MODELICA

B. Johansson, P. Krus:
Modelica in a Distributed Environment Using

Transmission Line Modelling.
Modelica Workshop 2000 Proceedings, pp. 193-198.

Paper presented at the Modelica Workshop 2000, Oct. 23.-24., 2000, Lund, Sweden.

All papers of this workshop can be downloaded from
http://’www. Modelica.org/modelica2000/proceedings. html

Workshop Program Committee:

e Peter Fritzson, PELAB, Department of Computer and Information Science, Linkdping
University, Sweden (chairman of the program committee).

e Martin Otter, German Aerospace Center, Institute of Robotics and Mechatronics,
Oberpfaffenhofen, Germany.

e Hilding Elmqvist, Dynasim AB, Lund, Sweden.

e Hubertus Tummescheit, Department of Automatic Control, Lund University, Sweden.

Workshop Organizing Committee:

e Hubertus Tummescheit, Department of Automatic Control, Lund University, Sweden.

e Vadim Engelson, Department of Computer and Information Science, Linkoping
University, Sweden.

Modelica in a Distributed Environment Using
Transmission Line Modelling

Bjorn Johansson and Petter Krus
Department of Mechanical Engineering
Linkoping University, SE-581 83 Linkoping, Sweden
{bjojo, petkr} @ikp.liu.se

Abstract

Products are becoming increasingly complex with
functionality and components from different engi-
neering domains. The object-oriented modelling
language Modelica facilitates the modelling of such
systems. However, by making it possible to create
complex models, there will be an increased focus on
the actual simulation.

The distributed modelling concept is a way to
deal with system complexity also during the simula-
tion. The concept implies that the system can be
partitioned into sub-systems and executed in paral-
lel. Each component is equipped with a solver for
the component specific equations. To achieve the
full system behaviour, the components exchange
data at specific time instants. To increase the model
robustness, the components can be numerically iso-
lated from each other using the transmission line
modelling technique. The delay when signals are
propagating through a system is then used to nu-
merically separate the components.

In this paper, the feasibility of combining Mode-
lica with transmission lines for distributed simula-
tion is demonstrated. Also discussed are the advan-
tages compared to the traditional techniques of
simulation.

Introduction

As simulation is used as a tool for designing and
analysing complex systems, a number of aspects
must be considered regarding model complexity. An
object-oriented and non-causal modelling language
like Modelica provides a base for designing well-
structured simulation models [2,10]. However, the
possibilities of creating large and complex models
sets the focus on other aspects that needs to be con-
sidered.

The simulation model and its executable inter-
pretation must be numerically stable, efficient and
flexible. Multi-domain models consist of sub sys-
tems with different numerical properties and time
constants. The possibility to connect sub systems

with different solvers and time steps is an advan-
tage when it comes to simulation of complex
multi-domain systems.

Distributed modelling

The distributed modelling concept can be viewed
as an opposite solution to the centralised technique
regarding the execution of the simulation model. A
brief description of the centralised approach is that
all equations describing the system are collected to
one large set of equations. An integration algo-
rithm is then applied and all state variables are
solved for in each time step during the execution.
The centralised concept is very common and used
in several simulation packages. Advanced sym-
bolic manipulation of the equations is possible to
increase the numerical efficiency. The drawback of
the centralised simulation technique is though that
the whole system must be stated in a uniform way.
Since the solver often use variable time step, fast
dynamics in one part of the system affect the step-
size and simulation time of the whole system.
Using the distributed modelling technique, the
components building the system model are consid-
ered as objects, not only in the modelling phase but
also during the execution. A local solver is at-
tached to every component. The components are
then executed in parallel exchanging the same in-
formation as the physical components. The distrib-
uted environment has a number of advantages.
Most important is that a distributed environment
can be very flexible. As the components are inde-
pendent objects, it is rather straightforward to con-
nect external components to the simulation model.
Examples of such external components can be a
piece of hardware (HardWare In the Loop [6]) or a
connection to an external simulation package.
These connections can be either locally on one
computer or over a network (LAN, Internet etc.)
[4]. Another advantage is that the distributed con-
cept offers linear scaling properties. When the size
of the systems, i.e. the number of components is
increased, the simulation time is increased with the
same magnitude. Although it is possible to use a

lot of information from the system structure to in-
crease the computation speed using a centralised
method, linear scaling is very hard to achieve. The
scaling properties for centralised solvers are very
much depending on the system properties.

In Figure 1, a possible simulation environment
using a distributed structure is shown.

External simulation
package

Component
model

Component
model

Figure 1: Distributed simulation environment

A distributed environment with or without connec-
tions to hardware and external simulation packages
requires control by a top-level process. The main
task for this process is to control the simulation
speed for the system. A global step size can be set
for the system while components with fast dynamics
can be looped faster and executed with a shorter
time step.

To achieve numerical robustness for a distributed
approach, it is possible to numerically isolate the
components from each other. This separation can be
achieved using the transmission line modelling con-
cept, TLM [7,1]. The main idea is to include the
propagation of information through the system in the
model. In most physical systems, there is a delay in
time when a signal propagates from one component
to another. For example a pressure pulse that is
caused in a hydraulic valve does not immediately
affect the whole system. The delay is normally de-
pending of the speed of sound in the transmission
media. This delay when information propagates is a

valuable piece of extra information that can be used

to separate the components numerically.

Distributed modelling using transmis-

sion lines
The core component in Transmission Line Model-

ling, is the Unit Transmission Line. This component

can be viewed as a carrier of energy with a time de-
lay. Depending of the system that is to be modelled,

the medium passing through the transmission line
is different, but the mathematical variables are
flow and effort variables, the same way as in the
Bond-graph modelling technique.

Effort e, Effort e,
_> 4—
Flow f; Flow f,

Figure 2: Unit Transmission Line

The equations describing the transmission line are

e,t+T)=c,(t)+Z f,(t+T) (L
e,(t+T)=c,()+Z f,(t+T) (2)

where Z_ is the characteristic impedance, ¢, and

¢, are the characteristics describing the wave from

the connected component. The characteristics are
of the same magnitude as effort and are defined as

c,(t)y=e,(t)+Z_ f (1) 3)
c(t)=e,()+Z, 1, (1) “4)

At each component between the lines, the equa-
tions that needs to be solved are the following set
of equations

f =f(e) 5)
e=ctZf (6)

where f is a vector containing all the flow vari-
ables, e is the corresponding effort variables, ¢ is
the characteristics and Z is a diagonal matrix with
the characteristic impedances in the diagonal.

Transmission line components in a
system

In a system, the components modelled as TLM-
components are divided into two groups of com-
ponents.
* Q-components, calculating flow
* C-components, calculating characteristic im-
pedance and the characteristic (the wave, effort
variable)
During the simulation, the different types of com-
ponents are executed alternately. First, the C-
components are called, updating the characteristics
and characteristic impedances. Then the Q-
components are called calculating the state vari-
ables as flow and effort. Examples of Q-
components are resistive components as electrical
resistors and hydraulic orifices. Examples of C-
type components are capacitive components as
volumes, springs and electrical capacitors. It is not
always possible to separate components from a

component library. On illustrative example is a recti-
fier bridge, where the transmission line technique
would require separating the diodes with transmis-
sion line elements. This separation would then affect
the behaviour of the system unless the time step is
very short, causing long simulation time. To avoid
this, the rectifier bridge can be treated as one com-
ponent and solved as an ordinary centralised model.

Using Modelica in a transmission
line environment

Modelica is a powerful language for designing
simulation models with a structure similar to the
physical structure. The TLM-concept keep the ob-
jects separated through the simulation with benefits
as numerical efficiency, linear scaling, parallel com-
putation etc. A solution where Modelica components
are implemented in a TLM-environment would have
the potential of being a powerful alternative to the
traditional implementation using the centralised
technique.

In this work, a tool for automatic translation of
single Modelica components has been created using
the Mathematica package [11]. Mathematica is a
symbolic math package, enabling high-level pro-
gramming. Besides the mathematical processing,
advanced text operations can be performed as well.
The tool translates a Modelica component to a com-
ponent written in Fortran that can be inserted in a
HOPSAN [5] simulation model.

HOPSAN is a simulation package using the
transmission line modelling technique. The models
that are simulated in HOPSAN are normally written
in the Fortran language, and components are stored
in a library. System models are created using a
graphical modelling tool [9]. The following sections
will demonstrate how a Modelica component is
adapted to fit in a TLM environment.

Translating Modelica components

Distributed modelling using the TLM-method re-
quires models described in a specific way. The com-
ponents should have extra variables for the wave
propagation and a solver for independent solving of
the equations in the component. The Modelica com-
ponent could be stated directly in that way, still fol-
lowing the Modelica syntax. It is desired however
that the model designer should not have to care
about issues that are specific to the implementation.
The main advantage with Modelica is that the model
code should be separated from the implementation.
This means that the Modelica component must be
manipulated to fit into the TLM-environment.

Extending a previously created tool in the
Mathematica package, called Compgen [8], the
component file written in Modelica can be proc-
essed according to the following sequence:

Step 1: Read the Modelica component file

Step 2: Find connectors, variables and parameters

Step 3: Find the equations describing the compo-
nent

Step 4: Transform the equations to Mathematica
notification

Step 5: Add the boundary equations according to
the type of component

Step 6: Calculate partial derivatives of the equa-
tions

Step 7: Define the Jacobian from the partial de-
rivatives

Step 8: Add a Newton-Raphson solver for the
equations and write the component as
Fortran code to a file

Through step 1-3, the text file containing the com-
ponent is scanned by the Mathematica program.
Using the Modelica syntax definition, the informa-
tion is then sorted and grouped. The mathematical
notification in Modelica and Mathematica is not
the same, which is why a translation must be per-
formed to be able to analytically manipulate the
equations in Mathematica. As several components
can be designed as either Q or C-components, it is
for the user to select accordingly. Depending on
the type, different variables are updated during the
execution.

The tool is only able to translate a subset of the
Modelica language. The effort has been focused on
creating a tool that works for single components
and the main purpose is to facilitate exchange of
components between tools and people. The major
limitation is that inheritance is not handled, which
means that a Modelica component must be fully
described with the complete set of equations.

The topology description

The topology of a system of components can in
Modelica be described using the connect state-
ment. This is not yet implemented in the tool pre-
sented here. It is though interesting to notice that
the system description for the program generator
DYNMOC, developed for the HOPSAN environ-
ment by Arne Jansson in 1997, has a very similar
syntax compared to Modelica. In Figure 3 and
Figure 4, the topology of the same system is de-
scribed using Modelica and HOPSAN syntax. The
minor syntactical differences imply that it would

be straightforward to create a translator also for the
topological description, making it possible to simu-
late complete Modelica systems in HOPSAN.

model SimpleHydraulicSystem
HydraulicPump P1l;
HydraulicMotor M1;
MechanicLoad Ll;
Tank T1,T2;

equation
connect(Tl.nl, P2.nl);
connect(Pl.n2, Ml.nl);
connect(M1.n2, T2.nl)
connect(M1.n3, Ll.nl)

end SimpleHydraulicSystem;

Figure 3: Topological description in Modelica

component HydraulicPump Pl
component HydraulicMotor M1
component MechanicLoad Ll
component Tank T1

connect Tl nl to P2 nl
connect Pl n2 to M1l nl
connect M1 n2 to T2 nl
connect M1 n3 to Ll nl

Figure 4: Topological description in HOPSAN

One problem is that in Modelica, the system de-
scription is necessarily not separated from the de-
scriptions of the components. Connections are trans-
formed to normal equations when the model is trans-
formed to low-level code. HOPSAN uses a separate
file to describe the connections on system level with
the syntax shown in Figure 4. This means that to be
able to transform a Modelica system to a distributed
environment like HOPSAN, the code must be re-
stricted. It must be stated what defines the topology
of the system, expressed in a separate file, or sepa-
rated between identifiers.

Example

Consider a simple system describing a hydraulic
transmission. The system is modelled in the
HOPSAN package using components from the com-
ponent library. Using the model translator presented
in this paper, a model of an electric motor written in
the Modelica language can be automatically trans-
lated and connected to the hydraulic transmission.
This example can also illustrate a possible indus-
trial scenario where engineers that are specialised in
one specific engineering domain would need to im-

port a model designed by engineers specialised in
another domain.

v, +

Modelica component

Figure 5: Hydraulic transmission in the
HOPSAN environment

The hydraulic system consists of a pump and a
motor with an intermediate volume. A mechanical
load is attached to the hydraulic motor. To the hy-
draulic pump, a prime mover can be connected
through a mechanical shaft, modelled as a stiff
spring. This is where the Modelica model of an
electric DC-motor is to be attached, see Figure 5.

System of equations

The simplest model of an electric DC-motor can be
viewed as an inductance, a resistance and a con-
verter describing relations between electrical and
mechanical quantities, see Figure 6. The following
equations describe the component:

%_(va _vb)_Ra Ija_wx m’m (7)
dt L,
w 8
s i bt M, ®
dt
i =-i,)
ia
v, e——Y YN
L, R,
qu MX’ (A)X
ib
V,0—<

Figure 6: DC-motor circuit

If the electric motor is viewed as one component,
there are three connections to surrounding compo-
nents: two electrical nodes and one mechanical.
For this component to fit in a TLM-environment it
is designed as a Q-component. To model the ex-
change of energy and the wave propagation, four
variables in each connector must be present. These
variables are flow, effort, the characteristic and the
characteristic impedance. In the component, this is
handled by adding one extra equation for each

node describing the boundary conditions. The three
boundary equations are:

v, =, +Z. 0, (10)
v, =c, +Z, 0, (11)
MX = Cx +ZCX mx (12)

where ¢, , ¢,, and c_ are the waves that are calcu-

lated from the connected nodes. Z, and Z_, are the

characteristic impedance also delivered from the
connected components.

Solving the system

The model must be equipped with a numerical
solver to become an independent component in the
TLM system. This can be done using any suitable
solver. In this work, the Newton-Raphson iteration
algorithm is used based on that it has shown good
robustness for stiff systems and works well in com-
bination with the TLM-method. A short description
of the steps performed inserting the solver to the
component will be given below. For a detailed de-
scription of the process, see [8].

The equations (7)-(9) describe the internal rela-
tions in the component and are those that we found
in the Modelica base component. Call this set of

equations F, and the boundary equations (10)-(12)

is called F, . The total set of equations can then be

expressed as:

2 n 13
l9d 2y7"-9d y9[)=0 ()
dt " dt dt"

F(F,,F,y) = F(y,%

a

The following steps are:
« F(F,,F,,t) is transformed into time discrete

representation using bilinear transform. The re-
sult is called G .

* The Jacobian J is evaluated from partial deriva-
tives of G .

* The equations are solved numerically using the
Newton-Raphson iteration.

yk+1(t):yk(t)_Jk(t)_lG(yk(t)) (14)

After performing these iterations, the component can
be written to a Fortran file with the correct node in-
terface and the solver. The procedure translating the
DC-motor written in the Modelica language has now
resulted in a component that can be inserted into the

HOPSAN environment and simulated. The system
inserted in the graphical modelling tool GDynmoc
[9] can be viewed in Figure 7.

lering\multidomain\hopsanfiles\hyddel\E mHydSyst mod

Fie Generation of Codes. DataFile Component Mo

=
- Modelica
component
e‘ F

=)

« | >

|Component PCSRC | Componentinstance: PCSRC_2 [10:28 2000041

Figure The simulated system

Simulation results

From the complete system model in the HOPSAN
environment, some simulation results can be ob-
tained.

150.0 150.0

Electric motor ="

100.0 t + 100.0

1 s00

/! Hydraulic motor

Rotational speed [rad/s]
o
o
o

o
o

0.0

rY

Torque on hydraulic motor axis [Nm]

Power on Torque on hydraulic motor axis

-50.0 + + + + + -50.0
0.00 0.50 1.00 1.50 2.00 2.50 3.00
Time [s]

Figure esults from the simulation

The simulation shows the speed of the hydraulic
motor and the electric motor, see Figure 8. When
the power to the electrical motor is turned on, the
speed of the electric motor increases followed by a
similar behaviour of the hydraulic motor. The de-
lay is due to the volume in the hydraulic system,
which also affect the behaviour when a step in load
is applied. The speed of the hydraulic motor de-
creases faster and more than the electric motor.

The same model executed in HOPSAN has also
been simulated in the Dymola environment [3].
The Dymola simulation package uses centralised
solving and has full implemented support for
Modelica. The results show good accordance be-
tween the different simulation packages.

Discussion

Object oriented modelling shows great advantages
in the process of modelling physical systems. With
characteristics as encapsulation, object instantia-
tion and node connections, the simulation models
show a structure that is flexible, logical and with

strong similarities to the physical system. Non-
causal modelling removes the need of state-space
models, reducing error-prone transformations. In-
stead, differential and algebraic equations from
handbooks can be used directly.

The Modelica approach is a promising effort to a

standard modelling language for dynamic systems. If
a standard becomes widely accepted, it would mean
a large step forward in simulation of multi-domain
dynamic systems. As simulation packages are be-
coming more general and capable of performing
simulation in different domains, the possibilities
with exchanging models between different partici-
pants in a design group are significant.
The approach presented in this paper is an imple-
mentation of Modelica where component models are
simulated in a distributed environment using the
transmission line modelling technique. The demon-
strated translator is capable of translating a subset of
Modelica with the major limitation that inheritance
is not implemented. The limitation is only of signifi-
cance for the import function to HOPSAN and has
been considered of secondary importance in this first
stage. The most important thing is that standard
Modelica code can be used without modifications.

The outlook using an object-oriented modelling
language in a distributed environment is to handle
large simulation models by partitioning the system
not only through the modelling process but also
through the simulation. A flexible, numerically ro-
bust and efficient environment can be achieved
suited for large and complex systems. The distrib-
uted approach also facilitates connections with
hardware and external simulation packages either
locally or over a network. Using a standardised lan-
guage as Modelica would also add advantages as
increased integration between project members and
supported exchange of knowledge between engi-
neering disciplines.

Conclusions

By using an object-oriented modelling language to-
gether with a distributed modelling technique, the
objects in a system model can be kept partitioned as
objects through both modelling and simulation. The
main advantages concern flexibility, scaling proper-
ties and possibilities to have simulation models dis-
tributed over a network. In this paper, it has been
demonstrated how to use Modelica in a distributed
environment. Components written in standard
Modelica code are automatically translated to fit in
the distributed HOPSAN environment.

The authors consider the presented approach with
Modelica in combination with transmission line

modelling to be a powerful alternative to the cen-
tralised approach. The advantages presented will
probably be important issues using simulation as a
tool in product development.

eferences

[1] Auslander D. M., Distributed System Simula-
tion with Bilateral Delay-Line Models, Jo
na of aic nginee ing T an M , pp.
195-200, June 1968.

[2] Cellier F. E., Object-Oriented Modeling:
Means for Dealing With System Complexity,
in oceeding of 't ene x Meeting on

y tem and Cont o , The Netherlands, 1996.

[3] Elmquist E., Br ck D., and Otter M., Dymo a

e Man a,Dynasim AB, 1999.

[4] Jansson A. and rus P., Real-time simulation
using parallel processing, in oceeding of
T e nd Tampe e nte nationa Confe ence on
F id o e ,Tampere, Finland, 1991.

[S] Jansson A. and rus P, HOPSAN a Simula-
tion Package Users uide ,
http: hydra.ikp.liu.se hopsan.html, 1998.

[6] Jansson A. and Palmberg J.-O., Load Simula-
tion, a flexible tool for assessing the perform-
ance of hydraulic valves., in oceeding of
FL C M T eFo t Tiennia nte na
tiona ympoi m on F id Conto F id
Mea ement and i ai ation, Toulouse,
France, 1994.

[7]1 Johns P. B. and O Brien M., Use of transmis-
sion line modelling (t.1.m) method to solve
nonlinear lumped networks, T e Radio ec
t on and nginee , vol. 50, pp. 59-70, 1980.

[8] rus P, An Automated Approach for Creating
Components and Subsystems for Simulation
of Distributed Systems, in oceeding of t

at nte nationa F id o e ok op,
Bath, U , 1996.

[9] LarssonJ., Dynmoc Users guide , I P-R-
1088, Dept. of Mech. Eng., Div. of Fluid and
Mech. Eng. Systems, Linkoping University,
Linkoping, Sweden, 1999.

[10] Modelica Design roup, Modelica - A Uni-
fied Object-Oriented Language for Physical
Systems Modeling, Language Specification ,
http: www.Modelica.org, 1999.

[11] Wolfram S., Te M T M T C ook, 4th
revised ed, Cambridge University Press, 1999.

