

The Modelica Association Modelica 2006, September 4th – 5th

Parallel Simulation with Transmission Lines in Modelica

Kaj Nyström Peter Fritzson

Dept. of Computer and Information Science, Linköping University

SE-581 83 Linköping, Sweden

kajny@ida.liu.se petfr@ida.liu.se

Abstract

Parallelization of simulations has traditionally
been an important way of improving the perfor-
mance of complex simulations. However, this of-
ten requires knowledge in parallel programming,
something few modellers have. In this paper we
present a way of parallelizing Modelica simulations
at the component level requiring no prior knowl-
edge in parallel programming. Our method of par-
allelizing simulations uses the equation based and
unconditionally stable Transmission Line Model-
ing technique which uses simple time delays to
decouple a model into submodels. The method
is independent of compiler implementation and
thus supports all of the Modelica language sup-
ported by a given Modelica compiler. An evalua-
tion of our implementation of this method shows
speedups of up to 2.3 times with a variation in
speedup that is highly dependent on the model
structure and how successful the users paralleliza-
tion is.

Keywords: TLM; parallel; simulation; transmis-

sion line; modeling;

1 Introduction

As knowledge in modeling and simulation be-
comes more common throughout both industry
and academia, the need to simulate systems with
higher complexity grows stronger. However, com-
putational power effectively sets the upper limit
for how complex our models can be before simpli-
fications have to be made in order for the simula-
tion to finish in reasonable time.

Traditionally one of the most common ways of
achieving better performance from a simulation
has been to parallelize it. While this is usually
difficult for a simulation in a low level language,
for example Fortran or C, it is even harder in the

Modelica language [4, 5, 6] since the Modelica user
has little control over the inner workings of a sim-
ulation, something that is often necessary in order
to parallelize it. In addition, parallelization of a
simulation almost always requires expert knowl-
edge in the area of parallel programming, some-
thing that few Modelica users have.

One possibility to simulate in parallel would
be to use parallel solvers. These parallel solvers
are however not suitable for all problems and can
sometimes suffer from numerical instability. An-
other solution is to automatically parallelize the
simulation, either at the Modelica level or at the
generated code level. This typically gives better
performance for some tightly coupled simulations.
However, available tools can not handle for exam-
ple hybrid models and performance increase could
possibly be better if the user can help the model-
ing environment with the parallelization in some
way.

The problem with user interaction when paral-
lelizing a model in Modelica is that user interac-
tion has to be done on a level that the user can
access and understand. The typical Modelica user
works on the component level. Thus, this is where
the parallelization should be specified. It should
also be in an application domain neutral fashion,
since that is how the Modelica core language is
intended to be used. Parallelizing a mechanical
application should ideally be no different from par-
allelizing an electrical application.

2 Contributions

In this paper, we present a domain neutral and nu-
merically stable method of parallelizing Modelica
simulations at the component level requiring vir-
tually no knowledge in parallel programming from
the user. We base our method on the Transmis-
sion Line Modeling theory.

325

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

3 Transmission Line Modeling

Central to the task of parallelizing a model is
the task of partitioning the model into submod-
els which can then be simulated on separate com-
puters. We have chosen the Transmission Line
Modeling method for parallelizing simulations for
a number of reasons. It is a proven way of decou-
pling equation systems and is also equation based
itself which makes it fit nicely into a Modelica
component. Furthermore, the TLM method has
been proven to be unconditionally stable, an al-
most absolute requirement as an unstable simula-
tion can be close to useless. This stability holds
for as long as the TLM parameters are withing
physical boundaries.

The theory evolved from the Telegraphers Equa-
tions [18] which concerns signal propagation in ca-
bles. In the 1970’s the TLM method was first used
for computer based modeling by among others A.
Fettweiss[11] and P.B. Johns[12]. The method has
previously been used to decouple and solve previ-
ously unsolvable problems, for co-simulation and
to some extent also for distributed simulation.

3.1 TLM Theory

The idea behind the TLM technique is to use phys-
ically motivated delays in signal propagation me-
dia to decouple a simulation. This time, called
Ttlm is the time it takes for signals from system 1
to reach system 2 (see figure 1).

c2

c1

v2,i2v1,i1

Figure 1: A TLM connection and the governing
variables. Notation is from the electrical domain,
voltages v1,v2 and currents i1, i2. c1 and c2 are the
characteristics of the transmission line .

Ttlm can be computed from the signal propaga-
tion speed in the medium and the medium length.
The equations which govern the exchange of infor-

mation between the systems are

c1(t) = V2(t −Ttlm)+ZFI2(t−Ttlm) (1)

c2(t) = V1(t −Ttlm)+ZFI1(t−Ttlm) (2)

P1(t) = ZFI1(t)+ c1(t) (3)

P2(t) = ZFI2(t)+ c2(t) (4)

The parameters c1 and c2 are called the charac-
teristics of the transmission line and represents
the propagated information in every time step,
delayed as the theory prescribes. P and Q are
the variables in the TLM connection and could be
from any domain, for example current and voltage.
ZF is an implicit impedance for the connection.

The advantage with introducing TLM connec-
tion is that the previously implicit parallelization
problem now becomes explicit. Consider the equa-
tions 1 and 3. These equations state that P1 at
time t only depends on system 1 and on previ-
ous (t−Ttlm) values from system 2. Thus we have
transformed the problem of solving one implicit
equation system into two smaller implicit equation
systems. The possibility for parallel processing is
obvious.

An additional advantage is that we can use both
different solvers and different time steps in the two
subsystems, as long as we interpolate propagated
values reasonably well if needed. This means that
we can greatly reduce the stiffness for some prob-
lems.

The TLM method has been proved to be uncon-
ditionally stable [14, 16], provided that the TLM
parameters are computed correctly. The method
does not introduce any additional numerical error
into the model. Instead, it actually transforms a
numerical error to a modeling error[13]. This often
makes it easier for a user to identify and compen-
sate for the error rather than if the error would
be purely numerical due to the fact that the nor-
mal Modelica user is probably a modeling expert
rather than a numerical expert.

3.2 Theory Extensions

The TLM theory prescribes that we compute the
transmission line delay time Ttlm from the propa-
gation speed and the length of the line. However,
in order to maximize the degree of decoupling and
achieve maximum speedup, we can allow for non-
physical Ttlm. This is useful since we do not want
any stalling in the simulation of the subsystems
due to lack of data. This stalling can happen if

326

K. Nyström, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

it takes too long for the data to be transmitted
through the computer network from the computer
which simulates system 1 to the computer sim-
ulating system 2. If we increase Ttlm to a value
greater than its corresponding computed value, we
allow for higher latency which will avoid stalling
computations. Such an increase in Ttlm is how-
ever not without problems. If we increase Ttlm too
much, the system might become unstable and/or
produce wrong results. It is not easy to give an
answer on what a good value for Ttlm is when you
move beyond the strictly physical value as choos-
ing a good Ttlm is a trade off between performance
and robustness and depends on system dynamics.

The TLM theory was originally developed for
electromagnetical signals. Over the years it has
been used for a wide variety of domains (hy-
draulics, mechanics etc). However, we see no rea-
son to limit ourselves to any specific domains since
the Modelica language gives us such exceptional
possibilities for building generic components.

This method of parallelization should work for
most domains in one dimension which propagate
one flow and one non-flow variable. Extending
the TLM theory to use vectors has been investi-
gated previously[16, 13] in a somewhat different
context and we foresee no problem with extending
our method to handle different sets of propagated
variables.

Since the transmission line has an undamped
resonance, it is sometimes beneficial [15] to low
pass filter ci in a transmission line as

ci(t) = αci(t−δ)

where α is the filter parameter (0.2 is usually a
good value) and δ is the time step. Without this
filtering, the resulting signals might contain un-
wanted high frequency components, resulting in a
slightly staircase shaped signal as can be seen in
figure 6

4 Implementation

We have implemented and tested our way of par-
allelization of Modelica simulations with the TLM
method as outlined in section 2. The framework
consists of 3 parts which we shall now describe in
detail.

4.1 A Generic Modelica TLM package

The TLM package (depicted in figure 2) contains
the TLM components which the user inserts into
his model when he wants to partition it. More on
how this is done in section 5.1. The package also
contains external functions which take care of the
message passing in the simulation. However, the
user never needs to see or use these functions.

Figure 2: Structure of the TLM package

4.2 The Model Partitioner

This small program transforms the original model
into a new Modelica package which in turn consists
of the separate submodels derived from the orig-
inal model. The program also divides and prop-
agates the TLM components so that the correct
parts of it are present in all submodels. This par-
titioning is depicted in figure 3.

TLM

Component1 Component2

Component1 Component2

TLMComponent1

TLMRuntime1_1 TLMRuntime1_2

TLM_p TLM_p

Figure 3: Splitting one model into two models on
TLM boundaries

The arrows between TLM1 1 and TLM1 2 sym-
bolize the communication of TLM variables be-
tween the two submodels, which takes place over
a local network using a simple sockets-based pro-
tocol.

327

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

Algorithm 1: Partition a model into submod-
els
Input: An arbitrary component based model
Output: A mapping component-submodel

number for all components
subModelNr ← 01

foreach component ∈ components do2

if notvisited(component) then3

visited(component) ← true4

component(component) ← subModelNr5

push(componentStack,6

allNeighbours(component))
while not empty(componentStack) do7

component ← pop(componentStack)8

visited(component) ← true9

component(component) ←10

subModelNr
push(componentStack,11

allNeighbours(component))
end12

end13

subModelNr ← subModelNr+114

end15

The partitioning is done using a repeated
breadth-first search with visitor recognition as de-
scribed in algorithm 1. TLM-components and
associated connect equations are filtered out be-
fore the algorithm is applied to the model as they
should be considered as separators (interfaces) be-
tween submodels.

After applying this algorithm, all components
have an association to a submodel number. We
can now insert all components present in the orig-
inal model in their respective submodels. Next,
we check into which submodel the first compo-
nent in each connect equation belongs and use
this information to add the connect equation in
the components. For example, if component
R1 belongs in submodel 2, the connect equa-
tion connect(R1.p,C1.n) should be entered in
submodel 2.

The previously filtered out TLM components
are now substituted for runtime TLM components
as in figure 3. These runtime TLM components
contain all necessary functionality for requesting
and reporting information necessary for the simu-
lation to their counterpart TLM runtime compo-
nent.

4.3 A Simulation Dispatcher and Man-

ager

When the partitioning is done, the simulation
is built using any Modelica compiler. We
have successfully used OpenModelica[1, 2, 3] and
Dymola[17]. As far as the compiler is concerned,
it is now compiling two or more completely differ-
ent models with no association between them, so
the compiler itself needs no modification.

This gives us some additional advantages. Dur-
ing compilation of our submodels we can cus-
tomize the simulation of our different submodels,
for example choosing different solvers for different
submodels if desired. We can also specify different
time steps or fault tolerance levels which if done
right can significantly reduce the stiffness in the
original model.

Finally, the dispatcher takes care of distributing
the jobs on separate machines, such as on a com-
putational grid or a PC cluster, and to manage
reports and request for data from the simulations.

5 Discussion and Results

In this section we will present and discuss our re-
sults with respect to user interaction, performance
and fault tolerance.

5.1 User Interaction

One of our primary goals with the work presented
in this paper is to provide a way of parallelizing
simulation that the average Modelica user can ac-
tually use without too much effort. This means
that it should require little change in the way the
user builds his model. At the time of writing,
no scientific study has been done on the usabil-
ity of this framework so we will settle for briefly
describing what has to be done by the user in order
to parallelize his model and let the reader decide
whether this is usable or not.

The only additional task the user has to under-
take in order to use our framework is to partition
his model by inserting TLM elements where he
wants to partition his model. This can be done
either graphically or textually and works exactly
like inserting any normal Modelica component in
a model. The hardest part for the user is to de-
termine where to insert these TLM elements.

The best and most general advice we can give at
a model level is to decouple the model at domain

328

K. Nyström, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

boundaries since these are usually the boundaries
between fast and slow subsystems. Decoupling
such subsystems combined with using different
solver settings can significantly increase perfor-
mance. Another advice is to partition the model
in equally complex parts. This is quite difficult to
do at a component level since it may be hard to
see at a component diagram level what the com-
plexity is of a certain part of a model.

5.2 Performance

Evaluation of a parallel programming framework
is difficult at best. Many factors are involved and
the framework designer tends to choose the prob-
lems and environments that favour his framework
the most. When evaluating our framework for
Modelica models, we have found that out largest
problem by far is to choose our models. Few suf-
ficiently large models are available to the general
public, especially models which can be understood
and parallelized by a non-expert in the modeling
domain.

The best thing would obviously be to have a
set of more or less standardized and independent
benchmarking models. Lacking this, we have cho-
sen to build our own models for benchmarking us-
ing only Modelica Standard Library components
and examples. Given this bias problem bias, it is
uncertain if we should really present any figures
of speedup at all before our framework has been
tested with independently built models. Even so,
we choose to present our preliminary findings re-
garding performance here for what they are.

The framework can handle Modelica models or
arbitrary size but as usually is the case with par-
allelization, little or no speedup or even a perfor-
mance decrease can be expected when parallelizing
small models as the communication overhead then
becomes a significant factor in simulation time.
Then again, there is probably no need to paral-
lelize small models as these will most likely run
just fine on a singe CPU.

Using these models we have registered speedups
ranging from 0.5 (negative speedup) to 2.3 de-
pending on the structure of the problem and how
we parallelize it. Stiff problems which we can eas-
ily decouple will give us the greatest speedup while
some homogeneous problems might not be suitable
for parallelization at all.

All tests were done on a standard PC-cluster
with the following nodes

• OS: Rocks Linux [19]

• CPU: PIII-800Mhz

• Memory: 512MB

• Network: 100Mbit Ethernet

The cluster is quite old fashioned but still demon-
strates the general effectiveness of our framework.
Is is likely that a more modern cluster with faster
nodes and faster network will increase perfor-
mance as we can then decrease the granularity of
our model partitioning.

Our figures have been derived by comparing to-
tal simulation time on one node to total simula-
tion time using two to six nodes, depending on
the model structure. We wish to stress that we
do not rule out the possibility that a modeling ex-
pert could achieve better performance as he or she
might be better suited to parallelize the models.

5.3 Fault Tolerance

Just as the theory predicts, the error in the mod-
els we have tested is well within normal values
for numerical simulations as long as the TLM pa-
rameters are within physical limits. When we go
outside physical values however, we will inevitably
introduce an error. How large or significant the
error is depends on the model. The modeler is
obviously best suited to be the judge of if this is
within his fault tolerance limits or not. As we
are just working with a simple delay in the time
domain it is generally easy for a domain expert
to see beforehand what effect an extra time delay
will have on his model and if this is acceptable or
not.

For comparison on what a way too large Ttlm,
we present two simulation runs of a standard DC-
Motor example with a ramp as a voltage source as
depicted in figure 4.

R=10

Resistor1

Ground1

L=0.5

Inductor1

EMF1

k=1 Inertia1

J=1

Ground2

tlmElec...

R
am

pV
oltage...

Figure 4: TLM partitioned DC-motor model

329

Parallel Simulation with Transmission Lines in Modelica

The Modelica Association Modelica 2006, September 4th – 5th

� ��� � ��� ��

��

�

�

�

�

�

�

	

�

�
�
��������� �
���������

Figure 5: Plot of voltage over the resistor compo-
nent, Ttlm=0.01, interval length=0.01s

� ��� � ��� ��

��

�

�

�

�

�

�

�

�

�

�
 !"#"$%&��' !"#"$%&��'

Figure 6: Plot of voltage over the resistor compo-
nent, Ttlm=0.1, interval length=0.01s

From figures 5 and 6, we can clearly see that
Ttlm = 0.1 was probably a to high value for most
applications, although it still does show the gen-
eral shape of the result. Still, since it is a delay
in the electrical application domain in a circuit
where the propagation speed is usually very large
and in a model with no capacitor elements, de-
laying the signal by one tenth of a second seams
rather a lot to any electrical engineer. As always,
the modeler must use his judgement when setting
the parameter values, in this case Ttlm.

6 Conclusions

We have been able to parallelize Modelica simula-
tions and to abstract user interaction at a compo-
nent level which we believe will be a usability im-
provement compared to other parallelization tech-
niques. Communication and scheduling are com-
pletely hidden from the user. However, no scien-
tific evaluation has yet been done on the usability
aspects of our work.

Speedup is up to 2.3 times so far but varies

greatly and depends on model structure and if
the model is partitioned successfully. Performance
also depends on accuracy requirements on the
model and is easily configurable by the user. Ad-
ditional advantages with the method are that it
reduces model stiffness if properly used and that
it is also possible to use different solvers for differ-
ent submodels if desired.

7 Future work

Obviously, a usability study is one of the most
important items for future work as that has been
one of the major goals of our work. We would at
the same time like to continue to develop heuristics
for better partitioning of models. This process
might even be automated using such heuristics.
There is also plenty of more work on automatic
estimation of non-physical delays that do not lead
to errors beyond a given tolerance level, perhaps
using static analysis on the model.

A better performance evaluation is also priori-
tized but largely dependent on the availability of
large models. Such models have proven to be dif-
ficult to find.

On the implementation side, a better communi-
cation implementation pattern (e.g. peer to peer)
should be established in order to reduce communi-
cation cost. Also, adaptable value reuse depending
on model dynamics should not be hard to imple-
ment and should lead to a significant decrease in
communication overhead.

More static and dynamic analysis of the perfor-
mance bottlenecks for individual simulations could
be a way of aiding the user in both model parti-
tioning and choosing TLM parameters.

8 Acknowledgments

This work was supported by MathCore
Engineering[9] and Vinnova[8] in the GRID-
Modelica project[10].

References

[1] Peter Fritzson, et al. The Open Source
Modelica Project. In Proceedings of The
2nd International Modelica Conference, 18-
19 March, 2002. Munich, Germany See also:
http://www.ida.liu.se/ projects/OpenModel-
ica.

330

K. Nyström, P. Fritzson

The Modelica Association Modelica 2006, September 4th – 5th

 [2] Peter Fritzson, Peter Aronsson, H̊akan Lund-
vall, Kaj Nyström, Adrian Pop, Levon Sal-
damli, and David Broman. The OpenModel-
ica Modeling, Simulation, and Software De-
velopment Environment. In Simulation News
Europe, Issue 44/45, December 2005.

[3] The OpenModelica Users
Guide, version 1.3.2, Apr 2006.
http://www.ida.liu.se/projects/OpenModelica

[4] The Modelica Association. The Model-
ica Language Specification Version 2.2,
March 2005. http://www.modelica.org. ac-
cessed 2005-05-02

[5] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
940 pp., ISBN 0-471-471631, Wiley-IEEE
Press, 2004.

[6] Michael Tiller. Introduction to Physical Mod-
eling with Modelica. 366 pages. ISBN 0-7923-
7367-7, Kluwer Academic Publishers, 2001.

[7] Peter Aronsson and Peter Fritzson, Task
Merging and Replication using Graph
Rewriting, Tenth International Workshop
on Compilers for Parallel Computers,
Amsterdam Netherlands, Jan 8-10 2003

[8] Vinnova, http://www.vinnova.se, accessed
2005-05-02

[9] Mathcore Engineering,
http://www.mathcore.com, accessed 2005-
05-02

[10] The GridModelica Project, http:
//www.ida.liu.se/labs/pelab/
modelica/GridModelica.html, ac-
cessed 2005-05-02

[11] A. Fettweiss, Digital Filter Structures Re-
lated to Classical Filter Networks. Arch. Elek.
Übertragungst., 23(2):79-89, 1971

[12] P.B. Johns and M.A. Brien, Use of the Trans-
mission Line Modeling (t.l.m.) Method to
Solve Non-Linear Lumped Networks, The Ra-
dio Electron and Engineer, 50:59-70, Jan/Feb
1980

[13] Petter Krus, Modelling of Mechanical Sys-
tems Using Rigid Bodies and Transmission

Line Joints, ASME journal of Dynamic Sys-
tems, Measurements and Control, 1995

[14] S.H. Pulko, A. Mallik, R. Allen, and P.B.
Johns. Automatic Timestepping in TLM
Routines for the Modelling of Thermal Dif-
fusion Processes. Int. Journal of Numerical
Modelling: Electronic Networks, Devices and
Fields, 3:127 136, 1990.

[15] P.Krus, A. Jansson, J-O. Palmberg and K.
Weddfelt. Distributed simulation of hydrome-
chanical systems. In Third Bath International
Fluid Power Workshop, Bath, UK, 1990.

[16] Iakov Nakhimovski, Contributions to the
Modeling and Simulation of Mechanical Sys-
tems with Detailed Contact Analysis. Ph.D
Thesis, Linköping University, Dept. of Com-
puter and Information Science, April 2006.

[17] The Dymola modeling tool, http://www.
dynasim.com accessed 2005-05-02

[18] The telegraphers equations, http://en.
wikipedia.org/wiki/Transmission_
line#Telegrapher.27s_equations,
accessed 2005-05-02

[19] Rocks Linux, http://www.
rocksclusters.org, accessed 2005-
07-20

331

Parallel Simulation with Transmission Lines in Modelica

