Simulation of Electric Drives using the Machines Library and the SmartElectricDrives Library

J.V. Gragger, H. Giuliani, H. Kapeller, T. Bäuml
arsenal research, Vienna
04.09.2006

Contents

• Chapter 1: The SmartElectricDrives Library - Introduction
• Chapter 2: DC Machines
• Exercise 1: Examples with a Chopper and a DC Machine
• Chapter 3: AC Circuits
• Chapter 4: Permanent Magnet Synchronous Induction Machines (PMSM)
• Exercise 2: Example with a Permanent Magnet Synchronous Induction Machine
Chapter 1: The SmartElectricDrives Library - Introduction

Overview

- Major components of the SED library
 - Asynchronous induction machines, permanent magnet synchronous induction machines, dc machines
 - Field oriented control, brushless dc control
 - Converters (ideal, switching), sources (batteries, supercaps, fuel cells)

- Application examples
 - Hybrid electric vehicles (HEVs), electric vehicles (EVs)
 - Starter / generator, electrically operated auxiliaries
 - Machine-tools and robotics
 - Paper mills, mining
 - Construction machinery, assembly lines
 - etc.
Application Specific Drive Design I
Practical Considerations

- Various technologies (e.g. batteries, supercaps, fuel cells etc.)
- Matching the right components based on their specifications
- Maximizing the efficiency of the entire drive system
- Comprehensive analysis of dynamic effects
- Component security (currents, voltages, etc.)
- Controller calibration (dynamic characteristics and static characteristics)

Chapter 1: The SmartElectricDrives library - Introduction

Application Specific Drive Design II
Software Requirements

- Hybrid systems
 - Simulation of mechanical and electrical components at the same time
 - User friendliness
- High processing effort
 - Definition of different layers of abstraction
- Short development cycles
 - Automation of development procedures with 'Ready to use' - models
Components of Electric Drives

- Sources
- Converters
- Electric machines
- Measurement devices
- Control units
- Mechanical loads

‘Ready to use’ Models
Chapter 1: The SmartElectricDrives library - Introduction

‘Ready to use’ Models

- Models of controlled machines
- Models of drive controllers
- Models of elementary controllers

Torque Controlled Induction Machine with Integrated Converter
Connectors of the Controlled Machine Models

Different Levels of Abstraction

<table>
<thead>
<tr>
<th>Models of controlled machines</th>
<th>Electrical transients and mechanical transients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quasi stationary models (only mechanical transients)</td>
<td></td>
</tr>
<tr>
<td>Converters</td>
<td>Power balance</td>
</tr>
<tr>
<td>Ideal switches</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1: The SmartElectricDrives library - Introduction

Bus Concept

Key Advantages of the SED library

- Comprehensive library for electric drive simulation in automotive applications
- Applicable for hardware in the loop (HIL) and real time simulations
- ‘Ready to use’ models
- Controller parameter estimation functions for easy controller handling
- Models at different layers of abstraction
- SED bus concept for easy coupling with other Dymola libraries
- Many examples, extensive documentation and intelligible SED library structure
Chapter 2: DC Machines

Principle

- The stator magnet creates a homogeneous magnetic field
- Opposite current direction in the proximity of the poles
- Same torque at all wires in the armature
- Commutator works as a mechanical rectifier
Torque and Power

- Armature current I_a
- Main flux Φ
- Induced voltage $V_i = k \cdot \Phi \cdot \Omega_m$
- Torque $T = k \cdot \Phi \cdot I_a$
- Mechanical power $P_m = V_i \cdot I_a = T \cdot \Omega_m$

DC Drive Turn-on

- Excitation winding (switch on separate excitation first)
- Maximum turn-on current
 - $I_a \leq \frac{V_a}{R_a}$
- Turn-on current limitation
 - Starter resistors
 - Variable armature voltage
Parameter List of the DCPM – Machine Model

Parameter List of the DCEE – Machine Model
Chopper

- DC supply
- Step down converter
 - $V_o = D \cdot V_s$
 - $D = \frac{t_{on}}{T_s}$
- Electric switches
- Free wheeling diode

T_s: switching period

Chopper Models in the SED Library

- Power balance model
 - Low computing effort

- Ideal switching model
 - Events
 - Iteration
 - Computing effort dependent on switching frequency
Examples with a Chopper and a DC Machine

Exercise 1

SED Example – Chopper01

• Given:
 – Battery voltage = 100V
 – Reference speed:
 \[\frac{d\alpha}{dt} = \frac{1425 \text{ rpm}}{10 \text{s}} \]
 \[n_{\text{Max}} = n_{\text{Nominal}} \]
 – Chopper frequency = 1000Hz
• Display: \(i_a(t) \), \(v_a(t) \), \(\overline{I}_a \), \(\overline{V}_a \), \(\omega_m \)
 – Change the integrator gain
Chopper01: Component Paths

- SmartElectricDrives.Sources.Batteries.BatteryIdeal
- SmartElectricDrives.Converters.IdealSwitching.DCDC.Chopper
- Modelica.Blocks.Sources.Ramp
- Modelica.Electrical.Machines.BasicMachines.DCMachines.DC_PermanentMagnet
- SmartElectricDrives.Sensors.Mean

Exercise 1: Examples with a Chopper and a DC Machine

Chopper01: Parameter Settings

- BatteryIdeal
 - VCellNominal = 100V
 - ICellMax = 150A
 - RsCell = 0Ω
 - ns = 1
 - np = 1
- Chopper
 - f = 1000Hz
 - IConverterMax = 150A
 - VDC = 100V
- Integrator
 - k = 5
- Ramp
 - height = 149
 - duration = 10s
- DCPM
 - Nominal values
- Inertia
 - J = 0.15kgm²
Chopper01: Parameter Settings

- QuadraticSpeedDependentTorque
 - \(\tau_{\text{Nominal}} = -63.66 \text{Nm} \)
 - \(w_{\text{Nominal}} = 149 \text{ rad}^{-1} \)
- Mean
 - \(f = 1000 \text{Hz} \)
 - \(y_{\text{Start}} = 0 \)
- Simulation time
 - \(t = 15 \text{s} \)

Chopper01: System Analyses

- Integrator gain changed; \(k = 1 \),
 - \textbf{Compare}: DCPM.w_{\text{mechanical}}, DCPM.ia, dcdc.vRef
 - The armature current decreases
 - The shaft acceleration is delayed
 - The reference voltage raise is delayed
- Ramp duration changed; \(t = 2 \text{s} \),
 - The shaft acceleration increases
 - The armature current increases
SED Example – DCPMQS01

- DCPM Water pump drive
 - Battery voltage = 120V
 - Speed controlled
- Display: $i_a(t)$, $v_a(t)$, ω_m, ω_{ref}
 - Check current limits
 - Check voltage limits
 - Check Torque limit

DCPMQS01: Component Paths

- SmartElectricDrives.Sources.Batteries.BatteryIdeal
- Modelica.Blocks.Sources.Ramp
- Modelica.Blocks.Sources.TimeTable
- SmartElectricDrives.Interfaces.BusAdaptors.WRefIn
- SmartElectricDrives.QuasiStationaryDrives.DCPMSupplyDC
- SmartElectricDrives.ProcessControllers.SpeedController
- SmartElectricDrives.AuxiliaryComponents.Functions.parameterEstimationDCPMControllers
Exercise 1: Examples with a Chopper and a DC Machine

DCPMQS01: Parameter Settings

BatteryIdeal
- VCellNominal = 1.5V
- ICellMax = 400A
- RsCell = 0.004Ω
- ns = 80
- np = 2

DCPMQS
- Jr = 0.15 kgm²
- VaNominal = 100V
- IaNominal = 100A
- rpmNominal = 1425rpm
- (wNominal = 149s⁻¹)
- (TauNominal = 63.66Nm)
- Ra = 0.05Ω
- La = 0.0015Ω
- TiConverter = 0.001s
- vMachineMax = 1.1 VaNominal
- iMachineMax = 1.5 IaNominal
- IConverterMax = 2.5 IaNominal

Exercise 1: Examples with a Chopper and a DC Machine

DCPMQS01: Parameter Settings

TimeTable
- table=[0, 0; 0, 0; 0.2, wNominal/2; 1, wNominal/2; 1.2, wNominal; 2, wNominal]

QuadraticSpeedDependentTorque
- tau_Nominal = -63.66Nm
- w_Nominal = 149 rad⁻¹

parameterEstimationDCPMControllers
- kdynCurrent = 5
- kdynSpeed = 1

Speed Controller
- kpSpeed = 29.3
- TiSpeed = 0.024s
- TauMax = 1.2 tau_nominal = 76Nm

Simulation time
- t = 2s

Monitoring, Energy and Drive Technologies
Exercise 1: Examples with a Chopper and a DC Machine

Using the Parameter Estimation Function

- `parameterEstimationDCPMControllers(VaNominal, IaNominal, rpmNominal, J, Ra, La, kdynaCurrent, kdynSpeed) = wNominal, tauNominal, kpaCurrent, TiaCurrent, kpSpeed, TiSpeed`

Retrieve the controller settings from the simulation tab

- `monitoringEnergyandDriveTechnologies33`
DCPMQS01: System Analyses

- The machine does not reach the desired acceleration close to \(w_{\text{Nominal}} \).
 - **Display from dcpmq.controlBus:** \(v_{\text{Machine}}, v_{\text{MachineMax}}, v_{\text{DC}}, i_{\text{Machine}}, i_{\text{MachineMax}}, w_{\text{Mechanical}}, w_{\text{Ref}}, \tau_{\text{Ref}} \)
 - **Display furthermore:** \(\text{speedController.TauMax} \)
 - The torque limit \(\tau_{\text{Max}} \) is too low.
 - Increase \(\tau_{\text{Max}} \)

Exercise 1: Examples with a Chopper and a DC Machine

AC Circuits

Chapter 3
Chapter 3: AC Circuits

AC Signal Values

- Peak value
 \[v_{\text{peak}} = V \]

- RMS value
 \[V_{\text{RMS}} = \sqrt{\frac{1}{T} \int_0^T v^2(t) \, dt} \]

- Rectified mean value
 \[|V| = \frac{1}{T} \int_0^T |v(t)| \, dt \]

- Mean value
 \[V = 0 \]

- Rectified mean value
 \[|V| = \sqrt{\frac{1}{T} \int_0^T v^2(t) \, dt} \]

- Peak value
 \[v(t)|_{t=\frac{T}{2}} = V = \hat{V} \cdot \sin(\omega t) \]

Three Phase Star Connection

- \(v_{12} \) line to line = \(v_1 \) phase - \(v_2 \) phase
- \(v_{23} \) line to line = \(v_2 \) phase - \(v_3 \) phase
- \(v_{31} \) line to line = \(v_3 \) phase - \(v_1 \) phase

RMS values - symmetrical conditions:

- \(V_{\text{line to line}} = \sqrt{3} \cdot V_{\text{phase}} \)
- \(I_{\text{lead}} = I_{\text{phase}} \)
Three Phase Delta Connection

\[V_{12} \text{ line to line} = V_1 \text{ phase} \]
\[V_{23} \text{ line to line} = V_2 \text{ phase} \]
\[V_{31} \text{ line to line} = V_3 \text{ phase} \]

\[i_1 \text{ load} = i_1 \text{ phase} - i_3 \text{ phase} \]
\[i_2 \text{ load} = i_2 \text{ phase} - i_1 \text{ phase} \]
\[i_3 \text{ load} = i_3 \text{ phase} - i_2 \text{ phase} \]

RMS values - symmetrical conditions:
\[I_{\text{lead}} = \sqrt{3} \cdot I_{\text{phase}} \]
\[V_{\text{line to line}} = V_{\text{phase}} \]

Name Plate Excerpts

Name plate design 1:
- \(p = 2 \)
- \(f_{\text{nominal}} = 130 \) Hz
- \(V_n = 9.11 \) Y
- \(I_{\text{nominal}} = 12.7 \) A

Name plate design 2:
- \(p = 2 \)
- \(f_{\text{nominal}} = 130 \) Hz
- \(V_n = 5.26 \) V
- \(I_{\text{nominal}} = 22 \) A

Name plate design 3:
- \(p = 2 \)
- \(f_{\text{nominal}} = 130 \) Hz
- \(V_n = 9.11/5.26 \) V/Y/\(\Delta \)
- \(I_{\text{nominal}} = 12.7/22 \) A/Y/\(\Delta \)
Principle Assembly

- Stator winding
 - Three phases
 - Symmetrical
- Pole wheel
 - Permanent magnets
 - Approximately sinusoidal field distribution
Chapter 4: Permanent Magnet Synchronous Induction Machines

Equivalent Circuit

- Magnetically symmetric
- Synchronous d-reactance
 \[X_d = X_{dfm} + X_d \]
- Stator stray reactance
 \[X_d \]
- Load angle
 \[\theta \]

\[V_s = R_s I_s + j X_d I_s + V_p \]
\[V_p = j \Omega \psi_{PM} \]

- Field Oriented Control (FOC)
 \[I_{s,q} \psi_{PM} \Rightarrow T_{electric} \]
 \[I_{s,d} \psi_{PM} \Rightarrow \text{Field Weakening} \]

Parameter List of the PMSM Model
Finding the nominal shaft speed

- Example 1: PMSM \(n_{\text{Nominal}} = 1500\text{rpm}, \ p = 2 \)

\[
\Omega_{m,\text{Nominal}} = \frac{2\pi}{60} n_{\text{Nominal}} = 157 \frac{\text{rad}}{s}
\]

\[
\omega_{cl,\text{Nominal}} = \Omega_{m,\text{Nominal}} \cdot p = 314 \frac{\text{rad}}{s} \Rightarrow f_{\text{Nominal}} = \frac{\omega_{cl,\text{Nominal}}}{2\pi} = 50\text{Hz}
\]

- Example 2: PMSM \(f_{\text{Nominal}} = 120\text{Hz}, \ p = 4 \)

\[
\omega_{cl,\text{Nominal}} = f_{\text{Nominal}} \cdot \frac{2\pi}{2\pi} = 754 \frac{\text{rad}}{s}
\]

\[
\Omega_{m,\text{Nominal}} = \frac{\omega_{cl,\text{Nominal}}}{p} = 188 \frac{\text{rad}}{s} \Rightarrow n_{\text{Nominal}} = 1800\text{rpm}
\]

Converter Fed Three Phase Machine

- DC-link voltage limits
 - Example:
 - 6 pulse diode bridge

![Diagram of DC-link voltage limits]
Example with a PM Synchronous Machine

Exercise 2

SED Example – SMPMQS01

- PMSM water pump drive
 - Three phase supply
 - Torque controlled

- Display:
 \(i_s(t), \ v_s(t), \ \omega_m(t) \)
 - Check current limits
 - Check voltage limits
 - Check control quality
Exercise 2: Examples with a Permanent Magnet Synchronous Machine

SMPMQS01: Component Paths

- SmartElectricDrives.Converters.IdealSwitching.ACDC.ThreePhaseDiodeBridge
- SmartElectricDrives.Converters.AuxiliaryComponents.BufferingCapacitor
- SmartElectricDrives.QuasiStationaryDrives.SMPMSupplyDC
- Modelica.Blocks.Sources.TimeTable
- SmartElectricDrives.Interfaces.BusAdaptors.TauRefIn

SMPMQS01: Parameter Settings

- **SMPMQS**
 - m = 3
 - p = 2
 - Jr = 0.29kgm^2
 - V0 = 112.3V
 - INominal = 100A
 - fNominal = 50Hz
 - (wNominal = 157s^-1)
 - (tauNominal = 214Nm)
 - (VNominal = 122V)

- **SMPMQS**
 - Rs = 0.03Ω
 - Lssigma = 3.1847e-4H
 - Lmd = 9.549e-4H
 - Lmq = 9.549e-4H
 - Lrsigma = 1.5923e-4H
 - Rr = 0.04Ω
 - TiConverter = 0.001s
 - vMachineMax = VNominal
 - IMachineMax = INominal
 - IConverterMax = 400A
SMPMQS01: Parameter Settings

- **AC supply grid**
 - \(m = 3 \)
 - \(V = 110\text{V} \)
 - \(\text{freqHz} = 50\text{Hz} \)
 - \(R = 1e-5\Omega \)
 - \(L = 1e-4\text{H} \)

- **Diode bridge**
 - \(\text{IC} = 400\text{A} \)
 - \(f = 50\text{Hz} \)

- **Buffer**
 - \(C = 0.07\text{F} \)
 - \(R = 1e5\Omega \)
 - \(V_{0} = 3\sqrt{3} 110\text{V} / \pi \)

- **TimeTable**
 - \(\text{table} = [0,0; 0.1,0; 0.3,\tau_{\text{Nominal}}/4; 0.5,\tau_{\text{Nominal}}/4; 0.6,\tau_{\text{Nominal}}; 0.8,\tau_{\text{Nominal}}] \)

- **QuadraticSpeedDependentTorque**
 - \(\tau_{\text{Nominal}} = -214\text{Nm} \)
 - \(\omega_{\text{Nominal}} = 157\text{rad}^{-1} \)

- **Inertia**
 - \(J = 0.01\text{kgm}^{2} \)
 - \(t = 2\text{s} \)

SMPMQS01: System Analyses

- The electric torque of the machine follows the desired torque with satisfactory precision.
 - **Display from smpmq.s.controlBus:** \(v_{\text{Machine}}, v_{\text{MachineMax}}, v_{\text{DC}}, i_{\text{Machine}}, i_{\text{MachineMax}}, w_{\text{Mechanical}}, \tau_{\text{Ref}} \)
 - **Display furthermore:** \(\tau_{\text{Electrical}}, \text{smpmq.isd}, \text{smpmq.isq} \)
The SmartElectricDrives library
A powerful tool for electric drive simulation

Thanks for your time

mail: sed@arsenal.ac.at
web: www.arsenal.ac.at/modelica
phone: +43-50-550 6282
fax: +43-50-550 6595