
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

M. Tiller
Ford Motor Company, USA
Implementation of a Generic Data Retrieval API for Modelica
pp. 593-602

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel,
Stefan Wischhusen, TuTech Innovation GmbH

Implementation of a Generic Data Retrieval API for Modelica
Dr. Michael M. Tiller

Ford Motor Company, Research and Advanced Engineering
Dearborn, MI USA

Abstract

For model developers, the Modelica modeling
language is a valuable tool for describing the behav-
ior of dynamic systems. However, developing mod-
els and performing analyses as part of a large scale
engineering operation involves much more than cre-
ating behavioral descriptions [1],[2]. In order to in-
tegrate modeling and simulation into a typical prod-
uct development process it is necessary to extract
data (e.g. product information, part geometry, con-
troller calibrations) from external sources.

This paper will describe an application pro-
grammer interface (API) for data retrieval that has
been developed using the standard external function
interface in Modelica. The API is composed of ge-
neric functions that can be implemented to extract
data from a variety of external data sources. Such an
API can be used to access data for material proper-
ties, part geometries, data tables, etc.

While the interface definitions are generic, our
implementation of the generic API was specifically
developed to retrieve data stored in XML [3] and
utilizes the libxml2 library [4] to retrieve and
parse XML files containing product information.
Furthermore, the API queries are performed using
XPath expressions [5].

Currently, there is no standard API to allow
Modelica models to retrieve information from exter-
nal data sources. Hopefully this paper can demon-
strate the power of such capabilities and prompt fur-
ther discussion on formalizing a standard API with
similar functionality.

Keywords: XML, XPath, HDF, MATLAB, Java

1 Introduction

Data is an integral part of modeling. Because
Modelica is so often used for physical, first-
principles modeling, there is typically a need to pro-
vide design data for numerous individual compo-

nents. Such data is often available “somewhere” (we
will use the term external data source as a generic
term for sources of such data) but it must be col-
lected to populate the Modelica model.

Because there is no standard way in Modelica to
access such external data sources, this data is typi-
cally either entered by hand for each component or
aggregated and organized into Modelica record defi-
nitions. We will refer to data managed in this way as
a Modelica representation of the data.

While Modelica representations can be used,
there are numerous drawbacks when trying to inte-
grate the resulting models into large scale engineer-
ing and analysis processes. For example, such data
often already exists in an external data source and
copying it into a Modelica representation is both te-
dious, redundant and error prone. It also makes
models that depend on the Modelica representation
of the data difficult to update as new data becomes
available. The best approach is one that retrieves the
data as needed from the centralized external data
sources. For example, if product information is
stored in a relational database somewhere within a
company, the ideal situation would be that the in-
formation could be automatically extracted directly
from that database.

Another problem with Modelica representations
of the data is cataloging large collections of compo-
nent data. Representing such data in Modelica
means, in practice, that large datasets are loaded into
the modeling environment when only a very small
percentage of that data is used. For example, we
have data for a large number of production engines.
The space required to store the data for each engine
is considerable. We currently store all this informa-
tion in a hierarchy of Modelica records. Storing the
data in this way means slower loading times and
higher memory consumption even though any given
analysis only requires the data for one particular en-
gine. Another issue with cataloging the data is que-
rying the data set to see what information is avail-
able. While most data management systems include
formalized query systems, there is no functional

Implementation of a Generic Data Retrieval API for Modelica

The Modelica Association 593 Modelica 2005, March 7-8, 2005

equivalent in Modelica to query languages such as
SQL, XPath or XQuery [6].

Often times, different characterization data is
needed for the same component depending on the
desired level of fidelity. Representation in Modelica
often results in a variety of record definitions associ-
ated with a given physical component (i.e. one for
each level of fidelity). Typically these record defini-
tions include large amounts of redundant data be-
tween them. However, because of the semantics as-
sociated with records1 in Modelica, it is difficult to
eliminate such redundancy.

Use of data expressed directly in Modelica typi-
cally results in that data being “hard-wired” into the
resulting simulation. Although the data can be
changed it is typically a manual process and imprac-
tical for large data sets. Ideally it should be possible
to load the data on demand from a data source in the
event that such a data source has been changed or
updated.

Another concern is storage of the data. A cen-
tralized data source is often accessed over the net-
work. As such, the data is only stored in one place.
This not only conserves space but also provides a
definitive source for the data. If data is represented
in Modelica there is the risk that variations will de-
velop across multiple copies of the data. Loading
data on demand over a network provides a more dy-
namic system for data management.

Some applications require very large data sets to
be available but only use relatively small chunks at
any given time [7]. In such a case, a system that is
able to load data into memory for use by a model on
an “as needed basis” can save a considerable amount
of space (e.g. in results files). By avoiding the need
to represent the entire dataset in Modelica and the
compilation process (e.g. symbolic analysis) avoids
the need to read in and analyze such data.

2 Interface

For these reasons, we have developed an API
that allows us to retrieve data from external sources.
This is not a “database API” because it does not in-
clude the complete set of operations typically associ-
ated with database interactions (e.g. changing data,
committing transactions, etc). Instead, the focus for
this package is on retrieval only. The interface is
generic so it could be mapped to a wide variety of

1 Specifically, the strict requirement that assignment is
only possible between identical record types.

external data sources (including, but not limited to,
databases).

In this section we will go through the API in de-
tail to explain the basic functionality before moving
on to a discussion of our implementation of the inter-
face and some examples of its use.

The data retrieval API is implemented within a
package called DataRetrieval. The package
contains several class definitions that extend from
the ExternalObject class used for handling opaque
references to external (e.g. C language) data. In ad-
dition, it contains several functions that operate on
these locally defined data types.

2.1 Opening and Closing a Data Source

In order to access a data source it is first nec-
essary to open it for queries by instantiating an ob-
ject to represent the data source. This object can
then be used in subsequent query operations. To
open a database, a Source object must be created,
e.g.
 import DataRetrieval.*;

 parameter Source s=Source(

 format=”…”,

 url=”…”,

 context=”…”);

where format identifies the format of the data
source (e.g. “XML”), url is a string encoded using
the uniform resource locator (URL) syntax [8] and
context is used, in a data source specific way, to
limit the scope of subsequent queries.

The ExternalObject interface also provides for
a destructor although that is not called directly so the
details are not included.

2.2 Query Expressions

Once a data source is available (in the form of
a Source object), queries can be made against it.
Because Modelica is a strongly typed language and it
is currently not allowed to overload functions, query
functions are defined for specific data types (i.e.
String, Real, Integer and Boolean) and for specific
dimensionalities (e.g. scalars, vectors, matrices, etc).
But, each query function relies on a common query
expression syntax.

The precise semantics of the query expres-
sions do not necessarily have to be defined for each
data source. The generic aspect of the API does not
interact in anyway with the semantics of these ex-
pressions. As we will discuss shortly, our implemen-
tation uses XPath expressions for such queries.

M. Tiller

The Modelica Association 594 Modelica 2005, March 7-8, 2005

related information and that information for different
levels of model fidelity can be grouped together in
the same data source.

2.6 Querying Available Choices

Our data retrieval API is built around the idea of
query expressions. In most of the previous sections
it is assumed that the query expression is written to
match exactly one piece of data. However, allowing
query expressions to match multiple pieces of data
can be quite useful because it would provide tools
with the ability to identify all data that is potentially
compatible for a specific data type. For example,
when loading records that characterize electric mo-
tors it is useful to query a data source for compatible
data and use it in the same way that the choices
family of annotations are used.

The current version of our API does not provide
such functionality for two reasons. First, such func-
tionality would require tool support. The other rea-
son is that such functionality would require certain
concepts (e.g. ordering, filtering, etc) not current ex-
pressed in the data retrieval API. In Section 6 we
will discuss how such capabilities could be imple-
mented with some degree of tool support and a
slightly more sophisticated querying scheme.

3 Implementation

Up to this point, the discussion has been com-
pletely generic with only a few fragments of actual
code and only vague discussions on query expres-
sions. In the next two sections we will describe an
implementation of the API and get into specific de-
tail about how it can be used.

Our implementation was developed specifi-
cally to extract data from XML documents. Such
documents may exist on web servers or they may be
stored in local files. XML is fast becoming an im-
portant technology in all aspects of computing be-
cause of its ability to structure information in an op-
erating system, programming language and applica-
tion neutral way. In addition to existing high quality
implementations [9], there are several advances on
the horizon that will support handling of large collec-
tions of binary data [10], [11] (e.g. simulation re-
sults).

We treat each XML document as an object-
oriented database (OODB). An OODB is useful for
storing heterogeneous collections of objects. In our
experience, engineering data (part dimensions, test
data, etc) fits quite well into OODBs.

But storing the data is only one aspect that we
need to worry about. The other aspect is querying
our data source to extract data. For this, our imple-
mentation uses XPath, a standard for “addressing
parts of an XML document”. XPath provides a stan-
dardized way of identifying what data in an XML
document we wish to extract. A similar emerging
standard is XQuery [6] which may prove to be a su-
perior (and mostly backwardly compatible) technol-
ogy once it is formally standardized.

Consider the sample engineering database
shown in Figure 1. We will use this trivial database
to demonstrate the capabilities of the XPath standard.
Although the data and structure of the database are
quite simple, all these examples could be applied to
much larger databases without alteration.

Figure 1: Sample Engineering Database

Let’s begin with a simple example. Imagine

we wanted to extract the name of the base motor
used in the ZY300 product. Using the query expres-
sion:

to query the database shown in Figure 1 would return
‘C12’. The ‘//’ at the start of the request means “at
any level in the document hierarchy”. The ‘prod-
uct’ string following this is interpreted as the name
of the element type that is being requested. Any-
thing contained in ‘[]’s represents a predicate.
Elements for which the predicate is false will be fil-
tered. In this predicate ‘@name’ represents the at-
tribute ‘name’. So the first line locates the ZY300
product in the database. Each subsequent ‘/’ in the

<?xml version="1.0"?>
<engineering_data>
 <product name="ZY300">
 <base_motor type="C12"/>
 </product>
 <part>
 <motor name="C12">
 <rotorJ>0.011</rotorJ>
 </motor>
 </part>
</engineering_data>

 //product[@name=’ZY300’]

 /base_motor

 /attribute::type

M. Tiller

The Modelica Association 596 Modelica 2005, March 7-8, 2005

expression is used to indicate traversal one level
deeper into the hierarchy. If a name is prefixed by
‘attribute::’ that indicates that the query is for
an attribute rather than an element. So the complete
expression can be interpreted as “Search the hierar-
chy for product elements whose name attribute is
ZY300 and for each of these find the base_motor
element immediate below it and return the value of
the type attribute for that element”.

Imagine we wish to extract the value con-
tained between the rotorJ tags in Figure 1. We
can extract that data with the following XPath ex-
pression:

This query is quite similar to the previous query ex-
cept it uses the ‘text()’ function to return the tex-
tual content within the rotorJ element.
 But now let’s look at a more challenging
example. In the second example, we assumed that
we knew the model name for our motor, C12, a pri-
ori. Imagine we want to extract the rotational inertia
of the rotor but we don’t know the motor name. In-
stead, what we know is that it is the base motor used
in the ZY300 product? In this case, we can combine
the two queries we made previously into:

With this example we have nested our requests for
the type of base motor used inside a predicate used to
search for the motor. By using the query for the
ZY300 base motor type in the predicate involving
the motor name, we were able to identify rotor iner-
tia based on its relationship to the ZY300 product
rather than by name.
 These are a few examples of the kinds of
queries that are possible with XPath expressions.
This is by no means a complete introduction to
XPath. Instead the goal of these examples was to
provide sample expressions so that expressions in
subsequent examples can be interpreted.

It is important to note that parsing XML, con-
verting it into a traversable data structure and im-
plementing an XPath query engine are not trivial
tasks. Fortunately, there are multiple implementa-
tions of these standards that can be used as off-the-
shelf software components. For our work, we chose

to use the libxml2 [4] library that was developed
for use with the Gnome desktop environment. The
libxml2 library includes complete, robust imple-
mentations of many XML related standards includ-
ing DOM [12], SAX, XPointer [13] and XPath [5].

4 Examples

4.1 Retrieving Parameter Values

One of the most common uses of the data re-
trieval API is to supply parameter values in a model.
In this section we will show how the data retrieval
API can be combined with a sample data set (shown
in Figure 2) and specific query expressions (using
the XPath notation described in Section 3) to accom-
plish this task.

Figure 2: Sample Engine Data

An important thing to note about the engine
data shown in Figure 2 is that each parameter
(bore, stroke and conrod) are represented us-
ing different XML constructs. The engine bore is
represented as the text inside a generic real ele-
ment, the stroke appears as the text inside a special
element type of its own and the connecting rod
length is given by an attribute associated with an-
other generic element type, val, but with a specific
string, conrod, given for its name attribute.

So the challenge in this example is to show
how XPath syntax is expressive enough to allow us
to address each piece of data even though the con-
texts are quite different. Figure 3 shows the various
XPath expressions that can be used to extract the
necessary data from the XML file.

 //motor[@name=’C12’]

 /rotorJ/text()

//motor[@name=

 //product[@name=’ZY300’]

 /base_motor

 /attribute::type]

 /rotorJ/text()

<?xml version="1.0"?>

<engine_data>
 <engine name="Beta">

 <real name="bore">88.2</real>
 <stroke>84.0</stroke>

 <val name="conrod" units="mm"

 value="125.0"/>

 </engine>

 <engine name="Gamma">
 <real name="bore">87.2</real>

 <stroke>85.0</stroke>
 <val name="conrod" units="mm"

 value="123.7"/>

 </engine>
</engine_data>

Implementation of a Generic Data Retrieval API for Modelica

The Modelica Association 597 Modelica 2005, March 7-8, 2005

Figure 3: Parameter Extraction

4.2 Populating Records

The example shown in Figure 3 includes sev-
eral complex XPath expressions. Because it can be
difficult to formulate such expressions and because
entering them manually or copying and pasting them
several times can be error prone and/or difficult to
maintain, it is desirable to try and encapsulate these
expressions somehow. One way to accomplish this
in Modelica is to create a special record type for the
data and then create a function that can populate
such a record automatically. For example, consider
the following Modelica record definition:

 To populate such a record with data from the
file shown in Figure 2, we could write a function that
constructed such a record from the name of the en-
gine and the location of the data. Figure 4 shows
what such a function might look like.

Figure 4: Populating a record

The function shown in Figure 4 also high-
lights another feature of the data retrieval API.
When the source object is created, the optional
context argument is used to define the context in
which all subsequent XPath expressions should be
evaluated. What this means in practice is that it is
assumed that any queries associated with the
source object apply only to the specific engine for
which data is being retrieved. In this way, the query
expressions for each invocation of getReal can
leave off the engine selection prefix expressions re-
sulting in shorter path expressions.

Once defined, the Load function shown in
Figure 4 can then be used to provide values for a re-
cord without any need to include calls to the data
retrieval API or any XPath expressions,
e.g.

model TestReals
 import DataRetrieval.*;
 parameter Source engine =

 Source(format="XML",

 url="engines.xml");

 parameter Real bore =

 getReal(source=engine,

 name="//engine[@name='Beta']

 /real[@name='bore']

 /text()");

 parameter Real stroke =

 getReal(source=engine,

 name="//engine[@name='Beta']

 /stroke/text()");

 parameter Real conrod =

 getReal(source=engine,

 name="//engine[@name='Beta']

 /val[@name='conrod']

 /attribute::value");

end TestReals;

 record EngineData
 import Modelica.SIunits.*;

 parameter Diameter bore;
 parameter Length stroke;

 parameter Length conrod;
 end EngineData;

function Load
 import DataRetrieval.*;
 input String engine;

 input String url;
 output EngineData data;

protected

 String context=

 "//engine[@name='"+engine+"']";

 Source source=

 Source(format="XML", url=url,

 context=context);

algorithm

 data.bore :=

 getReal(source=source,

 name="real[@name='bore']

 /text()");

 data.stroke :=

 getReal(source=source,

 name="stroke/text()");

 data.conrod :=

 getReal(source=source,

 name="val[@name='conrod']

 /attribute::value");

end Load;

 parameter EngineData engine =

 Load(engine="Gamma",

 url="engines.xml");

M. Tiller

The Modelica Association 598 Modelica 2005, March 7-8, 2005

4.3 Loading Arrays

While loading a complete array into Modelica
for use in a model is an obvious example of how the
data retrieval API might be used, there are also other
reasons why you might want to load only a partial
array. Consider the case of cubic interpolation.
Imagine we have interpolation data that is stored in
an array as follows:

�
�
�

�

�

�
�
�

�

�

)(')(

)(')(111

nnn xfxfx

xfxfx

���

Now, if we need to construct the cubic polynomial
approximation for any value x, we only need to
know the values for the function and its derivative
associated with xi and xi+1 (where xi<=x<=xi+1). The
important point is that we do not need to load the
entire matrix into a Modelica variable. Instead, we
could simply extract the values that we need at any
given time and construct the approximations in a
piecewise form. So given the following data file:

We can use the following Modelica code to evaluate
the function “z” described in the data file:

This code defines the contents of the matrix using
the XPath expressions and then passes it to a model
which only extracts the function and derivative val-
ues for the two closest points at any given time.
Now, formulating a cubic polynomial approximation
for a simple 1D function does not necessarily require

such powerful functionality. However, if we wanted
to construct a 3D approximation for a relatively large
data set [7] using a complex cubic interpolation
scheme this API could help us minimize memory
consumption while still exposing the underlying
mathematical structure.

4.4 Generating “choices”

As mentioned previously, an XPath expression
might match several different entities in an XML
document. For example, if we wanted to extract the
names of all engines present in Figure 2, we could
express this with the XPath expression:

The results of such a query could then be used in
subsequent queries to select from elements in an
XML document. As mentioned previously, this ca-
pability would require some degree of tool support.

5 Discussion

5.1 Alternative Source

While the data retrieval API is generic, the
implementation discussed in this paper assumes that
the data will be represented natively in XML and the
query expressions will follow the XPath specifica-
tion. But there are several other formats that are fre-
quently used to store data and for which a retrieval
API might be useful. Examples of these would in-
clude HDF [14] and the MATLAB “.mat” file for-
mats [15].

The only significant impact of changing the
format of the underlying data source is on the query
expressions. There are two ways to approach query
expressions in such cases. First, for each format a
(potentially) unique query expression syntax could
be used. This would allow, for example, SQL to be
used if the underlying data source was a relational
database. The drawback of this approach is that it
would be impossible to write general functions (e.g.
the Load function for loading engine data shown in
Figure 4) for an arbitrary data source. Instead, a
function would have to be defined for each potential
data source format.

On the other hand, if each data source used the
XPath approach for querying, then a consistent syn-
tax would be available across the various platforms.
The advantage of this is that users would only need
to be familiar with XPath and no other query expres-
sion format. The difficulty is that XPath applies to

<?xml version="1.0"?>

<data>
 <function name="z">
 <point x="0" f="0" df="0"/>

 <point x="1" f="0" df="1"/>
 <point x="2" f="1" df="0"/>

 <point x="3" f="0" df="-1"/>
 <point x="4" f="0" df="0"/>
 </function>
</data>

 parameter RealMatrix data =

 RealMatrix(source=f,

 rows="//function[@name='z']

 /point",

 cols="attribute::x

 |attribute::f

 |attribute::df");

 Interpolate2 y(x=time,

 data=data);

//engine/attribute::name

Implementation of a Generic Data Retrieval API for Modelica

The Modelica Association 599 Modelica 2005, March 7-8, 2005

XML, not to other formats. One way to bridge the
gap would be to define a mapping from each format
to XML. For example, consider the following MAT-
LAB code which writes several matrices to a file:

The contents of the file ‘AB.mat’ are stored in the
MATLAB specific format. But for the purposes of
formulating queries we could create a mapping that
defines a translation to XML that would result in an
XML document that looks like this:

In this way, it would then be possible to load data
from MATLAB using the data retrieval API with
code like

Note that the data itself would not necessarily

have to be translated into XML. Instead, a special
XPath interpreter could be developed for each format
that understood the “mapping” involved.

5.2 Data Management

The goal of this API is not just to provide a
package for opening and querying data sources. In
addition, the design goals are also meant to address
nagging problems with handling data in Modelica.
With this new API we can avoid loading large
amounts of data either as constants or definitions in
packages (e.g. Modelica.Media idea gas data) and we
can avoid (through the selective extraction functions)
loading entire data sets into Modelica variables when

only a subset are needed at any given time during a
simulation.

In addition, data stored in Modelica typically
ends up being compiled into simulations. In a sense,
the data is then frozen inside the analysis. Any
change in the data requires the model to be recom-
piled or have its input files modified in some way.
By relying on external data sources, the “fresh” data
can be loaded on demand.

5.3 Modelica Deficiencies

While the external function interface in Mode-
lica provided enough functionality to implement the
API and create functioning examples, there are still a
few areas where Modelica could be improved.

First, the API structure would benefit greatly
from support for methods that can be invoked on
user defined classes. Without methods, special func-
tions much be written and type information about
arguments and return types must somehow be aggre-
gated to form unique function names. In addition,
features to support better abstraction and polymor-
phism support would allow specialized Source ob-
jects to be developed (e.g. XMLSource,
HDFSource) but remain compatible with all exist-
ing functions that required Source objects as ar-
guments. As things stand currently, the definition
for the Source class must be familiar with all po-
tential formats (hence the format argument) but
with the ability to subclass, new formats could be
supported without the need to change or update the
existing Source definitions.

Another issue with Modelica is units. While
the language allows unit information to be associated
with variables and data sources may include unit in-
formation, the current API specification does not
exploit any of this information. Built-in unit conver-
sion capabilities in Modelica might make it possible
to handle units without having to implement any
manual unit conversions.

Finally, the XML related tools used in this
implementation were available in C and could be
integrated nicely through the Modelica external func-
tion interface. However, more and more of these
capabilities are appearing in Java. As things cur-
rently stand, it is not possible to leverage Java code
through the external function interface although it
would be nearly trivial to do so. By including an
instance of a Java Virtual Machine in Modelica tools
and/or generated code, it would be possible to easily
load Java classes into memory and invoke functions
(and perhaps methods) defined in Java. Simply de-

>> A = [1, 2, 3; 4, 5, 6];

>> B = [6,7; 8,9; 10,11];

>> save 'AB.mat' -V4 A B

<?xml version=”1.0”>
<MATLAB>
 <matrix name=”A”>
 <row><col>1.0</col>…</row>
 <row><col>4.0</col>…</row>
 </matrix>
 <matrix name=”B”>…</matrix>
</MATLAB>

parameter Source f =
 Source(format="MAT4",

 url="AB.mat");

parameter RealMatrix data =
 RealMatrix(source=f,

 rows="//matrix [@name='A']

 /row ", cols="col");

M. Tiller

The Modelica Association 600 Modelica 2005, March 7-8, 2005

fining how arguments are passed to and from Java
code would enable leveraging tremendous amounts
of existing Java code.

5.4 DTDs and Namespaces

Two features of XML not discussed in this
paper are Document Type Definitions (DTDs) and
namespaces. This section includes some discussion
about these topics and how they relate to our data
retrieval API.

DTDs define a specific schema associated
with an XML document. We could have forced all
XML data to be used with the data retrieval API to
follow a specified DTD. This would have made re-
trieval considerably simpler because we could have
anticipated, to a greater degree, the structure of the
data we were trying to retrieve. However, it is quite
impractical to expect that external sources of data
will always conform to a specified DTD. It is possi-
ble to translate such data from its native format into a
form that conforms to a specific DTD but this would
likely involve more work than our approach and
would still involve XPath or something similar. The
strength of our approach is the ability to use it in
conjunction with arbitrarily structured data.

Namespaces could also be useful in annotating
existing datasets with new element types that are
explicitly tagged to be specially included for our
purposes. In such a scenario, special tags could be
defined within a namespace and then added to exist-
ing XML documents. These specialized elements
should, in theory, be ignored by other applications
since they belong to a namespace that the application
is unfamiliar with. This would add a level of com-
plexity to the implementation and the need to spe-
cially annotate external data sources but without any
real benefit. For this reason, we did not utilize
namespaces.

6 Benefits of Standardization

While we have created this implementation for
our own purposes based on identified needs in our
organization, it is quite likely that many Modelica
users would benefit from a standard data retrieval
API like the one described in this paper. In this sec-
tion, we highlight some of the benefits a standard
API would have over the “user space” implementa-
tion we have created.

First, query expressions could be used to gener-
ate lists of “choices” much like the existing
choices annotation. Such functionality would

have to be available (i.e. compiled into) Modelica
tools in order to link such information to the graphi-
cal user interface. The current external function in-
terface is, at least in the case of Dymola, limited to
user simulations and such external functions are not
available to the Dymola process itself.

Another advantage of a standard data retrieval
API is that it could be used within the standard Mod-
elica libraries to manage data. For example, the
Modelica.Media library contains a tremendous
amount of data associated with ideal gases. This
data could be stored outside the Modelica environ-
ment and loaded selectively on an as-needed basis.

As mentioned previously, our API is imple-
mented through the Modelica external function inter-
face and, as such, is not available to the Dymola
GUI. This makes model checking and model compi-
lation impossible for cases where variables in Mode-
lica are dimensioned based on calls to the API (i.e. to
determine the full size of an external matrix). By
standardizing the API, it would be possible to use
external data to dimension variables used in Mode-
lica.

7 Conclusions

In order to integrate Modelica models with ex-
isting engineering and analysis processes, retrieval of
data from external data sources for use in models is
essential. This paper outlines one way such integra-
tion can be accomplished. Use of XPath expressions
is a powerful component of our implementation and,
through formalized mappings as described in Section
5.1, this approach to querying can be extended to
other non-XML based data sources as well. Our im-
plementation focuses only on XML documents as
data sources and represents only a proof-of-concept
implementation (e.g. no caching is performed in our
implementation).

Standardization of this API opens up many pos-
sibilities for integration of database information into
graphical model development environments. It
could also automate the tedious and error prone
process of writing special functions (like the one
shown in Figure 4) to populate records used to char-
acterize models.

The topic of a formalized API for retrieving ex-
ternal data sources has come up occasionally in
Modelica design meetings. Hopefully this imple-
mentation can serve as a starting point for further
discussions, proposals and eventually standard func-
tionality available to all Modelica users.

Implementation of a Generic Data Retrieval API for Modelica

The Modelica Association 601 Modelica 2005, March 7-8, 2005

References

[1] Tiller M., Bowles P., and Dempsey M., “De-
velopment of a Vehicle Model Architecture in
Modelica”. Proceedings of the 3rd Interna-
tional Modelica Conference, Nov. 3-4, 2003.
Linköping, Sweden.

[2] Tiller M, “Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applica-
tions”. Proceedings of the 3rd International
Modelica Conference, Nov. 3-4, 2003.
Linköping, Sweden.

[3] “Extensible Markup Language (XML)”,
http://www.w3.org/XML/

[4] “The XML C parser and toolkit of Gnome”,
http://www.xmlsoft.org/

[5] “XML Path Language (XPath) Version 1.0”,
http://www.w3.org/TR/xpath

[6] “XQuery 1.0, An XML Query Language”,
http://www.w3.org/TR/xquery/ (working draft)

[7] Newman C. E., Batteh J. J., and Tiller M.,
“Spark-Ignited-Engine Cycle Simulation in
Modelica”, Proceedings of the 2nd Interna-
tional Modelica Conference, March 18th-19th,
2002. Oberpfaffenhofen, Germany.

[8] Berners-Lee T., Fielding R., and Masinter L.,
“Uniform Resource Identifiers (URI): Generic
Syntax”, RFC 2396.
http://www.ietf.org/rfc/rfc2396.txt

[9] “Berkeley DB XML 2.0”, Sleepycat Software,
http://www.sleepycat.com/products/xml.shtml

[10] “XBIS XML Information Set Encoding”,
http://xbis.sourceforge.net/

[11] “XML-binary Optimized Packaging”,
http://www.w3.org/TR/xop10/

[12] “Document Object Model (DOM)”,
http://www.w3.org/DOM/

[13] “XML Pointer Language (XPointer)”,
http://www.w3.org/TR/xptr/

[14] “HDF 4.1r3 User’s Guide”,
http://hdf.ncsa.uiuc.edu/UG41r3_html/

[15] “MAT-File Format, Version 7”,
http://www.mathworks.com/access/helpdesk/h
elp/pdf_doc/matlab/matfile_format.pdf

M. Tiller

The Modelica Association 602 Modelica 2005, March 7-8, 2005

