
3DSHU�SUHVHQWHG�DW�WKH�0RGHOLFD�:RUNVKRS�������2FW�����������������/XQG��6ZHGHQ�

$OO�SDSHUV�RI�WKLV�ZRUNVKRS�FDQ�EH�GRZQORDGHG�IURP
KWWS���ZZZ�0RGHOLFD�RUJ�PRGHOLFD�����SURFHHGLQJV�KWPO

:RUNVKRS�3URJUDP�&RPPLWWHH�
�� 3HWHU�)ULW]VRQ��3(/$%��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ��FKDLUPDQ�RI�WKH�SURJUDP�FRPPLWWHH��
�� 0DUWLQ�2WWHU��*HUPDQ�$HURVSDFH�&HQWHU��,QVWLWXWH�RI�5RERWLFV�DQG�0HFKDWURQLFV�

2EHUSIDIIHQKRIHQ��*HUPDQ\�
�� +LOGLQJ�(OPTYLVW��'\QDVLP�$%��/XQG��6ZHGHQ�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�

:RUNVKRS�2UJDQL]LQJ�&RPPLWWHH�
�� +XEHUWXV�7XPPHVFKHLW��'HSDUWPHQW�RI�$XWRPDWLF�&RQWURO��/XQG�8QLYHUVLW\��6ZHGHQ�
�� 9DGLP�(QJHOVRQ��'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH��/LQN|SLQJ

8QLYHUVLW\��6ZHGHQ�

6�(��0DWWVVRQ��+��2OVVRQ��+��(OPTYLVW�
'\QDPLF�6HOHFWLRQ�RI�6WDWHV�LQ�'\PROD�
0RGHOLFD�:RUNVKRS������3URFHHGLQJV��SS��������

 Dynamic Selection of States in Dymola

Sven Erik Mattsson, Hans Olsson and Hilding Elmqvist
Dynasim AB, Lund, Sweden

ABSTRACT

The object-oriented modelling language Modelica supports differential-algebraic equations (DAE) to
describe physical phenomena and behaviour. A basic idea is to support flexible and safe reuse of model
components. Model components are made general. When connecting them to form a system model
their behaviours are constrained. It typically means that there are more variables appearing
differentiated than variables needed for the continuous-time state. DAE problems of this kind are said
to have a high DAE index and the solution procedure involves differentiation. There are no reliable
general-purpose numerical DAE solvers for high-index problems. The paper illustrates how Dymola
solves them in a reliable and efficient way by combining symbolic and numerical methods.

Introduction
The object-oriented modeling language Modelica [5,
3] is designed for modeling of large and
heterogeneous physical systems. General equations
are used for modeling of the physical phenomena.
Differential-algebraic equations (DAE) support
modelling of continuous-time behaviour.

Modelica has been designed to allow tools to generate
efficient code automatically. No particular variable
needs to be solved manually. A Modelica tool will
have enough information to do that automatically. The
modelling effort is reduced considerably since model
components can be reused. Tedious and error-prone
manual manipulations are avoided.

Consider a DAE system

0),,,(=yxxtF � ,

where t is time, x and y are vectors of unknown
variables. The elements of x are called dynamic
variables since their time derivatives, x� , appear in the
equations and the elements of y are called algebraic
variables since none of its derivatives appear in the
equations.

Solving a DAE problem involves more than solving
algebraic loops for y and x� and integrating to obtain x.
The solution procedure involves also differentiation if
the Jacobian with respect to x� and y is structurally

singular. It means that there are algebraic relations
between the elements of x. In order to be able to solve
for y and x� it is then necessary to differentiate some
equations. The state to integrate is only a subset of the
elements of x and the number of initial values to set is
not always equal to the number of dynamic variables.
The first word dynamic in the title of this paper
indicates that there are problems where there is no
fixed set of state variables that works everywhere

along the solution trajectory, i.e., the set of state
variables change dynamically.

A DAE problem for which there is a need for
differentiation in the solution procedure is said to
have a high DAE index. It is well known that there
are no reliable general-purpose numerical DAE
solvers for high-index problems.

This paper illustrates how the Dynamic Modeling
Laboratory, Dymola [2] solves high-index problems
by combining symbolic and numeric methods.

Background and Motivation
Before discussing how to solve the problems some
more thorough explanations and motivations will be
given to the statements of the introduction.

High index DAE problems are natural

As a simple example consider Newton's second law

Fxm =��

It is a model for the motion, x, of a particle having
constant mass, m, being influenced by a force F.

Newton's second law can be used to solve the
dynamics problem, i.e., to calculate the motion when

0mm = is a given constant and),,(xxtFF R �= is

given as a function of time, speed and position. The
problem is solved by integrating the force, RF ,

twice. Position and velocity can be taken as states.

In, for example, robotics, it is of interest to calculate
the force needed to have the body to follow a
prescribed trajectory,)(txx R= . This problem has

different mathematical characteristics. To calculate
the force, F, the trajectory, Rx , needs to be

differentiated twice. The model contains dynamic
variables, but there are no continuous-time states

and thus no initial values to set. It is a high-index
DAE problem.

The two problems discussed above are in some sense
extremes. There are also mixed problems. To support
reuse it is natural to develop models of bodies moving
freely in 3 dimensions. When such components are
used, connections to other components constrain their
motions. A connection implies that two positions are
equal, which means that there are reaction forces. To
calculate the reaction forces, it is necessary to
differentiate the position constraint twice to get a
constraint in terms of accelerations from which the
reaction forces can be calculated. Moreover, to
support reuse, it should of course also be possible to
use the 3D components to model planar mechanics.
Then there is a constraint bx =3 or more generally

bkx = , with k being a constant vector of size three
and b a scalar constant.

Consequently, high index DAE problems are natural
in object-oriented modelling, because the idea is to
support reuse of model components.

The DAE index

Consider the DAE problem

0),,(=xxtF �

We assume that it is solvable [1], with a unique,
smooth solution when supplied with an appropriate
number of consistent initial solutions. The index [1] of
the problem equals the minimum number times that all
or part of it must be differentiated with respect to time
t in order to determine x� as a continuous function of x
and t.

For example, an ODE on explicit state space form,

),(xtfx =� ,

is index 0, and the problem

),,(0

),,(

yxtg

yxtfx

=
=�

is index 1 if the Jacobian of g with respect to y,
yg ∂∂ / , is non-singular and it is only necessary to

differentiate if calculation of y� is wanted.

By default Dymola assumes that a user is interested in
calculating all variables and appearing derivatives. It
is thus more convenient to allow high order
derivatives as well as purely algebraic variables. There
is then no need for differentiation, if it is possible to
determine the highest order derivatives as continuous
functions of time and lower derivatives. The index is
at most 1. The index is zero if there are no algebraic
variables. To avoid this technical problem, we will
just say that a problem has high index if it is necessary
to differentiate when solving for the highest-order
derivatives.

Why do numerical DAE solvers fail?

When solving an ODE the solution procedure
involves only integration, i.e., to calculate x from x� .
The solution of a DAE system may also involve
differentiation, i.e., to calculate x� from x. The error
in the differentiation will increase with decreasing
step-sizes, due to round-off errors and inaccurate
solutions of algebraic equations in previous steps.
This will introduce large unphysical transients if e.g.
some other part of the system cause a drastic
reduction in the step size. Furthermore it will
invalidate the assumptions of the error control and a
mild increase in the error might a stop the simulation
since it is not possible to reduce the step size to get
an acceptable error estimate. Given the index of
variables, as provided by the index-reduction
procedure, some solvers try to patch the error control
by ignoring errors in high variables or scaling their
errors with a suitable power of the step size. An
additional problem is that all solvers have
restrictions on how high the index of the DAE can
be without reducing the order of the method.

Dummy Derivatives

mg

L

y
x

F

Figure 1: A planar pendulum.

As an introduction to basic ideas for reducing the
DAE index and selecting state variables, consider a
model in Cartesian coordinates for a planar
pendulum of length L and mass m. Newton's second
law gives

F
L

x
xm −=�� (1a)

mgF
L

y
ym −−=�� (1b)

where F is the force in the rod and g is the
gravitational acceleration. The length constraint is

222 Lyx =+ (1c)

It is easy to see that it is not possible to use these
three equations to solve for the highest order

derivatives x�� , y�� and F , since the length constraint

does not contain any of them. But they will appear if
the length constraint is differentiated twice

0=+ yyxx �� (1c')

022 =+++ yyyxxx ������ (1c'')

Equations (1a), (1b) and (1c'') constitute an index 1
problem, since it is possible to solve for the highest
order derivatives x�� , y�� and F . Thus the original

problem (1a), (1b) and (1c) is index 3. The initial
values of x, x� , y and y� cannot be chosen

independently. They must fulfil (1c) and (1c').

A model including Equations (1a), (1b) and (1c'') and
start values, which fulfil Equations (1c) and (1c'), is
mathematically correct. However, the algebraic
relations of the original DAE problem are now only
implicit. Unless linear, these are generally not
preserved under discretization. As a result the
numerical solution drifts off the algebraic constraints.
For the pendulum, it means that its length will not be
constant.

To avoid such difficulties, one may try to obtain a
low-index formulation, with a solution set identical to
that of the original problem. Let us illustrate the idea
on the pendulum problem. For small oscillations
around the equilibrium point 0=x and Ly −= , it is

possible use to (1c'') to eliminate y�� . You can

eliminate y�� by first solving y�� from (1c'') to get an

expression, which is then used to eliminate y�� by

substitution. However, since it is not possible to solve
general non-linear equations analytically, this is not a
general method. Since Dymola anyhow must handle
and solve non-linear equations, y�� can instead be

eliminated by adding (1c'') as an implicit definition of
y�� . To avoid an overdetermined system, a new

algebraic variable, say ddy , is introduced to represent

y�� wherever it appears in Equations (1). Similarly, use

(1c') to replace y� by dy . This yields an augmented

but determined system, which is index 1. It is
mathematically equivalent to (1a), (1b) and (1c):

F
L

x
xm −=�� (2a)

mgF
L

y
mydd −−= (2b)

222 Lyx =+ (2c)

0=+ dyyxx� (2c')

022 =+++ ddd yyyxxx ��� (2c'')

Problem (2) has five equations and five unknowns: x,
y , dy , ddy and F , which all are algebraic except for

which appears differentiated twice; the problem has
a single degree of freedom.

The original problem (1) has been augmented with
(1c') and (1c''). For each differentiated equation
appended to the original problem, one ''new''
dependent variable was introduced. The introduced
variables represent derivatives and are called dummy
derivatives. Dummy derivatives are purely algebraic
variables and not subject to discretization. We know
that yydd ��≡ and yyd �≡ , but this is not explicit in

the transformed problem.

The selection of dummy derivatives was done above
for small oscillations. Consider (2c'). It is linear in

dy with the coefficient y . It means that the

problem (2) becomes singular when 0=y . There are

similar problems with (2c''). When y is small then
instead dummy derivatives have to be introduced for
x�� and x� . Thus there is a need for dynamic selection
of dummy derivatives or states.

A dynamic variable, z, is a potential candidate for
being a state. When its derivative z� is selected to be
a dummy derivative, you may also say that z is
deselected as state.

Recall Equation (1c), 222 Lyx =+ . For a given x

such that Lx ≤ , (1c) may seem to give two

solutions 22 xLy −±= . However, Equation (1b)

implicitly assumes that y is differentiable at least
twice. It means that the solution for y cannot jump
from a down position to an up position. Neither can
y� jump from ascending motion to a descending

motion. Fortunately, also numerical solvers have the
property to give a solution that is close to previous
value. However, when the solution for y crosses 0
things become complicated. The numerical solver
may step over zero and give an acceptable solution.
It may also happen that it gets stuck at zero and
signals a singular problem. The solver may be able
to produce the first period, while getting stuck in the
second period. Small changes in error tolerance
settings may give drastic changes in whether and
when the solver gets stuck. The probability of
getting stuck increases with tightened error
tolerance.

The Index Reduction Algorithm
The index reduction procedure consists of two major
steps. First, the differentiated index 1 problem is
derived and then it is used for selection of dummy
derivatives.

To find the differentiated index 1 problem, the
algorithm developed by Pantelides [7] is used. It
establishes the minimum number each equation has
to be differentiated to make the differentiated
problem structurally non-singular with respect to

highest-order derivatives. The algorithm can be
viewed as an extension of the algorithms for assigning
equations to variables in sorting procedures.

The idea when selecting dummy derivatives is to start
from the differentiated index 1 problem and work
backwards in the chain of differentiated equations and
variables and for each step find variables that can be
selected as dummy derivatives. The dummy derivative
method is formally described in [4]. It will be
illustrated in next section. An outline of the procedure
is given below. It can be skipped at a first reading.

1. Let the equations of the differentiated index 1
problem be the current equations.

2. Let the highest derivatives of the differentiated
index one problem be the current candidates.

3. Consider all of the current equations that are
differentiated versions of the original ones.
Collect their predecessors and let them be the
current equations.

4. If there is no current equation, go to Step 8.

5. Consider all current unknowns that are at least of
order one. Collect their predecessors of one order
less and let them be the current candidates for
elimination.

6. Exploit the current equations for elimination of
candidates.

7. Repeat from Step 3.

8. Collect all original and differentiated equations.
In all equation introduce a unique dummy
derivative for each derivative selected in Step 6.

Application: The pendulum
Let us discuss in more detail the application of the
index reduction method to the pendulum model.

First, the model in pure Cartesian coordinates will be
discussed and then an angular coordinate will be
introduced.

Pure Cartesian coordinates

The model (1) for the pendulum includes second order
derivatives. Modelica supports only first order
derivatives. The equations are easily rewritten by
introducing xv and yv for the velocity components to

give the equations

F
L

x
vm x −=� (3a)

mgF
L

y
vm y −−=� (3b)

222 Lyx =+ (3c)

xvx =� (3d)

yvy =� (3e)

which directly can be used in a Modelica model.

Consider state selection for model (3). Pantelides's
algorithm first differentiates (3c)

0=+ yyxx �� (3c')

Then it finds out that (3c') needs to be differentiated
as well as (3d) and (3e) to obtain the differentiated
index 1 problem as

F
L

x
vm x −=� (3a)

mgF
L

y
vm y −−=� (3b)

022 =+++ yyyxxx ������ (3c'')

xvx ��� = (3d')

yvy ��� = (3e')

The highest order derivatives are x�� , y�� , xv� , yv� and

F . To obtain the differentiated index 1 problem,
(3c) was differentiated twice giving (3c'') and
Equations (3d) and (3e) were differentiated once
giving (3d') and (3e'). A solution must fulfil (3c'),
(3d) and (3e). They can be used to eliminate
variables.

Let us apply the dummy derivative procedure
outlined in previous section to the pendulum model:

1. The first set of current equations is (3a), (3b),
(3c''), (3d') and (3e').

2. The first set of current candidates are x�� , y�� , xv� ,

yv� and F .

3. In the set of current equations the equations
(3c''), (3d') and (3e') are differentiated versions
of the original ones. Their predecessors are
(3c'), (3d) and (3e). Let them be the new current
set of equations.

4. Go on to Step 5, because there are current
equations.

5. In the set of current candidates the following are
derivatives: x�� , y�� , xv� and yv� . Collecting their

predecessors of one order less is giving: x� , y� ,

xv and yv . Let them be the new set of current

candidates for elimination.

6. When exploiting the current equations for
elimination, Dymola first tries to eliminate
derivatives. Equation (3d), xvx =� , can always

be used to calculate x� which means that x�� is
selected as a dummy derivative and thus x� is

deselected as state. Similarly (3e), yvy =� , is used

to select y�� as a dummy derivative. Equation

(3c'), 0=+ yyxx �� , has to be used dynamically to

deselect either xv or yv as a state.

7. Repeat from Step 3.

8. Step 3 gives the current equations (3c)

9. Step 4 implies continue.

10. Step 5 gives the new candidates: x and y.

11. Step 6: Equation (3c) has to be used dynamically
to deselect either x or y as a state.

12. Step 7 and Step 3-4 lead to Step 8 and collecting
the resulting index 1 problem. In the resulting
problem, x�� and y�� are selected as dummy

derivatives. Equation (3c'), 0=+ yyxx �� , is used

dynamically to deselect either xv or yv as a state

and (3c) is used dynamically to deselect either x
or y as a state.

Unfortunately, the procedure discussed above
introduces some extra derivatives, namely x�� and y�� .

Dymola avoids this by identifying simple differential
equations such as (3d) and (3e). You may view them
as introducing alias names for x� and y� . The chain of

derivatives, xxx ��� →→ , is viewed as, xx vvx �→→ .

Dymola proceeds as follows, when (3d) and (3e) have
been identified as simple differential equations they
are temporarily removed from the problem and all
appearances of x� and y� in the remaining equations are

substituted. Pantelides's algorithm is then applied on
the Equations (3a), (3b) and (3c) to find the
differentiated index 1 system for the unknowns xv ,

yv and F . When differentiating (3c'), Dymola

substitutes x� and y� by xv and yv giving

0=+ yx yvxv (3c')

In the next step Pantelides's algorithm only calls for
differentiation of (5c') giving

022 =+++ yyxx vvyvvx �� (3c'')

The highest order derivatives are xv� , yv� and F .

Going back one step in the differentiation chain gives
Equation (3c'). The candidates for elimination are xv

and yv . Going back one step further gives Equation

(3c) and the candidates for elimination are x and y.
The result is similar to Equation (1), but the variables
are named a bit differently. Finally, Equation (3d) and
(3e) are put back.

The plot below shows the result of a simulation in
Dymola. It illustrates the use of Equation (3c) to select

either x or y as state. The thick line shows the value
of the state. Initially x = 0.6 and y = 0.8. Thus y > x
and (3c) is used to eliminate y and x is then the state.
At around t=0.2, x becomes greater than y and y is
selected as state.

0 1 2 3 4 5

-1

0

1

state3[1] x y

Introducing an angular quantity

Unfortunately, the pendulum model in Cartesian
coordinates requires dynamic selection of states,
because the model has no variable that can function
as a state for all positions. It is well known that a
polar angle works fine as state at any position. Let us
introduce such an angle, ϕ , that is zero, when the

pendulum is hanging downward in its rest position;
)sin(ϕLx = and)cos(ϕLy −= . Introduce also ω

for the angular velocity and α for the acceleration.

It is convenient to write Newton's equation of
motion in Cartesian coordinates. However, it may be
clearer to use ϕ for the reaction forces from the rod

and write)sin(ϕFvm x −=� instead of F
L

x
vm x −=� .

The model can be written as

)sin(ϕFvm x −=� (4a)

mgFvm y −=)cos(ϕ� (4b)

)sin(ϕLx = (4c)

)cos(ϕLy −= (4d)

ωα �= (4e)

xvx =� (4f)

yvy =� (4g)

ωϕ =� (4h)

To make ω eligible for state selection, it must be a
dynamic variable. Equation (4e) makes ω dynamic.
Dymola exploits (4e) at an early phase of the
translation to eliminate α as an alias variable for ω� .

Equation (4f), (4g) and (4h) are identified as simple
differential equations just introducing alias names
for the derivatives x� , y� and ϕ� . Pantelides's

algorithm is applied to Equations (4a-4d) with the

unknowns xv , yv , ω and F . First, Equation (4c) and

(4d) are differentiated

)cos(ϕωLvx = (4c')

)sin(ϕωLv y = (4d')

Then they are differentiated once more

)sin()cos(ϕωϕω LLvx −= �� (4c'')

)cos()sin(ϕωϕω LLv y += �� (4d'')

Equation (4c') and (4d') are used to eliminate xv and

yv , and (4c) and (4d) are used to eliminate x and y.

Thus Dymola makes a fixed state selection with ϕ
and ω as states.

Application: Quarternions
Consider modelling of the motion of a free, rigid body
in a 3D space. It is a major issue to describe
orientation in a 3D space. Unfortunately, there is no
set of three variables to describe orientation that works
for all positions.

Historically, the most popular approach to describing
orientation has been in terms of Euler angles, where a
general rotation is described as a sequence of rotations
about three mutually orthogonal coordinate axes fixed
in space. However, for a given set of Euler angles
there are rotations that cannot be described by [8]. The
quaternion, which was invented by the great
mathematician Sir William Hamilton in 1843, is a
solution to the problem.

A quaternion, q , is a vector of four elements. A 3-

dimensional rotation can be described as








 ⋅
=

)2/cos(

)2/sin(

ϕ
ϕn

q

where n is the unique axis of rotation to transform a
coordinate system 1 into a coordinate system 2 by a
planar rotation via a rotation angle ϕ . The four

elements are not independent from each other, but
have to fulfil the normalization equation

12
4

2
3

2
2

2
1 =+++ qqqq (5)

In coordinate system 2, the angular velocity, ω is

qL �2=ω

with

















−−
−−
−−

=

3412

2143

1234

qqqq

qqqq

qqqq

L

The complete model of a body includes also the usual
force and torque balances. For more information of

use of quaternions in mechanics, see any good
textbook in mechanics, e.g., [6].

When simulating a free body, one of the four
components of q has to be deselected as state.

Dymola finds that Equation (5) have to be
differentiated and that it is necessary to have a
dynamic selection of states where three of the four
elements of q are selected as state and the

remaining element is calculated from (5).

The structure of Equation (5) is similar to the length
constraint of the pendulum. Dymola treats it in a
similar way as when the Cartesian coordinates x and
y were used. However, for the free body there is no
need for dynamic selection of states at velocity level.
The variable ω can be used as a state all the time. It
was possible to eliminate the need of dynamic
selection of states for the pendulum by introducing
an angular coordinate. Unfortunately, this is not
possible when modelling motion of bodies in a 3D
space. There is no set of three variables to describe
orientation that works for all positions. This is one
reason why multbody mechanics in 3D is much
more difficult than planar 2D mechanics.

Application: Kinematic Loops
The Dymola distribution includes a demonstration
example "Two coupled kinematic loops". It is a
mechanical mechanism with one degree of freedom.
Consider the model diagram in Figure 2 and a 3D-
view of it in Figure 3.

The component b5 models the longest rod and to
that is b4 welded orthogonally. The prismatic joint
j3 allows the body b3 to slide along b5. Body b1 is
mounted via a joint j1 to the back end of b5. There is
also a "motor" to drive j1. The other end of b1 is
mounted to j2, which is a rod with spherical joints at
each end. The mass of j2 is given by b2. The
element j2 is also connected to b3. The components
j1, b1, j2, b3, j3 and b5 form a kinematic loop.

There is another kinematic loop j3, j4, b6, j5, b7, j6,
j7 and b4, which are in the front part of the 3D view.
The joint j3 makes the two loops coupled.

When the joint j1 has turned half a revolution, then
b3 will be back in the same position. It means that
the position of b3 cannot be used as a state, because
there is two possible configurations for the same
position. The positions of the components in the
second kinematic loop j3, j4, b6, j5, b7, j6, j7 and b4
are completely determined by the position of b3.
Thus their positional variables cannot be used as
states. Also the angle relative angle between b1 and
b2 is determined by the position of j3. It is possible
to use the angle and angular velocity of j1 as the
states all the time. If this had not been the case, it
had not been possible to run the mechanism by
driving j1.

inertial

x
y

j1={0,0,1}

b1

j2=1.1

b2

b3={-0.2,0,0}j3={1,0,0}

b5={1.8,0,0}

b6

j5={0,0,1}

b7={0,0,-0.3}

C

j4

j6={-1,0,0}j7={0,1,0}

b4={0,0,0.5}

shape

torque

tau gear=10

shaf t

J=0.5

r={-0.8,0,0}

b8

Figure 2: A Modelica model of the two coupled
kinematics loops.

Figure 3: Initial configuration of mechanism.

When Dymola translates the model, it identifies two
sets for dynamic selection of states. One is on position
level where the relative angle of the joints j1, j5, j6,
and j7 and the relative distances of j3 and j5 are
potential candidates to be the positional state for this
one degree-of-freedom system. The other set contains
the corresponding velocities. Dymola is not able to
deduce that the angle of j1 can be used as the state all
the time because the Jacobian for the system to
eliminate states is complex including sine and cosine
functions of the joint angles.

At the start of a simulation run, Dymola selects the
angle and angular velocity of j1 as states and keeps
them for the complete simulation run. The overhead to
check the selection of states increases the simulation
time by 10%, which is a marginal increase compared
to manual static selection of the angle and angular
velocity of j1 as state variables.

Conclusions
This paper has illustrated how Dymola solves the
important problem of handling high-index DAE
problems and selection of states in an efficient and
reliable way.

Acknowledgements

This work was in parts supported by the European
Commission under contract IST-199-11979 with
Dynasim AB under the Information Societies
Technology as the project entitled "Real-time
simulation for design of multi-physics systems".

References
[1] K. Brenan, S Campbell and L. Petzold,

Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations, North-
Holland, Amsterdam, 1989

[2] Dymola  Dynamic Modeling Laboratory,
Dynasim AB, Lund, Sweden. Homepage:
http://www.Dynasim.se

[3] H. Elmqvist, S. E. Mattsson, and M. Otter,
Modelica  A Language for Physical System
Modeling, Visualization and Interaction,
Proceedings of the 1999 IEEE Symposium on
Computer-Aided Control System Design,
CACSD'99, Hawaii, USA, 1999

[4] S. E. Mattsson and G. Söderlind, Index
Reduction in Differential Algebraic Equations
Using Dummy Derivatives, SIAM Journal on
Scientific Computing, Vol. 14, No. 3, pp. 677-
692, 1993

[5] Modelica, Modelica Association, Homepage:
http://www.Modelica.org/.

[6] P. E. Nikravesh, Computer-Aided Analysis of
Mechanical Systems, Prentice Hall, 1988

[7] C. C. Pantelides, The consistent initialization of
differential-algebraic systems, SIAM Journal on
Scientific and Statistical Computing, Vol. 9, pp.
213-231, 1988

[8] A. Watt and M. Watt, Advanced Animation and
Rendering Techniques: Theory and Practice,
Addison-Wesley, 1992

