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I Essentials of TechThermo 
 
• Main packages: TechThermo includes six main packages and an additional package with 

examples in separate files. The six main packages are Interface (connectors), 
Source (boundary conditions), Medium (thermophysical properties), Basis 
(fundamental processes in technical thermodynamics), Component (basic technical 
devices) and Subsystem (simplified technical systems). The examples are included in 
package Xample. 

• Interdependencies: The interdependencies between the main packages are that Interface 
can be used alone, Source demands Interface, Medium demands Interface and Source etc. 

• Internal structure: TechThermo has a four-level structure: each main package contains 
subpackages (second level). The subpackages contain model which can be used without 
further modifications (third level). If necessary, the third level also contains Support 
folders with models which are not intended for direct use without additions or 
modifications (fourth level). The Support folders also include the functions. If necessary, 
the third level might also include Data-folders including data-records. 

• Structural parameters are often used in TechThermo to modify models before 
compilation; in combination with if-expressions, structural parameters allow a quick 
modification of models. Structural parameters are either of type Boolean (only two 
alternatives) or Integer (more than two alternatives). Names of structural parameters start 
either with switch_ (Boolean) or with option_ (Integer). 

• Connectors: TechThermo includes four different types of connectors. Three of these 
connector-types are related to energy flows: combined heat and mass flow, heat flow 
without mass transfer and pure exergy flow. The fourth connector type transfer 
information about the thermal state of the working medium 

• Boundary conditions are defined at connectors by using models from package Source. 
Boundary conditions are either defined by parameters or by signal sources. 

• Thermophysical Properties: If models require correlations between state variables to 
complete the set of equations, these models are first defined without specification of the 
working fluid. The working fluid is defined in a second step by connecting a model from 
main package medium which provides the correlations between the state variables for the 
selected working fluid. 



1 Introduction 
 
1.1 Aims of TechThermo 
 
The availability of model libraries containing the base modules needed to build a system 
is essential for the efficient application of Modelica. Different libraries are already 
available. The Modelica library TechThermo provides descriptions for components 
needed in systems including thermodynamic processes. TechThermo is intended for 
engineering applications without being restricted to a certain thermodynamic application. 
The models included in this library can be divided into three groups: 
 
- models representing the infrastructure needed in any Modelica simulation: connectors 

and models for imposing boundary conditions 
- models describing physical processes which are important for the bulk of systems in 

technical thermodynamics 
- models for basic technical devices used in thermodynamic systems 
 

 
Fig.1: Example for application of TechThermo: libraries developed for specific problems use 
models from TechThermo; problem specific libraries also exchange models with other 
problem specific libraries using connectors defined in TechThermo. 
 
There are different aspects how TechThermo can improve the efficiency of modelling 
activities: 
- Thermodynamic systems should be modelled by composition of models representing 

physical and technical processes; by using models from TechThermo, only problem 
specific models must be newly implemented. 

- Experienced users should profit from TechThermo primarily by extending the models 
provided by the library thus minimizing the extent of work spent on implementation of 
trivial equations needed for describing a physical process. 

- by standardization of interfaces the cooperation between model-developers should be 
improved, 



- the models provided by the library should allow a quick first analysis of thermodynamic 
system with only minor effort  

 
 
Although it would be comfortable to have a universal thermodynamic library which 
allows the modelling of any system by combination of basic models without input of 
further model equations, this approach was not chosen for TechThermo since the 
implementation of such a library seems not to be feasible in practice. Instead, the aim of 
TechThermo is to minimize the effort for supplementary models for a wide range of 
application. Essential for the success of a model library is the acceptance by the users. 
This implies a limitation of the number of models included since 
 
- time for the introduction of a base library is limited; users will develop their own 

solutions and will hesitate to accept a base library after a certain time 
- given a limited time for development, quality of implementation and documentation 

usually decreases with an increasing number of models 
- the willingness of experienced users to spend time on orientation in libraries is limited, 

selecting a model from the library must be more effective than implementing a new 
one 

- users should know the complete library to have a clear understanding which additions 
are really necessary to solve a specific simulation problem 

- after the initial release of a base library, modification should be reduced to a 
minimum. The frequency of such modifications corresponds to the number of models 
in the library. 

 
TechThermo was developed parallel to modelling activities necessary for various research 
projects. Instead of developing the library from a theoretical point of view, models already 
utilized were slightly modified to increase the range of applicability and then collected in 
TechThermo. 
 
1.2 About this Document 
This document should introduce users to the application of TechThermo. The manual is 
organized in four chapters and five appendices: 
 
- Chapter 1,  Introduction; notation and demo-model 
- Chapter 2, Explanation of basic concepts in TechThermo 
- Chapter 3,  Description of the models 
- Chapter 4,  Explanation of the examples included in the library 
- Appendix A: Interdependency of the main packages 
- Appendix B: Overview connectors and connector variables 
- Appendix C: Tree structure of TechThermo 
- Appendix D: Alphabetical index of models and short codes 
- Appendix E: Literature 



 
1.3 Notational Conventions 
 
 

• A short version of the essentials of a chapter is presented in a solid frame at the 
beginning 

 
 
 
Additional information, which is not absolutely necessary for understanding the library, is 
provided in a dashed frame; this information usually is intended for advanced Modelica users 
 
 

 

! 
 
Here a short advice is given for avoiding trouble 
 

 
EaS4  
 Here a listing of Modelica code is given; the combination 

of letters and numbers in the left upper corner is the 
short code of the TechThermo model including this listing 
(description of short code s. 2.1) 
The listings in this document don’t include the 
annotation lines. 
 

 
Fragments of Modelica-code are indicated as courier font 
 
Italics indicates a text that should be replaced by the user 
 
 
1.4 Demo Model 
Throughout the manual the TechThermo-model of a cooled compressor is used to 
demonstrate various features of the library. The listing is given here without commentary 
lines, the model will be explained in detail in the manual later. 
 
The model CoolCompressorNoProp represents a compressor which can simulate either 
an isothermal compressions which demands cooling or an adiabatic polytropic compression 
without cooling. Fig. 2 shows the course of the specific volume for three different cases: 
isothermal compression, isentropic compression and polytropic compression. This model does 
not include a definition of the working medium. 
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Fig. 2: Three different ways of compressing a gas: isothermal, isentropic or adiabatic 
polytropic 
 
 
For the physical model the following variables are assumed: 
h_in spec. enthalpy gas at inlet 
p_in pressure gas at inlet 
Inlet_t temperature gas at inlet 
Inlet_s spec. entropy gas at inlet 
m_in_dot mass flow rate at inlet 
  
h_out spec. enthalpy gas at outlet 
p_out pressure gas at outlet 
  
RemoveHeat_qdot heat-load for isothermal 

compression 
RemoveHeat_t temperature of heat-load for 

isothermal compression 
Pmech_exergy_dot mechanical power needed for 

compression 
 
The calculation demands the values of thermal state variables for a second thermal state. The 
physical meaning of this state depends on the decision whether the compression is isothermal 
or not. The variables for this second thermal state are 
 
State2_p pressure gas for state 2 
State2_h spec. enthalpy gas for state 2 
State2_t temperature gas for state 2 
State2_s spec. entropy gas for state 2 
 



In case of an adiabatic polytropic compression, the isentropic efficiency eta_isentrop 
describes the deviation from isentropic compression. For isentropic compression eta_isentrop 
=1.0. 
With these variables, the following equations can be used for calculation of the compression 
process: 
 
General: 
Energy balance; the needed mechanical work for compression equals the difference between 
enthalpy flow at inlet and enthalpy flow at outlet and the removed heat:  
Pmech_exergy_dot = - m_in_dot * (h_out - h_in) - RemoveHeat_qdot 
 
The pressure for the second state is identical to the pressure at outlet: 
State2_p = p_out 
no storage of mass, absolute value mass flow rate at inlet and outlet is identical 
 
Isothermal Compression: Polytropic Adiabatic Compression: 
State2 corresponds to the thermal state at the 
outlet 

State2 corresponds to the thermal state after 
an isentropic compression 

State2_t = Inlet_t Inlet_s = State2_s 
State2_h = h_out RemoveHeat_qdot = 0.0 
RemoveHeat_qdot = 
-m_in_dot * ( Inlet_t +273.15) * 
  (State2_s - Inlet_s) 

h_out = h_in + (State2_h - h_in) / 
             eta_isentrop 

RemoveHeat_t = Inlet_t RemoveHeat_t = -1 (physically meaningless, 
since there’s no heat flow) 

 



 
The Modelica model CoolCompressorNoProp will be used to demonstrate various 
features of the TechThermo library. The explanations will be based on the following listing 
and line numbers: 
EaS4  

 
1 model CoolCompressorNoProp "compressor without specification of working fluid"  

 
2 extends TTComponent.Compressor.Support.CoolCompressorCIM( 
3 final switch_m_dot_const=true,  
4 final switch_x_i_const=true,  
5 final switch_h_const=false,  
6 final switch_p_const=false); 
 
 
7 TTInterface.ThermalState.In Inlet "Thermal state at Inlet"; 
 
8 TTInterface.ThermalState.Out State2 "Second thermal state"; 
 

 
9 parameter SIunits.Efficiency eta_const=0.8 “const. isentropic efficiency of 

compressor"; 
 
10 parameter Boolean switch_eta_const=true "if switch_eta_const== true then 

eta_isentrop=eta_const"; 
 
11 parameter Integer option_cooling=1 "1: isothermal compression, 2: adiabatic 

compression"; 
 
12 SIunits.Efficiency eta_isentrop "isentropic efficiency of compressor"; 

 
13 equation  
 
14 Inlet.h = h_in; 
15 Inlet.p = p_in; 
 
16 State2.p = p_out; 
 
17 if switch_eta_const == true then 
18 eta_isentrop = eta_const; 
19 end if; 
 
20 if (option_cooling == 1) then 
21 Inlet.t = State2.t; 
 

22 RemovedHeat.q_dot = -m_in_dot*(Inlet.t + 273.15)*(State2.s - Inlet.s); 
23 RemovedHeat.t = Inlet.t; 
 

24 State2.h = h_out; 
 

25 end if; 
 
26 if (option_cooling == 2) then 
 

27 Inlet.s = State2.s; 
 

28 RemovedHeat.q_dot = 0.0; 
29 RemovedHeat.t = -1; 
30 h_out = h_in + (State2.h - h_in)/eta_isentrop; 
 

31 end if; 
 
32 Pmech.exergy_dot = -m_in_dot*(h_out - h_in) - RemovedHeat.q_dot; 
 
33 end CoolCompressorNoProp; 

 
 

 
Fig.3: Icon representing model CoolCompressorNoProp 



 
Model CoolCompressorNoProp extends model CoolCompressorCIM (line 
2), which includes the definition of the mass flow-connectors and the icon.  
 
2 Basic Concepts in TechThermo 
 
2.1 Structure of TechThermo 
 

 
• TechThermo comprises six main packages in six separate Modelica-files and an 

additional package with examples 
• There’s a four level structure of packages and models: all models which can be 

used without further modifications are placed on the third level 
• A short code consisting of either two letters and a number or three letters and a 

number allows a fast identification of models 
 
 
TechThermo is composed of seven main packages. These main packages are stored in 
separate Modelica files. The names of the corresponding Modelica files are composed of the 
main package name and the date of the last modification in form yymmdd. 
 
Package Interface contains the definitions of the connectors and some fundamental models. 
Models needed for imposing boundary conditions are collected in package Source. Package 
Basis comprises components for calculation of heat and mass transfer processes and 
conservation laws. Correlations for the calculation of thermophysical properties of substances 
are collected in package Medium. Package Component contains description of the basic 
technical units used in thermodynamic systems. Simplified representations of subsystems are 
implemented in package Subsystem. Finally, package Example contains various examples for 
the application of models from TechThermo.  
 

Name of main package Short 
Identification 

Content 

Interface A connectors and general base models 
Source B boundary conditions 
Basis C heat and mass transfer, control volumes 
Medium D thermophysical properties 
Component E basic components 
Subsystem F simplified models for thermodynamic 

systems 
Xample G examples for application of components 

from TechThermo 
 
The interdependence of the main packages corresponds to the alphabetical order of the short 
identification letter (s. Appendix A): Interface needs no other package, Source 
demands Interface, Basis demands Interface and Source etc... Provided this 
interdependence is regarded, the selection of a subset of TechThermo-files is possible. 
 
In order to facilitate the orientation within the library a strict four level structure is used for 
the organisation of the packages and models of the library: 
 



Main Package A Sub Package a model 1

model 2

model 3

Support model 1

model 2

Data model 1

model 2

(optional)

(optional)

Sub Package b model 1

model 2

model 3

Sub Package c model 1

Main Package B Sub Package a model 1

Sub Package b model 1

First Level:
Main packages

Second Level:
Sub packages

Third Level:
Executable Models

Fourth Level:
Supporting Models
Data Models

 
Fig.4.: Organisation of packages and models in TechThermo 
 
A main package is a collection of sub packages which represent the second level of the 
structure. The sub packages collect a group of models which are related. A small letter is 
attributed to each sub package within a main package, starting always with "a" for the first 
package in the file. 
All executable models are located on the third level inside the sub packages. On the main 
package level and sub package level there isn't any model.  
Apart from the executable model on the third level, there are only two optional packages: 
package Support comprises models which demand further modifications before application. 
Examples for Support models are general descriptions for components or physical processes 
which demand the specification of the working fluid. Package Data include data models 
required for the application of models. The models included in packages Support and Data 
represent the fourth level of TechThermo. 
 
Name of third level package Short Identification Content 
Support S models demanding additional 

components before application 



Data D data for further specifications of 
models 

 
The short identification of any model in TechThermo is now possible by grouping the 
corresponding letters for main package, sub package and addition of a number for a model 
within the sub package. For supporting models or collection of data an additional letter is 
necessary. The model CoolCompressorNoProp is located in main package Component 
( identification letter ‘E’), in sub package Compressor (this is the first sub package in 
Component, so identification letter is ‘a’). Since CoolCompressorNoProp demands 
the definition of the working medium, this model is located in the Support-package (letter 
‘S’), where it’s the fourth model, so the complete short code for CoolCompressorNoProp is 
 

EaS4. 
 

This short code system allows a quick reference to models for documentation avoiding the 
necessity to give always the complete path. The short code is given in the initial comment 
after the name of the model 
 
 
2.2 Control of Model Structure by Parameters – ‘switch_’ and ‘option_’  
 

 
• parameters are used in combination with if-expressions to modify the structure 

of models before compilation 
• names of parameters of type Boolean for model structure control start with the 

prefix ‘switch_’ 
• names of parameters of type Integer for model structure control start with the 

prefix ‘option_’ 
 
 
In order to keep models flexible, not only replaceable models are used in TechThermo. 
Another possibility to control the structure of a model is the usage of parameters in 
combination with if-expressions to activate or deactivate certain parts of models. This 
technique reduces the number of components in the library while still offering the possibility 
of adapting models to different demands. This approach is preferred when variants of a model 
differ only in details. In such cases replaceable models might be cumbersome since users have 
to look up the models even if only a single line is affected. In order to distinguish parameters 
controlling the model structure from other parameters, names of these controlling-parameters 
start with ‚switch_‘(Boolean) or ‚option_‘(Integer).  

Parameters of type Boolean are used when there are only two alternatives. An example for 
application of 'switch' parameters is the decision whether a variable can be regarded as 
constant or not depending on the application. This offers the option of a fast implementation 
of basic version of a model while preserving the potential of introducing more detailed 
models by extending the basic model and changing the value of the corresponding structural 
parameter. 

In model CoolCompressorNoProp the Boolean parameter switch_eta_const is 
used to decide whether the isentropic efficiency eta_isentrop is constant or not (line 12). 
The corresponding if-expression is in line 17-19. The default-value of  
switch_eta_const is true (line 12), in this case eta_isentrop is identical to 
the parameter eta_const. By extending CoolCompressorNoProp and setting 



switch_eta_const=false an equation for calculation of a variable efficiency can be 
introduced. 

Control parameters of type Integer are used to choose between different options. Examples for 
these option-parameters are models offering different physical models for a process. The 
availability of different models enables a quick adaptation to the modelling tasks by selecting 
the appropriate model. 

In model CoolCompressorNoProp the Integer parameter option_cooling is used to 
determine the course of the compression (line 11). If the value of option_cooling is 1, an 
isothermal compression is assumed (line 20-25). If option_cooling is 2, a polytropic 
compression is simulated (line 26-31). Usually, there are more than just two alternatives when 
using a parameter of type Integer for control of model structure. In the case of 
CoolCompressorNoProp the option to introduce additional possibilities in extended 
models should be preserved. For example, a non-isothermal cooling can be simulated by 
extending the model, setting option_cooling =3 and introducing the additional 
equations together with the expression  
if (option_cooling = =3) then... 

The concept of controlling model structure by parameters offers an attractive method of 
adapting the complexity of a model to the specific demands of a simulation problem. Starting 
with a basic version, the complexity of the model can be increased step by step by setting of 
the corresponding controlling parameters. This approach allows the implementation of very 
effective models, since the influence of specific model-assumptions can be determined by 
comparing simulation results. 

 

2.3 Thermophysical Properties 

• implementing the physical model of a process in TechThermo is performed by 
separating equations for thermophysical properties from other parts of the 
physical model 

• names of models including only connectors and the icon-graphics end with 
‘CIM’, models are stored in Support-packages 

• names of models demanding the addition of thermophysical property models for 
completion end with ‘NoProp’, models are stored in Support packages 

• TechThermo does not include concepts for calculation of thermophysical 
properties which are only valid for a single substance; instead general models are 
preferred which allow the adaptation to a specific substance by variation of a 
limited number of parameters (scatter 3.4) 

 
The complete description of a process in technical thermodynamics usually demands 
correlations between the state variables. Regarding the compression process as an example, 
different cases can be distinguished: 

• different gases are compressed, e.g. in one model air is the working medium, in 
another model hydrogen might be used 

• depending on the specific problem, different degrees of accuracy might be reasonable 
for an efficient calculation; the complexity of property routines strongly affects the 
convergence behaviour of models; choosing routines with the highest precision often 
reduces the robustness while the benefit is neglectable. 



• different assumptions might be adequate: for a cooled process with high compression, 
the assumption for a constant specific heat capacity of the gas might be an acceptable, 
while the application of the ideal gas law results in significant errors. In the case of a 
non-cooled compression with significant changes in temperature, the assumption of a 
constant specific heat capacity can produce significant errors. 

• the definition of a clear interface facilitates the introduction of new working media, no 
modification of the source code is necessary; the modification can be performed in the 
graphical environment. 

These considerations show that the implementation of thermophysical correlations in separate 
models is advantageous. Model CoolCompressorNoProp includes all equations needed 
for the calculation of the compression process except for the correlations between the state 
variables. The names of all models demanding the addition of some models calculating 
thermophysical properties end with ‘NoProp’. Since these models can’t be used without 
modifications they’re stored in Support-packages.  

A complete model for the compressor demands the following correlations: 

 

• correlation between temperature at inlet (Inlet_t),  pressure at inlet (p_in) , spec. 
enthalpy at inlet (h_in) and entropy (Inlet_s) 

• correlation between temperature, pressure, temperature and entropy at outlet 

 

The implementation of a complete compressor-model should now be demonstrated assuming 
air as a working fluid. Apart from the CoolCompressorNoProp two other models are 
used: 
 

• the model CoolCompressorCIM (EaS3) includes only the 
connectors and the icon graphics for a cooled compressor 
without any further equations. It is used as a kind of container. 
( CIM = connector-icon-model, the names of all model of this 
kind have this ending) 
 

The icon of  CoolCompressorCIM almost looks identical to the 
icon of  CoolCompressorNoProp, but a closer look shows that 
there are no ThermalState connectors (s. 3.1) 
 
 
 

 

• the model AirPerfectGasCaloric gives the correlation 
between temperatures, spec. enthalpy, spec. enthalpy for air, 
constant spec. heat capacity assumed. 

 

 
 



The implementation can be done by drag and drop: 
 

create model AirCoolCompressor by 
extending CoolCompressorCIM 
 
• Insert a model 

CoolCompressorNoProp 
• Insert a model 

AirPerfectGasCaloric, name it 
InletProperties 

• Connect InletProperties and 
CoolCompressorNoProp.Inlet 

• Insert a model NotUsedVariables 
and name it InletNotUsed; set the 
corresponding parameters for the state 
variables of connector Inlet which are 
neither used by InletProperties nor 
by 
CoolCompressorNoProp1 

• Insert a second model 
AirPerfectGasCaloric, name it 
State2Properties 

• Connect AirState2 and 
CoolCompressorNoProp.State2 

• Insert a model NotUsedVariables 
and name it State2NotUsed; set the 
corresponding parameters for the state 
variables of connector State2 which are 
neither used by State2Properties 
nor by 
CoolCompressorNoProp1 

• connect the corresponding remaining 
connectors  

 
 



 
3 The Main Packages of TechThermo 
 
3.1 Interface 
 

• there are four different types of connectors in TechThermo: MassFlow (m_dot, p, 
h, x_i[n_comp]), HeatFlow (q_dot, t), ExergyFlow (exergy_dot) and 
ThermalState (h,p,rho,t,u,s,x, x_i[n_comp]) 

• application of model NotUsedVariables (Aa4) allows the elimination of 
variables in the ThermalState connector 

• MassFlow connectors allow the definition of the thermal state by a minimal set of 
variables, ThermalState represents the definition of a thermal state by a 
maximum set of variables. Model TwoPortThermalStateTerminal 
correlates connector variables h,p,x_i of both connectors. 

 
 
The definition of different types of connectors and corresponding connector variables 
represents an essential step in the implementation of a Modelica library. Package Interface 
contains the definitions of connectors and base models used as starting point for the 
development of models.  
In technical thermodynamics three different kinds of energy flows can be distinguished: 
 
- combined heat and mass transfer (e.g. mass flow trough a pipe, mass flow in a turbine) 
- heat transfer without mass transport (e.g. heat transfer by convection or conduction) 
- transfer of exergy (work provided by a turbine, energy used for operation of an electrical 

heater) 
 
Basically, a single connector could be defined as interface for exchanging all three kinds of 
energy flow. One drawback of this solution is the varying minimal number of variables 
necessary for definition for the different kinds of energy flows. While an exergy flow is 
defined by the exergy flow rate, the definition of combined heat- and mass transfer of a 
multicomponent fluid demands at least four independent variables. A unique connector would 
introduce unnecessary connector variables without a physical meaning. In TechThermo, 
separate connectors are defined for the different energy flows, which should also improve the 
clarity of a model. 
 
Connectors defined in package Interface of TechThermo: 
 
Icon model name 

TechThermo.Interface. 
transferred 
information

connector 
variables 
 
parameter Integer 
n_comp: 
number of components 

example for 
application 

 

 
 

 
MassFlow.In 

 

 
 

 
MassFlow.Out 

 
energy transfer 
by combined 
heat- and 
massflow 
 

 
MassFlowRate m_dot; 
SpecificEnthalpy h; 
Pressure p; 
MassFraction x_i[n_comp]; 

 
Massflow into and 
out of turbine, pipe 
flow 



 

 
 

 
HeatFlow.In 

 

 
 

 
HeatFlow.Out 

 
energy transfer 
by heatflow 

 
HeatFlowRate q_dot; 
CelsiusTemperature t; 

 
heat transfer by 
conduction or thermal 
radiation 

 

 
 

 
ExergyFlow.In 

 

 
 

 
ExergyFlow.Out 

 
transfer of 
energy 
consisting 
completely of 
exergy 

 
Power exergy_dot 

 
mechanical power 
provided by 
turbine, electric 
power needed by 
an electrical heater 

 

 
 

 
ThermalState.In 

 

 
 

 
ThermalState.Out 

 
information 
about thermal 
state 

 
SpecificEnthalpy h; 
Pressure p; 
Density rho; 
SpecificEntropy s; 
CelsiusTemperature t; 
SpecificInternalEnergy u; 
MassFraction x_i[n_comp]; 
Real x; 
 

 
information about 
the thermal state of 
a working fluid 

 
 
The definition of a connector for heat transfer suggests itself in a thermodynamic library. The 
connector variables are  

 

flow SIunits.HeatFlowRate q_dot 

 SIunits.CelsiusTemperature t; 

 

The Celsius temperature seems to be of more practical use for technical applications than the 
Kelvin temperature. 
 

The exergy-connector is used for transport of pure exergy. Possible applications of these 
connectors are components that involve non-thermal energy flow like turbines or 
compressors. In TechThermo, the exact kind of exergy is not defined, so a single connector 
variable is sufficient: 
 
 flow SIunits.Power exergy_dot; 
 
A connector for describing energy transfer combined with mass transfer demands connector 
variables describing mass flow rate and composition in case of multicomponent flow which 
might be interesting for system involving chemical reactions or wet air. The mass flow rate is 
the sum for all components. The composition is defined by the mass-composition vector 
which contains the mass fraction of each component. The size of the vector depends on the 
number of components n_comp. The default value for n_comp is 1, so the user needn't to 
bother about the mass fraction vector for single component flow. The description of fluid flow 



demands the clear definition of the thermal state by at least two state variables. In technical 
thermodynamics different variables are used for the definition of thermal state: 

 
  Specific Enthalpy h; 

         Pressure p; 
         Density rho;         Specific Entropy s; 
         Celsius Temperature t; 
         Specific Internal Energy u; 
         Steam quality x 
 
Not included in this list are the free energy and the free enthalpy, which are not used so often 
in technical applications. Only two of these variables are needed for the definition of the 
thermal state, but depending on the application, different variables are preferred, e.g. 
 

- pipe flow demands the density of the fluid 
- energy conservation for control volumes demands the internal energy 
- calculation of turbines and compressors needs the specific entropy 
- steam generation demands the steam quality 
- measurements are often based on temperature and pressure 
 

The selection of just two thermal state variables can't fulfil the demands of all applications. In 
addition to the three connectors for describing the transfer of energy, a fourth connector is 
defined for exchange of information about thermal state. With this fourth connector, the 
selection of two thermal state variables for the mass flow connector has just to fulfil the 
requirement of a clear definition of thermal state. The first chosen variable is pressure, which 
plays an important role in most applications. The specific enthalpy was chosen as second 
variable since it allows a fast implementation of energy conservation laws and is preferred in 
engineering practise. One drawback of specific enthalpy as connector variable is that it's 
neither an across variable nor a trough variable, so the connection of more than two models by 
the mass flow connector demands the application of a mixing model.  

The complete set of variables for the mass-flow connector is 
 

parameter Integer n_comp=1 "number of components"; 

flow SIunits.MassFlowRate m_dot; 

SIunits.SpecificEnthalpy h; 

 SIunits.Pressure p; 

 SIunits.MassFraction x_i[n_comp]; 

 

There's no definition of separate mass flow connectors for different species.  
 

! 
 
Don’t connect more than two MassFlow-connectors without using a mixing 
model 
 

 

The thermal state connector uses all variables listed above: 
 



parameter Integer n_comp=1 "number of components"; 

SIunits.SpecificEnthalpy h; 

SIunits.Pressure p; 

SIunits.Density rho; 

SIunits.SpecificEntropy s; 

SIunits.CelsiusTemperature t; 

SIunits.SpecificInternalEnergy u; 

SIunits.MassFraction x_i[n_comp]; 

Real x; // Steam quality 

 

The thermal state connector is especially intended for the exchange of information between a 
model describing a physical process and a model for calculation of thermophysical properties. 
Usually, only a subset of the connector variables is really needed, but all connector variables 
must be defined. In this case it's sufficient to attribute constant values to the connector 
variables which are not used. TechThermo offers the application of the 
"NotUsedVariables"-model (Aa4): 

 

    model NotUsedVariables "state connector defining not used state 
variables"  
       
      parameter Integer n_comp=1 "number of components"; 
      parameter Real dummy_value=232323 "value for not-used variables"; 
       
       
        //-----------------connector for thermal state---------------- 
      ThermalState.In StateCut(n_comp=n_comp);  
       
      //-----switch-parameters------------------------------- 
      parameter Boolean switch_h_notused=false  
        "if  switch_h_notused==true then StateCut.h=dummy_value "; 
      parameter Boolean switch_p_notused=false  
        "if  switch_p_notused==true then StateCut.p=dummy_value "; 
      parameter Boolean switch_rho_notused=false  
        "if  switch_rho_notused==true then StateCut.rho=dummy_value "; 
      parameter Boolean switch_s_notused=false  
        "if  switch_s_notused==true then StateCut.s=dummy_value"; 
      parameter Boolean switch_t_notused=false  
        "if  switch_t_notused==true then StateCut.t=dummy_value"; 
      parameter Boolean switch_u_notused=false  
        "if  switch_u_notused==true then StateCut.u=dummy_value"; 
      parameter Boolean switch_x_notused=false  
        "if  switch_x_notused==true then StateCut.x=dummy_value "; 
      parameter Boolean switch_x_i_notused=false  
        "if  switch_x_i_notused==true then StateCut.x_i=dummy_i "; 
       
      parameter Real dummy_i[n_comp]=zeros(n_comp); 
    equation  
      if switch_h_notused == true then 
        StateCut.h = dummy_value; 
      end if; 
      if switch_p_notused == true then 
        StateCut.p = dummy_value; 
      end if; 
      if switch_rho_notused == true then 
        StateCut.rho = dummy_value; 
      end if; 
      if switch_s_notused == true then 
        StateCut.s = dummy_value; 
      end if; 
      if switch_t_notused == true then 
        StateCut.t = dummy_value; 
      end if; 
      if switch_u_notused == true then 
        StateCut.u = dummy_value; 
      end if; 
      if switch_x_notused == true then 
        StateCut.x = dummy_value; 
      end if; 
      if switch_x_i_notused == true then 
        StateCut.x_i = dummy_i; 
      end if; 
       



    end NotUsedVariables; 

 

 

 This model can be connected to any ThermalState-connector. By setting the corresponding 
switch-parameter, state variables can be selected which are set equal to a parameter during the 
simulation. 
 
While the MassFlow-connector represents the definition of thermal state by a minimal set of 
variables, the ThermalState-connector includes the maximal set of thermal state variables. 
These two types of connectors can be correlated by the model 
TwoPortThermalStateTerminal. This model includes two MassFlow-connectors and 
a ThermalState-connector. The average values for the common variables spec. enthalpy, 
pressure and composition are transferred from the MassFlow-connectors to the ThermalState-
connector. The element can be used either serial or parallel to a mass-flow. 
 
The serial and the parallel application of TwoPortThermalStateTerminal 
corresponds to two different situations: 

• serial: the thermal state of a mass flow between two components should be 
determined; the inlet of TwoPortThermalStateTerminal is connected to the 
outlet of the first component while the outlet of  
TwoPortThermalStateTerminal is connected to the inlet of the second 
component; the (absolute) value of all connector variables at inlet and outlet of 
TwoPortThermalStateTerminal remain constant, so there’s no difference 
between the connector values at MassFlow-connectors and the and the corresponding 
(average) values at the ThermalState-connector 

• parallel: the average values of  the state variables of two MassFlow-connectors are 
needed. TwoPortThermalStateTerminal connects these two 
connectors but the mass flow rate through 
TwoPortThermalStateTerminal is zero. 

 
 
 

 

 
model TwoPortThermalStateTerminal  
      "stationary mass flow element with state connector"  
      extends MassFlow.TwoPort( 
        switch_m_dot_const=true,  
        switch_h_const=true,  
        switch_p_const=true,  
        switch_x_i_const=true); 
       
       
        //-----------------connector for thermal state--------- 
      ThermalState.In StateCut(n_comp=n_comp) ; 
       
    equation  
       
      StateCut.h = (h_in + h_out)/2.0; 
      StateCut.p = (p_in + p_out)/2.0; 
      StateCut.x_i = (x_in_i + x_out_i)/2.0; 
       
end TwoPortThermalStateTerminal; 

 
 
3.1.1 The sub-packages for the four different types of connectors 
Package Interface comprises a separate sub-package for each of the four different types of 
connectors (sub package MassFlow, HeatFlow, ThermalState, ExergyFlow)  
and an additional sub-package (sub-package Adapter) for connector-adapters. Most of the 
models included in the four connector-related  sub-packages are similar. 



 
For models in sub package MassFlow, HeatFlow, ThermalState, ExergyFlow  
which differ only in the used connector type identical model names are used; since these 
models are part of different sub-packages, the risk of confusion seems to be neglectible and 
regarding the complete path it seem not be necessary to add again the name of the connector 
to the model name, e.g. Interface.MassFlow.MassFlowIn instead of the name used in 
TechThermo Interface.MassFlow.In 
  
For each type of connector two different connector models are given which differ only in the 
graphical representation.  These connector-models are named In and Out. 
 
Many processes in technical thermodynamics can be regarded as systems with an inflow and 
an outflow. In TechThermo for the four different connector types models including the 
definition of an In- and an Out-connector are provided. These TwoPort-models also offer the 
possibility to select connector-variables which remain constant by setting the corresponding 
switch-parameters. The following listing shows the implementation of the TwoPort model in 
package MassFlow: 
 
Aa3 
 
 

 

 
1 model TwoPort "  model mass flow element with two connectors"  
2 parameter Integer n_comp=1 "number of components in fluid"; 
3 In InMassFlow(n_comp=n_comp) "connector for inlet mass flow" 
4 Out OutMassFlow(n_comp=n_comp) "connector for outlet mass flow"  
 
5 parameter Boolean switch_m_dot_const=false  
6 "if switch_m_dot_const=true then m_in_dot+m_out_dot=0"; 
7 parameter Boolean switch_h_const=false  
8 "if switch_h_const=true then h_in=h_out"; 
9 parameter Boolean switch_p_const=false  
10 "if switch_p_const=true then p_in=p_out"; 
11 parameter Boolean switch_x_i_const=false  
12 "if switch_x_i_const=true then x_in_i=x_out_i"; 
 
13 flow SIunits.MassFlowRate m_in_dot  
14 "mass flow rate at connector InMassFlow"; 
15 SIunits.SpecificEnthalpy h_in "spec. enthalpy at connector 

InMassFlow"; 
16 SIunits.Pressure p_in "pressure at connector InMassFlow"; 
17 SIunits.MassFraction x_in_i[n_comp]  
18 "vector with mass-fractions at connector InMassFlow"; 
19 flow SIunits.MassFlowRate m_out_dot; 
20 SIunits.SpecificEnthalpy h_out; 
21 SIunits.Pressure p_out; 
22 SIunits.MassFraction x_out_i[n_comp]; 
23 equation  
 
24 h_in = InMassFlow.h; 
25 m_in_dot = InMassFlow.m_dot; 
26 p_in = InMassFlow.p; 
27 x_in_i = InMassFlow.x_i; 
 
28 h_out = OutMassFlow.h; 
29 m_out_dot = OutMassFlow.m_dot; 
30 p_out = OutMassFlow.p; 
31 x_out_i = OutMassFlow.x_i; 
 
32 if switch_m_dot_const then 
33 = m_in_dot + m_out_dot; 
34 end if; 

 
35 if switch_h_const then 
36 h_in = h_out; 
37 end if; 

 
38 if switch_p_const then 
39 p_in = p_out; 
40 end if; 

 
41 if switch_x_i_const then 
42 x_in_i = x_out_i; 
43 end if; 
 
44 end TwoPort; 

 



 
In line 3 and 4 the two connectors are defined. Depending on the values of Boolean switch-
parameters defined in lines 5-12, corresponding connector variables are set equal in lines 
32-43. In lines 24-31 variables are defined from the connector variables which should help to 
reduce the extent of typing effort. Model CoolCompressorCIM extends the TwoPort-
model of the MassFlow package. In model CoolCompressorNoProp, which extends 
CoolCompressorCIM, the absolute values of the mass flow rate at the inlet and outlet 
are equal, so switch_m_dot_const is true (CoolCompressorNoProp line 3, TwoPort line 
32-34). The mass fraction remains also constant in the model, so switch_x_i_const is also true 
(CoolCompressorNoProp line 4, TwoPort line 35-37). Pressure and specific enthalpy 
usually are different at inlet and outlet, so switch_h_const and switch_p_const are false.(lines 
5+6). Using the 'final' attribute for the definition of switch-parameters helps to reduce the 
number of parameters displayed and avoids errors by inexperienced users. 
 
EaS4  

1 model CoolCompressorNoProp "compressor without specification of working fluid"  
 
2 extends TTComponent.Compressor.Support.CoolCompressorCIM( 
3 final switch_m_dot_const=true,  
4 final switch_x_i_const=true,  
5 final switch_h_const=false,  
6 final switch_p_const=false); 

 
 
When applying models extending TwoPort the multiple setting of switch-parameters must be 
avoided 

 

! 
 
Don't use TwoPort switch-parameters in models which contain only icon-
graphics and connector definitions (CIM-models).  
 

 
The implementation of the compressor model for air in 2.3 shows the correct use of the 
TwoPort model; the complete model comprises four levels: 
 
1 TwoPort 
2 CoolCompressorCIM, extending TwoPort, definition of Icon 

graphics and additional connectors for heat flow (cooling) 
and exergy flow (mechanical power) 

3 CoolCompressorNoProp, extending CoolCompressorCIM, addition 
of equations defining compression process 

4 AirCoolCompressor, extending CoolCompressorCIM and 
including CoolCompressorNoProp; addition of property 
routines for air to complete set of equations. 

 
The two massflow-connectors are identical in TwoPort, CoolCompressorCIM and 
CoolCompressorNoProp, the switch-parameters are set in 
CoolCompressorNoProp. CoolCompressorNoProp is integrated in 
AirCoolCompressor, the corresponding connectors are linked 
directly, so the switch-parameters in AirCoolCompressor mustn't 
be true, since this would introduce additional equations. 
 
TwoPort models can also be used to transfer selected variables between two connectors by 
setting the corresponding switch-parameters 
 



 

CoolCompressorNoProp
InMassFlow
(MassFlow.In)

OutMassFlow
(MassFlow.Out)

Pmech
(ExergyFlow.In)

Inlet
(ThermalState.In)

State2
(ThermalState.Out)

RemovedHeat
(HeatFlow.Out)

 
 
 

Fig.5: Connectors and application of model TwoPort in model CoolCompressorNoProp 
 
 
3.1.2 Subpackage Adapter 
 
• models in Subpackage Adapter help to connect models from TechThermo to models 

from other Modelica libraries 
 
Subpackage Adapter includes models allowing the linkage between TechThermo models and 
models from other libraries. The values for corresponding variables are transferred between 
two different types of connectors. TechThermo offers for its four different types of connectors 
models allowing the linkage to elements using the InPort or OutPort from the Modelica 
Standard Library (Modelica.Blocks.Interface). The value of a selected TechThermo connector 
variable is set equal to the value of the InPort connector. The selection of the TechThermo 
connector variable depends on the value of parameter option_defsignal. 
 

  
InMassFlowOutSignal OutMassFlowInSignal 

Subpackage Adapter: Examples for models linking TechThermo connectors to connector of 
other Modelica-libraries  
 
3.2 Main package Source 
 
• Source comprises models to introduce boundary conditions at the connectors of the 

components of a system 
• for each of the four connector types pack-age Source contains a subpackage with 

models to impose boundary conditions using a specific connector 
•  
• boundary conditions can be defined either by parameters or by (varying) external 

signals 
 
Models represent systems of limited extent and usually require the definition of a set of 
system variables to introduce the influence of the environment. Models from main package 
Source are used to impose these outer boundary conditions to the model. These models 
include at least a single connector and offer various options to define the connector variables 
of these connectors. Boundary conditions are always introduced at connectors of a system. 



The definition of any connector variable should be possible either by parameters or by 
external signals. Regarding the four types of connectors defined in main package Interface, 
there are 15 different connector variables. One approach would be the definition of separate 
models for each of these connector variables. Instead, in order to limit the total number of 
models, only a single model is defined for each connector type. Which connector variables are 
used as boundary conditions is selected by switch-parameters.  
 
3.2.1 General Source Models 
For each connector, two different ways of defining boundary conditions are possible: 
• the value(s) of the connector variable(s) used as boundary condition(s) is defined by 

parameter(s) which remain constant during the simulation 
• the value of the connector variable used as boundary condition is defined by an external 

signal-source. Examples for models used as signal sources can be taken from the 
Modelica standard library 

 
Again, there are separate sub packages for each of the four connector types and most of the 
models are similar in the different sub packages. Model ParameterDefined and SignalDefined 
are available for all four TechThermo connectors, models FlowRateCrtl and Counter are 
related to flow-variables and are available for MassFlow, HeatFlow and ExergyFlow, but not 
for ThermalState, since ThermalState connectors don't include flow variables. 
Icon Name Purpose 

 

ParameterDefined Definition of selected connector variables by 
parameters. 

 

SignalDefined A selected connector variable is defined by an external 
signal; external signal source is linked to connector 
InSignal (type Modelica.Blocks.Interfaces.InPort) 

 

FlowRateCrtl A flow variable is defined by an external signal 
between two models; external signal source is linked 
to connector InSignal  
(type Modelica.Blocks.Interfaces.InPort) 
This model is not implemented for ThermalState 
connectors, since this kind of connector doesn’t 
include a flow variable 

 

Counter Integration of the flow variable; the integrated value is 
available at connector OutSignal 
(type Modelica.Blocks.Interfaces.OutPort) 

 
Model ParameterDefined is used to define selected connector variables by parameters. 
Provided the corresponding switch_parameter is true, the connector is set equal to a parameter 
value. The listing of model ParameterDefined (Bb1) for the HeatFlow-connector shows the 
structure of these models: depending on the number of connector variables (q_dot and t) two 
switch-parameters are defined (switch_q_dot_def and switch_t_def, lines 4-7), the default 
values for these Boolean parameters are false. Depending on the actual values in the 



simulation (lines 13-18), the connector variables t and q_dot are set equal to the values of the 
parameters t_para or q_dot_para (defined in lines 8-12). For this model, the number of 
variables can vary between zero (model is used as a sink) and two (both temperature and heat 
flow rate are defined by parameters) 
 
Bb1 1 model ParameterDefined  

2 "heat-flow source with optional definition of heat-flow variables by 
parameters" 

3 TTInterface.HeatFlow.Out OutHeatFlow  
 
4 parameter Boolean switch_q_dot_def=false  
5 "if switch_q_dot_def=true, OutHeatFlow.q_dot is determined by parameter 

q_dot_para" 
6 parameter Boolean switch_t_def=false  
7 "if switch_t_def=true, OutHeatFlow.t is determined by parameter t_para"; 
8 parameter SIunits.HeatFlowRate q_dot_para=1.0  
9 "value for heat-flow rate HeatFlowOut.q_dot at outlet if 

switch_q_dot_def=true"; 
10 parameter SIunits.CelsiusTemperature t_para=25.0  
11 "value for temperature at HeatFlowOut.t at outlet if switch_t_def=true"; 
12 equation  
 
13 if switch_q_dot_def then 
14 OutHeatFlow.q_dot = q_dot_para; 
15 end if; 
 
16 if switch_t_def then 
17 OutHeatFlow.t = t_para; 
18 end if; 
 
19 end ParameterDefined; 

 
 
If the boundary conditions don't remain constant during the simulation, the second type of 
model for imposing boundary conditions can be used: here the value of a single connector 
variable is defined by an external signal. The SignalDefined model has a connector InPort 
from package Modelica.Blocks.Interfaces to link signal sources to the model. Examples for 
signal sources can be found in Modelica.Blocks.Sources. The definition of more than a single 
connector variable is possible by combining a set of SignalDefined models; a combination 
with a ParameterDefined model is also possible, thus allowing both constant and transient 
boundary conditions. 
 
With models ParameterDefined and SignalDefined the definition of flow variables between 
two models is difficult; in order to define flow variables like heat flow rate or mass flow rate 
between two models, model FlowRateCrtl are provided. The inlet of FlowRateCrtl is 
connected to the outlet of the first model while the outlet of FlowRateCrtl is connected to the 
inlet of the second model. The flow variable is then controlled by an external signal. 
 
Finally, the Counter model is used to integrate flow variables. These elements help to 
determine the extend of mass, heat or exergy that flows through a connector during a 
simulation. 
 
3.2.3 Examples for application of source models 
The use of source models is now demonstrated for the definition of boundary conditions 
necessary to calculate the performance of a single cooled compressor with air as working 
medium. These models are included in sub-package Chapter3_2 in package Xample. 
Fig.6 shows the compressor model connected to source models. 



 
Fig.6: Definition of boundary conditions for a 
single compressor 
(description_example_3_2_1) 

Fig.7: Components used to define inlet 
temperature for compressor-model shown in 
Fig.xx1. 

 
For this example, the following boundary conditions are assumed: 
- Inlet: definition of pressure, mass-flow rate and composition of air by parameters; 

these boundary conditions are defined by model InletParameterDefined of type 
Source.MassFlow.ParameterDefined. The Boolean parameters switch_m_dot_def, 
switch_p_def and switch_x_i_def are set from default value false to true, the 
corresponding parameters m_dot_para, p_para, x_para_i are modified. 

- Inlet: definition of temperature of air; basically, the thermal state of the air at the inlet of 
the compressor could also be defined by pressure and spec. enthalpy, but for the user it's 
often more convenient to use the temperature as boundary conditions. Since the 
compressor uses a mass flow connector with spec. enthalpy and pressure as state 
variables, a correlation between temperature, pressure and spec. enthalpy is necessary. As 
described before, a model of type Interface.MassFlow.TwoPortThermalStateTerminal 
correlates spec. enthalpy and pressure of a mass flow connector to pressure, spec. 
enthalpy, temperature, spec. entropy, steam quality and density of a thermal state 
connector. By adding a source model for thermal state and a correlation between the state 
variables any variable of a thermal state connector can be used as boundary condition. In 
Fig.xx2 the applicationn of this concept for the compressor is shown: model 
TemperatureEnthalpyAirInlet of type Medium.Gas.AirPerfectGasCaloric containing a 
correlation between spec. enthalpy and temperature is connected to the thermal state 
connector of TwoPortThermalStateTerminal, model TemperatureInlet of type 
Source.ThermalState.ParameterDefined is used to define the temperature by a parameter 
(switch_t_def = true ). Model NotUsedVariables is used to define the remaining thermal 
state variables which are not relevant (rho, u, s, x). 

- Outlet: definition of pressure by model OutAirSource of type 
Source.MassFlow.ParameterDefined with parameter switch_p_def = true. 

 
Models WasteHeatSink is used as sink for the heat produced during the compression; 
temperature and heat flow rate result from the other boundary conditions, so 
Waste_Heat_Sink introduces no additional boundary conditions. Model 
Mechanical_Power_Source is used as a exergy source for the mechanical power needed for 
compression. Since the mechanical power results from the other boundary conditions, no 
boundary conditions are introduced by Mechanical_Power_Source. 



 
Alternative boundary conditions for compressor example 
All described modifications refer to the basic version of the example 
• Definition of mechanical Power: Fig.8 shows the modifications of the source models if 

the mechanical power is defined and the mass flow rate should be calculated for a given 
pressure difference between inlet and outlet. Here, the Boolean parameter 
switch_exergy_dot_def of the model MechanicalPowerSource is set to true while the 
parameter switch_m_dot_def of InletParameterDefined is changed to false. 
 

• Definition of mass-flow rate by a varying external signal: Fig. 9 shows the diagram for 
a compressor with inlet mass flow rate controlled by an external signal. At the inlet, 
pressure and composition of air is defined by parameters in model InletParameterDefined 
The inlet air flow goes through model InletVariableFlowRateCrtl; here the mass flow rate 
is defined by an external signal source connected to this element. The signal source used 
here is Blocks.Source.Ramp from the Modelica standard library. 
 

Fig.8: Modification of boundary conditions; 
mass flow rate results from prescribed 
mechanical power for compression and 
pressure difference. 
(description_example_3_2_2) 
 

Fig.9: Definition of inlet air mass flow rate by 
an external signal source. 
(description_example_3_2_3) 

 
• Definition of mass flow rate and pressure at inlet by separate signal sources; Fig. 10 

shows the diagram of a compressor where not only the mass flow rate but also the 
pressure at the inlet is controlled by an external signal source. Model 
InletPresssureSignalDefined is connected to Block.Source.Sine from the Modelica 
standard library. Parameter option_defsignal of InletPresssureSignalDefined is set to 3, 
selecting pressure as variable defined by the external signal. InletPresssureSignalDefined 
introduces an additional mass flow variable, which is not relevant for the problem and is 
set to zero (parameter switch_zero_m_dot = true). The composition of the inlet air flow 
should remain constant and is defined by parameter x_para_i in model 
InletParameterDefined 



• Definition of velocity at outlet of compressor; the mass flow rate should now be defined 
by the velocity of compressed air in a flow channel defined by the cross sectional area. At 
the inlet of the compressor, pressure, composition and temperature are defined by 
parameters as described before. The outlet connector of the compressor is connected to 
model OutletVelocity. This model of type Source.MassFlow.FlowVelocity calculates for a 
flow geometry defined by parameters (option_geometry = 2: pipe with diameter di_pipe) 
the flow velocity dependent on mass flow rate and density of fluid. The density of the 
compressed air is provided by model DensityCompressedAir, correlating spec. enthalpy, 
pressure and density. Model NotUsedVariablesOutlet defines the state variables not 
relevant (s, u, x). The value for the outlet velocity is defined by the external signal source 
SignalOutletVelocity taken from the Modelica standard library. 

 

 
Fig.10: Definition of mass flow rate and 
pressure by separate external signal sources 
(description_example_3_2_4) 

Fig.11: Definition of outlet velocity by 
external signal 
(description_example_3_2_5) 

 
 
3.3 Main package Medium 
Many physical models describing thermodynamic systems require correlations for 
thermophysical properties to complete the set of equations. The complexity of these 
thermophysical correlations described in literature vary within a wide range, the selection of a 
property routine strongly influences the numerical stability of a model.  
The main package should provide a basic set of correlations for thermophysical 
properties.intended for technical applications. These models focus on numerical efficiency 
 
Using high precision property routines does not necessarily improve the quality of simulation 
results; on the other side, the complex high precision property routine make the finding of a 
solution more difficult from a numerical point of view. The choice of the adequate level of 
complexity of property routines is essential for effective modeling and simulation. Examples 
for aspects which should be considered are 
- the extend of variation for a state variable within a model; if the variation is limited, the 

application of simple linear property models may be sufficient without introducing 



significant errors; e.g. if a simulation deals with a gas at room temperature at ambient 
pressure the application of the ideal gas law is often sufficient, using real gas property 
routines does not provide different results 

- the accuracy of the property model should correspond to the accuracy of the other 
physical models; e.g. in two phase flow the results provided by models for pressure loss or 
heat transfer coefficients often show errors within the range of 30-50%, using complex 
models for calculating the density of the medium is not efficient in combination with 
models of limited accuracy. 

- in dynamic simulations the assumption of thermal equilibrium in the working fluid may be 
not valid; the application of high accuracy property routines describing steady state 
systems does not improve the quality of the model compared to the real world. 

 
For the evaluation of property routines different criteria can be applied: 
- the accuracy of results compared to standardized values 
- the consistency for any combination of independent state variables 
Usually, a property model can't fulfil both of these cirterias to the same degree; high accuracy 
routines are often based on polynomes which are optimized for a specific combinations of 
independent state variables, a change of the independent state variables requires the 
application of iterative solution procedures. Simple property routines often allow a symbolic 
manipulation of the equations for any combination of independent state variables. If the 
accuracy of the results is acceptable, models allowing a symbolic manipulation should be 
preferred. 
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3.3.1 Structure of main package Medium and Icons used for graphical representation 
of medium models 
The models for calculation of thermophysical properties in package Medium are organised in 
five sub packages: 
 
• Gas 
• Liquid 
• Solid 



• MultiPhase 
• MultiComponent 
 
These five packages are completed by package 
 
• MediumSpecificData 
 
including fundamental data for various media. Package 
 
• MathTool 
 
provides mathematical routines needed by the property models. 
 
A second criterium for classification are the physical properties calculated by a model. Three 
different groups can be distinguished: 
 
• correlations for volumetric variables pressure, density and temperature 
• correlations for caloric variables spec. enthalpy, spec. internal energy and spec. entropy 
• correlations for transport properties like viscosity, heat conductivity or diffusion 

coeffiecients 
 
The icons of the medium models should support a fast identification of the various models. 
The colours and filling style used for the segments in the basic symbol indicate 
 
- range of validity (solid, liquid, gaseous) 
- state variables used in the models (volumetric and / or caloric variables) 
- medium 
 
Fig.xx shows the meaning of the segments in the basic symbol: the triangle in the middle is 
divided in three horizontal areas representing the solid, liquid and gaseous state. If the model 
describes an entire region, the corresponding area is filled by the phase specific colour (black: 
solid, blue: liquid, red: gaseous). If the model is valid for the saturated state (e.g. boiling 
liquid, saturated gas) the corresponding area is filled in dashed style. 
 

Gas

Liquid

Solid

filled with 
medium specific color :
corelation for
volumetric state variables 
p, v, t

filled with 
medium specific color :
corelation for 
caloric state variables 
u, h, s

Thermal State connector

 

Fig.13: Meaning of segments in icon used for medium models. 



 
Fig.xx-Fig.xx show icons for various medium models in package Medium; since TechThermo 
offers models of varying complexity for the calculation of thermophysical properties, 
identical icons may be used for various models. 

 
 

Fig.14: Icon of model with 
correlation for caloric state 
variables of gaseous air 
assuming constant cp 

Fig.15: Icon for model with 
correlation between saturation 
temperature / saturation 
pressure for CO2 for boiling 
liquid and saturated steam. 

Fig.16: Icon for models with 
correlations between caloric 
and volumetric state variables 
of twophase region 
(liquid/gas) for H2O. 

 



 
3.3.2 Basic concepts for physical property models in package Medium 
For the models in package Medium two basic rules apply: 
1 only general correlations are used; the adaptation for a specific medium is done by 

modification of a small number of parameters. 
2 the data needed to specify a correlation for a medium should be available easily, 
 
The fundamental data specifying a medium a collected in a record extending the record 
MediumThermoFundamentalConstants in package 
Medium. MediumSpecificData.Data: 
 
record MediumThermoFundamentalConstants 
"record defining reference state for thermophyscial properties TTcode:CfD1" 
 
        parameter SIunits.MolarMass m_mol "molar mass"; 
        parameter SIunits.ThermodynamicTemperature t_critical  
          "critical temperature"; 
        parameter SIunits.Pressure p_critical "critical pressure"; 
        parameter SIunits.Density rho_critical "critical density"; 
        parameter SIunits.SpecificHeatCapacityr_gas= 
        GeneralConstants.R/m_mol "specific gas constant"; 
        parameter Real omega_acentric "acentric factor"; 
         
end MediumThermoFundamentalConstants; 
 
This record includes the molar mass, the pressure, temperature and density at the critical 
point, the resulting gas constant and the acentric factor. 
For example, the record containing these fundamental parameters for water is 
H2oThermoFundamentalConstants in package 
Medium. MediumSpecificData.Data: 
 
 
 



content model:
fundamental data describing
the selected medium

TTInterface.ThermalState.PropertyPort

content model:
definition of thermal state connector
icon:
basic icon for property model

Correlation between thermal state variables 
without specification of medium

content model:
general correlation between
(selected) state variables
icon:
indicates range of validity
(solid, liquid, gas, saturated state)
by filling of corresponding areas
in the basic icon 
and kind of thermal state variables
(volumetric / caloric)

Record with physical properties of selected medium

icon:
indicates the medium by its
characteristic color

Example:
Icon general routine 
with correlation for
volumetric state variables
for liquid phase and
saturated steam

Extension

Extension

Correlation between thermal state variables 
for specific medium

icon:
indicates the medium by filling the areas
indicating volumetric  and / or caloric
state variables by the characteristic color
of the medium

Example:
Icon for correlation for
volumetric state variables
for liquid phase and
saturated steam of H2O

Replacing general
medium specific
data record

Fig.17: Basic concept for implementation of thermophysical property models in TechThermo 
 
3.3.3 Example for property model: ideal gas law for air 
Model AirIdealGasVolumetric provides the ideal gas law p / rho = RT for air. The 
values for the variables pressure p, density rho and temperature t = T –273 are exchanged 
with the environment by the thermal state connector StateCut; variables h, u, s, x, x_i are 
not used. The development of the model can be divided into three stages: 
Model PropertyPort from main package Interface is taken as basis for the model. 
This model provides the declaration of the thermal state connector StateCut and includes the 
basic property icon. 
 

model PropertyPort "base model property model"  
       
parameter Integer n_comp=1 "number of components"; 
ThermalState.In StateCut(n_comp=n_comp) 
 

 

 
Annotation Icon-graphics: basic property symbol 
 



 
end PropertyPort; 
 

 
Model IdealGasVolumetricNoProp extends PropertyPort and adds the 
correlation StateCut.p = r_gas * (StateCut.t + 273.15) * StateCut.rho for the connector 
variables. The gas is specified by the gas constant r_gas. If the value of the switch-
parameter switch_r_const is true, the value of r_gas is defined by the specific molar mass 
of the gas using the universal gas constant GeneralConstants.R. The molar mass is 
included in the record SpecificConstants that is introduced in line 1. 
The icon is modified to indicate the range of validity (gas phase) and the used state variables 
(volumetric variables p, rho and t). 
 

 
model IdealGasVolumetricNoProp "p/rho=RT" 
      extends TTInterface.ThermalState.PropertyPort; 
 
 
       
1 replaceable TTMedium.MediumSpecificData.Data.MediumThermoFundamentalConstants 

SpecificConstants "record with medium specific constants"; 
2 SIunits.SpecificHeatCapacity r_gas "spec. gas constant"; 
3 parameter Boolean switch_r_gas_const=true 
4 "if switch_r_gas_const==true then specific gas constant r_gas is defined by 

parameter molar mass SpecificConstants.m_mol"; 
 

 
 
Annotation Icon-graphics: modification of the basic property icon included in 
TTInterface.ThermalState.PropertyPort: 
- The area representing the gas phase in the property symbol is filled   
- The letter ‘V’ is added to the icon indicating that the model includes a 
orrelation for variables p,v,t c

 

 

 
5 equation  
 
6 if switch_r_gas_const==true then 
7       r_gas = GeneralConstants.R/SpecificConstants.m_mol; 

8 end if; 

 

9 StateCut.p = r_gas*(StateCut.t + 273.15)*StateCut.rho; 

 

10 end IdealGasVolumetricNoProp; 

 

Model AirIdealGasVolumetric extends IdealGasVolumetricNoProp; a 
redeclare-statement is used to replaced the general record for fundametal properties by 
the record 
TTMedium.MediumSpecificData.Data.AirThermoFundamentalConstants 
containing the data for air. In the icon the left area is filled in light blue, indicating that the 
property routine is specified for dry air. 
 

 
model AirIdealGasVolumetric "p/rho=RT for Air" 
extends TTMedium.Gas.Support.IdealGasVolumetricNoProp 
(redeclare TTMedium.MediumSpecificData.Data.AirThermoFundamentalConstants 
SpecificConstants); 
 

  
Annotation Icon-graphics: modification of the property icon included in 
TTInterface.ThermalState.PropertyPort: 
- The area representing the gas phase in the property symbol is filled   
- The letter ‘V’ is added to the icon indicating that the model includes a 
orrelation for variables p,v,t c

 



 
end AirIdealGasVolumetric 

 

 
3.3.4 Combined property models 
 
Thermophysical property models in TechThermo are also implemented by combination of 
property routines. Models providing correlations for the complete set of state variables are 
composed of a model for calculation of the caloric state variables and a model for calculation 
of the volumetric. 

  
Fig.18: Icon of thermophysical property 
model AirPerfectGasCalVol  

Fig.19: Diagram of model 
AirPerfectGasCalVol 

 
This approach is especially used for models describing systems with more than a single phase 
or more than a single component. Fig.xx shows the internal structure of the model for 
calculation of the thermophysical properties of wet steam. The properties for saturated liquid 
and saturated steam are calculated by using models for the liquid phase and gas phase with 
saturation temperature and saturation pressure as input. This also avoids discontinuities at the 
borders between the two phase region and the single phase regions. Additional models 
provide correlations between the saturation temperature and the saturation pressure and the 
heat of evaporation. The model TwoPhaseMix calculates the properties of the two phase 
system from the information of the basic models including also the steam quality 



Fig.20: Internal structure of model for calculation thermophysical properties of wet steam 
 
 
 
 
 
3.4 Main package Basis 
 
The main package Basis comprises elements describing fundamental processes in 
thermodynamic systems. Four subpackages contain these models: 
• HeatTransport; 

descriptions of heat transport by conduction, convection or radiation 
• MassTransport; 

models describing transport of mass 
• Compartment; 

control volumes for heat and mass transport 
• Junction; 

junctions for heat and mass flows 
• BasicProcess 

basic thermodynamic processes 
 
Subpackage HeatTransport 
Models for heat conduction 
Heat conduction in plates, cylinders and sphers is calculated by the models 
PlateHeatConducting, CylinderHeatconducting and SphereHeatConducting. 



These models extend the TwoPort model from package Interface/HeatFlow. 
Depending on the values of structural parameters, different options are available: 
• the models represent either a heat resistance without storage capacity(switch_zero_mass = 

true) or an element with a finite thermal capacity (switch_zero_mass = false) 
• the models can be discretized in one direction, the parameter n_segment defines the 

number of segments. The results for the temperature of these segments are stored in an 
array. 

• the material of the heat conducting element is described by the variables k_thermal (heat 
conductivity), c_heat (heat capacity, only relevant if switch_zero_mass = false) and 
rho_material (density, only relevant if switch_zero_mass = false). These values are 
defined by parameters, if the corresponding structural parameters k 

• an internal heat source/heat sink can be included by the variable q_internal_volumetric. If 
the structural parameter q_internal_const = true, the value of q_internal_volumetric is 
defined by the parameter q_internal_volumetric_const 

• the initial condition for the element with thermal capacity can be defined either by the 
initial heat flow rate = 0 (option_initial = 1) or by an intial temperature 
(option_initial = 2). The value for the initial temperature is defined by parameter 
trinities 

 
Models for convective heat transfer 
The calculation of the heat transfer between a fluid and the surface of a solid body in contact 
with the fluid demands the consideration of different aspects: 
• forced or free flow of the fluid 
• geometry of the body 
• extend of variation of fluid properties 
 
Models for heat transfer by radiation 
Models for heat transfer by thermal radiation are  
• RadiationHeatEmission: calculation of heat emitted from a finite surface to an 

infinite environment by thermal radiation 
• RadiationHeatExchange: model describing radiation heat transfer between two 

surfaces 
 
Subpackage MassTransport 
-Models for convective heat transport 
 
The models in package MassTransport describe physical processes related to the transfer of 
mass. 
• Support.PressureLossPipeNoProp: length specific pressure drop for mass flow 

in pipe; includes various models for the calculation of turbulent and laminar flow, 
selection by structural parameter. The thermophysical properties of the fluid must be 
specified to complete the model. 

 
Subpackage Compartment 
-Models including conservation laws 
 
Subpackage Compartment includes models with conservation laws for heat and mass. 
• ThermalCapacity is the transient thermal energy balance for a finite mass. The mass 

transfers energy to / from other models by a heatflow-connector 



• Support.SingleMassControlVolumeNoProp includes the transient mass and 
energy balance for a medium in a finite volume with additional heat flow. The model 
includes a mass flow connector and a heat flow connector. The model requires 
correlations for the thermophysical properties of the medium which can be transferred by 
a thermal state connector. By a heat flow connector thermal energy can be transferred to 
or from the volume. This model is intended for the modelling of pressure vessels. 

• Support.TwoPortMassControlVolumeNoProp is identical to 
Support.SingleMassControlVolumeNoProp except for a second mass flow 
connector. This model should be preferred for fluid flow elements. 

 
Subpackage Junction 
 
• MassFlow3PortParaCrtl is a node with three mass flows. One of the mass flow is 

defined as inflow, a second as outflow. The direction of the third mass flow is defined by 
a structural parameter 

• DividerMassFlow, DividerHeatFlow, DividerExergyFlow are used for 
models where a sinlge mass-, heat- or exergy flow is distributed into a parameter-defined 
number of identical parallel flows. These models include two connectors, one representing 
the variables of the single flow, the other variable includes the variables for one of the 
parallel flows. 

• MassFlowDouble, HeatFlowDouble, ExergyFlowDouble are used to copy 
the connector variables of a mass-, heat- or exergy flow. These models are intended for 
analysis purposes, e.g. the calculation of efficiencies of a process 

 
Subpackage BasicProcess 
 
Subpackage BasicProcess contains models describing simple changes in the thermal state of a 
system and models needed for the analysis of thermal processes.  
• AirChangeState is the model for a single step change in thermal state of dry air. The 

kind of change is defined by a structural parameter. AirChangeState extends 
Support.ChangeStateNoProp which is the basic model without specification of 
the working fluid. 

• ThermalEfficiency calculates the thermal efficiency from an exergy flow and a heat 
flow 

 



4 Examples 
 
The examples should demonstrate the application of the TechThermo models. 
They are not intended as solutions for real problem, since the complexity of the 
example should be limited. 
 
 



Ex1: Heat conduction in a wall with varying boundary conditions 
 

• Definition of boundary conditions for heat flow by element 
Source.HeatFlow.ParamterDefined and Source.HeatFlow.SignalDefined 

• definition of model features by structural parameters 
 

 
Fig.Ex1_1: Model for heat-conducting wall 
 
Ex1a Steady State Heat Conduction 
Heat conduction in a wall without thermal capacity, temperature varying on one side, temperature constant on 
the other side 
 
Definition of boundary conditions 
 
Inner side: constant temperature of 15°C 
Name model: InnerSide 
Parameter: Value: Comment: 
switch_t_def true at connector OutHeatFlow 

of model InnerSide the 
variable t is defined by 
parameter t_para 

t_para 15 parameter value for temperature 
at connector OutHeatFlow of 
model InnerSide 

 
Environment: tempeature starts at 15°C, increases by 20°C and remains constant at 35°C 
Source model controlled by external signal: 
Name model: Air 
Parameter: Value: Comment: 
option_def_signal 2 at connector OutHeatFlow 

of model Air the variable t is 
defined by an external signal 
source connected to connector 
InSignal of model Air 

 
The external signal source used to control the temperature at connector OutHeatFlow of model Air is taken 
from the Modelica Standard library (Modelica.Blocks.Sources.Ramp): 



 
Name model: Ramp1 
Parameter: Value: Comment: 
height 20 the temperature of the 

environment increases by 20°C 
offset 15 the temperature of the 

environment starts at 15°C 
duration 2 the temperature of the 

environment is changed from 
15°C to 35°C within 2 seconds. 

 
The wall is represented by a heat conducting element  
 
Name model: Wall 
Parameter: Value: Comment: 
n_segment 1 no spatial discretization in 

direction of heat flow 
k_thermal_const 1.5 thermal heat conductivity of 

wall material, does not change 
during the simulation 

dz_plate 0.5 thickness of plate in direction 
of heat conduction 

cross_area 0.25 cross-sectional area for heat 
conduction through wall 

switch_zero_mass true wall has no thermal capacity 
 
The parameters c_heat_const (specific heat capacity of wall material), rho_material (spec. density of 
wall material) and t_initial (initial temperature wall) are not relevant here, since due to the setting of 
structural parameter switch_zero_mass = true, no energy is stored in the wall. The wall is regarded as a 
heat conducting element that transfers heat without any delay. Usually, this assumption should only be made for 
thin wall structures. 
 
 
The check of model Ex1a provides the message  
“DAE with 20 unknowns scalars and 20 scalar equations” 
 
After compilation, the simulation time interval is set to 3 seconds in the Experiment Setup menue. 
 
The simulation provides the following results for the temperature at the outer side of the wall (imposed by the 
signal source) and the heat flow at the inner side of the wall at connector OutHeatFlow of the model 
InnerSide: 
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Fig.Ex1_2: Simulation results for model Ex1a, wall without thermal capacity. 
 
The value for the heat flow at the end of the ramp (time >2seconds) is 

( )

W150W
05.0

25.05.120

plate_dz
area_crossconst_thermal_kt.wOutHeatFlo.Wallt.InHeatFlow.Walldot_q

=
⋅⋅

=

⋅⋅−
=

 

 
which corresponds to the value in Fig.2, taking the right y-axis. Since the thermal capacity of the wall is 
neglected, there’s no delay between temperature and heat flow rate. 



Ex1b- Transient Heat conduction with finite thermal capacity –sudden increase of surface temperature 
 
In this example, we want to calculate the transient temperature in the wall at a position that is 0.036m away from 
the surface. One dimensional heat flow is assumed. 
 
In model Wall the following parameter-values are used: 
Name model: Wall 
Parameter: Value: Comment: 
n_segment 1 no spatial discretization in 

direction of heat flow 
k_thermal_const 1.0 reduction of thermal heat 

conductivity  
dz_plate 0.072 the center of the heat 

conducting element should be 
at 0.036m, so the 
thickness of plate in direction 
of heat conduction is 0.072m 

switch_zero_mass false the wall has now a finite 
thermal capacity, in contrast to 
Ex1a 

 
Important is the value of the structural parameter switch_zero_mass: since the thermal capacity of the wall 
should now be considered, switch_zero_mass is now false.
 
The thermal capacity of the Wall-component is now defined by parameters 
Name model: Wall 
Parameter: Value: Comment: 
c_heat_const 1100 value for specific heat material 

of the wall, assumed constant 
during the simulation 
(switch_c_const = true) 

rho_material 2000 density of the wall  
 
The volume of the wall results from cross-sectional area cross_area and the thickness of the wall 
dz_plate. 
 
At the inner side of the wall there should be no heat flow , but no definition of the temperature, so the parameters 
of component InnerSide are: 
 
Name model: InnerSide 
Parameter: Value: Comment: 
switch_q_dot_def true the value ( = 0.0 ) of the heat 

flow rate at the inner side of the 
wall is given by parameter 
q_dot_para. 

switch_t_def false temperature is not given at the 
inners side of the wall 

q_dot_para 0 parameter value for the heat 
flow at the inner side of the 
model. 

 
The change in tempeature of the environment should be from 15°C to 20°, so the parameters in component 
Ramp1 are 
 
Name model: Ramp1 

Parameter: Value: Comment: 
height 5 the temperature of the 

environment increases by 5°C 
offset 15 the temperature of the 

environment starts at 15°C 
duration 2 the temperature of the 



environment is changed from 
15°C to 35°C within 2 seconds. 

 
Initilization of Wall 
 
Two options are available for initialization of model PlateHeatConducting used for component Wall: 

1 steady conditions, the derivate of the wall temperature = 0.0 
2 a temperature for the wall is prescribed by parameter t_initial 

 
Which initialization is chosen depends on the value of option_initial. For all examples in Ex1 we assume 
steady conditions, so option_initial = 1; in Ex1b we could achieve the same results by 
option_initial = 2 and t_inital=15. 
 
After compilation, the simulation provides the following results for the temperatur Wall.t_segment_i[1] during a 
period of 10000s. 
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Ex1c- Comparision Modelica finite difference solution to analytical solution  
An analytical solution should be compared to the DYMOLA-results. This solution is valid for an infinite wall 
that is exposed to a sudden change in temperature. The temperature field is one-dimensional, 
 
The analytical solution for the temperature T at distance z from the surface of the wall is at time t after the 
change of initial temperature T0 to temperature TS is: 
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with a being the thermal diffusivity of the wall: 
 

material_rho.Wallconst_heat_c.Wall
const_thermal_k.Walla

⋅
=  

 
One assumption for the analytical solution is that the heat flow rate becomes zero at an infinite distance from the 
surface of the wall exposed to the environment (boundary condition on the right side). This boundary condition 
can’t be fulfilled by a finite difference approach, since here the maximum distance from the surface of the wall is 
limited. 



 
For the first simulation, the wall is divided into two equal segments in direction of the heat flow. The position of 
the centers of the two segments are provided by vector Wall.z_segment_i. 
 
Name model: Wall 
Parameter: Value: Comment: 
n_segment 2 heat conducting element is 

divided into two identical 
segments of length dz_plate 
/ 2 = 0.036m 

dz_plate 0.072 the centers of the two segments 
are at 
z_segment_i[1] = 0.018m 
and 
z_segment_i[2] = 0.054m 
 

switch_zero_mass false the wall has a finite thermal 
capacity 

 
The simulation provides the temperature at the position of the centers of the segments in the vector 
t_segment_i. 
 
In order to identify the influence of the spatial discretization, a second simulation is performed with a heat 
conducting plate divided into six segments: 
Name model: Wall 
Parameter: Value: Comment: 
n_segment 6 heat conducting element is 

divided into six identical 
segments of length dz_plate 
/ 6 = 0.012m 

dz_plate 0.072 the centers of the segments are 
at z_segment_i[1] = 0.006m 
z_segment_i[2] = 0.018m 
z_segment_i[3] = 0.030m 
z_segment_i[4] = 0.042m 
z_segment_i[5] = 0.054m 
z_segment_i[6] = 0.066m 

switch_zero_mass false the wall has now a finite 
thermal capacity, in contrast to 
Ex1a 

 
Fig.Ex1_4 shows the results for the two different discretizations together with the analytical solution. The results 
caculated with six segments match better the values from the analytical solution in the initial phase, later the 
differences in the boundary condition on the right side becomes visible.  
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Fig.Ex1_4: Comparison of results from Ex1c for discretization of heat conducting element in 2 and 6 elements 
and analytical solution. 
 
Ex1d- Transient Heat Conduction with Heat Flux as boundary condition 
 
In this example, the area specific heat flux at the surface of the semi-infinite wall should be used as boundary 
condition. An analytical solution is available for a sudden variation of the heat flow at the surface. 
 
The boundary condition by component Air on the left side is now the heat flow rate so the structural parameter 
option_def_signal is set to 1: 
 
Name model: Air 

Parameter: Value: Comment: 
option_def_signal 1 at connector OutHeatFlow 

of model Air the variable 
q_dot is defined by an 
external signal source 
connected to connector 
InSignal of model Air 

 
The cross sectional area of the wall is set to 1m²; the boundary condition for the analytical solution on the right 
side is again q_dot = 0.0 for position z = ∞, so dz_plate is extended to better fulfill this condition. The 
temperature in the wall should be used as initial condition so structural parameter option_initial is set to 
2, the value for the initial temperature should be 15° defined by parameter t_initial. 
 
Name model: Wall 
Parameter: Value: Comment: 
n_segment 10 wall is discetized into 10 

elements in direction of heat 



flow 
k_thermal_const 1.0 thermal heat conductivity of 

wall material, does not change 
during the simulation 

dz_plate 3 thickness of plate in direction 
of heat conduction 

cross_area 1.0 cross-sectional area for heat 
conduction through wall 

t_initial 15 
 

initial value for temperature of 
wall is 15°C 

switch_zero_mass 
 

false wall has hermal capacity 

option_initial 
 

2 temperature of wall is  
initial condition 

 
The heatflux at the surface of the wall is defined by Ramp1. The area specific heat flow rate should be increased 
from 0 to 100 W/m² within 1 second. Since Ramp1 defines the heat flow rate at connector OutHeatFlow of 
component Air, the value of  height in Ramp1 must be negative. 
 
Name model: Ramp1 

Parameter: Value: Comment: 
height -100 the heat flow rate leaving 

component Air (positive at 
surface of wall). Since the area 
of the wall is 1m²,  the value 
corresponds to the area specific 
heat flow rate. 
 

offset 0 initially no heat flow at surface 
of wall 
 

duration 1 the heat flow rate should be 
increased from 0 W/m to -100 
W/m within a second. 

 
In case of a sudden increase of the surface heat flow from 0 W/m² to  the analytical solution for the 

temperature T at position z (initially at T
Sq&

0) after t seconds is: 
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Fig.Ex1_5 shows the results of the Modelica simulation and the results provided by the analytical solution at the 
position z = 0.15m ( = Wall.t_segment_i[1] ). 
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Fig.Ex1_5: Example Ex1d: temperature in wall after sudden increase of surface heat flux, results from Modelica 
simulation and analytical solution. 
 



Ex2: Heat losses of cup of coffee 
 
In the following examples, heat losses from a cup of coffee to the environment are calculated. The examples 
consider the following heat transfer mechanism: 

− Ex2a: Heat conduction 
− Ex2b: Heat conduction and natural convection 
− Ex2c: Heat conduction, natural convection and radiation 

 
The geometry of the problem is shown in Fig.Ex2_1: the cylinder-shaped cup is filled completely with coffee 
and is located on a large table.  
The simulation starts immediately after the coffee has been filled into the coffee. The initial temperatures are: 

− coffee:  90°C 
− cup: 20°C 
− table and environment: 20°C 

 
Ø 75 mm

Ø 70 mm

coffee

5 mm

80 mm

Table
  

Fig. Ex2_1: Physical model of cup of coffee Fig. Ex2_2: Modelica model Ex2c with heat losses from 
cup of coffee to environment by heat conduction to table, 
heat transfer by natural convection and thermal radiation. 

 
The following simplifications are assumed: 

− the temperature in the coffee volume is homogenous 
− the temperature in the side wall of the cylinder is homogenous 
− the temperature in the bottom of the cup is homogenous 
− no mass transfer between coffee volume and environment 
− the temperature of the table is constant 
− material properties are not temperature-dependent 
− the thermal resistance between the coffee and the inner surface of the cup is neglected 

 



Ex2a: Heat losses due to conduction 
 
In the first example, heat is only lost to the table by thermal conduction through the bottom of the cup. Heat is 
transferred from the coffee to the walls of the cup, since the initial temperature of the coffee is higher than the 
initial temperature of the walls. 
 
coffee volume: ThermalCapacity 
Since there’s no mass transfer the coffee is simply represented by a model of type ThermalCapacity from 
sub-package Basis / Compartment. The density of the coffee is assumed to be 965 kg/m³ (constant), the 
volume of the coffee is 2.88e-4 m³, so the mass of the coffee is 0.2785 kg. The specific heat capacity of the coffee 
is 4200 J/kg/K. The initial condition is defined by the temperature of the coffee, so option_initial = 2, t_initial is 
90. 
 
side walls of cup: SideWallHeatConduct 
The side walls of the cup are represented by the component SideWallHeatConduct of type 
CylinderHeatConducting from sub-package Basic / HeatTransport. The values for d_inner 
and d_outer are taken from Fig. Ex2_1, the density of the material rho_material_const is 1500 kg/m³, the 
heat capacity c_heat_const is 900 J/kg/K, the heat conductivity k_thermal_const is 1.2 W/m/K. Since 
the mass of the cylinder should be considered, switch_zero_mass is false. 
 
bottom of the cup: PlateHeatConducting 
The bottom of the cup is represented by a model of type PlateHeatConducting from sub-package Basis 
/ HeatTransport. The thickness dz_plate is taken from Fig. Ex2_1, the surface area orthogonal to the 
direction of heat flow is 0.0038m². No heat resistance is assumed between the bottom of the cup and the surface 
of the table. 
 
Boundary conditions: Environment and Isolation 
Model BottomHeatConduct is connected to model Environment of type 
Source/HeatFlow/ParameterDefined which defines the temperature of the environment and is also 
used as sink for the heat losses of the cup. SideWallHeatConduct is connected to model Isolation 
which defines heatflow = 0.0. 
 
Fig. Ex2_3 shows the temperature of the coffee ( variable Coffee.Volume.HeatCut.t) during a time 
intervall of 3600s. 
 
Ex2b: Heat losses due to conduction and natural convection 
 
In Ex2b additional heat losses due to natural convection are included. The losses of the surface of the coffee are 
calculated by model SurfaceCoffeeNaturalConvection, assuming an empirical correlation for the heat 
transfer from a horizontal plate.The surface are is 0.0038m², the perimeter is 0.22m. The properties of air are 
defined by heat conductivity lambda_fluid_const = 0.0257 W/m/K, kinematic viscosity 
ny_fluid_const = 1.511e-5 m²/s and Prandtl-number = 0.713. 
The heat losses of the outer wall of the cup are calculated by the component 
SideWallNaturalConvection using a empirical correlation for external natural convection. The cylinder 
geometry is selected by setting the value of option_geometry to 2, the size is defined by the outer diameter 
in parameter d_body and the height of the cup as value of parameter l_parallel_flow_direction. 
The two models for convective heat transfer are connected to the component Environment, which provides the 
temperature of the air and is used as a sink for the lost thermal energy. 
The results for the temperature of the coffee are included in Fig. Ex2_3. Due to the additional heat losses, the 
temperature declines faster. 
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Fig. Ex2_3: Temperature of coffee for the examples Ex2a, Ex2b, Ex2c 
 
 
Ex2c: Additional Heat losses due to thermal radiation 
 
In Ex2c two components describing heat transfer by thermal radiation are added: RadiationSurfaceCoffee 
calculates the heat emitted by the surface of the coffee, RadiationSideWall determines the thermal raditaion of 
the side walls. Both models require the definition of the surface and the emission coefficient by parameters. 
According to Fig Ex2_3,  



Ex3: Steam power plant with saturated steam 
 
Simple steam power plants are simulated in these examples. Transient effects are not 
considered since the components used here don't show thermal capacities. Working medium 
is liquid water and wet steam. Part load behaviour of components is neglected. 
 
Ex3a: Basic steam cycle 
 

 
Fig. Ex3_1: Diagram layer of model Ex3a 
 
The basic cycle consists of four main components: 
 
Component Model type Function 
Turbine Component.Turbine.H2oWetSteamTurbine generation of exergy by 

expansion of steam 
 

Condensor Component.HeatEx.H2OCondensor condensates wet steam from 
turbine 
 

Pump Component.Pump.H2oLiquidPump compression of water from 
condensation pressure to 
turbine inlet pressure 

Boiler Component.Heater.SimpleHeater 
 

generates steam 

 
The necessary boundary conditions are defined by the following components: 
 



Component Model type Boundary condition 
 
SteamQualityPressureInletTurbi
ne 

 
Source.ThermalState. 
ParameterDefined 

 
steam quality inlet turbine = 
1.0,  
saturated steam 
 

 
ParameterTurbineInlet 

 
Source.MassFlow. 
ParameterDefined 

 
pressure at inlet of turbine, 
x_i 
 

 
FlowRate 

Source.MassFlow. 
FlowRateCrtl 

 
mass flow rate in steam cycle 
 

 
HeatSinkEnvironment 

Source.HeatFlow. 
ParameterDefined  

 
temperature of condensation 
in condensor 
 

 
HeatSource 
 

 
Source.HeatFlow. 
ParameterDefined  

 
temperature of heat transferred 
to boiler 
 

 
The heat flow provided by component HeatSource results by the change of specific 
enthalpy and the mass flow rate. The boiler model is based on an energy 
balance, the definition of the temperature of the provided heat is only 
necessary to complete the equations. Saturated steam should be fed to the 
turbine, the enthalpy is calculated by the medium model H2oWetSteamInlet 
for the pressure defined in ParameterTurbineInlet. The pressure at the 
outlet of the turbine results from the condensation temperature in the 
condensor; in model Component.HeatEx.H2OCondensor a constant temperature 
difference is assumed between the temperature provided at the heat flow connector from 
component HeatSinkEnvironment. 
Some components are necessary as sinks and sources without defining 
connector variables: 
 
Component Model type Function 
Generator Source.ExergyFlow.ParameterDefined  mechanical power provided 

by steam turbine 
 

PowerToPump Source.ExergyFlow.ParameterDefined  mechanical power needed for 
compression of feedwater 
 

 
Interruption of closed loop for mass flow rate and composition vector x_i 
 
The components of the steam power plant build a closed loop; if all elements included 
relations for mass flow rate and composition vector x_i at inlet and outlet connectors too 
many equations would be introduced. In order to avoid this, component FlowRate doesn't 
include correlations between the mass flow rate and x_i at the In and Out 
connector, the corresponding switch parameters switch_m_dot_const = false 
and switch_x_i_const = false. 



 
Ex3b: Basic steam cycle with modified boundary conditions and calculation of thermal 
efficiency 
 
Ex2b includes following modifications: 
- variable pressure at inlet of turbine: component PressureInletDefinition defines the 

pressure depending on the signal provided by component PressureInletSignal, the 
composition vector x_i at the inlet of the turbine is defined by model 
CompositionDefinition. 

- in steam turbines the minimum steam quality is limited, a certain fraction of liquid water 
must not be exceeded; hence the steam conditions at the exit of the turbine are now 
determined by the steam quality defined by parameter in model SteamQualityOutlet, the 
corresponding spec. enthalpy is provided by model H2oWetSteamOutlet. 

- the thermal efficiency of the process is calculated by model ThermalEfficiency (variable 
ThermalEfficiency.eta). The thermal efficiency is defined as the ratio of the thermal 
power consumed by the process to the mechanical power provided by the process.This 
information is provided by the models HeatFlowDouble and ExergyFlowDouble to the 
model ThermalEfficiency.  

 
Ex3c: Basic steam cycle with two turbinestages and extraction of liquid 
 
Decreasing the minimal temperature in the condensor means increasing the efficiency of the 
process. Extracting liquid during the expansion represents one option to lower the pressure at 
the exit of the steam turbine while fulfilling the steam quality boundary condition at the exit. 
This approach is used in Ex2c: 

− two sequential turbines are used, Stage1Turbine and Stage2Turbine. The pressure 
at the exit of Stage1Turbine is determined by parameter in ExitPressureTurbine1. 

− H2oPhaseSeparator divides the wet steam flow from Stage1Turbine into two 
single phase flows. The gas phase flows to the inlet of Stage2Turbine for further 
expansion. 

− In model MixingMassFlows the liquid phase flow from the separtator is mixed 
with the flow from the pump. 

 



 
Fig. Ex3_2: Diagram layer of model Ex3c 
 
 
Ex3d: Basic steam cycle with two turbinestages, extraction of liquid and calculation of 
thermal efficiency of steam cycle 
 
In Ex3d, the thermal efficiency of the process is calculated with varying steam pressure at the 
inlet of the first turbine. Fig. Ex3_3 shows the results for the thermal efficiency for the single 
stage steam cycle from Ex3b and the two stage steam cycle from Ex3d. 
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Fig. Ex3_2: Thermal efficiency ThermalEfficiency.eta for single-stage steam cycle (Ex3b) 
and two-stage steam cycle (Ex3d), constant steam quality at outlet of turbine. 



 
Ex4: Compressed air energy storage 
 
One option for large scale storage of electric energy is the use of compressed air. If more 
electric power is produced than needed (e.g. from wind power) air is compressed and stored. 
Since large storage volumes are needed, caverns are often used. After compression, the air is 
cooled down before flowing into the storage volume. During the discharge cycle, compressed 
air is extracted from the storage volume. A burner is used to add heat to the air before it is 
expanded in a turbine driving a gnerator. 
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Fig. Ex4_1: Charging process for compressed 
air storage system: compressed air is filled 
into cavern. 

Fig. Ex4_2: Discharging process for 
compressed air storage system: compressed 
air is extracted from cavern. 

 
Fig. Ex4_3: Modelica model compressed air storage system; simulation time 7200s includes 
a charging and discharging process. 
 
 


