
Model Management
Tools and Technologies

Michael Tiller
Powertrain Research Department

Ford Motor Company

Overview

Development Tools
Version Control
Web-based Tools

Modelica – Open Standard
Representing behavior
Translation
Modelica-based applications

Tools

Choosing Tools

Tools are like houses:
They need a solid foundation to build on
You can always add a coat of paint later

Key Principles (for us)
Cheap
Tools and technologies should be

Open – Non-proprietary and well-documented
Proven – Scales for real-world applications
Mature – Relatively bug-free

Treat model development like software
development

Leverage tools/libraries as appropriate
“Redundancy is the root of all evil”

Tools – Version Control

Version Control Requirements
Archive previous versions
Archive developer comments on changes
Allow branching for parallel development
Allow merging for coherent code base
Ability to “diff” changes
Tag (or label) releases
Retrieve versions by tag, branch or date
Cross-platform
Keyword substitution
Binary file support

Version Control Tools
ClearCase – used extensively

Excellent features
Expensive
High maintenance

CVS – used extensively
Good features (missing a few nice ones)
Free
Fairly simple to install and maintain

Perforce – never used
Good compromise

CVS User Interfaces
Command line
Ancillary Tools

TkDiff, CSDiff – Diffing and merging
Several GUIs

WinCVS – primary user interface
TkCVS – Works on Windows/Unix
CVSWeb – Web based access

Good example of an open system

Typical Usage
Create a branch for
either a bug fix or
enhancement

We use eTracker
Bug fix branch names
use eTracker Ids

Work in parallel
Clearly identifies all
changes
Avoid “stepping on toes”

Merge changes

WinCVS

Create branches and tags
View local changes and/or conflicts
View “version tree” for a given file
Review check-in comments
“Sandbox” approach
http://www.wincvs.org/

Tools - Utilizing the Intranet

CVS Web
Overview of the
filesystem
Download specific
versions of files
View differences
between files

http://www.freebsd.org/projects/cvsweb.html

Wiki – Collaborative Tool
Collaborative environment

FAQs, user and developer information
Technical discussions

Web-based
Searchable
Active server-side scripting
Customizable
Free
Change tracking, version control and diff-ing
http://twiki.org/

Wiki Screen Shots

CORBA
Used to allow programs to
communicate and interact over
networks
Open standard
Cross-platform
Supports every major language
Have not needed this functionality yet
Typical example of thought out solution

Modelica

Unclear Message
Not (strictly) about
physical modeling
Interest in an open
specification
Format for model
storage and exchange
Features beyond
behavioral descriptions

Data handling
Code maintenance

Non-proprietary
Scalable

blah blah
Modelica blah
blah Simulink

Modelica blah
blah index

reduction blah

blah blah
Modelica blah
blah causality

Development Effort

It requires a considerable effort to
identify all the issues and then develop
solutions
We wanted to leverage work already
done
The diverse composition of the Modelica
Organization provided many views

Capturing Information
Encapsulation (protected, public, encapsulated)
Built-in types capture

Units, min & max values, nominal values
Annotations – Meta Data

Non-behavioral (e.g. graphical)
All tools must preserve this data
Structured/Hierarchical (conceptually like XML)
Avoids “kitchen sink” approach
Useful for other applications (e.g. FMEA)

Meta-Data
Annotations

Currently used for several things including
“Masks”
Laying out components and connections
Documentation

Completely open-ended
Can be associated with models, functions,
packages, model instances, etc

Structured comments
Possible to store arbitrary data files in the
Modelica model hierarchy

Configuration Management
Example: Level of fidelity
“Redundancy is the root of all evil”
Version control provides different dimension
sometimes misused, e.g.

Version 1.3 – Model with base halfshafts
Version 1.4 – Model with stiff halfshafts
Version 1.5 – Model with slip clutch

We build this into the model
Parametrically change whether shaft is rigid or
compliant
Swap one component for another with a
comparable interface

“Variant” Control

Using “Save As” is problematic
Variants are nice because they

Reference other classes (not copy)
Do not alter the “base” model
They explicitly list exactly what has
changed (called modifications)

Type safe

Example

model TransmissionWithFriction
extends Transmission(rigidShaft=true, damping=0.72,
redeclare Ford.Mechanical.Gears.PlanetaryWithLosses
planetary(ratio=Nr/Ns, efficiency=efficiency));

end TransmissionWithFriction;

Topological
modification

New component
type

Parametric
modification

Reuse another
model

GUI Handling
Variations are handled similarly to LSM

Annotations are used for choices

Representing Behavior
Modelica includes both declarative and
procedural semantics

Can be used for scripts and functions

Can handle both continuous and discrete
behavior

Can be used for things like Petri nets, digital circuits and
state charts

Different GUIs might be required to build
models
Different simulators may provide different
performance for different problem types

Control Logic

Discrete behavior

Control Logic (cont.)
model Tdelay "Transition with one input and one output connection"

parameter Real delay=5;
protected

Boolean activated;
Boolean delay_passed;
Boolean fire;
Real last_activation_time;

equation
//activation of transition
activated = inTransition.state;
//set activation time
when activated then

last_activation_time = time;
end when;
//activated and delay passed
delay_passed = activated and ((time - delay) > last_activation_time);
//fire command
fire = activated and delay_passed and not outTransition.state;
//propagate firing to in and output places
inTransition.fire = fire;
outTransition.set = fire;

end TDelay;

Modelica Applications

Sample Package Structure
definition

(e.g. package)

definition definition

parameter

component

definition

component

equation

annotation

annotation

modifications

definition

component

component

component

definition
(e.g. package)

definition definition

component

annotation
…

definition

component

component

annotation

constant

definition

equation

equation

equation

Libraries

Model

Modelica Tools
Simulate models
Generate documentation
Bundle models for distribution
Style guideline reporting
Other possibilities

Specialized diffing/merging
Code generator
Obfuscation/shrouding
Conversion/transformation utilities
Formal verification

Example: Dymola Layers
Dymola uses
annotations for:

Icon graphics
Diagram layout (and
drawing elements)
Documentation

Result
All captured in the model
Viewable in Dymola
Used to generate HTML
documentation

Style Guidelines
Typical requirements

Naming conventions
Documentation
requirements
Avoid confusing
constructs
Make code more
reusable/maintainable

Possible to automate
the process of checking
these guidelines

Report Generator

Translating Representations

Example: (simple) Simulink diagrams
Read “.mdl” file, generate an AST
Process AST and then generate
Modelica code
Components involved:

Continuous: Sum, Sin, Gain
Discrete: Triggered Subsystem

Toplevel System

Subsystem

Preserving Information

Block {
BlockType Sin
Name “sine"
Position [120, 70, 150, 100]
SineType “Time-based"
Amplitude "1"
Bias "0"
Frequency "10"
Phase “0“
Samples “10"
Offset "0"
SampleTime "0"
VectorParams1D on

}

Simulink.Sin sine(
Bias=0, Amplitude=1, Phase=0,
Frequency=10) annotation(

Simulink(Offset="0",
SampleTime="0",
VectorParams1D=on,
Samples="10",
SineType="Time-based"),

extent=[-82,74;-72,84]);

Conclusions

Summary – Tool Philosophy

Handle version control and
configuration management differently
Use open and mature tools and
technologies as a foundation
Be prepared to customize, this requires

Open standards
Application Programmer Interfaces (APIs)

Summary – Modelica

Captures all kinds of behavior
Fairly mature and scalable
Handles meta-data
Avoids the “Save As” syndrome
Room for more than simulation tools

Doesn’t have to be a monolithic system

