
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

J. Mauss
DaimlerChrysler AG, Berlin, Germany
Modelica Instance Creation
pp. 509-517

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel,
Stefan Wischhusen, TuTech Innovation GmbH

Modelica Instance Creation
Jakob Mauss

jakob.mauss@dcx.com

DaimlerChrysler Research & Technology
Alt-Moabit 96a, 10559 Berlin, Germany

Abstract

This paper is about instance creation in Modelica.
Despite the conceptual simplicity of Modelica's ob-
ject-oriented framework, instance creation in Mode-
lica requires surprisingly complicated procedures.
Hence, it takes considerable effort to develop a
Modelica processor for extracting all variables, equa-
tions and algorithms from a given Modelica class.
This paper is meant to reduce this effort by present-
ing key representations and algorithms for instance
creation. To ease reading and verification, instance
creation is developed for a fragment of Modelica,
called SimpleModelica. Building on the representa-
tions and procedures given here, the implementation
of instance creation (flattening) for full Modelica
should be straightforward. However, that ultimate
procedure is not given here, since it is loaded with
technical details, described in the (100 pages) Mode-
lica language specification.

1 SimpleModelica

The syntax of SimpleModelica is defined as follows

class_definition : [encapsulated] class IDENT class_specifier
class_specifier : { element ";" } end IDENT |

"=" name [class_modification]
element : import_clause | extends_clause |

class_definition | component_declaration
import_clause : import (IDENT "=" name | name ["." "*"])
extends_clause : extends name [class_modification]
component_declaration : name IDENT [modification]
modification : class_modification ["=" expression] | "=" expression
class_modification : "(" [argument { "," argument }] ")"
argument : element_modification | element_redeclaration
element_modification : name [modification]
element_redeclaration : redeclare

(class_definition | component_declaration)
expression : NUMBER | STRING | true | false | name
name : IDENT ["." name]

As usual, [x] stands for zero or one, and {x} for zero
or more occurences of x, while | denotes alternatives.

SimpleModelica is a proper subset of Modelica.
Omissions w.r.t. Modelica are: arrays, most prefixes,
equation and algorithm section, class categories, ex-
pressions involving functions, comments, and anno-
tations. An example of SimpleModelica is

class Ele1000 = Ele(Resistor.r=1000);
class Ele
 class Resistor

 Real r = 1;

 end Resistor;

 class Circuit

 Resistor r1;

 Ele.Resistor r2;

 end Circuit;

end Ele;

These class definitions will be used throughout the
paper as illustrating example.

2 Representations

The procedure for instance creation operates on data
structures as defined by the UML diagram shown in
Fig 1. An instance of the shown classes is called
term here, while an instance of a Modelica class is
simply called instance.

2.1 Abstract syntax tree

A Modelica parser may use the classes shown in
double-framed boxes to create an abstract syntax tree
(AST) from a given SimpleModelica class definition.
Fig 2 shows the AST that such a parser creates for
the class definitions Ele and Ele1000 given above.
In the algorithm for instance creation, the Modelica
class tree is represented by the constant ROOT, which
is a ClassDefinition with no id and no parent that
contains all top-level class definitions (typically
packages).

Modelica Instance Creation

The Modelica Association 509 Modelica 2005, March 7-8, 2005

Moreover, the constant GLOBAL is a ClassDefinition
with no id and no parent that contains following
built-in ClassDefinitions

 (1) primitive types RealType, IntegerType, String-
Type, BooleanType, e.g.
 class RealType
 end RealType;
 class StringType
 end StringType;
(2) predefined types defined using these primitive
types, e.g.
 class Real
 RealType value;//accessed without dot-notation
 StringType unit;
 RealType min;
 RealType max;
 end Real;

parent

?

Class
Definition

Element

Element
Modification

IClass

Named
Element
String id

∗

?

∗

?

∗
redeclarations

def
1

∗

type

name

type

1

Extends

Import
String id

ref

mod mod

m
odifications

Class

elements imports

parts

∗

Expression

1 1Instance
String id host

?value

ref

next

?

Component

points to super class
points to field with

1 exactly one value
? 0 or 1 value
∗ 0 or more values C

C class: instance is a term

abstract class: no instance

class for representing AST

C

Component
Declaration

Reference
String id

Modification

QRef

Fig 1: Classes used to implement instance creation

elements

Reference Ele
type

ClassDefinition Ele1000

Reference r

Expression 1000

Modification

Element
Modification

Extends

mod
Modification

value

ref

mod

Reference Real
type

ClassDefinition Resistor

Expression 1
mod

Modification
value

Component
Declaration r

el
em

en
ts Reference Resistor

typeComponent
Declaration r1

Reference Ele
typeComponent

Declaration r2

Reference Resistor

next

ClassDefinition Ele

el
em

en
ts

ClassDefinition Circuit

Reference Resistor
next

Fig 2: AST for classes Ele1000 and Ele

2.2 Implicit classes: IClass

An implicit class is a class that has no explicit defini-
tion in the Modelica class tree. In the example above,
class Ele1000.Circuit is implicit, because the AST of
Ele1000 does not contain a ClassDefinition named
Circuit. Class Circuit is only inherited to Ele1000
through its base class Ele. Nevertheless, class
Ele1000.Circuit can be instantiated, and the resulting
instance differs from the result of instantiating class
Ele.Circuit: Ele1000.Circuit.r1.r = 1000 while
Ele.Circuit.r1.r = 1.
In other words: Ele1000.Circuit and Ele.Circuit are
two different classes. In general, a class A may mod-
ify its base classes, which may modify all elements
inherited by A from these base classes, including
inherited classes.
To deal with implicit classes, a Modelica class is
represented here by a tuple <ClassDefinition def,
Modification mod, Class parent>, see Class in Fig 1.
A ClassDefinition def from the Modelica class tree is
complemented with a Modification mod that modi-
fies this definition and a parent class that overrides
the definition's parent. Subclasses of Class are
ClassDefinition (for which mod is always null, and
def refers to the ClassDefinition itself) to represent
classes from the Modelica class tree, and IClass to
represent implicit classes. The example Modelica
classes are hence represented by the following terms

J. Mauss

The Modelica Association 510 Modelica 2005, March 7-8, 2005

Modelica class term is a def, mod, parent
Ele ClassDef. Ele, null, ROOT
Ele.Resistor ClassDef. Ele.Resistor, null, Ele
Ele.Circuit ClassDef. Ele.Circuit, null, Ele
Ele1000 ClassDef. Ele1000, null, ROOT
Ele1000.Resistor IClass Ele.Resistor, (r =1000), Ele1000
Ele1000.Circuit IClass Ele.Circuit, null, Ele1000

A ClassDefinition is created by the Modelica parser,
while an IClass is created by the procedure for class
name lookup during instance creation.

2.3 Qualified references: QRef

Modelica supports a use before declare policy for the
components of a class. Moreover, there may be cy-
clic dependencies between components: to instanti-
ate component a, we may need access to component
b, and vice versa. This raises the question what kind
of object the lookup of a component reference should
return during instance creation. The referenced com-
ponent (an instance) may not yet exist. To cope with
this, we decide that lookup of a component may also
return a pair <host, ref> where host is an Instance,
and ref is a Reference, such that ref.id is the id of an
instance in host.parts. This pair is called qualified
reference, QRef for short. A QRef asserts that the
host contains - or will contain - the referenced in-
stance, and it represents this referenced instance. The
host may still be under construction at the time the
QRef is created, i.e. may not yet actually contain the
referenced instance. Using QRefs, we can represent
an instance before it actually exists. In contrast to a
Reference, the meaning of a QRef does not depend
on its context, but only on the host. This is why
QRef s are called 'qualified'.

2.4 Qualified and unqualified modifications

A Modification is called qualified, if all its Refer-
ences have been replaced by QRefs. A qualified
modification does not depend on its context, because
all references have been looked up in some scope. In
other words, the meaning of an unqualified modifica-
tion depends on its context, while the meaning of a
qualified modification does not.
ComponentDeclaration and Extends have unquali-
fied modifications, while the modification of IClass
is qualified or null, and the modification of ClassDe-
finition is always null. Example
 class P
 class Ele2000 =Ele(Resistor.r=r2k);
 Real r2k(unit="Ohm")=2000;
 end P

The extends clause "=Ele(Resistor.r=r2k)" of
the short class definition Ele2000 is not qualified, i.e.

the Modelica parser returns an Extends that contains
the Reference "r2k".
The same holds for Modifications occurring in com-
ponent declarations, such as (unit="Ohm")=2000.
In contrast, the Class returned by class lookup of
P.Ele2000.Resistor is an IClass with parent
P.Ele2000 and with the qualified modification
(r = QRef(host = x, ref = "r2k")), where x is an in-
stance of class P. Recall that a short class definition
such as P.Ele2000 does not define its own scope, and
hence "r2k" has to be looked up in the scope of P.

2.5 Instances

The objective of instance creation is to derive an ob-
ject - called instance - that contains all inherited and
locally declared components of a given Modelica
class, with all occurring modifications applied. Fig 3
shows an instance of class Ele1000.Circuit.

pa
rts

pa
rts

Instance

Instance min

Instance max

Instance unit

Instance r Expression 1000
value

Instance r1

Instance min

Instance max

Instance unit

Instance r Expression 1
value

Instance r2

pa
rts

pa
rts

pa
rts

Fig 3: Instance of Modelica class Ele1000.Circuit

3 Algorithm for Instance Creation

Informally, instance creation as implemented below
proceeds as follows

• take the term representing the class to be in-
stantiated, e.g. class definition Ele.Circuit
shown in Fig 2,

• replace each extends clause found in the class
by the parts of an instance of the specified base
class,

• replace each component declaration found in
the class by an instance of the component type.

• The term resulting from all these replacements
is called instance, see e.g. Fig 3.

Modelica Instance Creation

The Modelica Association 511 Modelica 2005, March 7-8, 2005

In this context, a key algorithm is the procedure to
lookup (resolve) a reference such as 'Resistor'.
Lookup retrieves or computes the referenced compo-
nent (a named instance) or class.

3.1 Name lookup

The following two procedures show how lookup
works in principle, roughly on the level of detail as
in the Modelica specification [1]. However, the pro-
cedure for instance creation given in section 3.2 uses
an extended version, that (1) collects and merges
class modifications encountered during lookup to
support implicit classes (IClass) and (2) returns a
Component (QRef) instead of a ComponentDeclara-
tion, in case the reference refers to a component. Un-
fortunately, these extensions make the code for
lookup less easy to understand. Therefore we also
present a simplified version of name lookup here.

lookupName(Class c, Reference ref, Boolean
isFirst) →→→→ NamedElement
1. x ← lookupIdent(c, ref.id)
2. if (x = null and isFirst)
3. x ← import(c.def, ref.id)
4. end if
5. if (x ≠ null)
6. if (ref.next = null) return x
7. else if (x isa Class)
8. return lookupName(x, ref.next, false)
9. else
10. assert x isa ComponentDeclaration
11. xc ← the ClassDefinition that contains x
12. type ← lookupName(xc, x.type, true)
13. return lookupName(type, ref.next, false)
14. end if
15. else if (isFirst)
16. if (c.def is encapsulated or c = ROOT)
17. return lookupName(GLOBAL, ref, true)
18. else if (c.parent ≠ null)
19. return lookupName(c.parent, ref, true)
20. end if
21. end if
22. error "ref not found"
This procedure looks up the given reference in the
scope of the given class, and either returns the first
named element (class definition or component decla-
ration) found, or signals a "ref not found" error.
The procedure searches the sequence of parents, until
an encapsulated class or the unnamed root class of
the Modelica class tree is reached. In both cases,
search is continued (line 17) in the global scope that
contains the predefined elements, such as Real,
String, and time. Only the first identifier (as indi-
cated by the isFirst argument) of a name is looked up
using the import clauses of the class, see lines 2, 3, 4.

E.g. when looking up reference A.B in the scope of
class C, then A may be imported by C, but import
clauses of A are ignored when looking for B in the
scope of A in line 8.

lookupIdent(Class c, String id) →→→→ NamedElement
1. if (c.def.elements contains
2. a NamedElement e with e.id = id)
3. return e
4. else
5. for each Extends ext in c.def.elements
6. if (ext.type.id = id) return null
7. end if
8. base ← lookupName(c, ext.type, true)
9. e ← lookupIdent(base, id)
10. if (e ≠ null) return e
11. end if
12. end for
13. return null
14. end if
Searches class c and its base classes for a named ele-
ment with the given id. If id names a local or inher-
ited named element of c, returns that element, returns
null otherwise. This search does neither use imports
nor parent classes. A tricky part of the algorithm is
the test in line 6, which terminates a circular attempt
to lookup a base class of c.

3.2 Instance creation for SimpleModelica

This section presents a set of procedures that imple-
ment instance creation for SimpleModelica.
instantiate(Reference name) →→→→ Instance
1. c ← lookupClass(ROOT, name, null)
2. ic ← elaborate(c, new Instance())
3. ic ← replaceQRefs(ic)
4. ic ← removeDuplicates(ic)
5. return ic
This procedure instantiates the given class and re-
turns the resulting instance. The class is specified by
name. This way, also an implicit class (such as
Ele1000.Circuit) can be instantiated. In line 1., the
class name is looked up in the scope of the unnamed
root of the Modelica class tree. In line 2., the entire
instance tree is created. However, component refer-
ences occurring in modifications are replaced by
QRefs, not by the referenced instances, see section
2.3. In line 3., ic is the root of the completed instance
tree. All referenced instances should have been cre-
ated by then. Consequently, all QRefs can now be
replaced by the referenced instances. In line 4., du-
plicate instances added through multiple inheritance
are removed from the instance.

J. Mauss

The Modelica Association 512 Modelica 2005, March 7-8, 2005

elaborate(Class c, Instance host) →→→→ Instance
1. for each Extends ext in c.def.elements
2. base ← getClass(c, ext, c.mod, host)
3. host ← elaborate(base, host)
4. end for
5. for each ComponentDeclaration decl
6. in c.def.elements
7. if (redeclare(c.mod, decl.id) ≠ null)
8. decl ← redeclare(c.mod, decl.id)
9. end if
10. qmod ← select(c.mod, decl.id)
11. type ← getClass(c, decl, qmod, host)
12. comp ← elaborate(type, new Instance())
13. comp.id ← decl.id
14. add comp to host.parts
15. end for
16. host.value ← c.mod.value
17. return host
This procedure adds for each inherited or locally de-
clared component of the given class c an elaborated
instance to the given host. In an elaborated instance,
each component reference is represented by a QRef
(see section 2.3), but not yet by the referenced in-
stance. During elaboration, modifications are merged
in the correct order. Redeclaration of a component is
processed in lines 7 - 9.

getClass(Class c, Element e, Modification qm,
Instance host) →→→→ Class
1. type ← lookupClass(c, e.type, host)
2. qmod ← qualify(c, e.mod, host)
3. qmod ← merge(qm, qmod)
4. return createClass(type, qmod)
This auxilliary procedure returns a base class (if e is
an Extends) or component type (if e is a Compo-
nentDeclaration) used during elaboration or lookup.

createClass(Class c, Modification qmod) →→→→ Class
1. qmod ← merge(qmod, c.mod)
2. if (qmod = c.mod) return c
3. else return new IClass(c.def, qmod, c.parent)
4. end if
This auxilliary procedure merges the qualified modi-
fication of the given class with the given qualified
modification qmod, where elements of qmod over-
ride elements of c.mod. Returns either the given
class (e.g. if qmod = null), or a new IClass (see 2.2).

lookupClass(Class c, Reference name, Instance
host) →→→→ Class
1. x ← lookup(c, name, true, host)
2. if (x isa Class) return x
3. else error "not a class"
4. end if

Look for the given class name in the scope of class c.
The host is either null, or an elaborated instance of c.
The given host may be under construction, i.e. not
yet completely elaborated. If lookup should require
to instantiate c (e.g. to access a component of c that
occurs in a modification, see r2k in the example in
section 2.4) the host, if given, is used. Otherwise, c is
elaborated on demand.

lookup(Class c, Reference ref, Boolean isFirst,
Instance host) →→→→ Class or Component
1. x ← lookup(c, ref.id, host)
2. if (x = null and isFirst)
3. x ← import(c.def, ref.id)
4. end if
5. if (x ≠ null)
6. if (ref.next = null) return x
7. else if (x isa Class)
8. return lookup(x, ref.next, false, null)
9. else
10. assert x isa QRef
11. return new QRef(x.host, ref)
12. end if
13. else if (isFirst)
14. if (c.def is encapsulated or c = ROOT)
15. return lookup(GLOBAL, ref, true, null)
16. else if (c.parent ≠ null)
17. return lookup(c.parent, ref, true, null)
18. end if
19. end if
20. error "ref not found"
Similar to procedure lookupName, defined in section
3.1. However, if ref names a component, the compo-
nent is returned (as QRef), not its declaration.
Again, if isFirst is false, then only locally declared or
inherited elements are found, i.e. import clauses, the
parent of c as well as the global scope are ignored.

The next procedure looks up in class c for a local,
inherited or redeclared class or component with the
given id. Returns null, if no such class or component
is found. This does not use imports or c's parent. If id
names a component, the component is returned (rep-
resented by a QRef), and not (like procedure look-
upIdent defined in section 3.1) the corresponding
component declaration.
Lines 5 and 25 handle the case that id names a class
that is redeclared by the qualified modification
c.mod. If id names a component which is redeclared
by c.mod, this redeclaration is either treated during
elaboration of c in line 11, or in lines 19-20 in case
the component is inherited from a base.
If id names a class inherited to c, then c becomes the
new parent of this class (line 24).

Modelica Instance Creation

The Modelica Association 513 Modelica 2005, March 7-8, 2005

lookup(Class c, String id, Instance host) →→→→ Class
or Component
1. if (c.def.elements contains
2. a NamedElement e with e.id=id)
3. if (e isa ClassDefinition)
4. if (redeclare(c.mod, id) ≠ null)
5. e ← redeclare(c.mod, id)
6. end if
7. return createClass(e, select(c.mod, id))
8. else
9. assert e isa ComponentDeclaration
10. if (host = null)
11. host ← elaborate(c, new Instance())
12. end if
13. return new QRef(host, new Reference(id))
14. end if
15. else
16. for each Extends ext in c.def.elements
17. if (ext.type.id=id) return null
18. end if
19. base ← getClass(c, ext, c.mod, host)
20. e ← lookup(base, id, host)
21. if (e ≠ null)
22. if (e isa Class)
23. if (redeclare(c.mod, id) = null)
24. e ← new IClass(e.def, e.mod, c)
25. else e ← redeclare(c.mod, id)
26. end if
27. return createClass(e, select(c.mod, id))
28. else return e
29. end if
30. end if
31. end for
32. return null
33. end if
A tricky part of this procedure is the test in line 17
which terminates a circular attempt to lookup a base
class of c.

import(ClassDefinition c, String id) →→→→ Class or
Component
1. for each Import imp in c.imports
2. if (imp matches "import A.B.C" and id="C")
3. return lookup(ROOT, "A.B.C", true, null) else
4. if (imp matches "import C = A.B" and id="C")
5. return lookup(ROOT, "A.B", true, null) else
6. if (imp matches "import A.B.*")
7. ab ← lookupClass(ROOT, "A.B", null)
8. e ← lookup(ab, id, null)
9. if (e ≠ null) return e
10. end if
11. end if
12. end for
13. return null
Searches the import clauses of the given class defini-
tion for a named element with the given id. Returns
the first matching class or component, or null if no
match was found.

removeDuplicates(Instance host) →→→→ Instance
Remove all duplicate instances (instances with same
id) from the given instance and return the resulting
instance. Duplicates are caused by multiple inheri-
tance. It is an error if two duplicate elements are not
equivalent. Example:
 class A Real x = 1; end A;
 class B Real x = 2; end B;
 class C
 extends A;
 extends B; // error
 end C;
 class D
 extends A;
 extends B(x = 1); // ok
 end D;
Before application of removeDuplicates, instances of
C and D contain a duplicate component x. The pro-
cedure removes x from D, but signals an error for C,
because components x = 1 and x = 2 are not equiva-
lent.

qualify(Class c, Modification mod, Instance host)
→→→→ Modification
Lookup each Reference contained in the given un-
qualified modification in the scope of the given
class, replace it with the resulting Class or QRef, and
return the resulting qualified modification. See 2.4.
The given host is either null or, if available, an
elaborated instance of class c to be used as argument
for name lookup in the scope of class c.

replaceQRefs(Instance host) →→→→ Instance
Replace each QRef contained in the given instance
by the referenced Instance and return the resulting
instance. It is an error if an instance referenced by a
QRef is not found in the QRef's host. (For unre-
stricted Modelica, this method also performs dy-
namic lookup of the inner component, in case a
QRef references an outer component.)

redeclare(Modification env, String id) →→→→
NamedElement
1. if (env.redeclarations contains x with x.id = id)
2. return x
3. else return null
4. end if
If the given modification redeclares an element with
the given id, return the element. In the AST gener-
ated by a parser, the parent of a redeclared class is
the class that contains the redeclaration.
Example:
class A = B(redeclare class C = D);
In the corresponding AST, the parent of C is A.

J. Mauss

The Modelica Association 514 Modelica 2005, March 7-8, 2005

select(Modification env, String id) →→→→ Modification
1. if (env.modifications contains x with x.ref.id = id)
2. if (x.ref.next = null)
3. return x.mod
4. else
5. mod ← new Modification()
6. em ← new
7. ElementModification(x.ref.next, x.mod))
8. add em to mod.modifications
9. return mod
10. end if
11. else return null
12. end if
If the given modification modifies an element with
the given id, this procedure returns the corresponding
modification. Otherwise returns null.
Examples:
• select((R.r =10), "r") returns null
• select((R.r =10), "R") returns (r =10)
• select((r =10), "r") returns =10
• select((r), "r") returns null

merge(Modification env, Modification mod) →→→→
Modification
1. if (env=null) return mod
2. else if (mod=null) return env
3. else
4. result ← copy of env
5. for each ElementModification em
6. in mod.modifications
7. if (select(env, em.ref.id) = null)
8. add em to result.modifications
9. end if
10. end for
11. for each NamedElement e
12. in mod.redeclarations
13. if (redeclare(env, e.id) = null)
14. add e to result.redeclarations
15. end if
16. end for
17. if (env.value = null)
18. result.value ← mod.value
19. end if
20. return result
21. end if
Merge the given modifications, where elements in
env beat (override, replace, update) elements in mod,
and return the resulting merged modification.
The merge operation is associative, not commutative,
and merge(null, m) = merge(m, null) = m for every
Modification m. See [1] for a more detailed specifi-
cation of the merge operation.
Examples:
• merge((x=1,y=2), (x(min=6)=3, z=4)=5)

returns the modification (x=1, y=2, z=4)=5
• merge((x), (x=1)) returns (x=1)

3.3 Extension to Arrays

SimpleModelica can be extended to arrays by adding
(updating resp.) the follwing syntactic definitions.

class_specifier : { element ";" } end IDENT |
"=" name [subscripts] [class_modification]

component_declaration : name [subscripts] IDENT [modification]
element_modification : [each] reference [modification]
expression : NUMBER | STRING | true | false | reference |

"{" expression { "," expression } "}"
reference : IDENT [subscripts] ["." reference]
subscripts : "[" (":" | expression) { "," (":" | expression) } "]"

Example:
 class P =Real[2](unit={"x","y"});

 class A
 Real[n,n+1] a;
 Real[:] b(each min=1)={2,n,4};
 Integer n = 3;
 end A

A challenge introduced by arrays is the need to
evaluate expressions during instance creation.
• The parameter expressions that specify array size

must be evaluated, and return positive integer
sizes. E.g. to instantiate component a in class A,
expressions n and n+1 must be evaluated.

• The modifier of an array must be split in order to
get one single modifier for each array element.
E.g., to instantiate b in class A, b's modification
is split into three modifiers (min=1)=2,
(min=1)=n, and min(=1)=4.

To represent arrays, we use a new class Array, which
extends Instance (see Fig 1) and defines the fields
elementType, subs, and mod where
• elementType is a Class
• subs is a qualified subscripts expression defining

the array size, e.g. [3, 4]
• mod is an optional qualified array modification,

e.g. (unit = {"r", "g", "b"}) = {1, 2, 3}.
Expansion of arrays is delayed until the class being
instantiated has been elaborated and hence array size
expressions can be evaluated. After expansion of an
array a, the field a.parts (inherited to Array from In-
stance) contains the array elements.
A notable feature introduced by arrays are compo-
nent references that cannot be resolved to a unique
component during instance creation.
Example:
 Real a[:] = {10, 20};
 Real b = a[if (time<1) then 1 else 2];

The value of b cannot be identified with a unique
array element during instance creation.

Modelica Instance Creation

The Modelica Association 515 Modelica 2005, March 7-8, 2005

The following procedures extend instance creation as
presented so far to arrays.
instantiate(Reference name) →→→→ Instance
1. c ← lookupClass(ROOT, name, null)
2. ic ← elaborate(c, new Instance())
3. ic ← expandArrays(ic)
4. ic ← replaceQRefs(ic)
5. ic ← removeDuplicates(ic)
6. return ic
The only difference to the procedure given in 3.2 is
the inserted line 3, which expands arrays contained
in ic by evaluating array size expressions and creat-
ing and inserting the corresponding array elements.

elaborate(Class c, Instance host) →→→→ Instance
1. for each Extends ext in c.def.elements
2. if (ext.subs ≠ null)
3. return createArray(c, ext, c.mod, host)
4. else
5. base ← getClass(c, ext, c.mod, host)
6. host ← elaborate(base, host)
7. end if
8. end for
9. for each ComponentDeclaration decl
10. in c.def.elements
11. if (redeclare(c.mod, decl.id) ≠ null)
12. decl ← redeclare(c.mod, decl.id)
13. end if
14. qmod ← select(c.mod, decl.id)
15. if (decl.subs ≠ null)
16. comp ← createArray(c, decl, qmod, host)
17. else
18. type ← getClass(c, decl, qmod, host)
19. comp ← elaborate(type, new Instance())
20. end if
21. comp.id ← decl.id
22. add comp to host.parts
23. end for
24. host.value ← c.mod.value
25. return host
The only difference to the elaboration procedure
given in 3.2 are lines 2-5 and 15-17, which treat the
case that a short class definition or component decla-
ration contains subscripts.

createArray(Class c, Element e, Modification qm,
Instance host) →→→→ Array
1. elementType ← lookupClass(c, e.type, host)
2. qsubs ← qualify(c, e.subs, host)
3. qmod ← merge(qm, qualify(c, e.mod, host))
4. return new Array(elementType, qsubs, qmod)
This auxilliary procedure creates an array with the
given fields. The returned array is not yet expanded,
but it represents (is equivalent to) an expanded array.

expandArrays(Instance host) →→→→ Instance
1. if (host isa Array)
2. expr ← left-most expression in host.subs
3. next ← host.subs without left-most expression
4. n ← vectorSize(expr, host.mod)
5. for i in 1 to n
6. modi ← split(host.mod, i, n)
7. if (next = null)
8. ci ← createClass(host.c, modi)
9. xi ← elaborate(ci, new Instance())
10. else
11. xi ← new Array(ci, next, modi)
12. end if
13. add expandArrays(xi) to host.parts
14. end for
15. else
16. for each Instance comp in host.parts
17. replace comp by expandArrays(comp)
18. end for
19. end if
20. return host
This procedure expands all arrays contained in the
given host, and returns the resulting expanded in-
stance.

split(Modification qmod, Integer i, Integer n) →→→→
Modification
Splits the given qualified modification into n parts
and returns the ith part of it. Example:
• split((each unit="V"), 7, 10) returns (unit="V")
• split(={x, x+y, y}, 2, 3) returns = x+y
Note that Modelica arrays have a 1-based index, i.e.
the first array index is 1 and not 0.

vectorSize(Expression qexpr, Modification qmod)
→→→→ Integer
Determine vector size based on the given qualified
integer-valued expression and the given qualified
vector modification. This requires evaluation of
qexpr, as well as evaluation of expressions occuring
in qmod. Returns a positive integer, or signals an
error. The following examples assume that parameter
n evaluates to 3

• vectorSize(2, null) returns 2
• vectorSize(n, null) returns 3
• vectorSize(:, { x }) returns 1 without eval of x
• vectorSize(:, null) signals an error

3.4 Extension to unrestricted Modelica

To extend instance creation to full Modelica, the fol-
lowing remains to be done

• match outer references with the corresponding
inner reference in the instance tree

J. Mauss

The Modelica Association 516 Modelica 2005, March 7-8, 2005

• add qualified equations and algorithms to an
instance, expand for clauses in equation sec-
tions and connect predicates i.e. generate the
corresponding equations

• validate semantic constraints, e.g. (1) asser-
tions associated with a class category,
(2) type constraints of the Modelica type sys-
tem, (3) constraining clause for redeclaration,
(4) restrict modification to public and non-
final elements of a class

The extension of the above algorithms to most of
these features should be straightforward.

4 Application

Modelica's object-oriented approach to modeling
opens new ways for systematically validating (mod-
els of) engineered systems, e.g. with respect to be-
havior in the presence of component faults and for
alternative input scenarios. We have implemented
instance creation as presented here for a large frag-
ment of Modelica. This Java implementation (based
on JavaCC, see [5]) is part of a bigger effort to de-
velop a tool for automated simulation which, in a
nutshell,
• instantiates a given annotated Modelica model
• extracts for each component of the system the

corresponding fault modes (e.g. ok, stuckOpen,
stuckClose) as indicated by specific annotations

• extracts information about the intended use of
the system (inputs of the model)

• extracts information about specified, i.e. desired
behavior of the system

• uses the extracted information to autonomously
drive a large number of simulation runs, during
which component faults are dynamically inserted
and resulting behavior is classified w.r.t. speci-
fied behavior. The executable used for simula-
tion is generated by Dymola.

Modelica applications like this one require access to
instantiated Modelica classes. Modelica simulators
such as Dymola do not currently offer an API to ac-
cess instances, which currently forces application
developers to implement instance creation on their
own. This paper may help to reduce the required ef-
fort in the future.

5 Related Work

The Modelica specification [1] is available for free
from www.modelica.org. The specification states

that it defines the static semantics of Modelica in
terms of a procedure for instance creation. Unfortu-
nately, this is done in a quite informal way. No
pseudo code is given, and no auxiliary representa-
tions (such as Instance, QRef, IClass) are explicitly
defined. It would be helpful to complement the
specification with a precise procedural definition of
instance creation in the future. This paper may be a
starting point.
Pelab at Linköping University has developed a RML
specification [3] for a fragment of Modelica, which
can be used to automatically generate [4] a procedure
for instance creation. However, for a human reader
interested in a procedural view on Modelica, e.g. to
understand name lookup or to implement flattening,
the RML specification (several thousand lines of de-
clarative rules) is less helpful.
The design of Modelica was influenced by the The-
ory of Objects by Abadi and Cardelli [2]. This book
defines various calculi (similar to Lambda-calculus)
to model object-oriented languages. The calculi are
composed from equational theories, called frag-
ments. Based on these calculi, a procedure for in-
stance creation in Modelica could perhaps be derived
on formal grounds as follows

• define an equational theory E of objects
• direct the equations to convert E into a term

rewrite system such that a term may be a Mod-
elica class definition, and the irreducible term
derived from that by a finite number or reduc-
tions is an instance of that class.

This is basically the idea underlying Pelab's RML
specification. In this paper, we have chosen a less
formal approach.

References

[1] Modelica Language Specification 2.1,
www.modelica.org, 2004.

[2] Martin Abadi, Luca Cardelli: A Theory of
Objects, Springer 1996.

[3] David Kågedal: A Natural Semantics Speci-
fication for the Equation-based Modeling
Language Modelica. Master Thesis LiTH-
IDA-Ex-98/48, Linköping University, 1998.

[4] David Kågedal and Peter Fritzson: Generat-
ing a Modelica compiler from natural seman-
tics specifications. Proceedings of Summer
Computer Simulation Conf. SCSC'98, 1998.

[5] JavaCC - Java Compiler Compiler, a Java
Parser Generator, https://javacc.dev.java.net/

Modelica Instance Creation

The Modelica Association 517 Modelica 2005, March 7-8, 2005

