Engine Modeling with Modelica

Dr. John J. Batteh

Ford Motor Company
Transient Engine Simulation Group
Powertrain Research Department

Modelica Automotive Workshop
Engine Modeling Session
November 19, 2002
Contributors

- **Eric Curtis** (Group Leader, ecurtis@ford.com)
 - Modelica technical lead

- **Michael Tiller** (mtiller@ford.com)
 - Engine and combustion modeling

- **Charles Newman** (cnewman@ford.com)
 - Heat transfer/thermal flow, liquid fuel effects

- **John Batteh** (jbatteh@ford.com)
 - Engine and combustion modeling

- **Chris Puchalsky** (former group member)
 - Liquid fuel effects

- **Allan Watson** (awatso12@ford.com)
 - Hydraulics/thermal flow, lash adjuster

- **Kartik Ramanathan** (kramana2@ford.com)
 - Manifold dynamics
Engine analysis requires multi-domain physical models!!
Model Applications

- Engine-level analyses
 - Throttle response
 - Liquid fuel effects (wall wetting)
 - Spark control response
 - Valve timing response
 - Manifold dynamics
 - Thermal warm-up characterization

- Vehicle-level analyses
 - Drive cycle analyses
 - Fuel economy
 - Emissions
 - Vehicle control strategy development
 - Energy management studies
 - Powertrain analyses
 - Efficiency
 - NVH/shift quality

Wide array of applications necessitates flexibility!!
Model Characteristics

- **Transient**
- **Flexible**
 - Predictive vs. fixed combustion
 - Fidelity of component models
 - Accuracy-speed tradeoff?
 - Working fluid calculations (medium models)
 - Fuel and air composition
- **Configurable**
 - Single vs. multi-cylinder
- **Reusable**
 - Same interfaces and similar basic components across different analyses
- **User-friendly**
Outline

- Introduction
- Interfaces
- Medium Model Concept
- Signal Bus Concept
- Sample Results
- Final Remarks
Interfaces

- **Key to flexibility**
 - Clearly define system interactions
 - Promote orthogonal model development
 - Provide framework for model compatibility

- **Examples**
 - Cylinder interface
 - Engine interface
 - Thermal architecture
Cylinder Interface

- Framework for all cylinder models
 - Partial model
- Defines external connections for cylinder

Induction System (Thermodynamic)
Exhaust System (Thermodynamic)

Camshaft (1D rotational flange)
Engine block (1D rotational flange)
Cylinder thermal environment (Thermal)
Crankshaft (1D rotational flange)
Engine Interface

- Framework for all engine models
 - Partial model
- Defines external connections for engine
- Extending models define plenum configuration
 - Single plenum
 - Dual plenum

Diagram:
- Engine block (1D rotational flange)
- Engine thermal environment (Thermal)
- Crankshaft (1D rotational flange)
Complete Engine

- Plug-n-Play with a variety of engine configurations
 - Replaceable cylinder model fits in all engine configurations
Thermal Architecture

- Provides framework for interaction between cycle simulation and engine temperature models
 - Cycle simulation models
 - Responsible for metal-gas interactions
 - Transient engine temperature models
 - Responsible for metal-fluid interactions

- Allows orthogonal selection of models
 - Cycle simulation
 - Engine temperature
Cylinder Thermal Environment

- “Connector of connectors”
- Thermal bus
- Comprised of connectors for standard components which interact with various models
 - Thermal connectors for various engine components (piston, block, head, etc.)
 - Thermal connectors for engine fluids (oil, coolant)
 - Friction connectors
- Used with “break-out box” in low level models
Engine Thermal Environment

- **Engine level connector**
 - Array of cylinder thermal environment connectors to allow for multiple cylinders

- **Features**
 - Parametric connector representation for engines with multiple cylinders
 - Consolidates signals to minimize connections
 - Single, engine-level connection
Using the Thermal Architecture

Single-Cylinder Analysis

Engine Temperature Model

Ford Motor Company

Engine Modeling with Modelica
November 19, 2002
Challenges

- **Difficult to connect to connectors within connectors**
 - Direct connection not possible
 - Requires termination of all flow variables before connection (terminator model)
 - Signals requiring termination grows exponentially with number of cylinders

- **Resolving varying level of details in cycle simulation and engine temp. models**

 - Requires:
 - Averaging temperature
 - Dividing heat transfer rate
Medium Models

- Define specific working fluid
- Consistent set of models, functions, constants, connectors
 - Material properties (enthalpy, energy, viscosity)
 - Equation of state
 - Chemical representation (# of species)
 - Chemical kinetics of combustion
 - Helper functions (air-fuel ratio, etc.)
- Implemented via replaceable packages

Features
- Orthogonal development of property models and the component models which use them
- Consistent framework for development of medium models with varying levels of detail
- Consistent application of changes throughout model hierarchy
- Organized
 - Information entirely contained within medium model package
- Change working fluid at “flip of switch” at highest level

```model EngineTest
    Engine engine(redeclare package MediumModel=Air)
end EngineTest;
```
Challenges

- **More fool-proof specification of working fluid**
 - Currently requires redeclaration of medium model in each component
 - Single redeclaration that automatically propagates via connections should be possible

- **Generic implementation?**
 - Applicable in all areas of modeling
 - Working fluids in hydraulics models
 - Fuel composition in wall wetting models
 - Material properties in heat transfer models
Engine Interface…Revisited

- How do we propagate control signals for modular hierarchies with replaceable components?
 - Redeclaring component model may change information required
 - Generic cylinder
 - Cylinder with variable cam timing
 - Impossible to anticipate all types of signals that might be required by a specific implementation
 - Not practical to propagate signals via connectors
Signal Bus

- **Signal bus idiom**
 - Facilitates propagation of control signals for replaceable component models
 - Uses inner/outer semantics
 - Outer required to be subtype of inner
 - Allows top-level definition for union of all control signals
 - Allows selective definition/use of signals at low level

Signal bus carries control signals
Wall Wetting Model

- Model details
 - Multiple control volumes
 - Multi-component fuel
 - Evaporation
 - Fluid flow
 - Puddle shattering (backflow)
 - Transient engine cycle simulation
 - Transient engine temperature model

- Applications
 - Throttle and speed transients
 - Fuel composition studies
 - Injector targeting studies

1. Port Film
2. Valve Film
3. Upstream Film
4. In-Cylinder Film
Wall Wetting Results
Final Remarks

- Interfaces provide framework for extensible, flexible engine models by independently choosing:
 - Combustion models
 - Transient engine temperature models
 - Medium models
 - Engine configurations

- Modelica language features highly suited to flexible modeling
 - Extends
 - Replaceable + Redeclare
 - Inner/outer semantics
 - Record semantics
 - Documentation and graphical annotations

- Looking ahead…
 - Challenges still exist
 - Zero mass with intensive properties

- Discussion and new ideas?