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Abstract

The possibilities of multi-domain hierarchical
modeling in Dymola often lead to models with both
fast and slow parts and the simulation problems
become stiff. The usual use of the explicit Euler
method for hardware-in-the-loop simulations is not
appropriate, because it requires very small step sizes
and thus too large computational efforts. The implicit
Euler method allows larger step sizes to be used.
However, a non-linear system of equations needs to be
solved at each step. Reducing the size of the non-linear
problem is advantageous. The method of inline
integration was introduced to support this. The
discretization formulas of the integration method are
combined with the model equations and structural
analysis and computer algebra methods are applied on
the augmented system of equations. This paper
describes and illustrates some very important
improvements in Dymola's support of the inline
integration method. The symbolic analysis and
manipulation have been improved and it reduces, in
many cases the, size of the non-linear system
drastically. Analytic Jacobians for the nonlinear system
also increase efficiency and robustness. Support of
inline integration of higher order leads to better
accuracy for larger steps.

Introduction

Real-time simulation of physical models is a growing
field of applications for simulation software. One goal
is to be able to simulate more and more complex
models in real-time with fast sampling rates. Many of
those models are multi-engineering models, which
means, that they contain components from more than
one engineering domain. Mechanic, electric, hydraulic
or thermodynamic components are often coupled
together in one model. This leads to a large span of
time-constants in the model. The usual use of the
explicit Euler method is not appropriate because the
fastest time-constant determines the computational
effort (step size) for the simulation. In order to
maintain stability of the integration method the step
size must be less than the smallest time constant.
Typically, the fastest modes are not excited to a degree
that it is necessay to resolve them for the intended
purpose. In such cases the problem is referred as stiff.
The implicit Euler method solves the numerical
stability problem and allows larger step sizes to be
used. It is the accuracy required that restricts how large

step sizes that can be used. Using the implicit Euler
method, on the other hand, implies that a nonlinear
system of equations needs to be solved at every step.
The size of this system is at least as large as the size of
the state vector, n. Solving large nonlinear systems of
equations in real-time somewhat problematic because
the number of operations is O(n’) and the number of
iterations might vary for different steps. Reducing the
size of the nonlinear problem is advantageous. Due to
the hybrid nature of the system the Jacobian of the
nonlinear system can change drastically between steps.
This makes it difficult to apply methods relying on
Jacobian updating.

The method of inline integration [3] was introduced to
handle such cases. The discretization formulas of the
integration method are combined with the model
equations and structural analysis and computer algebra
methods are applied on the augmented system of
equations. For a robotics model with 66 states, the size
of the nonlinear system of equations could be reduced
to only 6. This method has had little practical use,
because certain pragmas about the structure of the
model equations had to be put into the model by the
user.

Another method, "mixed-mode integration", of
reducing the size of the system of nonlinear equations
is to use explicit discretization on slow states and
implicit on fast states. The problem is then to find the
partitioning of the state vector into slow and fast states.
A method based on linearization and eigenvalue
analysis was presented in [6]. Since the partitioning is
based on linearization, special care is needed for highly
non-linear and partly discrete model such as friction. In
addition it requires a pre-processing step that includes
off-line simulation and "suitable" inputs. It is thus not
straightforward to use this method.

This paper describes and illustrates some important
improvements in Dymola's [1,2] support of the inline
integration method.

1. The symbolic analysis and manipulation have been
improved and it reduces, in many cases the, size of
the non-linear system drastically.

2. The generation of analytical Jacobians has been
improved.

3. Inline integration of higher order methods are
supported.

The Modelica Association 59

Modelica 2002, March 18-19, 2002



New Methods for HIL Simulation of Stiff Models.

Elmqvist H., Mattsson S.E., Olsson H.

The large possible reduction of the size of the implicit
non-linear system of equations is due to the fact that
certain subsystems might be linear even after
ammendment of the corresponding discretization
formulas. Dymola is now able to automatically detect
such structures during the structural analysis of the
equations. Furthermore, in certain cases the
corresponding linear subproblem is sparse. This is, for
example, the case for discretized PDE's. For a one
dimensional PDE, a band structure is obtained. The
usual technique of tearing then implies a reduction of
the size of the problem. For a PDE model with 10
elements, the size of the nonlinear problem, i.e. the
number of iteration variables, can often be reduced to
one when a first order spatial discretization is used.

The implicit inline Euler technique solves the
numerical stability problem. However, the step size
need to be chosen small enough to get desired
accuracy. Dymola support of inline integration has
been extended with higher order methods to meet the
accuracy requirements. The use of higher order
methods is necessary for e.g. hydraulics systems where
one can have oscillations in the kHz-range and want to
use step-sizes for external sampling in the same range.

Exploiting sparse structures

Consider a system of differential algebraic equations
(DAE)

F(t,xﬂ.f,y}:o

where ¢ is time, x and y are vectors of unknown
variables. The elements of x are called dynamic
variables since their time derivatives, x, appear in the
equations and the elements of y are called algebraic
variables since none of its derivatives appear in the
equations.

When making inline discretization, the model
equations are combined with the discretization
formulas of the integration method. For implicit Euler
we get the nonlinear problem

F(ti,xi,xi,yi))=0
Xi=(xi-xi-1)/h

to solve for x,, and y,, at each step. Also for an ODE on
explicit state space form,

x = f(t,x)

the inlined integration method using implicit Euler
gives a non-linear problem. The size of the problem is
the size of the state vector.

The non-linear systems obtained when combining the
discretization formulas of implicit integration methods
with model equations are sparse, because typically a
model has hundreds or thousands of unknowns, while
each equation refer to very few, say ten, variables.
There is much structure to exploit.

Let us represent the structure of a system by a structure
Jacobian, J, where each row represents a scalar
equation and each column represents an unknown
variable of the system. If variable j does not appear in
equation i then J; = 0. Otherwise it is one. The
representation can be extended to indicate how it
appears, for example, whether it appears linear or not.

X7 X2 ... Xy z

0/1

Figure 1: A desired structure for the Jacobian.

Consider a structure Jacobian of the form as shown in
Figure 1. The elements of the right and lower borders
(the grey part) can have any values. It is the structure
of the upper left part (the white part) that is important.
It shall be block lower triangular (BLT) and each
diagonal block shall be non-singular.

If the z variables are assumed known, the problem of
solving for the x variables is decomposed into a
sequence of smaller problems that be solved in turn
giving x;, Xz, ..., X,

It means that when using a numerical solver to solve
the total problem, the numerical solver needs only
iterate over the z variables which is a smaller problem.
A numerical solver needs residuals to be calculated,
when it provides a value for the z. The residual is
calculated in the following way

1. Solve in turn the sequence of problems for the x;
values using the given z value and the x; (j <i)
values already calculated.

2. Use the z value and the calculated x; values to
calculate the residuals of the remaining equations
at the bottom.

To obtain efficient simulation, the aim is to obtain a
small number of z variables while keeping the
sequence of problems to solve x; simple. It is
favourable if the calculations of the x variables are just
a sequence of assignment involving no numerical
solvers. Small linear systems of equations are also
acceptable. It is very important that the subproblems to
solve for the x; variables are nonsingular. If the original
problem is non-singular, then the manipulation must
not introduce singularities or divisions by zero.
Unfortunately, it is not only a question avoiding
divisions by zero, but also divisions by too small
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numbers. When solving linear equations this is
commonly solved by pivoting in order to avoid large
condition numbers of the factorized matrices.

When solving the outer nonlinear problem, it is
favourable to use Newton methods. Fixed point
iteration cannot be used for stiff problems. Newton
methods need the Jacobian of the problem. Let 7,
denote the number of elements of z. The Jacobian can
be calculated numerically, by performing additional 7,
residual calculations, which may be costly. By
generating code for analytic calculation of the Jacobian
the effort to calculate all non-zero elements of the
Jacobian typically is of the same magnitude as one
residual calculation, which is a considerably less effort.
This reduction is due to common subexpression
elimination.

Higher order methods

In order to get sufficient accuracy for large steps it was
necessary to extend the basic method to higher order
methods. Higher order methods indicate that they have
order greater than one, and the ones considered have
orders 2 to 4.

The higher order methods implemented for the new
method are L-stable singly diagonally implicit Runge-
Kutta methods [4]. The L-stability implies that they are
stable for all stable linear systems and do not exhibit
oscillations for very stiff systems. The class of
methods, singly diagonally implicit Runge-Kutta
methods, require the solution to the same equation
systems as implicit Euler.

Other high order methods

More general implicit Runge-Kutta methods can often
be made more efficient in off-line simulations.
However, this requires more costly factorizations that
can be shared between many steps and is thus not
suitable for realtime simulations. Multi-steps methods
and other methods that propagate more information
from one step to the next are not suited for real-time
simulations of hybrid systems.

Example: One dimensional PDE

Discretized partial differential equations (PDE) have
special sparse structures because each unknown
appears only in a few equations. For a one dimensional
PDE, a band structure is obtained.

Consider the following PDE, modeling one-
dimensional heat diffusion.

ou_ou
ot ox?

with boundary conditions

T X
u(x,t =0) =20sin(——) +300
( ) (2 L)
. T
u(x =0,1) = 2051n(Et)+300

Ou

—x=L1=0

e ( )

where L is the length of the object. By discretizing in
space

u(x + Ax,t) = 2u(x,t) + u(x — Ax,t)
A

&u
y(x,f) =

where Ax = L/nwith n being the number of discrete
elements, the PDE can be transformed into a set of
ODEs. The matrix notation allows convenient
description of the discretized model.

model PDE
parameter Real L = 1;
parameter Integer n =
Real Dx = L/n;
constant Real Pi=3.14159265;
Real uln+1];

50;

equation
uf[l] = 20*sin(Pi/12*time) + 300;
der (ul(2:n]) = (u[3:n + 1] -
2*ul[2:n] + u[l:n - 1])/(Dx*Dx) ;
uln + 1] = uln - 1];
initial equation
ul[2:n] = 20*sin(Pi/2* (1:n-1)*Dx) +

300*ones (n-1) ;
end PDE;

The discretized ODE is conveniently written by use of
shifted sub-ranges of the vector u. The boundary
condition at t=0 is given as an initialization equation.
The sine function is evaluated elementwise on the
sequence. The boundary condition at x=0 is handled by
making u[1] an algebraic variable with given time
dependency. The boundary condition at x=1 is handled
by adding one element to u, namely u[n+1], and the
equation u[n+1] = u[n-1].
By discretizing in time using implicit Euler
der(u(i]) = (ulil-old(uli]))/h
where h is the step size and the expression old(u[i])
denotes the value of u[i] at the previous step, the ODE

(ul[3:n + 1] -
+ ull:n - 11)/(Dx*Dx)

der (ul2:n]) =
2*ul2:n]

is transformed into

ul[3:n + 1] = (2+a)*ul(2:n] - ul[l:n - 1]

- a*old(uf[2:n])
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where a is the constant
a = Dx*Dx/h
The first component of the discretized ODE is

ul[3] = (2+a)*ul2] - ull] - a*old(ul2])
The variable u[1] is known because it simply
calculated from the boundary condition given as a pure
time dependent expression. Thus the equation has two
unknowns, u[2] and u[3], since all old expressions are
known quantities when taking a new step. If u[2] is

known, it is simple to calculate u[3].

Let us assume u[1:3] to be known and consider the
second component of the discretized ODE

ul4] = (2+a)*ul3] - ul2] - a*old(ul[3])
which is simple to use to calculate u[4]. Proceeding in
the same way for all components of the discretized
ODE, we find equations for calculating u[3:n+1] in a

simple way when u[2] is assumed to be known.

The remaining equation is

uln + 1] = uln - 11;

which now is used to give the residual u[n+1]-u[n-1]
for calculating u[2] iteratively. In other words the
numerical solver need only iterate over one variable.

Since this problem is linear, Dymola continues the
symbolic manipulation and uses the explicit
expressions for u[3:n+1] to back-substitute the residual
equation to get an equation for u[2] and solves this
equation symbolically. Dymola has transformed the
model to a simple sequence of assignments and there is
no need for a numerical solver.

This model for heat diffusion is not stiff, but it
illustrates very well how the sparse structures of
discretized PDEs can be exploited. Moreover, such a
model can be part of a model that is stiff. Dymola is
then able to find and treat these equations as described.

Models of hydraulics systems are stiff. Models to
describe pressure wave oscillations in the kHz range in
long lines have the same banded structure as discussed
above and Dymola is able to find and to reduce the size
of the non-linear system of equations automatically.

Example: Multi-body systems

Consider modeling of multi-body systems. The
equation of motion can be written as

M(q)q = F(q.9)
where ¢ is a vector of generalized coordinates
representing the system's position (distances or angles),
M is the non-singular mass matrix, and F represents
applied forces. Let n denote the number of elements of
q or in other words the degree of freedom for the

mechanical systems. The states are g and g. Thus the
number of states is 2n.

When simulating this using an explicit ODE solver, it
is a major task to invert the mass matrix to solve for the
accelerations. When using implicit inlining, inverting
the mass matrix can be avoided and the size of the non-
linear system to be solved can be reduced from 37 to n.
The approach is to iterate over the accelerations ¢ and

use the the discretization formulas to calculate ¢ and
q.,and use M(q)4—F(q,q) as the residual. This

approach was presented in [1]. However, this method
has had little practical use, because certain pragmas
about the structure of the model equations had to be put
into the model by the user.

The new structural analysis methods of Dymola
automatically rediscovers well-known O(n) method by
Luh, Walker, and Paul for calculating the joint forces
and torques from the motion of the joints (¢, ¢gand ).

Dymola is able to find this approach automatically
without no hints or exploiting facts that it is a multi-
body model. Dymola makes it by only analyzing the
structure of the equations and manipulate them
properly. The component models of the library
ModelicAdditions.MultBody result typically in a
hundred unknowns for each degree of freedom. Thus, it
is far from trivial to transform an inlined model to this
efficient form for numeric solution. Moreover, Dymola
is able to find the core problem in more complex
settings such as for a robot with drivelines and
controllers. This is illustrated in the following
application.

Application: Robotics model

Consider the model r3.robot in the Modelica [5] library
ModelicaAdditions.MultiBody.Examples.Robots as
shown in Figures 2 and 3.

The model describes an industrial robot with six
degrees of freedom. The model is composed of basic
mechanical components such as joints and bars as
shown in part 3 of Figure 2. At every joint, a drive train
as shown in part 4 of Figure 2 is present. Each drive
train contains a motor, a gearbox and an actuator as
well as a control system. The elasticity of the gears of
the first three joints is modelled by one spring for each
gearbox. The elasticity of the last three joints is
neglected. In part 5 of Figure 2, the model of the motor
and the actuator of one joint is shown. This component
is defined, most naturally, as an electrical circuit.
Finally, in Figure 3, the control system with tacho
filters for one drive train is defined in block diagram
format. To simplify the discussion, we omit potential
locking in the joints due to bearing friction.

The model consists of 12 states for the mechanical part
of the robot, two states for every gearbox with modeled
elasticity, two states for every motor/actuator

component, three states for every tacho filter, and three
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states for every controller. The overall model has thus
12+3-2+6-(2+3+3) = 66 states. The simulation problem
has additional 12 states for generating the reference
path.

The model has 5963 unknowns. After Dymola's
elimination of constant and alias variables at
translation, 932 nontrivial and time-varying variables
remain. For explicit methods there is one linear
equation system to solve. It is of size six. It
corresponds to the inversion of the mass matrix.
Dymola has solved all other equation systems
symbolically.

When using inlined explicit Euler, a step size of 0.05
ms has to be selected to achieve stable behavior. The
paper [6] reports that the fastest eigenvalues of the
linearization of the system are about 7000 in
magnitude.

For the inlined implicit Euler, Dymola translates the
simulation problem to a non-linear system of size 6
with no additional local equation systems. The
equation systems from discretizing the drive trains and
their controllers are linear and Dymola is able to solve
them symbolically.

Table 1: Performance of the methods for the robot
problem that is simulated for 1 s using a Pentium IV
1.6 GHz processor.

Inl. Inl. Inl. Inl.
Expl. Impl. Impl. Impl
Euler Euler RK3 RK3

Step size [ms] 0.05 1 5 10
Pos. error [mm] 0.1 3 0.1 0.4
Vel. error [mm/s] | 5 20 5 20
CPU time [s] 197 0.16 0.11 0.06

The resulting execution times and maximum position
and velocity errors compared to a reference solution
calculated using DASSL are shown in Table 1. When
judging the errors it may be of interest to know that the
robot is of meter size and the maximum speeds are 2-4
m/s.

For easy interpretation of the execution times the
problem was simulated for one second. It means that if
the CPU time is less than one second, the simulation
runs faster than real-time.

When using explicit Euler the simulation runs slower
than real-time. The solution has good accuracy, but the
computational burden is high. It is very interesting to
see that the inlined third order implicit Runge-Kutta
method gives a solution with the same accuracy only
needing 6% of the effort for the explicit Euler method.

The implicit methods run all faster than real-time. As
reported above Dymola is able to reduce the size of the
non-linear system to six. Before the new improvements
Dymola reduced the size of the non-linear system to 39
giving a CPU of 1.1 s for the simulation. Using the new
approach the implicit Euler method needs only 0.16 s
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for the simulation. The simulation is speeded up more
than six times and it runs faster than real-time.

The table shows that high order methods pay off. The
third order Runge-Kutta method gives with less effort a
better result than implicit Euler does.

If we let the robot model allow potential locking in the
joints due to bearing friction when using the inlined
third order implicit Runge-Kutta method with a step
size of 5 ms, the CPU time needed is 0.16 s. Thus, this
model runs also much faster then real-time.

Conclusions

This paper has described and illustrated Dymola's new
approach to inlined implicit integration. The new
features include more advanced analysis and
manipulation of the inlined problem giving in many
cases a drastic reduction of the non-linear problem that
has to been solved numerically. Generation of analytic
Jacobians also increases performance. Support of inline
integration of higher order methods leads to better
accuracy for larger steps. Thus allowing faster
simulation.

Reported experiences of applying the new approach to
simulation of an industrial robot have shown very
promising results. The method has also been applied
successfully to simulating hydraulic systems with long
pipes exhibiting pressure wave oscillations.
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