Teaching Modelica for Mathematicians and Engineers

Modelica Educational Workshop
Berlin

Bernhard Bachmann
University of Applied Sciences
Bielefeld
Outline

- Past Teaching Experience
 - Mathematicians
 - precognition, course objectives
 - Course Details
 - theoretical content, tools, exercises

- Discussion on Future Teaching Options
 - Mathematicians and Engineers
 - master students having less mathematical background
 - Tools and concepts
 - adaptation of previous course
Past Teaching (1999 – 2008)

- **Course attendees (diploma-study in mathematics) [ca. 15]**
 - good mathematical background
 - analysis and linear algebra topics
 - optimization (linear, nonlinear problems)
 - numerical methods (no ODEs)
 - theory on ordinary differential equations
 - familiar tools: Maple, Matlab (no Simulink)
 - basic programming knowledge (C/C++)
 - basic engineering background
 - simple mathematical modeling of physical components
 mechanics, electrical systems (static)

- **Course objectives**
 - engineering aspects
 - component and library development in Modelica
 - mathematical aspects
 - understand symbolic transformations and numerical issues
Past Teaching (1999 – 2008)

- Course details
 - 4 semester periods per week (13 weeks)
 - theory and practical exercises
 - learning by doing (small projects)
 - tools
 - Matlab-Simulink (1st project)
 - Dymola (Modelica projects)
 - exam
 - practical
 - projects (development and explanation)
 - theory
 - mathematical and modeling aspects
Past Teaching (1999 – 2008)

- 1st course: Basic understanding of the principles using a simple electrical system
 - modeling
 - develop the DAE representation
 - abstract mathematical view
 - understand numerical integration (Euler method)
 - sort the equation system (find causality)

 - simulation and implementation
 - using Matlab
 - using Simulink
 - using Dymola (flat representation)

\[
\begin{align*}
 u &= A \cdot \sin(2 \pi f t + \phi) \\
 u &= u_1 + u_2, \ u = u_3 + u_4 \\
 i &= i_1 + i_2 \\
 u_1 &= R_i_1, \ u_3 = R_2 i_2, \\
 C \frac{du_2}{dt} &= i_1, \ L \frac{di_2}{dt} = u_4
\end{align*}
\]
Past Teaching (1999 – 2008)

- 1st course project
 - basic understanding of the principles using a simple mechanical system
 - modeling
 - develop the DAE representation
 - understand numerical integration (Euler method)
 - sort the equation system (find causality)
 - simulation and implementation
 - using Matlab
 - using Simulink
 - using Dymola

\[
\begin{align*}
\tau_1 &= u, \quad \omega_1 = \dot{\varphi}_1 \\
J_1 \cdot \dot{\varphi}_1 &= \tau_1 + \tau_2 \\
\tau_2 &= c \cdot (\varphi_2 - \varphi_1) \\
0 &= \tau_2 + \tau_3, \quad \omega_2 = \dot{\varphi}_2 \\
J_2 \cdot \dot{\varphi}_2 &= \tau_3
\end{align*}
\]
Past Teaching (1999 – 2008)

- 2nd course:
 Benefit of using Modelica
 Getting started with Dymola
 - examples from 1st course continued
 - modeling
 - drag and drop
 - library structure
 - find components
 - simulation
 - compile model
 - experiment setup
 - view and compare results

\[u(t) \]

\[\phi_1, \tau_1 \]

\[J_1 \]

\[\phi_1, \tau_2 \]

\[c \]

\[\phi_2, \tau_3 \]

\[J_2 \]

\[\phi_2, \tau_4 = 0 \]
Past Teaching (1999 – 2008)

- **2nd course project**
 - build up and simulate different physical systems
 - examples from 1st course
 - drive train
 - triple pendulum
 - ...

![Diagram of a Modelica model involving components like resistor, inductor, and gearing.](image)

height = 200
Past Teaching (1999 – 2008)

- 3rd course: Getting started with Modelica
 - flat Modelica
 - basic keywords
 - model, parameter, equation, basic types, der, …
 - type attributes
 - min, max, units, …
 - type classes
 - library SIunits
 - hierarchical Modelica
 - model and connector classes
 - connect statement
 - basic principles of flow and potential variables
Past Teaching (1999 – 2008)

- 3rd course project
 - implement and simulate a Pendulum model
 - flat representation
 using predefined types (SI units)
 - hierarchical representation (using Multibody library)
 animation
 - build up a simple controller to adjust the angle

\[
J \cdot \ddot{\phi} = -m \cdot g \cdot L \cdot \cos(\phi) - d \cdot \dot{\phi} + \tau
\]
Past Teaching (1999 – 2008)

- **4th course:**
 Introduction to basic control techniques
 - examples
 - with/without feedback
 - Laplace-transformation
 - different mathematical formulations
 - functional description
 - block diagram
 - Step function response
 - standard controller
 - P-, D-, I-, PD-, PI-, PID-controller

- **4th course project**
 - example from 3rd course continued
 - try different controller and compare results
Past Teaching (1999 – 2008)

- **5th course:**
 - Build Libraries in Modelica
 - package concept
 - example using simple electrical component
 - modifier concept
 - build libraries in Dymola
 - icon layer, diagram layer
 - coordinate system
 - connector view
 - parameter settings
- **5th course project**
 - build up a library
 - motor (including control scheme)
 - gear box (including friction elements)
 - adjust control parameter for suitable test cases
Past Teaching (1999 – 2008)

- **6th course:**
 Build Libraries in Modelica
 - general connection concept
 - energy flow, domain specific potential and flow variables
 - discuss practical issues (rotational)
 - multidisciplinary modeling
 - parameter propagation
 - modifications
 - GUI in Dymola

- **6th course project**
 - continue 5th course project
Past Teaching (1999 – 2008)

- 7th course:
 Advanced Modelica
 - class types
 - type, model, block, function, package, connector
 - algorithm versus equations
 - additional keywords
 - input, output, protected
 - matrices
 - definition, element access, operations, inline functions
 - example of general transfer function

\[
\dot{x} = \begin{bmatrix}
-\frac{a_2}{a_1} & -\frac{a_3}{a_1} & -\frac{a_4}{a_1} & -\frac{a_5}{a_1} \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix} \cdot x + \begin{bmatrix}
\frac{1}{a_1} \\
0 \\
0 \\
0 \\
\end{bmatrix} \cdot u
\]

\[
y = \begin{bmatrix}
b_2 - a_2 \frac{b_1}{a_1} & b_3 - a_3 \frac{b_1}{a_1} & b_4 - a_4 \frac{b_1}{a_1} & b_5 - a_5 \frac{b_1}{a_1}
\end{bmatrix} \cdot x + \frac{b_1}{a_1} \cdot u
\]

- 7th course project
 - still continue 5th course project
Past Teaching (1999 – 2008)

- **8th course:**
 Symbolic transformation algorithm
 - mathematical DAE representation
 - regular (index 1) problems
 - matching algorithm
 - sorting (Tarjan algorithm)
 - BLT representation of adjacence matrix

- **8th course project**
 - implement the BLT algorithm for random matrices
Past Teaching (1999 – 2008)

- **9th course:**
 Higher Index problems
 - examples (mechanical, electrical)
 - mathematical DAE representation
 - definition of the structural and differential index
 - detect singular set of equations
 - Pantelides algorithm
 - dummy derivative method
 - state selection mechanism
 - initialization of models

- **9th course project**
 - continue 8th course project
Past Teaching (1999 – 2008)

- **10th course:**
 - Advanced Modelica
 - arrays of component
 - for-loop, variable number of connect statements
 - example
 - transmission line model
 - introduce basic heat flow library
- **10th course project**
 - simulate the temperature distribution of an isolated bar
Past Teaching (1999 – 2008)

- **11th course:**
 - Model discontinuities
 - Modelica Standard library
 - digital controller
 - electrical switch or diode (not ideal)
 - clutch and brake model
 - Modelica language elements
 - if-then-else, when, noEvent, smooth, reinit, pre, …
 - symbolic transformation
 - synchronous equation

- **11th course project**
 - implement examples
 - hysteresis function
 - pulse width modulation block
Past Teaching (1999 – 2008)

- 12th course: Model Discontinuities
 - numerical issues
 - stiffness (“not ideal” switch)
 - time versus state events
 - rounding errors
 - event iterations

- 12th course project
 - implement further examples
 - bouncing ball
 - …
Past Teaching (1999 – 2008)

- 12th course: Model Discontinuities
 - numerical issues
 - stiffness (“not ideal” switch)
 - time versus state events
 - rounding errors
 - event iterations

- 12th course project
 - implement further examples
 - bouncing ball
 - …
Past Teaching (1999 – 2008)

- **13th course:**
 - **Model Discontinuities**
 - varying higher index problems
 - examples
 - mechanical, electrical
 - symbolic transformation
 - analyse singularity
 - dummy derivative method

- **13th course project**
 - run and analyse examples
 - introduce dummy derivative terms in branches
Past Teaching (1999 – 2008)

- **13th course:**
 - Model Discontinuities
 - varying higher index problems
 - examples
 - mechanical, electrical
 - symbolic transformation
 - analyse singularity
 - dummy derivative method

- **13th course project**
 - run and analyse examples
 - introduce dummy derivative terms in branches
Discussion on Future Teaching Options

- **Course attendees**
 - master-study in „Optimization and Simulation“
 - mathematicians and engineers
 - mechanical, electrical, mechatronics,…
 - heterogeneous background in mathematics and engineering

- **Course objectives**
 - engineering aspects
 - component and library development in Modelica
 - mathematical aspects
 - understand symbolic transformations and numerical issues

- **Tools**
 - licencing issues
 - **OpenModelica (SimForge)**, Dymola, MapleSim, MathModelica

- **Applications / Projects**