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Abstract for structural analysis and design tasks, while being far
too complex for affordable dynamics simulation and
In this paper the development, simulation and validanalysis.
tion of Modelicamodels for flexible thin beams is pPreon the other hand, particu|ar classes of deformable
sented. bodies, such as flexible beams, can be represented with
The models are based on the application of the [iss complex models which are still able to represent
nite element method. Exploiting the object-orientegl| the dynamically relevant deformation effects.
features of the language, mixed-mode models (finfteaxible beams are continuous non linear dynamical
element-finite volume) are developed as well. systems characterized by an infinite number of degrees
All the models use the standard connectors defingtfreedom. Obviously, dealing directly with infinite
within the Modelica multibody library, guaranteeingdimensional models is impractical both for dynamic
thus full compatibility with the library components. analysis and simulation purposes. Hence it is neces-
The details of the mathematical modelling are fully agary to introduce methods to describe flexibility with a
alyzed, showing the development of the equations di§crete number of parameters.
motion. Three different approaches have been traditionally
The models feature also a graphical interface, with Yjsed to derive approximated finite dimensional mod-
sualization of the simulation outcomes within the Sanggs: |umped parameters’ assumed modes and finite el-
3D environment used in the multibody library, allowement method [3],[5].
ing the user to have an immediate visual feedback. The lumped parameter approach is the simplest one.
Finally, the models are analyzed and validated Ry this method each flexible beam is divided into a fi-
mean of selected simulation experiments, with rEfQ'rrte number of r|g|d beamS, introducing pseudojoints’
ence both to theoretical predictions and to results Cogird the flexibility is represented by springs that restrict
monly accepted within the scientific literature. the motion of each pseudojoint_ This method is how-
ever rarely used because of the difficulty in determin-
ing the spring constants of the pseudojoints and then
of achieving a suitable accuracy up to the desired ap-

Many engineering applications require the develo roximation frequency. i
he assumed modes model formulation has been

ment of simulation models for flexible multibody sys- idel din the I 6L It ibes b
tems (e.g., robot manipulators, helicopter rotors, ajyidely used in the literature [6]. It describes beam

craft wings, space structures, machining tools, car sﬂ_gz('b'l'ty using truncated modal series, based on spa-

pensions, etc.) both dynamically accurate and comﬁ'ﬁ‘—l mode eigenfunctions and time varying vibrational
tationally affordable modes. One of the best features offered by such a

The task of developing models for generic-shap ?t_hog is the f_inetgontfrol on the a;lctl;]racyhup to the
fully deformable bodies is usually demanded to sp gsired approximation frequency. ough concep-

cialized simulation codes and tools, due to the cortr‘lj-aIIy simple, this description requires to find out the

plexity of the task. Such models are usually adequgt%St selection for spatial modal shapes and the bound-

ary conditions, which is not at all a trivial task. In addi-
*corresponding author tion to that, the selection of the appropriate eigenfunc-

1 Introduction

The Modelica Association 25 Modelica 2005, March 7-8, 2005



F. Schiavo, G. Ferretti, L. Vigano

tions and the resulting vibrational modes could de
pend on the boundary conditions for the specific cas
at hand, ruling thus out the possibility of a modula
approach for the model development.

In the finite element method approach [9], the flexi
ble beam is divided into several elements, with a Ic
cal description of the deformation field by the use o
element-wise basis functions. Although such approac.,
could be computationally more demanding than the
modal one (it is usually necessary to use a larger num-
ber of elements than of modal eigenfunctions to ob-

tain the same approximation), it allows a formulatio® formal and mathematically sound description of

which is independent of the actual boundary conditiéh€ 9eneric deformation of a body requires the defor-
[7]. The finite element method is then a viable choidgation field to belong to an infinite dimensional func-
for the representation of flexible beams within a moflon@l space, requiring, in turn, an infinite number of
ular environment. deformation degrees of freedom.
As far as the theory of elasticity to be used is coff? this paper, the deformation field is described by an
cerned, it must be pointed out that beam deflectigtPProximation of the functional basis space it belongs
with respect to the rigid configuration, is generally al2: SUPPOSINg such space has a finite dimensioniykay
sumed to be small, which allows to adopt linear tha® that the vectans can be expressed by the following
ory. In this case the Euler-Bernoulli theory [8] cafinite dimensional product:
be used to describe beam flexibility, neglecting the Ui =S 2

. : : Ur =S¢, )
effects of shear deformation and assuming uniform
cross-sectional properties along the beam. In this pdrereS is the [3 x M] shape functions matrix (i.e., a
per, we consider linear elasticity theory for the modnatrix of functions defined over the body domain and
elling of flexible thin beams. On the other side, Timused as a basis to describe the deformation field of the
oshenko theory [8] should be used for models whevedy itself) andys is theM-dimensional vector of de-
such effects need to be taken into account (e.g., formation degrees of freedom.
short beams). The position of a point on a deformable body can then
The paper is organized as follows: in Section 2 tf¢ €xpressed in world reference as follows:
problem of the representation of a generic deformable; — R Aau= R+ Ao+ Sqr) = R+ Al +ASG ,  (3)
body in a multibody system is introduced; in Section 3 _ _ o o
the development of the equations of motions is showshereR s the vector identifying the origin of the body
with reference both to the finite element method calggal reference system awidis the rotation matrix for
and to the mixed-method one; in Section 4 Medel- the body reference system. _
icaimplementation is analyzed; Section 5 contains sE2€ representation of a generic deformable body in

lected simulation results; finally, in Section 6 the maﬁ’fOrIOI reference requires theniéM d.o.f. (i.e., 6 cor-

. responding to rigid displacements and rotationslédnd
results are summarized and future developments fSeformation fields):

Body i
Feference

World AT
Reference

Figure 1: Flexible body reference systems

introduced. T
g=1lor ar]' =[R O ar]", @)
2 Deformable Body Degrees of Free-where® represents the undeformed body orientation
dom angles and, is a vector containing the 6 rigid degrees

of freedom.
Consider a generic multibody system (Fig. 1). The

position, in body coordinates, of a point on a specifg  Notion Equations

deformable body has the following expression:

The equations of motion for a generic flexible body
in a multibody system can be developed applying the
wherelj is the “undeformed” (i.e., rigid) position vecrinciple of virtual work [3]. It should be pointed out
tor andU; is the deformation contribution to positiorthat the same results could be obtained using the clas-
(i.e., the deformation field). sical Lagrangian approach (as in, e.g., [5]), though

U=Up+Us, 1)
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such approach is quite knotty and difficult to use following definitions:
practice, due to the complexity of the required analyt-
ical differentiation of the kinetic energy expression.

The principle of virtual work states that the virtual

work of the inertial force®®\WM must counterbalance MrRR = /VDdV7 (11)
the sum of the virtual work of theontinuumelastic ’ -
forcesdW; and of the external one\g: Mgy = /V PA(UX) A'dV, (12)
mer = [ pASV, (13)
\Y%
AW = BN+ OV . (5) .
Mes  — —/pAUxeA av (14)
\%
Note that, in casW = 0, the problem reduces to the Mot = /VpAUX Sav, (15)
well-known problem of structural statics [9]. M = / osTsdv, (16)
. . \Y%
The terms of equation (5) are defined as follows: _
5 — / pSdV= AT Mgy, (17)
\Y%
5 - / udv, 18
W = / oo TidV ©6) VP (18)
\Y% =~
= Ux)dV = AmgeAT | 19
MWs = 7/68T0dv, 7) 3 /vp( ) TR (19)
v !
Top = ux)" (Ox)dV =ATmgeA, (20
W — /5rTFedv+/ §TfdQ, (8 % | PO (@) oA, (20)
\Y Q _
Tof = /p(Ux)SdV:ATmef. 21)
\%

whereV is the body volumep is the body density,

or is an infinitesimal virtual displacement, i$ the

body acceleration (in world referenceéy is a vector

of virtual infinitesimal internal strainsg is the inter-

nal stresses vectdF is the vector of external volumeThe vectorQR can then be obtained as follows:
forces,Q is the body surface ané is the vector of

external surface forces.

The quantitiedr andr’can be computed using equa- )
tion (3): QiR:/Vdev+/me>< ((nxu)dV+/Vp((x><u)dV

+ / p2w x (AU) dV + / pATdV =
8 ~3R+BAD-+AB = SR+ 64 x AU+ ASSGr Vo ] v
F=R+ WX WX U+0 X U+ 2w x AU+ Al, =MRRR+AW X W < A /VPAUOIV+

AT x AT /V pATdV + 2AG x AT /V pAsdvy, %2

wherea andw are the body angular acceleration and
velocity (in world reference),respectively, afd =
wdt represents a virtual-infinitesimal rotation.

+ /V PASAVE; =

. =T _ . _
=mrrR+AS T+ At +A(@X DX §+20x Kt ) =
The expressions in (9) can be substituted in 5, leading —mggR+ Mmoot + M 6s — AQR,
to

_ T, _ T AR T ~0 TAf — —
O = /V parfdV =ORQT+83Q +001Q - (10) peingQR= —mx®x S — 26 x St the quadratic ve-
locity vector (due to Coriolis and centrifugal forces)

associated to translational degrees of freedom.

The termsQiR,Qie and Qif can be calculated using thé'he second term of the generalized inertial forces can
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be expressed as

Q?:A/\./p(ﬂx)dVATR—wx/Vpuxudew

—/puxudeO(JrZ/ pux wx (AS)r)dV
v v

+/ pux (ASjs)dV = Figure 2: Planar beam deformation
\%

:A:sATF'é+Am></—pU><deva)
v (23) Equation (5) must be satisfied for every virtual dis-

—A/ puxUxdVa — ZA/ pU x (Sgf) x wdV placement so that the following identities must hold:

\% \%

=A (§AT R+ x Tge@+ 19900 + Teea)—l— Qlf = Qe ; (28)
Q = —Kfar+Qe- (29)

+ @xTorqs +Torbf) =
—=mkeR+ Meea -+ Moy 6 — AQY,

where the quadratic velocity vector associated to thguations (27), (28) and (29) are the equations for 3D
rotational degrees of freedom @ — —wx lggd— Motion of a generic flexible body characterized by an

Teo® — & x Tg1 s elastic constitutive law for its material. In the scientific
TheQ! term, which is related to the deformation d.o.J€rature, such expressions are generally referred to as
gs, can be expanded as follows: thegeneralized Newton-Eulequations (see e.g., [5]).
_ _ The equations of motion can be easily expressed in
Qif :/ psTATF"qu+/ pSTAT W x (0 x u)dV body axes, resulting in:
JV JV
+ | pSTAT (axujdv+ | pSTAT20x (AQ) dV S R
v v MR § S R
. T o a | =
+ / oSTiidv — ST ATR+ / 0STa x tdV+ lao  lor h
v v mi ¢ ar (30)
+/ pST (@x Bx U+ 265 % Kiy)dV 05 QR o
v o =6
et (24) ol P B A R e
+/VPS Sdvis = —K+10s Qv o)
:éTAT|§+T9Tfa+ ms s Gs+
+/ oS’ (62U+2€08qf)dv: Equations (30) are valid for a ggner.al deformable
v body, though many of the quantities involved (e.g.,
=mfR+mga+me s — QJ, the matrixKs¢) depend on specific body characteris-

R T (=2 o~ tics such as the shape or the material properties.
beingQv = — Jy S (w u+2quf> dv. From now on, the case of thin beamwill be con-
The virtual work of the internal elastic forces, undejigered. In detail, it will be assumed that the body is
thei hypo[t)hess of elaztlc constitutive law for the matg-1 ejasticcontinuumwith constant cross-sectional
fal, can be expressed as. properties. Furthermore, it will be assumed that the
AW = — / 8 odV = —3qT Ky , (25) Peam constitutive material is homogeneous, isotropic
IV and perfectly elastic (i.e., the elastic internal forces are
whereK;s; represents the structural stiffness matrigonservative). Finally, it will be assumed that the de-
The form of such matrix depends on the specific mé@rmation field is restricted to lie within they plane
terial constitutive law and on the body shape. of the beam local reference system (Fig. 2).
The virtual work of external forces reads as follows:|t should be pointed out that such assumptions do

OWe = SRTQR+ 81 Q° + 3T Qf | (26) hot restrict the model validity or generality, since the
model remains still representative for a large number
whereQR, Q¢ andQef3 represent, respectively, the gemsf dynamic simulation applications (e.g., almost all the
eralized components of the active forces associatedléxible robots commonly studied have flexible links
translational, rotational and deformation coordinatesvhich can be represented by such model [7]).

The Modelica Association 28 Modelica 2005, March 7-8, 2005



Object-Oriented Modelling and Simulation of Flexible Multibody Thin Beams in Modelica with the Finite
Element Method

¥ Jpe Jlel bending momenig, as follows [9]:
}@,el s e1 / /
’ 1 Nel N Mg M
> 4 Uel:z/( o i e') dx=
14

¥ A1 1 gz el EA EJ

1 . H 1 " / 1
Figure 3: Element coordinate systems :E/g (E‘mf%,el 4 EAUle,eI) dx= Eq{’elef’equ.e,,

(32)
3.1 The element point of view
whereE is the material Young’s modulus\ is the

The finite eIemen'F method is based upon a discreti%@()nstant) cross-sectional area ahis the (constant)
tion of the beam intdN elements. A single element, ;55 sectional second moment of area. The analytical
can itself be viewed as a thin beam characterized b¥>§bression for the case at hand for the makfix

planar deformation field. It is then possible to defing; a1y known as the structural stiffness matrix, is re-
the local dimensionlesabscissasé = x//, wherex s ported in appendix A.

the longitudinal local coordinate arfds the element
length.

In [9] itis shown that the partial differential equationg.2  Finite Element Method Equations As-
associated with the deformation problem at hand, un- sembly

der the hypothesis of elastic constitutive law for the
material, require, for a consistent finite element fofe equations of motion for the entire beam can be ob-

mulation, the use of linear and Hermite cubic polynosinq 1hy assembling the equations of motion for beam
mials for the approximation of the axial and transver;

sal deformation field, respectively. Thus, for a SingF\éements as the one defined in the previous subsection.

element, the generic equations of motion (30) can hhe body reference system will be the local reference
expanded as follows: system located at the root of the first element, so that

B the rigid degrees of freedom, common to all the ele-
B Utsel ments, will be referred to such coordinate system.
Uter= | Urzel | =SuGrel, Let thenm and L be the mass and length of the en-

Utzel tire beam, andN the number of elements to be used,
1-¢ 0 0 — L=
so that/ = L/N. Indicating with X the reference sys-
_ 2 3 2 3
Sl = 8 1’3‘50+ 28 UE ’2% +&) - (31) tem unit vector along the beam axis, the expression of

the generic positiom; of a point of elemenf can be

3 0 0 S expressed as:
S0 F2-283 -8 | =| S |, R
0 0 0 i3 0) = Uoj + SuBjqr = [§;0+ (j — 1) X +SuBjar, (33)

Af el = [Qfl,e| Qf2el Af3el df4el dfsel Qf6,el}T7

o " wherelp; is the position of the root of thg" element,
wh_ere the subscripi is used to refer the quantities t%el is the shape functions matrix defined by (38)
asingle element. is the so-calledonnectivity matrixandqs is a vector

Fig. 3 (_jeplcts the element coordinate systems ass%%'htaining the deformation degrees of freedom for the
ated with the deformation degrees of freedomgj | whole beam

anddgel are associated with axial COMpressiafkel pe matriced; have the following form:
andgss e With transversal displacement aggs ¢ and
Jt6el with bgam extremities rotation. _ Bj=[ Osai-1 | l6 | Osan-j) ] .¥Vi=1,N. (34)
Since the third row of the shape matfis composed

only by zeros, it could be noted that, despite the fa€he connectivity matrices are used to relate the vector
that the motion equations have been developed fofira Which contains the deformation degrees of free-
general 3D case, the deformation field is assumedd@m for the whole beam, to the corresponditibele-

lie within the localxy plane. ment, according to the expression:
The planar deformation hypothesis and the assumption
of a homogeneous, isotropic and elastic material for Qf.el; = Bjqr - (35)

the beam, allow to exploit the Euler-Bernoulli theory

and to calculate the elastic potential eneldy, ne-

glecting the contribution of shear stresses and conslidie dynamics of the complete flexible beam can then
ering only the work of the resulting axial fordg and be described by equation (30), using the following ex-
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pressions: The choice of which of the two set of conditions has
N to be used largely depends on the problem at hand.
S=3 f/v- SiBjdVj, It should be pointed out that the boundary conditions
=L names are just conventional and are not referred to the
5 Z% ”I"/ ;dv;, objects the t?eam is connected_or linked to (e.g., joints
=B or other bodies), so that enforcing such boundary con-
. 03, —UorTy, 0 dition dqes not limitate in any way the generality and
Top = Z T 0 0 dv;, modularity of the model developed so far.
=i Ui_ +U§fj The enforcement of the boundary conditions is tradi-
N ‘ Oy tionally obtained by introducing suitable ma_trices in
Tor = T/ O(3N:1) av;, equations (30) [6, 9]. On the other hand, it can bg
=Y Uy, Sz — Uz, Sz observed.t.hat _such conditions can .be enfqrced by suit-
N m able modifications of the connectivity matrid@sand
me =y IBjT (/ S;Sadvj) Bj, By, by zeroing some entries. For example, for the
=1 Vi clamped-freeconditions,By remains unvaried anfl;
N
Kef = Z BT Ki 1 aiB becomes
=1
N | 03|03
Qf :—leT ! (B (@0 + 208uB;61) | v B { 03 [ 15 | QB3 } ' (39)

(36)

The computation of the above terms can be easily car- . .
fied out by observing that the integral of a generic4 EXteénded Formulation of the Equation of

quantity 7, varying along the beam, onto the volume ~ Motion

of a single element can be computed as follows: o ] )
In the finite element formulation for the equation of

/ pFdV; = T/lgﬂg)dg _ T/lﬂg)dg. (37) Motion for a flexible beam, the reference directions of
Vi L Jo NJo the internal actions are the same for all the elements.
Such representation is acceptable as long as the defor-
mation field is small compared to the beam length, as it
is the case, for example, when studying the dynamics

The equations of motion for the whole beam must 19é vibrations in machining tools.

completed by enforcing suitable boundary conditio§ the other hand, when large deformations are in-
for the finite element approximation of the deformaolved, the internal actions reference directions should
tion partial differential equations. That means assufhlange according to the deformation field. That means
ing prescribed values for some of the deformation di§at it is necessary to define a local reference system
placements, rotations and velocities (linear or angul&y each element (Fig. 4). This corresponds to the
at the body boundaries which are, for the case at hafBplication of the finite volume method to assemble
the beam root and tip. the equations of motion solved over each element (i.e.,
The most commonly used boundary conditions féver each volume). This representation is valid also
flexible beams are of two kinds, commonly referrd@r large beam deformation, as long as the deforma-
to as C|amped-frewnd Simp|y-supp0rted:0nditions_ tion field is small CompaYEd to the volumes Iength.

In both cases six conditions are given (as it is réurthermore, it is possible to assemble the equation
quired from the underlying partial differential equaef motion for a mixed (finite element-finite volume)
tions): theclamped-freeones enforce null deforma-formulation by dividing every volume into several el-
tion at the beam root (i.eq¢1, 9¢2, 9¢3, df1, Gf2, sz €MenNts.

equal to zero for the first element), while thienply- It is not necessary to go into the detailed calculations
supportedones enforce null axial and transversal di$ar the finite volume or the mixed formulation since,
placement at the beam root (i.@s1, Qr2, df1, iz as it will be shown in section 4, the equations of mo-
equal to zero for the first element) and transversal dign for such extensions can be automatically calcu-
placement at the beam tip (i.@;s5 and g5 equal to lated with the aid of symbolic manipulation algorithms
zero for the last element). applied to the finite element formulation.

3.3 Boundary Conditions
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Figure 4: Volume coordinate systems

4 Modelica Implementation “

The finite element formulation for the model has been
implemented using th&lodelica language, creating
thus a new component, callétexBeamFEMFig. 5).

The component interfaces are two standard mechan-
ical flanges from the newlultiBody library [4]. The to select the flanges moments acting on the deforma-
connectors choice makes the component fully compggn field; forces and moments are referred to the root
ible with the library, so that it is possible to connegtange coordinate system.

directly the flexible beam component with the pre-

defined models such as mechanical constraints (re-\l;g-e model parameters include the beam length and

lute joints, prismatic joints, etc.), parts (3D rigid bod:"0SS sectional area, thg maf[erlal_ density anq Young
ies) and forces elements (springs, dampers, for ’dulus, the cross sectional inertia, the damping fac-
torques) tor and the number of elements.

Figure 6: Cart with flexible inverted pendulum

Particular care has been put into the realization of a

[ N] 3D interface for the model to visualize the simulation
results (Fig. 6), implemented by exploiting the fea-

tures of the graphical environment of the multibody li-
Figure 5: Component icon brary. The 3D visualization has revealed itself to be an

important feature, giving significative insight and sen-
In detail, the flexible beam component uses two mgble feedback about the dynamical behaviour of the
chanical flanges as physical representation of the tmodel.

e_nds of the peam \{v_hile the motio.n 's ruled by_ €4U%he finite volume model and the mixed one can be
tions (30), with addition of a damping term Drdy) easily obtained by connecting several finite element
for the structural dyna_lml_cs part. The d_amplng term heams composed by one or more elements, respec-
added to model the dissipative properties of the ma{ﬁély. The achievement of such results, which signif-

rial. . L . . .
. . icantly simplify the models implementation, i
The termsij,Qg,Qef3 (i.e., the external actions) areCa tly simplify the models implementation, is based

computed on the basis of the forces and torques QQ.the modular approach adopted in the finite element
changed at the two connectors with the followingiodel development. The assembly of the equations
code: of motion for these cases is demanded to Modelica-

based simulation environments, which usually employ
QeR=matrix(fa+fb_a); advanced symbolic manipulation techniques and index
QeTheta=matrix(ta+tb_a+cross(({L,0,0} . .
+S1*B[N,:,:]*qf),fo_a)); reduction algorlthms.

Qef=transpose((transpose(matrix(fb_a))*S1* . . .
BIN.-J+transpose(matrix(ta))*dS0*B[L,:,:]) The dynamical properties of the latter models are sig-

+transpose(matrix(tb_a))*dS1*B[N,::])): nificantly complex and accurate, featuring a displace-

ment description which is fully non-linear and allow-
wherefa andfb_a are the forces at the connectorsng the simulation of large displacement due to defor-
ta andtb_a the moments at the connecto&l the mation (Fig. 7) at the cost, though, of a significant
matrix & evaluated fog = 1, B[N,:,:] the connec- increase of the computational complexity with respect
tivity matrix By anddS0 anddS1 are matrices usedto the “pure” finite element model.

FlexBeamFem
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Mode | Freq: [Hz] | FreqT [Hz] | Error [%]
m 1 2.0854733 | 2.0854750 | 8.418e-005
\ 2 13.0694381 13.0698705 3.308e-003
u 3 36.5948052 36.6041219 2.545e-002
4 71.7112127) 71.7795490 9.529e-002
\J/ 5 118.543772| 118.842591 2.521e-001

* Theoretical prediction T Simulation result

Figure 7: Large deformation of athinbeam  Taple 1: Theoretical and model natural frequencies

5 Simulations

0.02 T T
Deformation FFT

The different flexible beam models have been va
dated by several simulation analysis performed witr
the Dymola simulation environment [1]. The most si¢
nificative ones are reported in the following subse

tions.

0.016
0.014
0.012

0.01H
0.008

0.006

In this simulation the free vibration of a flexible bear I i Frequency [Hz] |
-\ ‘
L_J 20 40 60 8 Ty

is analyzed. The test-case has been set up in orde % 5 0 10 140
investigate the models properties with respect to the
retical predictions.
The beam component is connected to the world refer-
ence system, so that no rigid motion is allowed; fur-
thermore, no gravity field is considered. sponding to thé&!" mode of vibration) given by:
At the initial time instant the beam is standing still with
a non-null tip displacement, then it evolves, vibrating, _ 2 |EY

oy = P )
towards steady state. p
The vibration frequencies of a flexible beam clamped . - .
at the root can bg calculated by solving the foIIowFi)neidelngl3k thek™ root of the characteristic equation:
partial differential equation:

5.1 Free Vibration

0.004

0.002

Figure 8: Tip displacement frequency spectrum

(42)

cos(BL)cosh(BL)+1=0 (43)

0%y(x,t) a%y(x,t)
ot2 x4
with the following boundary and initial conditions:

=0

(39) The beam, made by aluminium, has square cross
section A = 1cn?, length L = 2m, density p =
2700kg/m?, Young’s modulus = 7.2-10°N/n? and

ay 0%y a3y has been discretized witth= 10 elements. The initial
YO0, 500, 550, 5500 = (40) tip displacement is &m
y(x,0) = (x), %y( ,0)=0 Table (1) contains a comparison between the results

for for the first five vibrational modes obtained by sim-

wherex is the axial coordinatey is the transversalulation and by solving numerically equation (43). The
displacement andl(x) is the initial deformation field. results are in good accordance, as it is shown also in
In [3] it is shown that the general solution for equatiokig. 8, depicting the tip displacement frequency spec-
(39) has the following expression: trum.

y(x.t) = itbk(x)ak(t), (41) 5.2 Flexible Pendulum
k=1

This simulation, reported also in [2], involves the anal-

wherey(x) are the spatial eigenfunctions aog(t) ysis of the vibrations induced by motion in a flexible
are periodical functions, with natural pulsation (corr@endulum swinging under the action of gravity.
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—— Fem Model II
—— Mixed Model Revolute1
-05- Torque = z E ‘Bm _
Ak tau T E g I
% : g
wurld -
1502 ] Y 4 FixedTranslationt n={-1.00) Revolute2
é W=l
o 1=(0152 + 030400}
245 1 > Prismatic2 =001}
[2]
Slider
=251 1 Cylinder
[~ r={0.15.0,0}
-3F pipecylinder
Time
35 \ i . o .
0 02 04 06 08 1 Figure 11: Slider-crank mechanism (Dymola scheme)
Figure 9: Swing angle
x10°

f\N\l\
| M.
ol I

Tip Displacement

W

=

Figure 12: Slider-crank mechanism

nl ; \ The simulation set up involves a slider, a rod and a
v . crankshaft connected by revolute joints (Fig. 11 and
. | . Time 12)
The crank has length = 0.152m, cross sectional
areaA = 0.7854cn? and second moment of arda=
4.909- 10719, densityp = 2770kg/m® and modu-
lus of elasticityE = 10°N/m?. The connecting rod
The pendulum, connected to the world reference sy@s the same physical parameters of the crank, apart
tem by a revolute joint, has a length= 0.4m, cross from the lenght. = 0.304mand the Young's modulus
sectional aresA = 18cn?, densityp = 5540kg/m?, E =5-10°N/n?. The crank and the connecting rod
second moment of areh= 1.215- 10 8nt* and mod- have been discretized with 3 and 8 elements, respec-
ulus of elasticityE = 10°N/m?. Two different mod- tively. Finally, the slider block has been assumed to be
els have been simulated: the first one composed byalMassless rigid body.

elements and the second one by 5 volumes with 2 §g5ing the simulation, the crankshaft is driven by a

ments each. _ _ torque with the following law:
In Fig. 9 the swing angle is depicted for both cases.

The tip deformation, depicted in Fig. 10, appears to be

slightly different for the two models. The results re-

ported in [2] are in accordance with the ones obtained{ M(t) = [0.01(1— e /0167)]Nm , t<0.7sec
0

with the mixed model, though. , > 0-7580(44)

Figure 10: Tip displacement

5.3 Elastic Slider-crank Mechanism _ _ »
Fig. 13 and 14 show the slider position and the con-

The simulation of an elastic slider-crank mechanismecting rod tip transverse displacement, respectively.
reported also in [2], has been performed to validate thike results are in perfect accordance with those re-
models for use within closed-loop mechanical chainsorted in [2].
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6 Conclusion and Future Work A Structural Stiffness Matrix

[ EA 0 EA 0 ]
In this paper, a new model for flexible thin beams in ¢ ¢
Modelicais introduced. The model, fully compatible 127 6EJ 1263 6EJ
with the MultiBody library, is based on the applica- = 3 0 3
tion of the finite element method. Selected simula-
tion results have been presented in order to validate i 0 _68J  2EJ
the model properties with respect to scientific literax; , = ¢ 2 ¢
ture reference cases. EA 0 0
Future work will include the model extension to han- ¢
dle full 3D deformation and distributed loads. The 128 6EJ
model will also be employed for the development of 2
applications in the field of robot control and satellite 4EJ
attitude control. A
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