3] , R_rel[1, 1]) ,  

                 Modelica.Math.atan2( R_rel[3, 1], R_rel[2, 2]),  

                 Modelica.Math.atan2( R_rel[1, 2] , R_rel[3, 3]) };  

  end  equalityConstraint;  

end  Orientat ion;  

 

connector  Frame "3 - dimensional mechanical connector"  

  import  SI = Modelica.SIunits;  
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  SI.Position    r[3] "Vector from inertial frame to Frame";  

  Orientation    R    "Orientation from inertial frame to Frame";  

  flow  SI.Force  f[3] "Cut - force resol ved in Frame";  

  flow  SI.Torque t[3] "Cut - torque resolved in Frame";  

end  Frame;  

A fixed translation from a frame A to a frame B may be defined as: 

model  FixedTranslation  

  parameter  Modelica.SIunits.Position r[3];  

  Frame frame_a, frame_b;  

equation  

  Connections.branch(frame_a.R, frame_b.R);  

  frame_b.r = frame_a.r + transpose(frame_a.R)*r;  

  frame_b.R = frame_a.R;  

  zeros(3)  = frame_a.f + frame_b.f;  

  zeros(3)  = frame_a.t + frame_b.t + cross(r, frame_b.f);  

end  FixedTranslation;  

Since the transformation matrix frame_a.R  is algebraically coupled with frame_b.R , a branch in the virtual 

connection graph has to be defined. At the inertial system, the orientation is consistently initialized and therefore 

the orientation in the inertial system connector has to be defined as root: 

model  InertialSystem  

  Frame frame_b;  

equation  

  Connections.root(frame_b.R);  

  frame_b.r = zeros(3);  

  frame_b.R = identity(3);  

end  InertialSystem;  

] 
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Chapter 10   
 
 
Arrays  

 

An array can be regarded as a collection of values, all of the same type. Modelica arrays can be multidimensional 

and are ñrectangular,ò which in the case of matrices has the consequence that all rows in a matrix have equal 

length, and all columns have equal length. 

Each array has a certain dimensionality, i.e., number of dimensions. The degenerate case of a scalar variable is 

not really an array, but can be regarded as an array with zero dimensions. Vectors have one dimension, matrices 

have two dimensions, etc. [So-called row vectors and column vectors do not exist in Modelica and cannot be 

distinguished since vectors have only one dimension. If distinguishing these is desired, row matrices and column 

matrices are available, being the corresponding two-dimensional entities. However, in practice this is seldom 

needed since the usual matrix arithmetic and linear algebra operations have been defined to give the expected 

behavior when operating on Modelica vectors and matrices.] 

Modelica is a strongly typed language, which also applies to array types. The number of dimensions of an 

array is fixed and cannot be changed at run-time [in order to permit strong type checking and efficient 

implementation.] However, the sizes of array dimensions can be computed at run-time, [allowing fairly generic 

array manipulation code to be written as well as interfacing to standard numeric libraries implemented in other 

programming languages.] 

An array is allocated by declaring an array variable or calling an array constructor. Elements of an array can be 

indexed by Integer , Boolean , or enumeration  values. 

10.1 Array Declarations  

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays of 

more than two dimensions. [There is no distinguishing between a row and column vector.] 

The following table shows the two possible forms of declarations and defines the terminology. C is a 

placeholder for any class, including the built-in type classes Real, Integer, Boolean, String, and enumeration 

types. The type of a dimension upper bound expression, e.g. n, m, p,... in the table below, need to be a subtype of 

Integer or EB for a class EB that is an enumeration type or subtype of the Boolean type. Colon (: ) indicates that 

the dimension upper bound is unknown and is a subtype of Integer.  

Upper and lower array dimension index bounds are described in Section 10.1.1 10.1.1. 

An array indexed by Boolean or enumeration type can only be used in the following ways: 

¶ Subscripted using expressions of the appropriate type (i.e. Boolean or the enumerated type) 

¶ Binding equations of the form x1  = x2  as well as declaration assignments of the form x1  :=  x2  are allowed 

for arrays independent of whether the index types of dimensions are subtypes of Integer, Boolean, or 

enumeration types. 

Table  10-1. General forms of declaration of arrays. 
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Table 10-1. General forms of declaration of arrays. 

Modelica form 1 Modelica form 2 # dimensions Designation Explanation 

C x; C x; 0 Scalar Scalar 

C[n] x; C x[n]; 1 Vector n ï Vector 

C[EB] x; C x[EB] 1 Vector Vector index by enumeration or 

Boolean type EB  

C[n, m] x; C x[n, m]; 2 Matrix n x m Matrix 

C[n1, n2, é, nk] x; C x[n1, n2, é, nk]; k Array Array with k dimensions (k>=0). 

 [The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at 

redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 is the 

traditional way of array declarations in languages such as Fortran, C, C++. 

Real[:]  v1, v2      // vectors v1 and v2  have unknown sizes. The actual sizes may be different. 

It is possible to mix the two declaration forms although it might be confusing. 

Real[3,2] x[4,5];    // x has t ype  Real[4,5,3,2];  

The reason for this order is given by examples such as: 
 

type  R3=Real[3];  

R3 a;  

R3 b[1]={a};  

Real[3] c[1]=b;  

Using a type for ñaò and ñbò in this way is normal, and substituting a type by its definition allow ñcò. 

A vector y indexed by enumeration values 

type  TwoEnums = enumeration (one,two);  

Real[TwoEnums] y;  

]  

Zero-valued dimensions are allowed, so: C x[0];  declares an empty vector and: C x[0,3];  an empty matrix. 

[Special cases:  

Table  10-2. Declaration of arrays as 1-vectors, row-vectors, or column-vectors of arrays. 

Table 10-2. Declaration of arrays as 1-vectors, row-vectors, or column-vectors of arrays. 

Modelica form 1 Modelica form 2 # dimensions Designation Explanation 

C[1] x; C x[1]; 1 Vector 1 ï Vector, representing a scalar 

C[1,1] x; C x[1, 1]; 2 Matrix 1 x 1 ï Matrix, representing a scalar 

C[n,1] x; C x[n, 1]; 2 Matrix n x 1 ï Matrix, representing a column 

C[1,n] x; C x[1, n]; 2 Matrix 1 x n ï Matrix, representing a row 

]  

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions 

from the component declaration and subsequent dimensions from the maximally expanded component type. A 

type is maximally expanded, if it is either one of the built-in types (Real, Integer, Boolean, String, enumeration 

type) or it is not a type class. Before operator overloading is applied, a type class of a variable is maximally 

expanded. 

[Example: 

type  Voltage = Real(unit = "V");  

type  Current = Real(unit = "A");  

connector  Pin  

  Voltage      v;        // type class of v = Voltage,  type of v = Real  

  flow  Current i;        // type class of  i = Current,  type of i = Real  
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end  Pin;  

type  MultiPin = Pin[5];  

 

MultiPin[4]  p;          // type class of p is MultiPin, type of p is Pin[4,5];  

 

type  Point = Real[3];  

Point p1[10];  

Real  p2[10,3];  

The components p1 and p2 have identical types. 

p2[5] = p1[2]+ p2[4];    // equivalent to   p2[5,:] = p1[2,:] + p 2[4,:]  

Real r[3] = p1[2];       // equivalent to   r[3] = p1[2,:]  

] 

[Automatic assertions at simulation time: 

Let A be a declared array and i be the declared maximum dimension size of the di -dimension, then an assert 

statement assert(i>=0, ...)  is generated provided this assertion cannot be checked at compile time. It is a 

quality of implementation issue to generate a good error message if the assertion fails. 

Let A be a declared array and i be an index accessing an index of the di -dimension. Then for every such 

index-access an assert statement assert(i>=1 and i<=size(A,di), ... )  is generated, provided this 

assertion cannot be checked at compile time. 

For efficiency reasons, these implicit assert statement may be optionally suppressed.] 

10.1.1 Array  Dimension Lower and Upper Index Bounds  

The lower and upper index bounds for a dimension of an array indexed by Integer , Boolean , or enumeration  

values are as follows: 

¶ An array dimension indexed by integers has a lower bound of 1 and an upper bound being the size of the 

dimension. 

¶ An array dimension indexed by Boolean  values has the lower bound false  and the upper bound true . 

¶ An array dimension indexed by enumeration  values of the type E=enumeration (e1, e2, ..., en) has the 

lower bound E.e1  and the upper bound E.en . 

10.2 Flexible  Array  Sizes 

Regarding flexible array sizes and resizing of arrays in functions, see Section 12.4.5 12.4.5. 

10.3 Built -in  Array  Functions  

Modelica provides a number of built-in functions that are applicable to arrays. 

The following promote  function cannot be used in Modelica, but is utilized below to define other array operators 

and functions: 

 

Table 10-3. Promote function (cannot be used in Modelica). 

promote(A,n)  Fills dimensions of size 1 from the right to array A upto dimension n, where "n >= 

ndims(A)" is required. Let C = promote(A,n), with nA=ndims(A), then ndims(C) 

= n, size(C,j) = size(A,j) for 1 <= j <= nA, size(C,j) = 1 for nA+1 <= j <= n, 

C[i_1, ..., i_nA, 1, ..., 1] = A[i_1, ..., i_nA] 

[The function promote  cannot be used in Modelica, because the number of dimensions of the returned array 

cannot be determined at compile time if n is a variable. Below, promote  is only used for constant n. 
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Some examples of using the functions defined in the following Section 10.3.1 10.3.1 to Section 10.3.5 10.3.5:     

Real x[4,1,6];  

size(x,1) = 4;  

size(x);        // vector with elements 4, 1, 6  

size(2*x+x ) = size(x);  

Real[3] v1 = fill(1.0, 3);  

 Real[3,1] m = matrix(v1);  

Real[3] v2 = vec tor(m);  

Boolean check[3,4] = fill(true, 3, 4);  

] 

10.3.1 Array Dimension  and Size Functions  

The following built-in functions for array dimensions and dimension sizes are provided: 

Table  10-3. Built-in array dimension and size functions. 

Table 10-4. Built-in array dimension and size functions. 

Modelica Explanation 

ndims(A)  Returns the number of dimensions k of expression A, with k >= 0. 

size(A,i)  Returns the size of dimension i of array expression A where i shall be > 0 and <= 

ndims(A). 

size(A)  Returns a vector of length ndims(A) containing the dimension sizes of A. 

10.3.2 Dimensionality Conversion Functions   

The following built-in conversion functions convert scalars, vectors, and arrays to scalars, vectors, or matrices by 

adding or removing 1-sized dimensions. 

Table 10-5 10-4. Built-in dimensionality conversion functions. 

Modelica Explanation 

scalar(A)  Returns the single element of array A. size(A,i) = 1 is required for 1 <= i <= 

ndims(A). 

vector(A)  Returns a 1-vector, if A is a scalar and otherwise returns a vector containing all 

the elements of the array, provided there is at most one dimension size > 1.  

matrix(A)  Returns promote(A,2), if A is a scalar or vector and otherwise returns the elements 

of the first two dimensions as a matrix. size(A,i) = 1 is required for 2 < i <= 

ndims(A). 

10.3.3 Specialized Array Constructor Functions  

An array constructor function constructs and returns an array computed from its arguments. Most of the 

constructor functions in the table below construct an array by filling in values according to a certain pattern, in 

several cases just giving all array elements the same value. The general array constructor with syntax array  (é) 

or {é} is described in Section 10.4 10.4. 

Table 10-6 10-5. Specialized array constructor functions. 

Modelica Explanation 

identity(n)  Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at 

the other places. 

diagonal(v)  Returns a square matrix with the elements of vector v on the diagonal and all other 



      135 

elements zero. 

zeros(n 1,n 2,n 3,...

)  
Returns the n1 x n2 x n3 x ... Integer array with all elements equal to zero (ni >= 0). 

The function need one or more arguments, that is zeros() is not legal. 

ones(n 1,n 2,n 3,...)  Return the n1 x n2 x n3 x ... Integer array with all elements equal to one (ni >=0 ). 

The function need one or more arguments, that is ones() is not legal. 

fill(s,n 1,n 2,n 3, 

...)  
Returns the n1 x n2 x n3 x ... array with all elements equal to scalar or array 

expression s (ni >= 0). The returned array has the same type as s.  

Recursive definition:  fill (s,n1,n2,n3, ...) = fill (fill (s,n2,n3, ...), n1); 

fill (s,n)={s,s,é, s} 

The function needs two or more arguments; that is fill(s) is not legal. 

linspace(x1,x2,n)  Returns a Real vector with n equally spaced elements, such that 

v=l inspace (x1,x2,n),  

v[i] = x1 + (x2-x1)*(i -1)/(n-1) for 1 <= i <= n. It is required that n >= 2. The 

arguments x1 and x2 shall be numeric scalar expressions. 

10.3.4 Reduction  Functions and Operators  

A reduction function ñreducesò an array (or several scalars) to one value (normally a scalar - but the sum 

reduction function may give an array as result and also be applied to an operator record). Note that none of these 

operators (particularly min and max) generate events themselves (but arguments could generate events). The 

restriction on the type of the input in section 10.3.4 10.3.4.1 for reduction expressions also apply to the array 

elements/scalar inputs for the reduction operator with the same name.  

The sum reduction function (both variants) may be applied to an operator record, provided that the operator 

record defines '0' and '+'. It is then assumed to form an additive group. 

The following reduction functions are available: 

Table 10-7 10-6. Array reduction functions and operators. 

Modelica Explanation 

min(A)  Returns the least element of array expression A; as defined by <. 

min(x,y)  Returns the least element of the scalars x and y; as defined by <. 

min(  

 e(i, ..., j) for  

 i in  u, ...,  

 j in  v)  

Also described in Section 10.3.4.1 10.3.4.1  

Returns the least value (as defined by <) of the scalar expression e(i, ..., j) 

evaluated for all combinations of i in u, ..., j in v: 

max(A)  Returns the greatest element of array expression A; as defined by >. 

max(x,y)  Returns the greatest element of the scalars x and y; as defined by >. 

max(  

 e(i, ..., j) for  

 i in  u, ...,  

 j in  v)  

Also described in Section 10.3.4.1 10.3.4.1   

Returns the greatest value (as defined by >) of the scalar expression e(i, ..., j) 

evaluated for all combinations of i in u, ..., j in v:   

sum(A)  Returns the scalar sum of all the elements of array expression:   

A[1,...,1]+A[2,...,1]+....+A[end,...,1]+A[end,...,end] 

sum(  

 e(i, ..., j) for  

 i in  u, ...,  

 j in  v)  

Also described in Section 10.3.4.1 10.3.4.1  

Returns the sum of the expression e(i, ..., j) evaluated for all combinations of i in 

u, ..., j in v:  e(u[1],... ,v[1])+e(u[2],... ,v[1])+... +e(u[end],... 

,v[1])+...+e(u[end],... ,v[end]) 

The type of sum(e(i, ..., j) for  i in u, ..., j in v) is the same as the type of e(i,...j). 

product(A)  Returns the scalar product of all the elements of array expression A. 

A[1,...,1]*A[2,...,1]*....*A[end,...,1]*A[end,...,end] 
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product(  

 e(i, ..., j) for  

 i in  u, ...,  

 j in  v)  

Also described in Section 10.3.4.1 10.3.4.1.   

Returns the product of the scalar expression e(i, ..., j) evaluated for all 

combinations of i in u, ..., j in v:   e(u[1],...,v[1])*e(u[2],...,v[1])*... 

*(u[end],...,v[1])*...*e(u[end],...,v[end]) 

The type of product(e(i, ..., j) for  i in u, ..., j in v) is the same as the type of 

e(i,...j). 

10.3.4.1 Reduction Expressions  

An expression: 

function - name "(" expression1 for  iterators ")"  

is a reduction-expression. The expressions in the iterators of a reduction-expression shall be vector expressions. 

They are evaluated once for each reduction-expression, and are evaluated in the scope immediately enclosing the 

reduction-expression.  

For an iterator: 

IDENT in  expression2  

the loop-variable, IDENT, is in scope inside expression1 . The loop-variable may hide other variables, as in for-

clauses. The result depends on the function - name, and currently the only legal function-names are the built-in 

operators array , sum, product , min , and max. For array, see Section 10.4 10.4. If function - name is sum, 

product , min , or max the result is of the same type as expression1  and is constructed by evaluating 

expression1  for each value of the loop-variable and computing the sum, product , min , or max of the 

computed elements. For deduction of ranges, see Section 11.2.2.1 11.2.2.1; and for using types as ranges see 

Section 11.2.2.2 11.2.2.2. 

 

 

 

Table 10-8. Reduction expressions with iterators. 

Function-name Restriction on expression1 Result if expression2 is empty 

sum Integer or Real zeros(é) 

product  Scalar Integer or Real 1 

min  Scalar enumeration, 

Boolean, Integer or Real 

Greatest value of type ( 

Modelica.Constants.inf  

for Real)  

max Scalar enumeration, 

Boolean, Integer or Real 

Least value of type (  

- Modelica.Constants.inf  

for Real) 

[Example: 

sum(i for  i in  1:10)         // Gives  =ä=

10

1i
i 1+2+...+10=55  

// Read it as: compute the sum of i for  i in the range 1 to 10.  

sum(i^2 for  i in  {1,3,7,6})  // Gives  
{ }

=äÍ

2

6731i
i 1+9+49+36=95  

{product(j for  j in  1:i) for  i in  0:4} // Gives {1,1,2,6,24}  

max(i^2 for  i in  {3,7,6})    // Gives 49  

] 
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10.3.5 Matrix  and Vector Algebra  Functions  

The following set of built-in matrix and vector algebra functions are available. The function transpose can be 

applied to any matrix. The functions outerProduct, symmetric, cross and skew require Real/Integer vector(s) or 

matrix as input(s) and returns a Real vector or matrix: 

Table 10-9 10-7. Matrix and vector algebra functions. 

Modelica Explanation 

transpose(A)  Permutes the first two dimensions of array A. It is an error, if array A does not 

have at least 2 dimensions. 

outerProduct(v1,v2

)  
Returns the outer product of vectors v1 and v2 ( = matrix(v1)*transpose( 

matrix(v2) ) ). 

symmetric(A)  Returns a matrix where the diagonal elements and the elements above the 

diagonal are identical to the corresponding elements of matrix A and where the 

elements below the diagonal are set equal to the elements above the diagonal of 

A, i.e., B := symmetric(A) -> B[i,j] := A[i,j], if i <= j, B[i,j] := A[j,i], if i > j.  

cross(x,y)  Returns the cross product of the 3-vectors x and y, i.e.   

cross(x,y) = vector( [ x[2]*y[3]-x[3]*y[2];  x[3]*y[1] -x[1]*y[3];  x[1]*y[2] -

x[2]*y[1] ] );  

skew(x)  Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e.,   

cross(x,y) = skew(x)*y;  skew(x) = [0, -x[3], x[2];  x[3], 0, -x[1];  -x[2], x[1], 0]; 

10.4 Vector, Matrix and Array Constructors  

The constructor function array(A,B,C,...)  constructs an array from its arguments according to the following 

rules: 

¶ Size matching: All arguments must have the same sizes, i.e., size(A)=size(B)=size(C)= ... 

¶ All arguments must be type compatible expressions (Section 6.6 6.6) giving the type of the elements. The 

data type of the result array is the maximally expanded type of the arguments. Real and Integer subtypes 

can be mixed resulting in a Real result array where the Integer numbers have been transformed to Real 

numbers. 

¶ Each application of this constructor function adds a one-sized dimension to the left in the result compared to 

the dimensions of the argument arrays, i.e., ndims(array(A,B,C)) = ndim s(A) + 1 = ndims(B) + 

1, ... 

¶ {A, B, C, ...}  is a shorthand notation for array(A, B, C, ...) . 

¶ There must be at least one argument [i.e., array()  or {}  is not defined]. 

[Examples: 

{1,2,3}   is a 3-vector of type Integer. 

{{11,12,13}, {21,22,23}}  is a 2x3 matrix of type Integer 

{{{1.0, 2.0, 3.0}}}  is a 1x1x3 array of type Real. 

Real[3] v = array(1, 2, 3.0);  

type  Angle = Real(unit="rad");     

parameter  Angle alph a = 2.0;     // type of alpha is Real.  

// array(alpha, 2, 3.0) or {alpha, 2, 3.0} is a 3 - vector of type Real.  

Angle[3] a = {1.0, alpha, 4};   // type of a is Real[3].  

] 

10.4.1 Array Constructor with Iterators  

An expression: 
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"{" expression for  iterators "}"  

or 

arr ay "(" expression for  iterators ")"  

is an array constructor with iterators. The expressions inside the iterators of an array constructor shall be vector 

expressions. They are evaluated once for each array constructor, and is are evaluated in the scope immediately 

enclosing the array constructor.  

For an iterator: 

IDENT in  array_expression  

the loop-variable, IDENT, is in scope inside expression in the array construction. The loop-variable may hide other 

variables, as in for-clauses. The loop-variable has the same type as the type of the elements of array_expression; 

and can be simple type as well as a record type. The loop-variable will have the same type for the entire loop - i.e. 

for an array_expression {1,3.2} the iterator will have the the type of the type-compatible expression (Real) for all 

iterations. For deduction of ranges, see Section 11.2.2.1 11.2.2.1; and for using types as range see Section 

11.2.2.2 11.2.2.2. 

 

10.4.1.1 Array Constructor with One Iterator  

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of the loop-

variable and forming an array of the result. 

[Example: 

array(i for  i in  1:10)  

// Gives the vector 1:10={1,2,3,...,10}  

 

{r for  r in  1.0 : 1.5 : 5.5}  

// Gives the vector 1.0:1.5:5.5={1.0, 2.5, 4.0, 5.5}  

 

{i^2 for  i in  {1,3,7,6}}  

// Gives the vector {1, 9, 49,  36}  

10.4.1.2 Array Constructor with Several Iterators  

The notation with several iterators is a shorthand notation for nested array constructors. The notation can be 

expanded into the usual form by replacing each ', ' by '}  for ' and prepending the array constructor with a '{ '. 

[Example: 

Real hilb[:,:]= {  ( 1/(i+j - 1) for  i in  1:n, j in  1:n};  

Real hilb2[:,:]={{  ( 1/(i+j - 1) for  j in  1:n} for  i in  1:n} ;  

10.4.2 Array Concatenation  

The function cat(k,A,B,C,...)  concatenates arrays A,B,C,... along dimension k according to the following 

rules: 

¶ Arrays A, B, C, ... must have the same number of dimensions, i.e., ndims(A) =  ndims(B) = ... 

¶ Arrays A, B, C, ... must be type compatible expressions (Section 6.6 6.6) giving the type of the elements of 

the result. The maximally expanded types should be equivalent. Real and Integer subtypes can be mixed 

resulting in a Real result array where the Integer numbers have been transformed to Real numbers.  

¶ k has to characterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C); k shall be an 

integer number. 

¶ Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of 

dimension k, i.e., size(A,j) = size(B,j), for 1 <= j <= ndims(A) and j <> k. 
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[Examples: 

Real[2,3]  r1  = cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});  

Real[2,6]  r2  = cat(2, r1, 2*r1);  

] 

Concatenation is formally defined according to: 

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) = ...., then 

size(R,k) = size(A,k) + size(B,k) + size(C,k) + ... 

size(R,j) = size(A,j) = size(B,j) = size(C,j) = ...., for 1 <= j <= n and j <> k. 

R[i_1, ..., i_k, ..., i_n] = A[i_1, ..., i_k, ..., i_n], for i_k <= size(A,k), 

R[i_1, ..., i_k, ..., i_n] = B[i_1, ..., i_k - size(A,i), ..., i_n], for i_k <= size(A,k) + size(B,k), 

   .... 

where 1 <= i_j <= size(R,j) for 1 <= j <= n. 

10.4.2.1 Array Concatenation along First and Second Dimensions  

For convenience, a special syntax is supported for the concatenation along the first and second dimensions. 

¶ Concatenation along first dimension:  

[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where  

n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A, 

B, C before the operation is carried out, in order that the operands have the same number of dimensions 

which will be at least two. 

¶ Concatenation along second dimension:  

[A, B, C, ...] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where  

n = max(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the right of A, 

B, C before the operation is carried out, especially that each operand has at least two dimensions. 

¶ The two forms can be mixed. [...,...] has higher precedence than [...;...], e.g., [a, b; c, d] is parsed as [[a,b]; 

[c,d]]. 

¶ [A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a matrix with the 

elements of A, if A is a scalar or a vector. 

¶ There must be at least one argument (i.e. [] is not defined) 

 [Examples:   

Real s1, s2, v1[n1], v2[n2], M1[m1,n],  

     M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k], K2[m2,n,k];  

[v1;v2]   is a (n1+n2) x 1  matrix  

[M1;M2]   is a (m1+m2) x n matrix 

[M3,M4]   is a n x (m1+m2) matrix 

[K1;K2]   is a (m1+m2) x n x k array 

[s1;s2]   is a 2 x 1 matrix  

[s1,s1]   is a 1 x 2 matrix 

[s1 ] is a 1 x 1 matrix 

[v1]  is a n1 x 1 matrix 

Real[3] v1 = array(1, 2, 3);  

Real[3] v2 = {4, 5, 6};  

Real[3,2] m1 = [v1, v2];  

Real[3,2] m2 = [v1, [4;5;6]];   // m1 = m2  

Real[2,3] m3  = [1, 2, 3; 4, 5, 6];  

Real[1,3] m4 = [1, 2, 3];  

Real[3,1] m5 = [1; 2; 3];  

] 
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10.4.3 Vector Construction  

Vectors can be constructed with the general array constructor, e.g., Real[3] v = {1,2,3} . 

The range vector operator or colon operator of simple-expression can be used instead of or in combination with 

this general constructor to construct Real, Integer, Boolean or enumeration type vectors. Semantics of the colon 

operator: 

1. j : k  is the Integer vector {j, j+1, ..., k}, if j and k are of type Integer. 

¶ j : k  is the Real vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real. 

¶ j : k  is a Real, Integer, Boolean, or enumeration type vector with zero elements, if j > k. 

¶ j : d : k  is the Integer vector {j, j+d, ..., j+n*d}, with n = div(k ï j, d), if j, d, and k are of type Integer. 

¶ j : d : k  is the Real vector {j, j+d, ..., j+n*d}, with n = floor((k-j)/d), if j, d, or k are of type Real. In order to 

avoid rounding issues for the length it is recommended to use {j+d*i for i in 0:n} or linspace(j, k, n+1) ï if 

the number of elements are known. 

¶ j : d : k  is a Real or Integer vector with zero elements, if d > 0 and j > k or if d < 0 and j < k. 

¶ false : true is the Boolean vector {false, true}. 

¶ j:j is {j} if j is Real, Integer, Boolean, or enumeration type. 

¶ E.ei : E.ej is the enumeration type vector { E.ei, ... E.ej} where E.ej> E.ei, and ei and ej belong to some 

enumeration type E=enumeration(...ei,...ej,...). 

[Examples: 

Real v1[5] = 2.7 : 6.8;  

Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7};  // = same as v1  

Boolean b1[2] = false:true;  

Colors = enumeration (red,blue,green);  

Colors ec[3] = Colors.red : Colors.green;  

] 

10.5 Array Indexing  

The array indexing operator name[ ...]  is used to access array elements for retrieval of their values or for 

updating these values. An indexing operation is subject to upper and lower array dimension index bounds (Section 

10.1.1 10.1.1). [An indexing operation is assumed to take constant time, i.e., largely independent of the size of the 

array.] The indexing operator takes two or more operands, where the first operand is the array to be indexed and 

the rest of the operands are index expressions: 

arrayname [ indexexpr1, indexexpr2, ...]  

A colon is used to denote all indices of one dimension. A vector expression can be used to pick out selected rows, 

columns and elements of vectors, matrices, and arrays. The number of dimensions of the expression is reduced by 

the number of scalar index arguments. If the number of index arguments is smaller than the number of dimensions 

of the array, the trailing indices will use ":". 

It is also possible to use the array access operator to assign to element/elements of an array in algorithm 

sections. If the index is an array the assignments take place in the order given by the index array. For assignments 

to arrays and elements of arrays, the entire right-hand side and the index on the left-hand side is are evaluated 

before any element is assigned a new value. 

 [Examples:  

a[:, j] is a vector of the j-th column of a, 

a[j] is a vector of the j-th row of a: a[j, :]  

a[j : k] is {[a[j], a[j+1], ... , a[k]}  

a[:,j : k] is [a[:,j], a[:,j+1], ... , a[:,k]],  

v[ 2:2:8]  = v[ {2,4,6,8} ]  .  
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v[{j,k}]:={2,3}; // Same as v[j]:=2; v[k]:=3;  

v[{1,1}]:={2,3}; // Same as v[1]:=3;  

if x  is a vector, x[1]  is a scalar, but the slice x[1:5]  is a vector (a vector-valued or colon index expression 

causes a vector to be returned).  

] 

[Examples given the declaration x[n,m], v[k], z[i,j,p] :   

Table  10-8. Examples of scalars vs. array slices created with the colon index. 

Table 10-10. Examples of scalars vs. array slices created with the colon index. 

Expression # dimensions Type of value 

x[1, 1]  0 Scalar 

x[:, 1]  1 n ï Vector 

x[1, :]  or x[1]  1 m ï Vector 

v[1:p]  1 p ï Vector 

x[1:p, :]  2 p x m ï Matrix 

x[1:1, :]  2 1 x m - "row" matrix 

x[{1, 3, 5}, :]  2 3 x m ï Matrix 

x[: , v]  2 n x k ï Matrix 

z[: , 3, :]  2 i x p ï Matrix 

x[scalar([1]), :]  1 m ï Vector 

x[vector([1]), :]  2 1 x m - "row" matrix 

] 

10.5.1 Indexing  with Boolean or Enumeration Values  

Arrays can be indexed using values of enumeration types or the Boolean  type, not only by integers. The type of 

the index should correspond to the type used for declaring the dimension of the array. 

[Example: 

  type  ShirtSizes  = enumeration ( small, medium, large, xlarge );  

  Real[ShirtSizes] w;  

  Real[Boolean]    b2;  

algorithm  

  w[ShirtSizes.large] := 2.28;  // Assign a value to an element of w  

b2[true]            := 10.0;  

b2[ShirtSizes.medium ] := 4; // Error, b2 was declared with Boolean dimensi on 

w[1] := 3; // Error, w was declared with ShirtSizes dimension  

] 

10.5.2 Indexing with end  

The expression end  may only appear inside array subscripts, and if used in the i:th subscript of an array 

expression A it is equivalent to size(A,i)  provided indices to A are a subtype of Integer. If used inside nested 

array subscripts it refers to the most closely nested array. 

[Examples:  

A[ end - 1, end ] is A[size(A,1) - 1,size(A,2)]  

A[v[ end ], end ] is A[v[size(v,1)],size(A,2)] // since the first end  is referring to end of v. 

]  
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10.6 Scalar, Vector, Matrix, and Array Operator Functions  

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.  

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype of 

Integer can also be used; the Integer expression is automatically converted to Real. 

The term numeric or numeric class is used below for a subtype of the Real or Integer type classes. 

10.6.1 Equality and Assignment  

Equality a=b  and assignment a:=b  of scalars, vectors, matrices, and arrays is defined element-wise and require 

both objects to have the same number of dimensions and corresponding dimension sizes. The operands need to be 

type equivalent. This is legal for the simple types and all types satisfying the requirements for a record, and is in 

the latter case applied to each component-element of the records.  

Table  10-9. Equality and assignment of arrays and scalars. 

Table 10-11. Equality and assignment of arrays and scalars. 

Type of a Type of b Result of a = b Operation (j=1:n, k=1:m) 

Scalar Scalar Scalar a = b 

Vector[n] Vector[n] Vector[n] a[j] = b[j] 

Matrix[n, m] Matrix[n, m] Matrix[n, m] a[j, k] = b[j, k] 

Array[n, m, é] Array[n, m, é] Array[n, m, é] a[j, k, é] = b[j, k, é] 

10.6.2 Array Element -wise Addition, Subtraction, and Stri ng Concatenation  

Addition a+b  and subtraction a- b of numeric scalars, vectors, matrices, and arrays is defined element-wise and 

require size(a)= size(b)  and a numeric type for a and b. Unary plus and minus are defined element-wise. 

Addition a+b of string scalars, vectors, matrices, and arrays is defined as element-wise string concatenation of 

corresponding elements from a and b, and require size(a) =size(b) . 

Table  10-10. Array addition, subtraction, and string concatenation. 

Table 10-12. Array addition, subtraction, and string concatenation. 

Type of a Type of b Result of a +/- b Operation c := a +/- b (j=1:n, k=1:m) 

Scalar Scalar Scalar c := a +/- b 

Vector[n] Vector[n] Vector[n] c[j] := a[j] +/- b[j]  

Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j, k] := a[j, k] +/- b[j, k] 

Array[n, m, é] Array[n, m, é] Array[n, m, é] c [j, k, é] := a[j, k, é] +/- b[j, k, é] 

Element-wise addition a.+b  and subtraction a. - b of numeric scalars, vectors, matrices or arrays a and b requires 

a numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b. Element-wise addition a.+b  of 

string scalars, vectors, matrices, and arrays is defined as element-wise string concatenation of corresponding 

elements from a and b, and require either size(a) = size(b) or scalar a or scalar b. 

 

Table 10-13 10-11. Array element-wise addition, subtraction, and string concatenation. 

Type of a Type of b Result of a .+/ . -  b Operation c := a .+/.- b (j=1:n, k=1:m) 

Scalar Scalar Scalar c := a +/- b 

Scalar Array[n, m, é] Array[n, m, é] c[j, k, é] := a +/- b[j, k, é] 

Array[n, m, é] Scalar Array[n, m, é] c[j, k, é] := a[j, k, é] +/- b 

Array[n, m, é] Array[n, m, é] Array[n, m, é] c [j, k, é] := a[j, k, é] +/- b[j, k, é] 
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Table 10-14. Unary operators. The element-wise (.+, .-) and normal (+, -) operators give the same results. 

Type of a Result of +/ -  a Operation c := +/- a (j=1:n, k=1:m) 

Scalar Scalar c :=  +/- a 

Array[n, m, é] Array[n, m, é] c[j, k, é] := +/-a[j, k, é] 

 

10.6.3 Array  Element -wise  Multipl ication  

Scalar multiplication s*a  or a*s  with numeric scalar s and numeric scalar, vector, matrix or array a is defined 

element-wise:  

Table 10-14 10-12. Scalar and scalar to array multiplication of numeric elements 

Type of s Type of a Type of s* a and a*s Operation c := s*a  or  c := a*s  (j=1:n, k=1:m) 

Scalar Scalar Scalar c := s * a 

Scalar Vector [n] Vector [n] c[j] := s* a[j] 

Scalar Matrix [n, m] Matrix [n, m] c[j, k] := s* a[j, k] 

Scalar Array[n, m, ...] Array [n, m, ...] c[j, k, ...] := s*a[j, k, ...] 

Element-wise multiplication a.*b  of numeric scalars, vectors, matrices or arrays a and b requires a numeric type 

class for a and b and either size(a) = size(b) or scalar a or scalar b. 

Table 10-15 10-13 . Array element-wise multiplication 

Type of a Type of b Type of a .* b Operation c:=a .* b (j=1:n, k=1:m) 

Scalar Scalar Scalar c := a * b 

Scalar Array[n, m, é] Array[n, m, é] c[j, k, é] := a* b[j, k, é] 

Array[n, m, é] Scalar Array[n, m, é] c[j, k, é] := a[j, k, é]* b 

Array[n, m, é] Array[n, m, ...] Array [n, m, ...] c[j, k, é] := a[j, k, é]* b[j, k, é] 

 

10.6.4 Matrix and Vector Multiplication of Numeric  Arrays  

Multiplication a*b  of numeric vectors and matrices is defined only for the following combinations:  

Table 10-16 10-14. Matrix and vector multiplication of arrays with numeric elements. 

Type of a Type of b Type of a* b Operation c := a*b 

Vector [n] Vector [n] Scalar c := sumk(a[k]*b[k]), k=1:n 

Vector [n] Matrix [n, m] Vector [m] c[j] := sumk(a[k]*b[k, j]), j=1:m, k=1:n 

Matrix [n, m] Vector [m] Vector [n] c[j] := sumk(a[j, k]*b[k])  

Matrix [n, m] Matrix [m, p] Matrix [n, p] c[i, j] = sumk(a[i, k]*b[k, j]), i=1:n, k=1:m, j=1:p 

[Example: 

Real A[3,3], x[3], b[3], v[3];  

A*x = b;  

x*A = b;                    // same as transpose([x])*A*b  

[v]*transpose([v])          // outer product  

v*A*v                       // scalar  

tranpose([v])*A*v           // vector with one element  

] 
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10.6.5 Division of Scalars or Numeric Arrays by Numeric Scalars  

Division a/s  of numeric scalars, vectors, matrices, or arrays a and numeric scalars s  is defined element-wise. The 

result is always of real type. In order to get integer division with truncation use the function div . 

Table 10-17 10-15. Division of scalars and arrays by numeric elements. 

Type of a Type of s Result of a / s Operation c := a / s (j=1:n, k=1:m) 

Scalar Scalar Scalar c := a / s 

Vector[n] Scalar Vector[n] c[k] := a[k] / s 

Matrix[n, m] Scalar Matrix[n, m] c[j, k] := a[j, k] / s 

Array[n, m, é] Scalar Array[n, m, é] c[j, k, é] := a[j, k, é] / s 

10.6.6 Array Element -wise Division  

Element-wise division a./b  of numeric scalars, vectors, matrices or arrays a and b requires a numeric type class 

for a and b and either size(a) = size(b) or scalar a or scalar b. The result is always of real type. In order to get 

integer division with truncation use the function div . 

Table 10-18 10-16 . Element-wise division of arrays 

Type of a Type of b Type of a ./ b Operation c:=a ./ b (j=1:n, k=1:m) 

Scalar Scalar Scalar c := a / b 

Scalar Array[n, m, é] Array[n, m, é] c[j, k, é] := a / b[j, k, é] 

Array[n, m, é] Scalar Array[n, m, é] c[j, k, é] := a[j, k, é] / b 

Array[n, m, é] Array[n, m, ...] Array [n, m, ...] c[j, k, é] := a[j, k, é] / b[j, k, é] 

[Element-wise division by scalar (./) and division by scalar (/) are identical: a./s = a/s. 

Example: 
 2. /[1,2;3,4]   // error, since 2.0/[1,2;3,4]  

 2 ./[1,2;3,4]  // fine, element - wise division  

This is a consequence of the parsing rules, since 2. is a lexical unit. Using a space after the literal solves the 

problem.] 

 

10.6.7 Exponentiation of Scalars of Numeric Elements  

Exponentiation "a^b " is defined as pow(double a,double b) in the ANSI C library if both "a" and "b" are Real 

scalars. A Real scalar value is returned. If "a" or "b" are Integer scalars, they are automatically promoted to 

"Real". Consequences of exceptional situations, such as (a==0.0 and b<=0.0, a<0 and b is not an integer) or 

overflow are undefined 

Element-wise exponentiation a.^b  of numeric scalars, vectors, matrices, or arrays a and b requires a numeric type 

class for a and b and either size(a) = size(b) or scalar a or scalar b. 

Table 10-19 10-17 . Element-wise exponentiation of arrays 

Type of a Type of b Type of a .^ b Operation c:=a .^ b (j=1:n, k=1:m) 

Scalar Scalar Scalar c := a ̂  b 

Scalar Array[n, m, é] Array[n, m, é] c[j, k, é] := a ^ b[j, k, é] 

Array[n, m, é] Scalar Array[n, m, é] c[j, k, é] := a[j, k, é] ^ b 

Array[n, m, é] Array[n, m, ...] Array [n, m, ...] c[j, k, é] := a[j, k, é] ^ b[j, k, é] 
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[Example: 
 2.^[1,2;3,4]   // error, since 2.0^[1,2;3,4]  

 2 .^[1,2;3,4]  // fine, element wise exponentiation  

This is a consequence of the parsing rules, i.e. since 2. could be a lexical unit it seen as a lexical unit; using a 

space after literals solves the problem.] 

 

10.6.8 Scalar Exponentiation of Square Matrices of Numeric Elements  

Exponentiation a^s  is defined if a is a square numeric matrix and s  is a scalar as a subtype of Integer with s>= 0. 

The exponentiation is done by repeated multiplication   

(e.g.: 

a^3 = a*a*a; a^0 = identity(size(a,1));  

assert(size(a,1)==size(a,2),"Matrix must be square");  

a^1 = a ;  

[Non-Integer exponents are forbidden, because this would require to computecomputing the eigenvalues and 

eigenvectors of ñaò and this is no longer an elementary operation].  

10.6.9 Slice O peration  

The following holds for slice operations: 

¶ If a is an array containing scalar components and m is a component of those components, the expression 

a.m  is interpreted as a slice operation. It returns the array of components {a[1].m, é}. 

¶ If m is also an array component, the slice operation is valid only if size(a[1].m)=size(a[2].m)= é  

¶ The slicing operation can be combined with indexing, e.g. a.m[1]. It returns the array of components 

{a[1].m[1], a[2].m[1], é}, and does not require that size(a[1].m)=size(a[2].m). The number of subscripts 

on m must not be greater than exactly correspond to the number of array dimension for m (the number can 

be smaller, in which case the missing trailing indices are assumed to be ":"), and is only valid if 

size(a[1].m[é])=size(a[2].m[é])..  

 [Example: The size-restriction on the operand is only applicable if the indexing on the second operand uses 

vectors or colon as in the example: 

 
      constant  Integer m=3;  

      Modelica.Blocks.Cont inuous.LowpassButterworth tf [ m]( n=2:(m+1) );  

      Real y[ m];  

      Real y2 ,y3 ;  

    equation  

      // Extract the x1 slice even though different x1's have different lengths  

      y=tf.x 1[1]  ;  // Legal, ={tf[1].x 1[1], tf[2].x 1[1 ], é tf[m].x 1[1]};  

 

      y2=s um(tf.x 1[:]); // Illegal  to extract all elements since they have  

                       // different lengths . Does not satisfy:  

                       // size(tf[1].x 1[:] ) =size(tf[2].x 1[:])=é =size(tf[ m].x 1[ :])  

       

      y3=sum(tf.x 1[1:2]); // Legal.  

      // Since x 1 has at least 2 elements in all tf,  and  

      // size(tf[1].x 1[1:2])=size(tf[2].x 1[1:2])=é =size(tf[ m].x 1[1:2])= { 2}  

In this example the different x1 vectors have different lengths, but it is still possible to perform some operations on 

them.] 
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10.6.10 Relational Operators  

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types, not for arrays, see 

Section 3.5 3.5 

10.6.11 Boolean Operators  

The operators, and  and or  take expressions of Boolean type, which are either scalars or arrays of matching 

dimensions. The operator not  takes an expression of Boolean type, which is either scalar or an array. The result is 

the element-wise logical operation. For short-circuit evaluation of and  and or  see Section 3.3 3.3. 

10.6.12 Vectorized Calls of Functions  

See Section 12.4.6 12.4.6. 

10.7 Empty Arrays  

Arrays may have dimension sizes of 0. E.g.  

Real x[0];                           // an empty vector  

Real A[0, 3], B[5, 0], C[0, 0];      // empty matrices  

Empty matrices can be constructed with the fill  function. E.g. 

Real    A[:,:]     = fill(0.0, 0, 1);         // a Real 0 x 1 matrix  

Boolean B[:, :, :] = fill(false, 0, 1, 0);    // a Boolean 0 x 1 x 0 matrix  

It is not possible to access an element of an empty matrix, e.g. v[j,k]  cannot be evaluated if v=[]  because the 

assertion fails that the index must be bigger than one.  

Size-requirements of operations, such as +, -, have also to be fulfilled if a dimension is zero. E.g. 

Real[3,0] A, B;  

Real[0,0] C;  

A + B    // fine, result is an empty matrix  

A + C    // error, sizes do not agree  

Multiplication of two empty matrices results in a zero matrix of corresponding numeric type if the result matrix 

has no zero dimension sizes, i.e.,  

Real[0,m]*Real[m,n]  = Real[0,n]  (empty matrix)  

Real[m,n]*Real[n,0]  = Real[m,0]  (empty matrix)  

Real[m,0]*Real[0,n]  = fill(0.0, m, n )  (non - empty matrix, with zero elements).  

 [Example: 

Real u[p], x[n], y[q], A[n,n], B[n,p], C[q,n], D[q,p];  

der (x) = A*x + B*u  

     y = C*x + D*u  

Assume n=0, p>0, q>0: Results in   y = D*u  

] 
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Chapter 11   
 
 
Statements  and Algorithm Sections  

Whereas equations are very well suited for physical modeling, there are situations where computations are more 

conveniently expressed as algorithms, i.e., sequences of statements. In this chapter we describe the algorithmic 

constructs that are available in Modelica.  

Statements are imperative constructs allowed in algorithm sections. 

11.1 Algorithm Sections  

Algorithm sections isAn algorithm section is comprised of the keyword algorithm  followed by a sequence of 

statements. The formal syntax is as follows: 

algorithm_section algorithm - section  :  

  [ initial  ] algorithm  { statement ";" | annotation  ";" }  

Equation equality = or any other kind of equation (see Chapter 8 Chapter 8) shall not be used in an algorithm 

section.  

11.1.1 Initial Algorithm  Sections  

See Section 8.6 8.6 for a description of both initial algorithm sections and initial equation sections. 

11.1.2 Execution of an algorithm in a model  

An algorithm section is conceptually a code fragment that remains together and the statements of an algorithm 

section are executed in the order of appearance. Whenever an algorithm section is invoked, all variables appearing 

on the left hand side of the assignment operator ":=" are initialized (at least conceptually):  

¶ A non-discrete variable is initialized with its start value (i.e. the value of the start-attribute).  

¶ A discrete variable v is initialized with pre(v).  

¶ If at least one element of an array appears on the left hand side of the assignment operator, then the 

complete array is initialized in this algorithm section. 

[Initialization is performed, in order that an algorithm section cannot introduce a "memory" (except in the case of 

discrete states which are explicitly given), which could invalidate the assumptions of a numerical integration 

algorithm. Note, a Modelica tool may change the evaluation of an algorithm section, provided the result is 

identical to the case, as if the above conceptual processing is performed. 

An algorithm section is treated as an atomic vector-equation, which is sorted together with all other equations. 

Conceptually the algorithm can be viewed as (lhs1, lhs2, é) = someFunction(nonLhs1, nonLhs2, é), where lhs 

are the variables assigned and nonLhs are other appearing variables. For the sorting process (BLT), every 
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algorithm section with N different left-hand side variables, is treated as an atomic N-dimensional vector-equation 

containing all variables appearing in the algorithm section. This guarantees that all N equations end up in an 

algebraic loop and the statements of the algorithm section remain together. 

Example: 

model Test   // wrong Modelica model (has 4 equations for 2 unknowns)  

   Real x[2](start={ - 11, - 22});  

algorithm       // conceptually: x = {1, - 22}  

   x[1] := 1;  

algorithm       // conceptually: x = { - 11,2}  

   x[2] := 2;  

end Test;  

] 

11.1.3 Execution of the algorithm in a function  

See section 12.4.4 12.4.4 ñInitialization and Declaration Assignments of Components in Functionsò. 

11.2 Statements  

Statements are imperative constructs allowed in algorithm sections. A flattened statement is identical to the 

corresponding nonflattened statement. 

Names in statements are found as follows:  

¶ If the name occurs inside an expression: it is first found among the lexically enclosing reduction functions 

(see Section 10.3.4 10.3.4) in order starting from the inner-most, and if not found it proceeds as if it were 

outside an expression: 

¶ Names in a statement are first found among the lexically enclosing for-statements in order starting from the 

inner-most, and if not found: 

¶ Names in a statement shall be found by looking up in the partially flattened enclosing class of the algorithm 

section.  

The syntax of statements is as follows: 

statement :  

  ( component_reference component - reference  ( ":=" expression | 

function_call_args function - call - args  )  

    | "(" outp ut_expression_list output - expression - list  ")" ":=" 

component_reference component - reference  function_call_args function - call - args  

    | break  

    | return  

    | if_statement if - statement  

    | for_statement for - statement  

    | while_statement while - statement  

    | when_statement when- statement  )  

  comment 

11.2.1 Simple Assignment  Statements  

The syntax of simple assignment statement is as follows: 

component_reference component - reference  ":=" expression  

The expression  is evaluated. The resulting value is stored into the variable denoted by 

component_reference component - reference . 
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11.2.1.1 Assignments from Called Function s with Multiple Results  

There is a special form of assignment statement that is used only when the right-hand side contains a call to a 

function with multiple results. The left-hand side contains a parenthesized, comma-separated list of variables 

receiving the results from the function call. A function with n results needs m<=n receiving variables on the left-

hand side, and the variables are assigned from left to right.  

( out1 , out2 , out3 ) := function_name ( in1 , in2 , in3 , in4 );  

It is possible to omit receiving variables from this list: 

( out1 ,, out3 ) := function_name ( in1 , in2 , in3 , in4 );  

 

[Example: The function f  called below has three results and two inputs: 

(a, b, c) := f(1.0, 2.0);  

(x[1], x[2], x[ 31]) := f(3,4);  

In the second example above x[1] is assigned twice ï first with the first output and then 

with the third output. For that case t he following will give t he same resul t:  

 (, x[2], x[ 1]) := f(3,4);  

] 

The syntax of an assignment statement with a call to a function with multiple results is as follows: 

"(" output_expression_list output - expression - list  ")" ":=" component_reference component -

reference  function_call _args function - call - args  

[Also see Section 8.3.1 8.3.1 regarding calling functions with multiple results within equations.] 

11.2.2 For-statement  

The syntax of a for-statement is as follows: 

  for  for_indices for - indices  loop  

     { statement  ";" }  

  end  for  

For-statements may optionally use several iterators (for_indices for - indices ), see Section 11.2.2.3 11.2.2.3 

for more information: 
 

for_indices for - indices :  

  for_index for - index  {"," for_index for - index }  

 

for_index for - index :  

  IDENT [ in  expression ]  

The following is an example of a prefix of a for-statement: 

 for  IDENT in  expression loop  

The expression  of a for-statement shall be a vector expression. It is evaluated once for each for-statement, and 

is evaluated in the scope immediately enclosing the for-statement. The loop-variable (IDENT) is in scope inside 

the loop-construct and shall not be assigned to. The loop-variable has the same type as the type of the elements of 

the vector expression. 

[Example: 

for  i in  1:10 loop              // i takes the values 1,2,3,...,10  

for  r in  1.0 : 1.5 : 5.5 loop   // r takes the values 1.0, 2.5, 4.0, 5.5  

for  i in  {1,3,6,7} loop         // i takes the values 1, 3, 6, 7  

for  i in  TwoEnums loop          // i  takes the values TwoEnums.one, TwoEnums.two  

                                                                                 // for 

TwoEnums = enumeration(one,two)  

The loop-variable may hide other variables as in the following example. Using another name for the loop-

variable is, however, strongly recommended. 
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  consta nt  Integer j=4;  

  Real x[j];  

equation  

  for  j in  1:j loop   // The loop - variable j takes the values 1,2,3,4  

    x[j]=j;          // Uses the loop - variable j  

  end  for ;  

] 

11.2.2.1 Implicit Iteration Ranges  

An iterator IDENT in  range - expr  without the in  range - expr  requires that the IDENT appears as the subscript 

of one or several subscripted expressions. The dimension size of the array expression in the indexed position is 

used to deduce the range - expr  as 1:size(array - expression,indexpos)  if the indices are a subtype of 

Integer, or as E.e1:E.en  if the indices are of an enumeration type E=enumeration(e1, é, en), or as 

false:true  if the indices are of type Boolean. If it is used to subscript several expressions, their ranges must be 

identical. The IDENT may also, inside a reduction-expression, array constructor expression, for-statement, or for-

equation, occur freely outside of subscript positions, but only as a reference to the variable IDENT, and not for 

deducing ranges. 

[Example: 

  Real x[4];  

  Real xsquared[:]={x[i]*x[i] for  i};  

  // Same as: {x[i]*x[i] for i in 1:size(x,1)}  

  Real xsquared2[size(x,1)];  

  Real xsquared3[size(x,1)];  

equation  

  for  i loop  // Same as: for i in 1:size(x,1) loop ...  

    xsquared2[i]=x[i]^2;  

  end  for ;  

algorithm  

  fo r i loop // Same as: for i in 1:size(x,1) loop ...  

    xsquared3[i] := x[i]^2;  

  end  for ;  

 

type  FourEnums= enumeration (one,two,three,four);  

  Real xe[FourEnums]= x;  

  Real xsquared3[FourEnums]={xe[i]*xe[i] for  i};  

  Real xsquared4[FourEnums]={xe[i]*xe[i] f or  i in  FourEnums};   

  Real xsquared5[FourEnums]={x[i]*x[i] for  i};  

] 

The size of an array ï the iteration range is evaluated on entry to the for-loop and the array size may not 

change during the execution of the for-loop.  

11.2.2.2 Types as Iteration Ranges  

The iteration range can be specified as Boolean  or as an enumeration type. This means iteration over the type 

from min to max, i.e. for Boolean it is the same as false:true  and for an enumeration E it is the same as 

E.min:E.max. This can be used for for  loops and reduction expressions. 

[Example: 
 

  type  FourEnums= enumeration (one,two,three,four);  

  Real x e[FourEnums];  

  Real xsquared1[FourEnums];  

  Real xsquared2[FourEnums]={xe[i]*xe[i] for  i in  FourEnums};  

equation  

  for  i i n FourEnums loop  

    xsquared1[i]=xe[i]^2;  

  end  for ;  

] 
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11.2.2.3 Nested For -Loops and Reduction Expressions  with Multiple Iterators  

The notation with several iterators is a shorthand notation for nested for-statements or for-equations (or reduction-

expressions). For for-statements or for-equations it can be expanded into the usual form by replacing each ñ,ò by 

óloop for ô and adding extra óend for ô. For reduction-expressions it can be expanded into the usual form by 

replacing each ó,ô by ó)  for ô and prepending the reduction-expression with ófunction - name(ó.  

[Example: 

  Real x[4,3];  

algorithm  

  for  j, i in  1:2 loop   

    // The loop - variable j takes the values 1,2,3,4 (due to use)  

    // The loop - variable i takes the values 1,2 (given r ange)  

    x[j,i]  : = j+i;  

  end  for ;  

] 

11.2.3 While -Statement  

The while-statement has the following syntax: 

while  expression loop  

  { statement  ";" }  

end  while  

The expression  of a while-statement shall be a scalar Boolean expression. The while-statement corresponds to 

while-statements in programming languages, and is formally defined as follows: 

1. The expression  of the while-statement is evaluated. 

2. If the expression  of the while-statement is false, the execution continues after the while-statement. 

3. If the expression  of the while-statement is true, the entire body of the while-statement is executed 

(except if a break-statement, see Section 11.2.4 11.2.4, or a return-statement, see Section 11.2.4 11.2.4, is 

executed), and then execution proceeds at step 1. 

11.2.4 Break -Statement  

The break-statement breaks the execution of the innermost while or for-loop enclosing the break-statement and 

continues execution after the while- or for-loop. It can only be used in a while- or for-loop in an algorithm section. 

It has the following syntax: 

break ;  

[Example (note this could alternatively use return):  

function  findValu e "Returns position of val or 0 if not found"  

  input  Integer x[:];  

  input  Integer val;  

  output  Integer index;  

algorithm  

  index := size(x,1);  

  while index >= 1 loop  

    if  x[index]== val then   

      break ;  

    else  

      index := index ï 1;  

    end  if ;  

  end  while;  

end  findValue;  

] 
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11.2.5 Return -Statements  

Can only be used inside functions, see Section 12.1.2 12.1.2. 

11.2.6 If-Statement  

If -statements have the following syntax: 

   if  expressio n then  

     { statement  ";" }  

   { elseif  expression then  

     { statement  ";" }  

   }  

   [ else  

     { statement  ";" }  

   ]  

   end  if;  

The expression  of an if- or elseif-clause must be scalar Boolean expression. One if-clause, and zero or more 

elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies of these if-, 

elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses sequentially until a 

condition that evaluates to true is found. If none of the conditions evaluate to true the body of the else-clause is 

selected (if an else-clause exists, otherwise no body is selected). In an algorithm section, the selected body is then 

executed. The bodies that are not selected have no effect on that model evaluation. 

11.2.7 When-Statements  

A when-statement has the following syntax: 

  when expression then  

    { statement  ";" }  

  { elsewhen  expression then  

    { statement  ";" } }  

  end  when 

The expres sion  of a when-statement shall be a discrete-time Boolean scalar or vector expression. The 

algorithmic statements within a when-statement are activated when the scalar or any one of the elements of the 

vector-expression becomes true. 

[Example: 

Algorithms are activated when x  becomes > 2: 

when x > 2 then   

  y1 := sin(x);   

  y3 := 2*x + y1+y2;    

end  when;  

The statements inside the when-statement are activated when either x  becomes > 2 or sample(0,2)  becomes 

true  or x  becomes less than 5: 

when {x > 2, sample (0,2), x < 5} then   

  y1 := sin(x);   

  y3 := 2*x + y1+y2;    

end  when;  

For when-statements in algorithm sections the order is significant and it is advisable to have only one assignment 

within the when-statement and instead use several algorithm sections having when-statements with identical 

conditions, e.g.: 

algorithm  

  when x > 2 then   

    y1 := sin(x);   

  end  when;  
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equation  

  y2 = sin(y1);  

algorithm  

  when x > 2 then   

    y3 := 2*x +y1+y2;   

  end  when;  

Merging the when-statements can lead to less efficient code and different models with different behavior 

depending on the order of the assignment to y1  and y3  in the algorithm. 

] 

11.2.7.1 Restrictions on When-Statements  

¶ A when-statement shall not be used within a function. 

¶ When-statements may not occur inside initial algorithms. 

¶ When-statements cannot be nested. 

¶ When-statements may not occur inside while, if, and for-clauses in algorithms.  

[Example: 

The following nested when-statement is invalid: 

when x > 2 then   

   when y1 > 3 then  

    y2 : = sin(x);   

  end  when;  

end  when;  

] 

11.2.7.2 Defining When -Statements by If -Statements  

A when-statement: 

algorithm  

  when {x>1, ..., y>p} then   

    ...  

  elsewhen  x > y.start then  

     ...  

  end  when;  

is similar to the following special if-statement, where Boolean b1[N];  and Boolean b2;  are necessary 

because the edge()  operator can only be applied to variables 

  Boolean b1[N](start={x.start>1, ..., y.start>p});  

  Boolean b2(start=x.start>y.start);  

algorithm  

  b1:={x>1, .. ., y>p};  

  b2:=x>y.start;  

 

  if  edge(b1[1]) or  edge(b1[2]) or  ... edge(b1[N]) then   

    ...  

  elseif  edge(b2) then  

     ...  

  end  if ;  

with edge(A)= A and not pre(A)  and the additional guarantee, that the statements within this special if-

statement are only evaluated at event instants. The difference compared to the when-statements is that e.g. ópreô 

may only be used on continuous-time real variables inside the body of a when-clause and not inside these if-

statements. 
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11.2.8 Special Statements  

These special statements have the same form and semantics as the corresponding equations, apart from the general 

difference in semantics between equations and statements. 

11.2.8.1 Assert Statement  

See Section 8.3.7 8.3.7. A failed assert stops the execution of the current algorithm.  

11.2.8.2 Terminate Statement  

See Section 8.3.8 8.3.8. The terminate statement may not be in functions; In an algorithm outside a function it does 

not stop the execution of the current algorithm. 
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Chapter 12   
 
Functions  

This chapter describes the Modelica function construct. 

12.1 Function Declaration  

A Modelica function is a specialized class (Section 12.2 12.2) using the keyword function . The body of a 

Modelica function is an algorithm section that contains procedural algorithmic code to be executed when the 

function is called, or alternatively an external function specifier (Section 12.9 12.9). Formal parameters are 

specified using the input  keyword, whereas results are denoted using the output  keyword. This makes the 

syntax of function definitions quite close to Modelica class definitions, but using the keyword function  instead 

of class . 

[The structure of a typical function declaration is sketched by the following schematic function example: 

function  functionname 
  input   TypeI1 in1;  

  input   TypeI2 in2;  

  input   TypeI3 in3 := default_expr1 "Comment" annotation (...);  

  ...  

  output  TypeO1 out1;  

  output  TypeO2 out2 := default_expr2;  

  ...  

protected  

  <local variables> 

  ...  

algorithm  

  ...  

  <statements> 

  ...  

end  functionname;  

] 

Optional explicit default values can be associated with any input or output formal parameter through declaration 

assignments. [Such defaults are shown for the third input parameter and the second output parameter in our 

example.] Comment strings and annotations can be given for any formal parameter declaration, as usual in 

Modelica declarations. 

[All internal parts of a function are optional; i.e., the following is also a legal function: 

function  functionname 

end  functionname;  

] 
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12.1.1 Ordering of Formal Parameters  

The relative ordering between input formal parameter declarations is significant since that determines the 

matching between actual arguments and formal parameters at function calls with positional parameter passing. 

Likewise, the relative ordering between the declarations of the outputs is significant since that determines the 

matching with receiving variables at function calls of functions with multiple results. However, the declarations of 

the inputs and outputs can be intermixed as long as these internal orderings are preserved. [Mixing declarations in 

this way is not recommended, however, since it makes the code hard to read.]  

[Example: 

function  <functionname> 

  output  TypeO1 out1; // Intermixed declarations of inputs and outputs  

  input   TypeI1 in1;  // not recommended since code becomes hard to read  

  inp ut   TypeI2 in2;  

  ...  

  output  TypeO2 out2;  

  input   TypeI3 in3;  

  ...  

end  <functionname>;  

] 

12.1.2 Function Return -Statement  

The return-statement terminates the current function call, see Section 12.4 12.4. It can only be used in an algorithm 

section of a function. It has the following form: 

return ;  

[Example (note this could alternatively use break):  

function  findValue "Returns position of val or 0 if not f ound"  

  input  Integer x[:];  

  input  Integer val;  

  output  Integer index;  

algorithm  

  for  i in  1:size(x,1) loop  

    if  x[i] == val then   

      index := i;  

      return ;  

    end if;  

  end  for ;  

  index := 0;  

  return ;  

end  findValue;  

] 

12.1.3 Inheritance of Function s 

It is allowed for a function to inherit and/or modify another function following the usual rules for inheritance of 

classes (Chapter 7 Chapter 7). [For example, it is possible to modify and extend a function class to add default 

values for input variables.] 

12.2 Function as a Specialized  Class  

The function concept in Modelica is a specialized class (Section 4.6 4.6). [The syntax and semantics of a function 

have many similarities to those of the block  specialized class. A function has many of the properties of a general 

class, e.g. being able to inherit other functions, or to redeclare or modify elements of a function declaration.]  

Modelica functions have the following restrictions compared to a general Modelica class : 
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¶ Each input formal parameter of the function must be prefixed by the keyword input, and each result formal 

parameter by the keyword output. All public variables are formal parameters. 

¶ Input formal parameters are read-only after being bound to the actual arguments or default values, i.e., they 

may not be assigned values in the body of the function. 

¶ A function may not be used in connections, may not have no equations, may not have no initial algorithms. 

¶ A function, and can have at most one algorithm section or one external function interface (not both), which, 

if present, is the body of the function. 

¶ A function may only contain components of the restricted classes type , record , operator  record , and 

function ; i.e. no model  or block  components. 

¶ The elements of a function may not have prefixes inner , or outer.  

¶ A function may have zero or one external function interface, which, if present, is the external definition of 

the function.  

¶ For a function to be called in a simulation model, the function may not be partial, and the output variables 

must be assigned inside the function either in declaration assignments or in an algorithm section, or have an 

external function interface as its body, or be defined as a function partial derivative. The output variables of 

a function should be computed. [It is a quality of implementation how much analysis a tool performs in 

order to determine if the output variables are computed]. A function cannot contain calls to the Modelica 

built-in operators der , initial , term inal , sample , pre , edge , change , reinit , delay , 

cardinality , inS tream , actualStream , to the operators of the built-in package Connections , to the 

operators defined in Chapter 16 Chapter 16 and Chapter 17 Chapter 17, and is not allowed to contain when-

statements. 

¶ The dimension sizes not declared with (: ) of each array result or array local variable [i.e., a non-input 

components] of a function must be either given by the input formal parameters, or given by constant or 

parameter expressions, or by expressions containing combinations of those (Section 12.4.4 12.4.4). 

¶ For initialization of The local variables of a function see are not automatically initialized to the implicit 

default values of the data type (Section 12.4.4 12.4.4). [(e.g. 0.0 for Real ) for performance reasons. It is the 

responsibility of the user to provide explicit defaults or to define the values of such variables before they are 

referenced.] 

¶ Components of a function will inside the function behave as though they had discrete-time variability. 

Modelica functions have the following enhancements compared to a general Modelica class :  

¶ Functions can be called, see 12.4 12.4. 

o The calls can use a mix of positional and named arguments, see section 12.4.1 12.4.1. 

o Instances of functions have a special meaning, see section 12.4.2 12.4.2. 

o The lookup of the function class to be called is extended, see section 5.3.2 5.3.2. 

¶ A function can be recursive. 

¶ A formal parameter or local variable may be initialized through an assignment binding (: =) of a default 

value in its declaration, . Initialization through an equation is not possible.see 12.4.4. Using assignment (:=) 

is deprecated. If a non-input component in the function uses a record class that contain one or more binding 

equations they are viewed as initialization of those component of the record component. 

¶ A function is dynamically instantiated when it is called rather than being statically instantiated by an 

instance declaration, which is the case for other kinds of classes.  

¶ A function may have an external function interface specifier as its body. 

¶ A function may have a return statement in its algorithm section body. 

¶ A function allows dimension sizes declared with (: ) to be resized for non-input array variables, see Section 

12.4.5 12.4.5. 

¶ A function may be defined in a short function definition to be a function partial derivative. 

12.3 Pure Modelica Functions  

Modelica functions are normally pure which makes it easy for humans to reason about the code since they behave 

as mathematical functions, and possible for compilers to optimize., i.e., are side-effect free with respect to the 
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Modelica state (the set of all Modelica variables in a total simulation model), apart from the exceptional case 

specified further below. This means that: 

¶ Pure Modelica functions always give the same output values or errors for the same input values and only 

the output values influence the simulation result, i.e. is seen as equivalent to a mathematical map from input 

values to output values.are mathematical functions, i.e. calls with the same input argument values always 

give the same results. Some input values may map to errors. Pure functions are thus allowed to fail by 

calling assert, or ModelicaError in C-code, or dividing by zero. Such errors will only be reported when and 

if the function is called. 

¶ A pure Modelica function is side-effect free with respect to the internal Modelica simulation state. 

Specifically, the ordering of function calls and the number of calls to a function shall not influence the 

simulation state. 

¶ Pure Modelica functions are not assumed to be thread-safe. 

¶ A Modelica function which does not have the pure function properties is impure and needs to be declared as 

stated below. 

The declaration of functions follow these rules: 

¶ Functions defined in Modelica (non-external) are normally assumed to be pure (the exception is the 

deprecated case below), if they are impure they shall be marked with the impure keyword. They can be 

explicitly marked as pure. [However, since functions as default are pure it is not recommended to explicitly 

declare them as pure.]  

¶ External functions must be explicitly declared with pure or impure. 

¶ A deprecated semantics is that external functions (and functions defined in Modelica directly or indirectly 

calling them) without pure or impure keyword are assumed to be impure ï but without any restriction on 

calling them. Except for the function Modelica.Utilities.Streams.print diagnostics must be given if called in 

a simulation model. 

Calls of pure functions used inside expression may be skipped if the resulting expression will not depend on the 

possible returned value; ignoring the possibility of the function generating an error.  

A call to a function with no declared outputs is assumed to have desired side-effects or assertion checks. [A tool 

shall thus not remove such function calls, with exception of non-triggered assert calls. A pure function, used in an 

expression or used with a non-empty left hand side, need not be called if the output from the function call do not 

mathematically influence the simulation result, even if errors would be generated if it were called.] 

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes it possible for 

Modelica compilers to freely perform algebraic manipulation of expressions containing function calls while still 

preserving their semantics. For example, a tool may use common subexpression eleminationelimination to call a 

pure function just once, if it is called several times with identical input arguments. However, since functions may 

fail we can e.g. only move a common function call from inside a loop to outside the loop if the loop is run at least 

once.] 

[Comment 2: The Modelica translator is responsible for maintaining this property for pure non-external 

functions. Regarding external functions, the external function implementor is responsible. Note that external 

functions can have side-effects as long as they do not influence the internal Modelica simulation state, e.g. 

caching variables for performance or printing trace output to a log file.] 

With the prefix keyword impure  it is stated that a Modelica function is impure and it is only allowed to call such 

a function from within: 

¶ another function marked with the prefix impure es impure  or pure  

¶ a when-equation, or 

¶ a when-statement, 

¶ pure(impureFunctionCall(é)) - which allows calling impure functions in any pure context,  

¶ in initial equations and initial algorithms, 
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¶ in bindings for variables declared as parameter ï which is seen as syntactic sugar for having a parameter 

with fixed=false and the binding as an initial equation [thus there is no guarantee that parameter is equal to 

the impure function call after initialization]  ï and in constructing external objects.  

For initial equations, initial algorithms, and bindings it is an error if the function calls are part of systems of 

equations and thus have to be called multiple times. 

 With the prefix keyword pure  it is stated that a Modelica function is pure even though it may call impure 

functions. 

[A tool is not allowed to perform any optimizations on function calls to an impure function, e.g., reordering calls 

from different statements in an algorithm or common subexpression eleminiationelimination is not allowed.] 

It is possible to mark a function formal parameter as impure . Only if the function formal parameter is marked 

impure , it is allowed to pass an impure  function to it. A function having a formal function parameter marked 

impure  must be marked pure  or impure . 

 [Comment: The semantics are undefined if the function call of an impure function is part of an algebraic 

loop.] 

[Examples: 

function  evaluateLinear  // pure function  

   input   Real a0;  

   input   Real a1;  

   input   Real x;  

   output  Real y;  

algorithm  

   y = a0 +  a1*x;  

end  evaluateLinear;  

 

impure function  receiveRealSignal   // impure function  

   input   HardwareDriverID id;  

   output  Real y;  

   external  "C" y = receiveSignal(id);  

end  receiveRealSignal;  

Examples of allowed optimizations of pure functions: 

model  M / / Assume sin, cos, asin are pure functions with normal derivatives.  

  input  Real x[2];  

  input  Real w;  

  Real y[2]=[cos(w),sin(w); - sin(w),cos(w)]*x;  

  Real z[2]= der (y);  

  Real a=0*asin(w);  

end  M;  

A tool only needs to generate one call of the pure function cos(w) in the model M ï to handle the two elements of 

the matrix above, and for the derivative of that matrix. A tool may also skip the possible error for asin(w) and 

assume that a is zero. 
   

Examples of restrictions on optimizing pure functions: 

 
  Real  x= if  noEvent(ab s(x))<1 then  asin(x) else  0; //  May not move asin(x) out of then  

algorithm  

  assertCheck(p, T); // Must call function  

algorithm  

  if  b then  

    y:=2* someOtherFunction(x);  

  end  if ;  

  y:= y+asin(x);  

  y:= y+someOtherFunction(x);  

  // May not  evaluate someOtherFunctio n(x)  before asin(x)  ï unless b is true  

  // The reason is that asin(x) may fail  and someOtherFunction may hang ,  

  // and it might be possible to recover from this error.  
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] 

12.4 Function  Call  

Function classes and record constructors (12.6) and enumeration type conversions (4.8.5.3) can be called as 

described in this section. 

12.4.1 Positional or Named Input Arguments  of Functions  

A function call has optional positional arguments followed by zero, one or more named arguments, such as 

f(3.5, 5.76, arg3=5, arg6=8.3);  

The formal syntax of a function call (simplified by removing reduction expression, section 10.3.4.1): 

pri mary :  

   name component - reference  function_call_args function - call - args  

 

function_call_args function - call - args  :  

   "(" [ function_argument function - argument s ] ")"  

 

function_argument function - argument s :  

   function_argument function - argument  [ "," function_a rgument function - argument s]  

 | named_argument named- argument s 

 

named_argument named- argument s: named_argument named- argument  [ "," named_argument named-

argument s ]  

 

named_argument named- argument : IDENT "=" function_argument function - argument  

 

function_argument fun ction - argument  : function  name "(" [ named_argument named- argument s ] 

")" | expression  

The interpretation of a function call is as follows: First, a list of unfilled slots is created for all formal input 

parameters. If there are N positional arguments, they are placed in the first N slots, where the order of the 

parameters is given by the order of the component declarations in the function definition. Next, for each named 

argument identifier  = expression , the identifier  is used to determine the corresponding slot. This slot 

shall be not filled [otherwise an error occurs] and the value of the argument is placed in the slot, filling it. When 

all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value of 

the function definition. The default values may depenend on other inputs (these dependencies must be acyclical in 

the function) ï the values for those other inputs will then be substituted into the default values (this process may 

be repeated if the default value for that input depend on another input). The default values for inputs may not 

depend on non-input variables in the function. There shall be no remaining unfilled slots [otherwise an error 

occurs] and the list of filled slots is used as the argument list for the call. 

Special purpose operators with function syntax defined in the specification may not be called with named 

arguments, unless otherwise noted. 

The type of each argument must agree with the type of the corresponding parameter, except where the standard 

type coercions can be used to make the types agree. (See also Section 12.4.6 12.4.6 on applying scalar functions to 

arrays.) 

[Example. 

Assume a function RealToString  is defined as follows to convert a Real number to a String: 

function  RealToString  

  input   Real number;  

  input   Real precision : = 6 "number of significantdigits";  

  input   Real length    : = 0 "minimum length of field";  

  output  String string "number as string";  

  ...  

end  RealToString;  
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Then the following applications are equivalent: 

RealToString(2.0);  

RealToString(2.0, 6, 0);  

RealToString(2.0, 6);  

RealToString(2.0, precision=6);  

RealToString(2.0, length=0);  

RealToString(2.0, 6, precision=6);  // error: slot is used twice  

]  

12.4.2 Function al Input Arguments to Functions  

A functional input argument to a function is an argument of function type. The declared type of such an input 

formal parameter in a function can be the class-name of a partial function that has no replaceable elements. It 

cannot be the class-name of a record or enumeration [i.e., record constructor functions and enumeration type 

conversions are not allowed in this context.] Such an input formal parameter of function type can also have an 

optional functional default value.  

[Example: 

function  quadrature "Integrate function y=integrand(x) from x1 to x2"  

  input   Real x1;  

  input   Real x2;  

  input  Integrand  integrand;   // Integrand is a partial function, see below  

  // With default: input  Integrand integrand := Modelica.Math.sin;  

  output  Real integral;  

algorithm  

  integral :=(x2 - x1)*(integrand(x1) + integrand(x2))/2;  

end  quadrature;  

 

partial function Integrand  

  input   Real x;  

  output  Real y;  

end  Integrand;  

] 

A functional argument can be provided in one of the following forms to be passed to a scalar formal parameter of 

function type in a function call: 

a) as a function name [Parabola  example below], 

b) as a function partial application (Section 12.4.2.1 12.4.2.1 below),  

c) as a function that is a component, 

d) as a function partial application of a function that is a component (example in Section 12.4.2.1 12.4.2.1 

below). 

In all cases the provided function must be ñfunction type compatibleò (Section 6.5 6.5) to the corresponding formal 

parameter of function type. 

[Example: 

A function as a positional input argument according to case (a) 

function  Parabola  

   extends  Integrand;  

algorithm  

   y = x*x;  

end  Parabola;  

 

area = quadrature(0, 1, Parabola);  

 

The quadratu r e2 example below uses a function integrand  that is a component as input argument according 

to case (c): 
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function  quadrature2 "Integrate function y=integrand(x) from x1 to x2"  

  input   Real x1;  

  input   Real x2;  

  input   Integrand  integrand;   // Integrand is a partial function type  

  output  Real integral;  

algorithm  

   integral := quadrature(x1,       (x1+x2)/2, integrand)+  

               quadrature((x1+x2)/2, x2,       integrand);  

end  quadrature 2;  

12.4.2.1 Function Pa rtial Application  

A function partial application is similar to a function call with certain formal parameters bound to expressions, the 

specific rules are specified in this section and are not identical to the ones for function call in 12.4.1. A function 

partial application returns a partially evaluated function that is also a function, with the remaining not bound 

formal parameters still present in the same order as in the original function declaration. A function partial 

application is specified by the function  keyword followed by a function call to func _name giving named 

formal parameter associations for the formal parameters to be bound, e.g.: 

function  func_name(..., formal_parameter_name = expr, ...)  

[Note that the keyword f unction  in a function partial application differentiates the syntax from a normal 

function call where some parameters have been left out, and instead supplied via default values.] 

The function created by the function partial application acts as the original function but with the bound formal 

input parameters(s) removed, i.e., they cannot be supplied arguments at function call. The binding occurs when 

the partially evaluated function is created. A partially evaluated function is ñfunction compatibleò (see Section 

6.5 6.5) to the same function where all bound arguments are removed [thus, for checking function type 

compatibility, bound formal parameters are ignored]. 

[Example of function partial application as argument, positional argument passing, according to case (b) above: 

model  Test  

   parameter  Integer N;  

   Real area;  

algorithm  

   area := 0;  

   for  i in  1:N loop  

     area  := area + quadrature(0, 1, function  Sine(A=2, w=i*time));  

   end for ;  

end  Test;  

function Sine  "y = Sine(x,A,w)"  

  extends Integrand ;  

  input Real  A;  

  input  Real w;  

algorithm  

  y:=A*Modelica.Math.sin(w*x);  

end  Sine;  

Call with function partial application as named input argument: 

area  := area + quadrature(0, 1, integrand = function  Sine(A=2, w=i*time));  

] 

 [Example showing that function types are matching after removing the bound arguments A and w in a function 

partial application: 
 

function Sine2  "y = Sine2(A,w,x)"  

  input Real  A;  

  input  Real w;  

  input  Real x; // Note: x is now last in argument list.  

  output  Real y;  

algorithm  

  y:=A*Modelic a.Math.sin(w*x);  

end  Sine2;  
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area = quadrature(0, 1, integrand = function  Sine2(A=2, w=3));  

The partially evaluated Sine2  has only one argument: x ï and is thus type compatible with Integrand . 

] 

 

[Example of a function partial application of a function that is a component, according to case (d) above: 
 

partial  function  SurfaceIntegrand  

   input  Real x;  

   input  Real y;  

   output  Real z;  

end  SurfaceIntegrand;  

 

function  quadratureOnce  

  input  Real x;  

  input  Real y1;  

  input  Real y2;  

  input  SurfaceIntegrand integrand;  

  output  Real z;  

algorithm  

  z :=  quadrature(y1, y2, function  integrand(y=x));  

  // This is according to case (d) and needs to bind the 2nd argument  

end  quadratureOnce;  

 

function  surfaceQuadrature  

  input  Real x1;  

  input  Real x2;  

  input  Real y 1;  

  input  Real y2;  

  input  SurfaceIntegrand integrand;  

  output  Real integral;  

algorithm  

   integral := quadrature(x1, x2,  

     function  quadratureOnce(y1=y1, y2=y2, integrand=integrand) ) ;  

   // Case (b) and (c)  

end  surfaceQuadrature;  

] 

12.4.3  Output Formal Parameters of Functions  

A function may have more than one output component, corresponding to multiple return values. The only way to 

use more than the first return value of such a function is to make the function call the right hand side of an 

equation or assignment. In this case, the left hand side of the equation or assignment shall contain a list of 

component references within parentheses: 

(out1, out2, out3) = f(...);  

The component references are associated with the output components according to their position in the list. Thus 

output component i is set equal to, or assigned to, component reference i in the list, where the order of the output 

components is given by the order of the component declarations in the function definition. The type of each 

component reference in the list must agree with the type of the corresponding output component. 

A function application may be used as expression whose value and type is given by the value and type of the 

first output component, if at least one return result is provided.  

It is possible to omit left hand side component references and/or truncate the left hand side list in order to 

discard outputs from a function call. 

 [Optimizations to avoid computation of unused output results can be automatically deduced by an optimizing 

compiler]. 

[Example: 

Function "eigen " to compute eigenvalues and optionally eigenvectors may be called in the following ways: 
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         ev = eigen(A);                // calculate eigenvalues  

         x  = isStable(eigen(A));      // used in an ex pression  

   (ev, vr) = eigen(A)     // calculate eigenvectors  

 (ev,vr,vl) = eigen(A)     // and also left eigenvectors  

 (ev,,vl)   = eigen(A)                 // no right eigenvectors  

The function may be defined as: 

function  eigen "calculate eigenvalues and  optionally eigenvectors"  

  input      Real    A[:, size(A,1)];  

  output     Real    eigenValues[ size(A,1) ,2];  

  output     Real    rightEigenVectors[ size(A,1),size(A,1) ];  

  output     Real    leftEigenVectors [ size(A,1),size(A,1) ];  

algorithm  

  // The output v ariables are computed separately (and not, e.g., by one  

  // call of a Fortran function) in order that an optimizing compiler can remove  

  // unnecessary computations, if one or more output arguments are missing  

  //   compute eigenvalues  

  //   compute r ight eigenvectors  using the computed eigenvalues  

  //   compute left eigenvectors  using the computed eigenvalues  

end  eigen;  

] 

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it is used as 

the left hand side of an equation or assignment where the right hand side is an application of a function.  

[Example. The following are illegal: 

(x+1, 3.0, z/y) = f(1.0, 2.0);  // Not a list of component references.  

(x, y, z) + (u, v, w)   // Not LHS of suitable eqn/ass ignment.  

]  

12.4.4 Initialization and Declaration Assignments  of Components in Functions  

Components in a function can be divided into three groups: 

¶ Public components which are input formal parameters. 

¶ Public components which are output formal parameters. 

¶ Protected components which are local variables, parameters, or constants. 

When a function is called components of a function do not have start-attributes. However, a declaration 

assignment (:=  expression ) with an expression may be present for a component.  

A declaration assignment for a non-input component initializes the component to this expression  at the start 

of every function invocation (before executing the algorithm section or calling the external function). These 

bindings must be executed in an order where a variable is not used before its declaration assignment has been 

executed; it is an error if no such order exists (i.e. the binding must be acyclic). 

Declaration assignments can only be used for components of a function. If no declaration assignment is given 

for a non-input component its value at the start of the function invocation is undefinedthe variable is uninitialized 

(except for record components where modifiers may also initialize that component). It is an error to use (or return) 

an uninitialized variable in a function. [It is recommended to check this statically - if this is not possible a warning 

is recommended combined with a run-time check.] It is a quality of implementation issue to diagnose this for non-

external functions. Declaration assignments for input formal parameters are interpreted as default arguments, as 

described in Section 12.4.1 12.4.1.  

[The properties of components in functions described in this section are also briefly described in Section 

12.2 12.2.] 

12.4.5 Flexible  Array Sizes and Resizing of Arrays in Functions  

[Flexible setting of array dimension sizes of arrays in functions is also briefly described in Section 12.2 12.2.] 
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A dimension size not specified with colon(: ) for a non-input array component of a function must be given by the 

inputs or be constant. 

[Example: 

function  joinThreeVectors  

  input   Real v1[:],v2[:],v3[:];  

  output  Real vres[size(v1, 1)+size(v2,1)+size(v3,1)];  

algorithm  

  vres := cat (1,v1,v2,v3);  

end  joinThreeVectors;  

] 

A non-input array component declared in a function with a dimension size specified by colon(:) and no 

declaration assignment, can change size according to these special rules:Non-input arrays [i.e., function array 

result variables or local variables] declared in functions can be resized according the following rules: 

¶ A non-input array component declared in a function with a dimension size specified by colon(:) and no 

declaration assignment, can change size according to these special rules: 

¶ Prior to execution of the function algorithm the dimension size is zero. 

¶ The entire array (without any subscripts) may be assigned with a corresponding array with arbitrary 

dimension size (the array variable is re-sized). 

These rules also apply if the array component is an element of a record component in a function. 

[Example: A function to collect the positive elements in a vector: 

function  collectPositive  

  input  Real x[:];  

  output  Real xpos[:];  

algorithm   

  for  i in  1:size(x,1) loop  

    if  x[i]>0 then  

      xpos:=cat(1,xpos,x[i:i]);  

    end  if ;  

  end  for ;  

end  collectPositive;  

] 

12.4.6 Scalar Functions  Applied to Array  Arguments  

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A is a vector of reals, then 

sin(A)  is a vector where each element is the result of applying the function sin  to the corresponding element in 

A. Only function classes that are transitively non-replaceable (Section 6.2.1 6.2.1 and 7.1.4 7.1.4) may be called 

vectorized. 

Consider the expression f(arg1,...,argn) , an application of the function f  to the arguments arg1 , ..., 

argn  is defined.  

For each passed argument, the type of the argument is checked against the type of the corresponding formal 

parameter of the function.  

1. If the types match, nothing is done.  

2. If the types do not match, and a type conversion can be applied, it is applied. Continue with step 1.  

3. If the types do not match, and no type conversion is applicable, the passed argument type is checked to see 

if it is an n-dimensional array of the formal parameter type. If it is not, the function call is invalid. If it is, 

we call this a foreach argument.  

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, the 

function call is invalid.  
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5. If no foreach argument exists, the function is applied in the normal fashion, and the result has the type 

specified by the function definition.  

6. The result of the function call expression is an n-dimensional array with the same dimension sizes as the 

foreach arguments. Each element ei,..,j is the result of applying f to arguments constructed from the 

original arguments in the following way: 

¶ If the argument is not a foreach argument, it is used as-is.  

¶ If the argument is a foreach argument, the element at index [i,...,j] is used.  

If more than one argument is an array, all of them have to be the same size, and they are traversed in parallel.  

[Examples: 

sin({a, b, c})        = {sin(a), sin(b), sin(c)}   // argument is a vector  

sin([a,b,c])          = [sin(a),sin(b),sin(c)]     // argument may be a matrix  

atan({a,b,c},{d,e,f}) = {atan (a,d), atan(b,e), atan(c,f)}  

This works even if the function is declared to take an array as one of its arguments. If pval  is defined as a 

function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual 

argument which is a two-dimensional array (a vector of vectors). The result type in this case will be a vector of 

Real.  

pval([1,2;3,4]) = [pval([1,2]); pval([3,4])]  

sin([1,2;3,4])  = [sin({1,2}); sin({3,4})]  

                = [sin(1), sin(2); sin(3), sin(4)]  

function  Add 

  input   Real e1, e2;  

  output  Real sum1;  

algorithm  

  sum1 := e1 + e2;  

end  Add;  

Add(1, [1,2,3])   adds one to each of the elements of the second argument giving the result [2,3,4] . 

However, it is illegal to write 1 + [1,2,3] , because the rules for the built-in operators are more restrictive.] 

12.4.7 Empty Function Calls  

An ñemptyò function call is a call that does not return any results. [An empty call is of limited use in Modelica 

since a function call without results does not contribute to the simulation, and is not allowed to have side-effects 

that influence the simulation state.] 

An empty call can occur either as a kind of ñnullò equation or ñnullò statement, [e.g. as in the empty calls to 

eigen()  in the example below: 

equation  

  Modelica.Math.Matrices. eigen(A); // Empty function call as an equation  

algorithm  

  Modelica.Math.Matrices. eigen(A); // Empty function call as a statement  

] 

12.5 Built -in  Functions  

There are basically four groups of built-in functions in Modelica: 

¶ Intrinsic mathematical and conversion functions, see Section 3.7.1 3.7.1. 

¶ Derivative and special operators with function syntax, see Section 3.7.2 3.7.2. 

¶ Event-related operators with function syntax, see Section 3.7.3 3.7.3. 

¶ Built-in array functions, see Section 10.3 10.3. 

¶ Note that when the specification references a function having the name of a built-in function it references 

the built-in function, not a user-defined function having the same name. 
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12.6 Record Constructor Functions  

Whenever a record is defined, a record constructor function with the same name and in the same scope as the 

record class is implicitly defined according to the following rules: 

The declaration of the record is partially flattened including inheritance, modifications, redeclarations, and 

expansion of all names referring to declarations outside of the scope of the record to their fully qualified names [in 

order to remove potentially conflicting import statements in the record constructor function due to flattening the 

inheritance tree].  

All record elements [i.e., components and local class definitions] of the partially flattened record declaration 

are used as declarations in the record constructor function with the following exceptions:  

¶ Component declarations which do not allow a modification [such as constant  Real  c=1  or final  

paramete r  Real ] are declared as protected components in the record constructor function. 

¶ Prefixes (constant , parameter , final , discrete ,...) of the remaining record components are removed.  

¶ The prefix input  is added to the public components of the record constructor function.  

An instance of the record is declared as output parameter [using a name, not appearing in the record] together 

with a modification. In the modification, all input parameters are used to set the corresponding record variables. 

A record constructor can only be called if the referenced record class is found in the global scope, and thus 

cannot be modified. 

[This allows to construct an instance of a record, with an optional modification, at all places where a function 

call is allowed. Examples: 

re cord  Complex "Complex number"  

  Real re "real part";  

  Real im "imaginary part";  

end  Complex;  

 

function  add  

  input   Complex u, v;  

  output  Complex w(re=u.re + v.re, im=u.im+v.re);  

end  add;  

 

  Complex c1, c2;  

equation  

  c2 = add(c1, Complex(sin(time), cos( time));  

In the following example, a convenient data sheet library of components is built up: 

package  Motors  

  record  MotorData "Data sheet of a motor"  

    parameter  Real inertia;  

    parameter  Real nominalTorque;  

    parameter  Real maxTorque;  

    parameter  Real maxSpeed;  

  end  MotorData;  

 

  model  Motor "Motor model"  // using the generic MotorData  

    MotorData data;  

     ...  

  equation  

    ...  

  end  Motor;  

 

  record  MotorI123 = MotorData(  // data of a specific motor  

    inertia       = 0.001,  

    nominalT orque = 10,  

    maxTorque     = 20,  

    maxSpeed      = 3600) "Data sheet of motor I123";  

 

  record  MotorI145 = MotorData(  // data of another specific motor  

     inertia       = 0.0015,  

     nominalTorque = 15,  


























































































































































































































































































































