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Abstract 
The need for integrating system modeling with tool 
capabilities is becoming increasingly pronounced. For 
example, a set of simulation experiments may give rise 
to new data that are used to systematically construct a 
series of new models, e.g. for further simulation and 
design optimization. Using models to construct other 
models is called meta-modeling or meta-programming. 

In this paper we present extensions to the Modelica 
language for comprehensive meta-programming, in-
volving transformations of abstract syntax tree repre-
sentations of models and programs. The extensions 
have been implemented and used in several applica-
tions, are and currently being integrated into the 
OpenModelica environment. 

1 Introduction 
Meta-programming (meta-modeling) is writing pro-
grams (models) having other programs (so called ob-
ject-programs) as inputs or results. A program can for 
instance take another program as input data, perform 
computations on the program by traversing its internal 
structure (the abstract syntax of the program) and return 
a modified program as output data.  

Often, the object program language and the meta-
programming language are the same, like for instance 
in LISP, in Mathematica, or in the Java reflection 
mechanism. This is also the approach we have taken for 
Modelica. Thus, a language needs some way of repre-
senting the object program as data.  

A simple approach is to use text strings as program 
representation. However, this has the disadvantage that 
not even simple structural (syntactic) correctness can be 
guaranteed. Another problem is low performance. 
Thus, this approach is only suitable for simple and less 
demanding tasks. 

Another solution is to encode the object program us-
ing structured data types of the meta-programming lan-
guage. This basically means that data types for the ab-
stract syntax are defined in the language itself. This 

approach has the benefit of ensuring correct syntax of 
object programs. It is used in for instance Java reflec-
tion where the class java.lang.Class is the data 
type for a Java class. The class has methods to query a 
Java class for its methods, members, interfaces, etc.   

In a previous paper (Aronsson et.al., 2003) we pre-
sented an approach of quoted Modelica code combined 
with built-in predefined Modelica types to handle cer-
tain syntax classes, like for instance TypeName for a 
Modelica type name or VariableName for a Modelica 
variable name. However, this does not give full flexi-
bility and meta-programming power, since the abstract 
syntax tree representation cannot be fully manipulated 
in the meta-programming language itself. That work 
should be seen as a precursor and initial stage for the 
work presented in this paper. 

2 Tree Data Structures 
What are then the needs for data structures and opera-
tions for full meta-programming capabilities? One of 
the most common examples of programs that manipu-
late and produce other programs are compilers, which 
translate programs in some language into the same or 
another language.  

The most common data type representation for pro-
grams in compilers are tree structures, and typical op-
erations are transformations of such trees into trees dur-
ing the translation process. Lists are a special case of 
tree data types, but are typically given special support 
in many symbolic programming languages.. 

Tree data types have two interesting properties: 

• Union type – a tree data type is typically the union 
of a number of node types, each representing a tree 
node. 

• Recursive type – the children of a tree node may a 
type which is the tree data type itself. 

A small expression tree, of the expression 12+5*13, is 
depicted in Figure 1. Using the record constructors 
PLUS, MUL, RCONST, this tree can be constructed by the 
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expression PLUS(RCONST(12), MUL( RCONST(5), 
RCONST(13)))

 

 
Figure 1. Abstract syntax tree of the expression 12+5*13. 

Union types and recursive types are currently missing 
from the Modelica language, which so far has been a 
conscious decision in order to avoid heap-allocated 
objects. 

However, with the increased relevance of meta-
modeling, the time may now be ripe for a possible ex-
tension such as the introduction of the uniontype re-
stricted class construct. The example below declares a 
small expression tree type Exp containing 6 different 
node types represented as ordinary Modelica record 
types. 
uniontype Exp 
  record RCONST Real x1; end INT; 
  record PLUS  Exp x1; Exp x2; end PLUS; 
  record SUB   Exp x1; Exp x2; end SUB; 
  record MUL   Exp x1; Exp x2; end MUL; 
  record DIV   Exp x1; Exp x2; end DIV; 
  record NEG   Exp x1;         end NEG; 
end Exp; 

The uniontype restricted class construct currently has 
the following properties: 

• Union types can be recursive, i.e., reference them-
selves. The is the case in the above Exp example, 
where Exp is referenced inside its member record 
types. 

• Union types are currently restricted to contain only 
record types. This restriction may be removed in the 
future. 

• Record declarations declared within a union type 
are automatically inherited into the enclosing scope 
of the union type declaration. 

• A record type may only belong to one union type. 
This restriction may be removed in the future.  

This is a preliminary union type design, which however 
is very close to (just different syntax) similar constructs 
in functional languages such as Haskell, Standard ML, 
OCaml, and RML. 

3 Tree Transformation Operations 
Regarding operations on trees, most languages support-
ing tree transformations provide a kind of pattern 

matching and transformation construct. Therefore we 
propose the introduction of match-expressions in the 
Modelica language. A trivial example of match-
expression is presented below: 
  String str; 
     ;  Real x
algorithm 
  x :=  
    match str 
      case "one"   then 1; 
      case "two"   then 2; 
       
      else   0; 

case "three" then 3; 

    end match; 

The string variable str is matched against the constant 
patterns "one", "two", etc., returning the correspond-
ing value from each branch in the match-expression. A 
default value can be returned from the optional else-
branch if no other branch matches. 

The general form of the proposed match-expression 
is as follows: 
match <expr>  <opt-local-decl> 
  case <pat-expr> <opt-local-decl> 
    <opt-local-equations> 
    then <value-expr>; 
  case <pat-expr> <opt-local-decl> 
    <opt-local-equations> 
    then <value-expr>; 
  ... 
  else <opt-local-decl>  
    <opt-local-equations> 
   then <value-expr>; 
end match; 

The then keyword precedes the value to be returned in 
each branch.. The local declarations started by the lo-
cal keyword, as well as the equations started by the 
equation keyword are optional.There should be at 
least one case...then branch, but the else-branch is 
optional. 

The match-expression introduces several new con-
cepts in Modelica: 

• Pattern expressions, <pat-expr>, which may ref-
erence unbound local pattern variables declared 
within the match-expression. 

• Optional local variable declarations, <opt-local-
decl>. These variables are local and have a scope 
within the match-expression or within a specific 
branch of the match-expression if they are declared 
within such a branch. 

• Optional local equations, <opt-local-
equations>, which are solved locally within the 
match-expression, and where the unbound un-
knowns to be solved for have been declared in local 
variable declarations. 

    

PLUS 

    

MULRCONST 

RCONST RCONST 12 

5 13 
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An example of a match-expression within the function 
eval shows its usage in a simple expression tree 
evaluator. The local variables v1,v2,e1,e2 have scope 
throughout the whole match-expression. Pattern vari-
ables such as e1 and e2 are belong to pattern expres-
sions that are matched against tree expressions. For 
example,  PLUS(e1,e2) is matched against 
PLUS(RCONST(12), MUL( RCONST(5), 

RCONST(13))) depicted in Figure 1, thereby binding 
e1 and e2 to the children of the PLUS node, in this 
match e1 to RCONST(12) and e2 to MUL( 

RCONST(5), RCONST(13)). 
function eval 
  input  Exp   exp_1; 
   R
algorithm 
output eal rval_1; 

 rval_1 := 
  match exp_1 
    local Integer v1,v2; 
          Exp     e1,e2; 
    case RCONST(v1) then v1; 
 
    case PLUS(e1,e2) equation  
      v1 = eval(e1;  eval(e2) = v2; 
      then v1+v2; 
 
    case SUB(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2; 
      then v1-v2; 
 
    case MUL(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1*v2; 
 
    case DIV(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1/v2; 
 
    case NEG(e1) equation 
      v1 = eval(e1); 
      then -v1; 
   end match; 
end eval;  

Note that the match-expression just like other expres-
sions can be used in three contexts: inside equations, 
inside algorithm sections, and inside functions. 

As usual in Modelica the equations are not direc-
tional, e.g. the two equations v1 = eval(e1) and e-
val(e1) = v1 are equivalent. 

There are some design considerations behind the 
above match-expression construct that may need some 
motivation. 

• Why do we have local variable declarations within 
the match-expression? The main reason is clear and 
understandable semantics. In all three usage con-
texts (equations, algorithm sections, functions) it 
should be easy to understand for the user and for the 
compiler which variables are unknowns (i.e., un-
bound local variables) in pattern expressions or in 

local equations.  
  Other variables that are bound to values might 
have been declared in some class, or be protected 
variables in a function. Without the simple rule that 
local unknowns must be declared locally, it would 
be hard to discover the difference between variables 
that are unknowns and still can receive values, and 
other variables which already have values.  
  Another reason for declaring the types of local 
variables is better documentation of the code – the 
modeler/programmer is relieved of the burden of 
doing manual type-inference to understand the code. 

• Why local equations instead of assignment state-
ments? The match-expression is an expression con-
struct that can be used in the three contexts, includ-
ing expressions in equations which are declarative. 
Having non-local assignments inside expressions 
would make the expressions nondeclarative. 

• Why match-expressions and not match-statements? 
The match-expression is more important since it can 
be used in all three contexts, and therefore has been 
designed first. An analogous match-statement with-
out local equations can be designed at a later stage. 

• Why the keywords match ... case instead of  
switch ... case as in Java? The current choice of 
keywords is inspired by the languages Modelica, 
Java, and Mathematica, and is just a matter of taste 
– it is easy to change to other keywords. However, it 
is probably good style to indicate the increase power 
of the match-expression compared to the switch-
statement by a different keyword. 

• Why the then keyword before the returned value? 
We have experimented with various syntax designs, 
and the code becomes easier to read if there is a 
keyword before the returned value-expression, es-
pecially when it is preceded by local equations. The 
keyword cannot be return since that means return 
from a function. The then keyword is used in a 
similar way in Modelica if-then-else expres-
sions. Note that most functional languages use the 
in keyword instead in this context, which is less in-
tuitive. However, the in keyword has more of a set 
or array element membership meaning in Modelica. 

Local equations in match-expressions have the follow-
ing semantics: 

• Only algebraic equations are allowed, no differen-
tial equations 

• Only locally declared variables (local unknowns) 
declared by local declarations within the match-
expression are solved for.  
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• Equations are solved one by one in the order they 
are declared. (This restriction may be removed in 
the future). 

• If an equation or an expression in a case-branch 
fails, all local variables become unbound, and the 
next branch is tried. (There is some discussion 
whether the semantics of trying the next case-
branch after a fail should be kept). 

3.1 Example of Symbolic Differentiation 

To make the following example of symbolic differen-
tiation more realistic, we add a few expression nodes to 
the Exp data type, including a function call node CALL 
whose argument list has the type list<Exp>, see Sec-
tion 4.1. 
record IDENT String name; end IDENT; 
record CALL  Exp id; list<Exp> args; 
  end CALL; 
record AND   Exp x1; Exp x2; end AND; 
record OR    Exp x1; Exp x2; end OR; 
record LESS  Exp x1; Exp x2; end LESS; 
record GREATER Exp x1; Exp x2; 
  end GREATER; 

An example function difft performs symbolic differ-
entiation of the expression expr with respect to the 
variable time, returning a differentiated expression. In 
the patterns, _ underscore is a reserved word that can be 
used as a placeholder instead of a pattern variable when 
the particular value in that place is not needed later as a 
variable value. The as-construct: id as IDENT(_) 
in the third of-branch is used to bind the additional 
identifier id to the relevant expression. Both tuples 
with syntax (expr1,expr2,....), see Section 4.2, 
and lists are used in the example. 

We can recognize the following well-known deriva-
tive rules represented in the match-expression code: 

• The time-derivative of a constant (RCONST()) is 
zero. 

• The time-derivative of the time variable is one. 
• The time-derivative of a time dependent variable id 

is der(id), but is zero if the variable is not time 
dependent, i.e., not in the list tvars/timevars. 

• The time-derivative of the sum (add(e1,e2)) of 
two expressions is the sum of the expression deriva-
tives. 

• The time-derivative of sin(x) is cos(x)*x' if x 
is a function of time. 

• etc... 

We have excluded some operators in the difft exam-
ple because of limitations of space in this paper. 
 
function difft "Symbolic differentiation 
    of expression with respect to time" 
  input  Exp expr; 

  input  list <IDENT> timevars; 
   E
algorithm 
output xp diffexpr; 

 diffexpr := 
  match (expr, timevars) 
    local Exp e1prim,e2prim,tvars; 
          Exp e1,e2,id; 
// der of constant 
    case(RCONST(_), _) then RCONST(0.0);  
// der of time variable 
    case(IDENT("time"), _) then 
      RCONST(1.0);  
// der of any variable id 
    case difft(id as IDENT(_), tvars) then 
      if list_member(id,tvars) then 
        CALL(IDENT("der"),list(id)) 
      else 
        RCONST(0.0); 

 // (e1+e2)’ => e1'+e2'  
    case (ADD(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then ADD(e1prim,e2prim); 

 // (e1-e2)’ => e1'-e2' 
    case (SUB(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then SUB(e1prim,e2prim); 
// ( 2)’ => e1'*e2 + e1*ee1*e 2' 
    case (MUL(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then PLUS(MUL(e1prim,e2), 
              MUL(e1,e2prim)); 

 // (e1/e2)’ => (e1'*e2 - e1*e2')/e2*e2 
    case (DIV(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then DIV(SUB(MUL(e1prim,e2), 
                 MUL(e1,e2prim)), 
             MUL(e2,e2)); 

 // (-e1)' => -e1' 
    case (NEG(e1),tvars)  equation 
      e1prim = difft(e1,tvars); 
      then NEG(e1prim); 
// sin(e1)' => cos(e1)*e1' 
   case CALL(IDENT("sin"),list(e1)),tvars) 
      equation e1prim = difft(e1,tvars); 
     then MUL(CALL(IDENT("cos"),list(e1)), 
             e1prim); 

// (e1 and e2)’ => e1'and e2'  
    case (AND(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then AND(e1prim,e2prim); 

// (e1 or e2)’ => e1' or e2'  
    case (OR(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then OR(e1prim,e2prim); 

// (e1<e2)’ => e1'<e2'  
    case (LESS(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then LESS(e1prim,e2prim); 

// (e1>e2)’ => e1'>e2'  
    case (GREATER(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
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      e2prim = difft(e2,tvars); 
      then GREATER(e1prim,e2prim); 

// .etc .. 
  end match; 
 
end difft; 

4 Lists and Tuples 
List and tuple data types are common in many lan-
guages used for meta-programming and symbolic pro-
gramming. 

4.1 Lists 

The following operations allows creation of lists and 
addition of new elements in front of lists in a declara-
tive way. Extracting elements is done through pattern-
matching in match-expressions shown earlier. 

• list – list(el1,el2,el3, ...) creates a list 
of elements of identical type. Examples: list()– 
the empty list, list(2,3,4) – a list of integers. 

• nil – denotes an empty reference to a list or tree. 
• cons – the call cons(element, lst) adds an ele-

ment in front of the list lst and returns the result-
ing list. Also available as a new built-in operator :: 
(coloncolon), e.g. used as in: element::lst. 

Types of lists and list variables can be specified as fol-
lows:

• list – list<type-expr> is also a list type con-
structor, e.g. :  

  type RealList = list<Real>;  

• Direct declaration of a variable rlist that denotes 
a list of real numbers: 
list<Real>    rlist; 

4.2 Tuples 

Tuples can be viewed as instances of anonymous re-
cords. The syntax is a parenthesized list. The same syn-
tax is used in extended Modelica presented here, and is 
in fact already present in standard Modelica as a re-
ceiver of values for functions returning multiple results. 

• An example of a tuple literal: 
 (a, b, "cc")  
• A tuple with a single element has a comma in order 

to have different syntax compared to a parenthe-
sized expression: (a,)  

• A tuple can be seen as being returned from a func-
tion with multiple results in standard Modelica: 

 (a,b,c) := foo(x, 2, 3, 5); 
• Access of field values in tuples is achieved via dot-

notation, tupvalue.fieldnr, analogous to 

recvalue.fieldname for ordinary record values. 
For example, accessing the second value in tup: 
tup.2 

The main reason to introduce tuples is for convenience 
of notation. You can use them directly without explicit 
declaration. Tuples using this syntax are already pre-
sent in the major functional programming languages. 

A tuple will of course also have a type. When tuple 
variable types are needed, they can for example be de-
clared using the following notation: 
type VarBND  = record<Ident, Integer>; 

or directly in a declaration of a variable bnd: 
record<Ident, Integer>   bnd; 

The tuple type used in the match-expression of the pre-
vious simple eval function is record<Exp,Exp>. 

5 Positional Type Parameters 
Class definitions in Modelica allow type parameters, 
declared as replaceable local types, e.g.: 
class C2 = C(redeclare class 
                ColoredClass = BlueClass); 

Using a shorter angle-bracket syntax for positional type 
parameters similar to what is used in other object-
oriented languages such as C++ or Java, this can be 
expressed as: 
class C2 = C<BlueClass>; 

We have used this syntax in several places throughout 
this paper, including a call to a polymorphic function in 
Section 7. 

6 Expression Evaluator with Envi-
ronments 

The previous small expression evaluator presented in 
Section 3 could only handle constant expressions. The 
following example can handle expressions with vari-
ables. It demonstrates a different representation of ex-
pression trees, with BINARY nodes that are parameter-
ized in terms of the operator, and thereby can handle 
several binary operators in a single of-branch in the 
match-expression. First we give the type declarations: 
type Ident  = String; 

uniontype Exp 
  record RCONST Real x1; end RCONST; 
  record IDENT  Ident x1; end IDENT; 
  record BINARY Exp x1; BinOp op; Exp x2;  
  end BINARY;    
  record UNARY  UnOp x1; end UNARY; 
  record ASSIGN Ident x1;  Exp x2;  
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    end ASSIGN; 
end Exp; 

uniontype Bin  Op 
  record ADD end ADD; 
  record SUB end SUB; 
  record MUL end MUL; 
  record DIV end DIV; 
end BinOp; 

uniontype UnOp 
 record NEG end NEG; 
end UnOp; 

uniontype Value 
  
end Value; 
record REALval Real x1;  end REALval; 

The following eval function can handle evaluation of 
expressions with variable references. It calls the 
lookup function for access of variable references, and 
apply_binop for evaluation of binary operators. 
type Ident  = String; 

function eval  
         // Evaluation of expression exp  
         // in an environment env 
  input  Env   env_1; 
  input  Exp   exp_1; 
  output Value value_1; 
algorithm 
 value_1 := 
  match (env_1,exp_1)  
    local Real v,v1,v2; 
         String   id; 
         Env      env; 
         Exp      e1,e2; 
         Boolean  v3; 
         BinOp    relop; 
 // Real constant 
    case (_,REALval(v)) then REALval(v);  
           
 // able identifier ivari d 
    case (env,IDENT(id)) equation                  

The next example is polymorphic since the array ele-
ment type Type_a is not fixed. It is a replaceable type, 
which makes it possible to apply arr_map to arrays of 
any element type. For example, applied to an array of 
strings, with the addA function that adds "A" to the end 
of a string:        v = lookup(env,id); 

      then REALval(v); 
 
// If id not declared, give an error 
// message and fail through error 
    case (env,IDENT(id)) equation 
      v = not lookup(env,id);               
      print("Error - undef variable: "); 
      print(id);  print("\n"); 
      then fail() 
 
 // expr1 binop expr2 
    case (env, BINARY(e1,binop,e2)) 
      equation 
        eval(env,e1) = REALval(v1);          
        eval(env,e2) = REALval(v2); 
        v3 = apply_binop(env,binop,v1,v2); 
      then REALval(v3); 
 
  end match; 
end eval;  
 

7 Function Parameters 
A common and rather useful language feature not yet 
present in standard Modelica is the ability to pass func-
tion parameters. For example, passing the add1 func-
tion to a mapping function that applies it to each ele-
ment: 

arr2 := arr_map_int(add1, {2,3,5,8}) 

returns: 

{2,4,6,9} 

We propose the following style of declaring a function 
that accepts a function formal parameter, exemplified 
through an example. The only syntax extension is to 
allow the declaration of a function without body, here 
Functype, which allows us to declare the type signa-
ture of the function formal parameter func. 
function arr_map_int 
  "Map over an array of integers" 
   function Functype 
     input Integer x1; output Integer x2; 
  end                     FuncType;           
input replaceable function c     fun

                         extends FuncType; 
  input  Integer[:] inarr; 
  output Integer[size(inarr,1)] outarr;              
algorithm   
  for i in 1:size(inarr,1) loop 
    outarr[i] := func(inarr[i]); 
  end for; 
end arr_map_int; 

arr3 :=  
  arr_map<String>(addA, {"foo","fie"}) 

returns: 

{"fooA","fieA"} 

The definition of the arr_map function: 
function arr_map 
"Map over an array of elements of Type_a" 
    replaceable type Type_a; 
     
      input Type_a x1; output Type_a x2;  

function Functype  

   end Functype;                             
  input replaceable function func 
                       extends FuncType; 
  input  Type_a[:]  inarr;  
  output Type_a[size(inarr,1)] outarr;              
algorithm  
  for i in 1:size(inarr,1) loop 
    outarr[i] := func(inarr[i]); 
  end for; 
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end arr_map; 

The semantics of function parameters include the fol-
lowing: 

• Functions can be passed as actual arguments at 
function calls. 

• Type checking done on the function formal parame-
ter type signature, not including the actual names of 
inputs and outputs to the passed function. 

8 Exception Handling 
The design of exception handling capabilities in Mode-
lica is currently in a preliminary phase. The following 
constructs are being discussed: 

• A try...catch statement or expression. 
• A raise(...) call for raising exceptions. 

The statement variant has approximately the following 
syntax: 
try  
  <statements> 
  ... 
catch <x> then 
  <statements> 
  ... 
end try; 

The syntax of the expression variant is as follows: 
try  
  <expression> 
catch <x> then 
    <ex
end try; 

 pression> 

This design is still very preliminary, several issues need 
to be determined, and no implementation has yet been 
produced. 

9 Conclusions 
It has been demonstrated how Modelica can be ex-
tended with data structures and operations that are typi-
cally needed for comprehensive meta-programming and 
symbolic transformations. The extensions are declara-
tive and preserve the declarative and equation-based 
style of Modelica. Recursive data types, lists, and tree 
pattern matching in match-expressions with local equa-
tions can be naturally integrated into the current Mode-
lica 2.1 language. A implementation of most of this 
functionality has been tested on a number of examples, 
including those in this paper, and is currently being 
integrated into the OpenModelica compiler. 

We believe that the combination of the modeling 
power and numeric capabilities of the current Modelica 
language, combined with symbolic transformation ca-

pabilities of the new extensions, will make Modelica 
into a very powerful meta-modeling and meta-
programming language for the future. 
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