
MathModelica
– a new modeling and simulation environment
for Mathematica

Mats Jirstrand and Johan Gunnarsson

MathCore AB
Mjärdevi Science Park
SE-583 30 Linköping
Sweden

Peter Fritzson

PELAB – Programming Environment Lab
Department of Computer and Information Science
Linköping University
SE-581 83 Linköping
Sweden

Third International Mathematica Symposium 1999,
23-25 August, RISC, Linz, Austria

Abstract
MathModelica is a Mathematica extension, which provides a modeling, and simulation environment for
Mathematica based on the new standard of physical modeling languages called Modelica. Modelica is a new
object-oriented multi-domain modeling language based on algebraic and differential equations. In this paper we
present a language and an environment, MathModelica, that integrates different phases of the Modelica
development lifecycle. This is achieved by using the Mathematica environment and its structured documents,
“notebooks”. Simulation models are represented in the form of structured documents, which integrate source code,
documentation and code transformation specifications, as well as providing control over simulation and result
visualization.

Import and export of Modelica code between internal structured and external textual representation is supported.
Mathematica is an interpreted language, which is suitable as a scripting language for controlling simulation and
visualization. Mathematica also supports symbolic transformations on equations and algebraic expressions which
is useful in building mathematical models.

MathModelica-IMS99.nb 1

1 Introduction
Integrated simulation environments are advantageous in order to work effectively and flexibly with simulations.
Users prepare and run simulations as well as investigate simulation results. Several auxiliary activities accompany
simulation experiments: requirements are specified, models are designed, documentation is associated with
appropriate places in the models, input and output data as well as possible constraints on such data are documented
and stored together with the simulation model. The user should be able to reproduce experimental results.
Therefore input data and parts of output data as well as the experimenter’s notes should be stored for future
analysis.

Traditionally, simulation and accompanying activities have been expressed using heterogeneous media and tools:

è a simulation model is traditionally designed on paper using traditional mathematical notation;

è simulation programs are written in a low-level programming language and stored on text files;

è input and output data (if stored at all) are saved in proprietary formats needed for particular
applications and numerical libraries;

è documentation is written on paper or in separate files that are not integrated with the program files;

è the graphical results are printed on paper or saved using proprietary formats.

When the result of the research and experiments, such as a scientific paper, is written, the user normally gathers
together input data, algorithms, output data and its visualizations as well as notes and descriptions. One of the
major problem in simulation development environments is that gathering correct versions of all these components
from various files and formats is difficult and error-prone.

1.1 The Modelica Language
There is definitely an interoperability problem amongst the large variety of modeling and simulation environments
available today [3] . The main cause of this problem is the absence of a state-of-the-art, standardized external
model representation. Modeling languages often do not adequately support the structuring of large, complex
models and the process of model evolution in general.

The language called Modelica [11] for hierarchical physical modeling is developed through an international effort.
It is an object-oriented language [3] [6] for modeling of physical systems. The language unifies and generalizes
previous object-oriented modeling languages. Modelica is intended to become a de facto standard. It offers three
important features: 1) non-causal modeling based on differential and algebraic equations; 2) multidomain modeling
capability, i.e. it is possible to combine electrical, mechanical, thermodynamic, hydraulic etc. model components
within the same application model; 3) a general type system that unifies object-orientation, multiple inheritance,
and templates within a single class construct.

Modelica models are built from classes. Like in other object-oriented languages, a class contains variables, i.e.,
class attributes representing data. The main difference compared to traditional object-oriented languages is that
instead of functions (methods) the programmer uses equations to specify behavior. Equations can be written
explicitly, like a=b, or can be inherited from other classes. Equations can also be specified by the connect
statement. Equations here includes differential equations (ODE and DAE).

MathModelica-IMS99.nb 2

1.2 MathModelica - A Mathematica Extension
Our approach to the integration problem is based on the Mathematica environment and its programmable
notebooks. Every notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can
include other cells and/or arbitrary text or graphics. In particular a cell can include a code fragment or a graph with
computational results.

The contents of cells can be

è parts of models (a formal description that can be used for verification, compilation and execution of
some simulation model);

è text/documentation (used as comments to executable, formal model specifications);

è dialogue forms for specification and modification of input data;

è result tables (the results can be immediately represented in table form);

è graphical result representation (with 2D vector and raster graphics as well as 3D vector and surface
graphics);

è 2D graphs that are used for various model structure visualizations:

é class diagrams

é variable dependency diagrams

é data structure diagrams

Apart from the Mathematica notebook interface, the Mathematica system with its kernel, programming language,
and symbolic representation of code and mathematical expressions provides a powerful environment for the
modeling and simulation technology as given by the Modelica language. Having a language for differential
equations (DAEs) Mathematica ability to perform symbolic computations/transformations on expressions is very
important. The MathLink interface that lets Mathematica communicate with other processes seamlessly can be
used to, e.g., integrate external special purpose simulators, or graphical modeling editors. The functional and rule
based language is not only good for expressing mathematica operations, but also good transformations of (code)
formats to be interpreted, e.g., existing numerical data and tables that are needed to be integrated into a simulation.

MathModelica is the name of an extension of Mathematica that is an implementation of a modeling and simulation
environment based on the Modelica language. The goal has been to integrate the Modelica language into the
language of Mathematica as close as possible. This makes it possible for the user to utilize both Mathematica and
the Modelica language without severe restrictions.

MathModelica means both a language and an environment. The MathModelica language is a language close to the
Mathematica syntax with the extension of a syntax for data types, i.e., the data types of symbols and functions in
Mathematica expressions can be specified in a convenient way. Section 2 will describe the language of
MathModelica. The MathModelica environment means a collection of modeling tools (graph editors) and
simulation engines where Mathematica is the center and user frontend. Section 3 will describe this environment
briefly.

MathModelica-IMS99.nb 3

2 MathModelia – the language

2.1 Syntax
A specific feature of Mathematica is that models (or code) are normally not written as free formatted text. Instead,
Mathematica expressions (terms) are used. These can be conveniently written in a tree-like prefix form, or entered
using standard mathematical notation. Every term is a number, an identifier or a form such as:

head[term1,..., termn]

In order to satisfy this requirement, we designed the new MathModelica language. Note that MathModelica has the
same abstract syntax and the same semantics as Modelica, but different concrete syntax. This means that
essentially the same language constructs are written differently, as illustrated below.

The MathModelica language uses some Mathematica notation, such as:

term1; ...; termn,

{term1, ..., termn},

term1 term2,

term1 m term2

and arbitrary arithmetic expressions composed from terms. We will not present the complete syntax of
MathModelica and it's relation to Modelica here, but we will use some examples.

Note! The syntax and command names pruposed in this paper are preliminary and can be changed in future
versions of MathModelica.

2.1.1 Type Operator

Consider the Modelica code:

model FirstOrder

Real x(start=1);

parameter Real a=1;

equation

der(x)=-a*x;

end FirstOrder;

The above example is a class definition of the model named "FirstOrder". This model includes one dynamic
variable x of type Real with the initial value (start) set to 1. The symbol a is declared as a parameter which
means that its value must be a constant and given by the user. To simulate this model means to compute values of
the variable x starting from the value 1 such that the equations of the model are satisfied. The dynamics
(differential equations) of the model is given after the equation keyword. The operator der is derivation with
respect to time. If time is represented by the symbol t, der(x) would mean „xHtLÅÅÅÅÅÅÅÅÅÅÅÅ„t . The model definition can
contain any number of equations.

The MathModelica syntax of the Modelica example above is

Model@FirstOrder,
Real x@8Start m 1<D;
Parameter Real a m 1;

Equation@

MathModelica-IMS99.nb 4

x' m −a xDD
Note that the structure of the MathModelica code is the same as for Modelica but the syntax is a valid
Mathematica expression. A few things needs to be explained here:

è In Modelica the character '=' stand for an equation and not for assignment. Therefor '==' should be
used in MathModelica which means Equal[].

è Space in Mathematica means normally multiplication (Times). To provide a easy to write and read
syntax for data types we have introduced a operator for prefixed attributes. In this case this operator is
called TypeMark, and it applies in certain specific places in the MathModelica language where
multiplication (Times) is forbidden and therefore introduces no ambiguities.

To illustrate how TypeMark works we can take a look at the FullForm of a simple declaration statement that is
held to prevent any calculations. The constant dpi is declared and assigned the value of 2*3.14.

Declare@
Constant Real dpi = 2 3.14D êê Hold êê FullForm

Hold@Declare@Set@TypeMark@Constant, Real, dpiD, Times@2, 3.14`DDDD
We see that spaces between the type keywords are correctly interpreted to TypeMark.

To use space as the type operator simplifies the writing of code including data types, especially when there is
several hundred variables to declare in realistic modeling projects. Once the code is written we can ask
Mathematica to list the code such that the type operator and multiplication are presented differently. This is
possible by the command MathModelicaForm where the TypeMark operator is printed using 'â'. The
command GetModel[] returns the model definition.

MathModelicaForm@GetModel@FirstOrderDD
Model@FirstOrder,

Real k x@8Start == 1<D;
Parameter k Real k a == 1;

Equation@
x� == −a xDD

2.1.2 Field Selector

The second extension to the Mathematica language necessary for the MathModelica language is the field selector.
Consider the record definition below.

MathModelica-IMS99.nb 5

Record@Person,
String Name;

Integer AgeD
This type definition creates the type Person including two fields: Name and Age. Declaration and initialization
of a record variable can then be done as

Declare@
Person p1D;

p1 = Person@"John", 23D;
The record variable p1 will now contain the expression Person["John",23] where Person[] is a
constructor for the record type.

To extract fields in a record or a general class, we use the Member function

Member@p1, NameD
John

which selects the field named Name and returns it's value. The infix operator symbol for the field selector is '.' in
many common programming languages. To introduce '.' as the infix field selector in MathModelica is therefore
natural, except for the fact that Mathematica uses '.' for Dot (tensor product). Still, the importance to have a infix
operator for the field selector is extensive since the equations generated by the MathModelica environment will
contain many variables which are represented by the Member function. To keep the format easy both to read and
to write it is necessary to have a short one character long infix operator. Unfortunately there are no free one
character operators that can be easily typed on the keyboard. The '.' is therefore chosen since it is possible for the
MathModelica environment to distinguish between Member and Dot, by analyzing the type of the first argument
of Dot. If the type is a class then Dot is converted to Member.

Using '.' on a record variable returns the field

p1.Name

John

whereas '.' on vectors returns the scalar product.

MathModelica-IMS99.nb 6

81, 2<.83, 4<
11

In StandardForm the Member and Dot command are distinguished since the Member function is printed using
the '«' ([Hacek]) character.

pi.Age . 8a, b<Hp1 « AgeL.8a, b<
2.2 Circuit Example
The details of the MathModelica language will be described by an example of a circuit model that will be given in
the form of MathModelica expressions in this section. Note that we here only describe the modeling in terms of
programming MathModelica textually. The MathModelica environment also includes a graphical modeling
paradigms also that is based on MathModelica language. The graphical environment has an one-to-one
correspondence with the textual MathModelica language.

MathModelica models are built from classes. Like in other object-oriented languages, class contains variables, i.e.
class attributes representing data. The main difference compared with traditional object-oriented languages is that
instead of functions (methods) we use equations to specify behavior. Equations can be written explicitly, like a=b,
or be inherited from other classes. Equations can also be specified by the Connect statement. The statement
Connect[v1,v2] expresses coupling between variables v1 and v2. These variables are called connectors and
belong to the connected objects. This gives a flexible way of specifying topology of physical systems described in
an object-oriented way using MathModelica.

In the following sections we introduce some basic and distinctive syntactical and semantic features of
MathModelica, such as connectors, encapsulation of equations, inheritance, declaration of parameters and
constants. Powerful parametrization capabilities (which are advanced features of MathModelica) are discussed in
Section 2.4.

2.2.1 Connection Diagram

As an introduction to Modelica we will present a model of a simple electrical circuit as shown in Figure 1.

The system can be broken into a set of connected electrical standard components. We have a voltage source, two
resistors, an inductor, a capacitor and a ground point. Models of such components are available in Modelica class
libraries.

A declaration like one below specifies that R1 to be of class Resistor and sets the default value of the
resistance, R, to 10.

Resistor R1(R=10);

MathModelica-IMS99.nb 7

Figure 1

R1

u (t)

C

R2

L AC

G

N1

N2

N3N4

+
+

+
+

+

1

2

3

4

5

6
7

+

A MathModelica description of the complete circuit appears as follows:

Model@Circuit,
Resistor R1@8R == 10<D;
Capacitor C@8C == 0.01<D;
Resistor R2@8R m 100<D;
Inductor L@8L m 0.1<D;
VsourceAC AC;

Ground G;

Equation@
Connect@AC.p, R1.pD; "Capacitor circuit";

Connect@R1.n, C.pD;
Connect@C.n, AC.nD;
Connect@R1.p, R2.pD; "Inductor circuit";

Connect@R2.n, L.pD;
Connect@L.n, C.nD;
Connect@AC.n, G.pD; "Ground"DD

A composite model like the circuit model described above specifies the system topology, i.e. the components and
the connections between the components. The connections specify interactions between the components. In some
previous object-oriented modeling languages connectors are referred to cuts, ports or terminals. The keyword
Connect is a special operator that generates equations taking into account what kind of interaction is involved as
explained in Section 2.2.3.

Variables declared within classes are public by default, if they are not preceded by the keyword protected which
has the same semantics as in Java. Additional public or protected sections can appear within a class, preceded by
the corresponding keyword.

MathModelica-IMS99.nb 8

2.2.2 Type Definitions

The MathModelica language is a typed language where new types can be defined. Here the type of voltage and
current are defined.

Type@Voltage, Real@8Unit m "V"<DD
This defines the symbol Voltage to be the type of a Real which is a basic predefined type. Each type (including
the basic types) has a collection of default attributes such as unit of measure, initial value, minimum and maximum
value. These default attributes can be changed when declaring a new type. In the case above the unit of measure of
Voltage is changed to "V". The corresponding definition is also made for the current.

Type@Current, Real@8Unit m "A"<DD
In MathModelica, the basic structuring element is a class. There are seven restricted class categories with specific
keywords, such as Type (a class that is an extension of built-in classes, such as Real, or of other defined types)
and Connector (a class that does not have equations and can be used in connections). For a valid model
replacing the type and connector keywords by the keyword Class is fully equivalent, because the restrictions
imposed by such a specialized class are fulfilled by a valid model. Other specific class categories are Model,
Record, and InOutBlock.

The idea of restricted classes is advantageous because the modeler does not have to learn several different
concepts, but just one: the class concept. All properties of a class, such as syntax and semantic of definition,
instantiation, inheritance, generic properties are identical to all kinds of restricted classes. Furthermore, the
construction of MathModelica translators is simplified considerably because only the syntax and semantic of a
class have to be implemented along with some additional checks on restricted classes. The basic types, such as
Real or Integer are built-in type classes, i.e., they have all the properties of a class. The previous definitions
can be expressed as follows using the keyword Type which is equivalent to class, but limits the defined type to be
extension of a built-in type, record or array.

2.2.3 Connector Classes

A connector class is defined as follows:

Connector@Pin,
Voltage v;

Flow Current iD
Connection statements are used to connect instances of connection classes. A connection statement
Connect[Pin1,Pin2], with Pin1 and Pin2 of connector class Pin, connects the two pins so that they form
one node (in this case one electrical connection). This implies two equations, namely:

Pin1.v = Pin2.v

Pin1.i + Pin2.i = 0

The first equation says that the voltages of the connected wire ends are the same. The second equation corresponds
to Kirchhoff's current law saying that the currents sum to zero at a node (assuming positive value while flowing

MathModelica-IMS99.nb 9

into the component). The sum-to-zero equations are generated when the prefix Flow is used in the declaration.
Similar laws apply to flow rates in a piping network and to forces and torques in mechanical systems.

When developing models and model libraries for a new application domain, it is good to start
by defining a set of connector classes. A common set of connector classes used in all components
in the library supports compatibility of the component models.

2.2.4 Virtual (Partial) Classes

A common property of many electrical components is that they have two pins. This means that it is useful to define
an “interface” model class,

Partial Model@TwoPin,
"Superclass of elements with two electrical pins",

Pin 8p, n<;
Voltage v;

Current i;

Equation@
v m p.v − n.v;

0 m p.i + n.i;

i m p.iDD
that has two pins, p and n, a quantity, v, that defines the voltage drop across the component and a quantity, i, that
defines the current into the pin p, through the component and out from the pin n.

Figure 2

The equations define generic relations between quantities of a simple electrical component. In order to be useful a
constitutive equation must be added. The keyword Partial indicates that this model class is incomplete. The
keyword is optional. It is meant as an indication to a user that it is not possible to use the class as it is to instantiate
components.

String after the class name is a comment that is a part of the language, i.e., these comments are associated with the
definition and are normally displayed by dialogs and forms presenting details about class definitions.

2.2.5 Equations and Non-Causal Modeling

Non-causal modeling means modeling based on equations instead of assignment statements. Equations do not
specify which variables are inputs and which are outputs, whereas in assignment statements variables on the
left-hand side are always outputs (results) and variables on the right-hand side are always inputs. Thus, the
causality of equations-based models is unspecified and fixed only when the equation systems are solved. This is
called non-causal modeling.

MathModelica-IMS99.nb 10

The main advantage with non-causal modeling is that the solution direction of equations will adapt to the data flow
context in which the solution is computed. The data flow context is defined by telling which variables are needed
as outputs and which are external inputs to the simulated system.

The non-causality of MathModelica (Modelica) library classes makes these more reusable than traditional classes
containing assignment statements where the input-output causality is fixed.

For example the equation from resistor class below:

R*i = v;

can be used in two ways. The variable v can be computed as a function of i, or the variable i can be computed as
a function of v as shown in the two assignment statements below:

i := v/R;

v := R*i;

In the same way the following equation from the class TwoPin

v = p.v - n.v

can be used in three ways:

v := p.v - n.v;

p.v := v + n.v;

n.v := p.v - v;

2.2.6 Inheritance, Parameters and Constants

To define a model for a resistor we exploit TwoPin and add a definition of a parameter for the resistance and
Ohm's law to define the behavior:

Model@Resistor, "Ideal electrical resistor",

Extends@TwoPinD;
Parameter Real R@8unit m "ohm"<D; "Resistance";

Equation@
R i m vDD

The keyword Parameter specifies that the variable is constant during a simulation run, but can change values
between runs. This means that parameter is a special kind of constant, which is implemented as a static variable
that is initialized once and never changes its value during a specific execution. A parameter is a variable that
makes it simple for a user to modify the behavior of a model.

A MathModelica constant never changes and can be substituted inline.

The keyword Extends specifies the parent class. All variables, equations and connects are inherited from the
parent. Multiple inheritance is supported in MathModelica.

Just like in C++ variables, equations and connections of the parent class cannot be removed in the subclass.

In C++ a virtual function can be replaced by a function with the same name in the child class. In Modelica 1.0 the
equations cannot be named and therefore we cannot replace equations. When classes are inherited, equations are

MathModelica-IMS99.nb 11

accumulated. This makes the equation-based semantics of the child classes consistent with the semantics of the
parent class.

An innovation of MathModelica is that the type of a variable of the parent class can be replaced. We describe this
in more detail in Section 2.4.

2.2.7 Time and Model Dynamics

Dynamic systems are models where behavior evolves as a function of time. We use a predefined variable Time,
which steps forward during system simulation.

A class for the voltage source can be defined as:

Model@VsourceAC, "Sine−wave voltage source",

Extends@TwoPinD;
Parameter Real VA m 220; "Amplitude @VD";
Parameter Real f m 50; "Frequency @HzD";
Protected@

Constant Real PI m 3.141592D;
Equation@

v m VA ∗Sin@2 PI f TimeDDD
class for an electrical capacitor and inductor can also reuse the TwoPin as follows:

Model@Capacitor, "Ideal electrical capacitor",

Extends@TwoPinD;
Parameter Real C@8unit m "F"<D; "Capacitance";

Equation@
C v' m iDD

Model@Inductor, "Ideal electrical inductor",

Extends@TwoPinD;
Parameter Real L@8unit m "H"<D; "Inductance";

Equation@
L i' m vDD

where der(v) means the time derivative of v.

During system simulation the variables i and v evolve as functions of time. The solver of differential equations
computes the values of iHtL and vHtL (t is time) so that C v ' HtL = iHtL for all values of t.

Finally, we define the ground point as a reference value for the voltage levels

MathModelica-IMS99.nb 12

Model@Ground, "Ground",

Pin p;

Equation@
p.v m 0DD

2.2.8 The Complete Circuit Model

Finally we let the MathModelica system print out the complete code for the circuit model. Each Class, Model,
Type, and Connector definition above stores the definitions in a symbol table. The command
ListSymbolTable generates a list of the class definitions available in the symbol table. MakeModel package
these definitions into a single model. The complete model in the MathModelicaFullForm format is stored in
variable m.

m = MakeModel@ListSymbolTable@DD;
The MathModelicacFullForm format is converted to input form and then the command
MathModelicaForm is used to pretty print the code.

MathModelicaFullFormToInputForm@mD êê MathModelicaForm

ModelicaModel@
Model@Capacitor, Ideal electrical capacitor,

Extends@TwoPinD;
Parameter k Real k C@8unit == F<D; Capacitance;
Equation@

C v� == iDD;
Model@Circuit,

Resistor k R1@8R == 10<D;
Capacitor k C@8C == 0.01<D;
Resistor k R2@8R == 100<D;
Inductor k L@8L == 0.1<D;
VsourceAC k AC;

Ground k G;

Equation@
Connect@AC « p, R1 « pD; Capacitor circuit;

Connect@R1 « n, C « pD;
Connect@C « n, AC « nD;
Connect@R1 « p, R2 « pD; Inductor circuit;

Connect@R2 « n, L « pD;
Connect@L « n, C « nD;
Connect@AC « n, G « pD; GroundDD;

Type@Current,

MathModelica-IMS99.nb 13

Real@8unit == A<DD;
Model@Ground, Ground,

Pin k p;

Equation@
p « v == 0DD;

Model@Inductor, Ideal electrical inductor,

Extends@TwoPinD;
Parameter k Real k L@8unit == H<D; Inductance;
Equation@

L i� == vDD;
Connector@Pin,

Voltage k v ;

Flow k Current k iD;
Model@Resistor, Ideal electrical resistor,

Extends@TwoPinD;
Parameter k Real k R@8unit == ohm<D; Resistance;
Equation@

R i == vDD;
Model@TwoPin, Superclass of elements with two electrical pins,

Pin k 8p, n<;
Voltage k v;

Current k i;

Equation@
v == p « v − n « v ;

0 == p « i + n « i ;

i == p « iDD;
Type@Voltage,

Real@8unit == A<DD;
Model@VsourceAC, Sine−wave voltage source,

Extends@TwoPinD;
Parameter k Real k VA == 220; Amplitude @VD;
Parameter k Real k f == 50; Frequency @HzD;
Protected@

Constant k Real k PI == 3.14159D;
Equation@

v == VA Sin@HH2 PIL fL TimeDDDD

MathModelica-IMS99.nb 14

2.3 The MathModelica Notion of Subtypes
The notion of subtyping in MathModelica is influenced by type theory of Abbadi and Cardelli [1] . The notion of
inheritance in MathModelica is separated from the notion of subtyping. According to the definition, a class A is a
subtype of class B if class A contains all the public variables declared in the class B, and types of these variables
are subtypes of types of corresponding variables in B. The main benefit of this definition is additional flexibility in
the composition of types. For instance, the class TempResistor is a subtype of Resistor.

Model@TempResistor,
Extends@TwoPinD;
Parameter Real 8R, RT, Tref<;
Real T;

Equation@
v m i HR + RT∗HT − TrefLL;DD

Subtyping is used for example in class instantiation, redeclarations and function calls. If variable a is of type A,
and A is a subtype of B, then a can be initialized by a variable of type B. Redeclaration is discussed in the next
section.

Note that TempResistor does not inherit the Resistor class. There are different equations for evaluation of v. If
equations are inherited from Resistor then the set of equations will become inconsistent in TempResistor,
since MathModelica currently does not support named equations and replacement of equations. For example, the
specialized equation below from TempResistor:

v=i*(R+RT*(T-Tref))

and the general equation from class Resistor

v=R*i

are inconsistent.

2.4 Class Parametrization
A distinctive feature of object-oriented programming languages and environments is ability to fetch classes from
standard libraries and reuse them for particular needs. Obviously, this should be done without modification of the
library codes. The two main mechanisms that serve for this purpose are:

è inheritance. It is essentially “copying” class definition and adding more elements (variables,
equations and functions) to it.

è class parametrization (also called generic classes or types). It is replacing a generic type identifier in
whole class definition by an actual type.

In MathModelica we have a new way to control class parametrization. Assume that a library class is defined as

Model@SimpleCircuit,
Resistor 8R1@8R m 100<D, R2@8R m 200<D, R3@8R m 300<D<;
Equation@

Connect@R1.p, R2.pD;

MathModelica-IMS99.nb 15

Connect@R1.p, R3.pDDD
Assume that in our particular application we would like to reuse the definition of SimpleCircuit: we want to
use the parameter values given for R1.R and R2.R and the circuit topology, but exchange Resistor with the
temperature-dependent resistor model, TempResistor, discussed above.

This can be accomplished by redeclaring R1 and R2 as follows.

Type@RedefinedSimpleCircuit,
SimpleCircuit@8

Redeclare@TempResistor R1D,
Redeclare@TempResistor R2D<DD

Since TempResistor is a subtype of Resistor, it is possible to replace the ideal resistor model. Values of the
additional parameters of TempResistor can be added in the redeclaration:

Redeclare[TempResistor R1[{RTm0.1, Trefm20.0}]]

This is a very strong modification but it should be noted that all equations that could be defined in
SimpleCircuit are still valid.

3 MathModelica – the environment

3.1 MathModelicaFullForm
The MathModelica syntax presented so far is the syntax that can be given as input (InputForm) to the
MathModelica system, this syntax is also used when code is printed in StandardForm where indentations and the
special character for the type operator are used.

Internally in the MathModelica system uses another format called MathModelicaFullForm. This format is the
abstract syntax [2] of the MathModelica language where all the elements of the language are separated
canonically to be easy to extract and compare for the functions operating on the MathModelica language. See also
the semantic implementation of [9].

The following simple constant declaration

Declare@
Constant Real@2, 2D unitarr = 881, 0<, 80, 1<<; "2D Identity"D

is stored internally in the MathModelicaFullForm format as

MathModelica-IMS99.nb 16

GetMathModelicaFullForm@unitarrD
Hold@Declaration@TYPE@Real, 82, 2<, 8Constant<, 8<D,

VariableComponent@unitarr, ValueBinding@881, 0<, 80, 1<<D,8<, 8<, StringRows@2D IdentityDDDD
A declaration of a global variable is represented by the Declaration node in the abstract syntax. This node has
two arguments: the type and the component. The type is represented by the TYPE node which stores the name,
array dimension, type attributes (Constant) and type modifications (which is empty in this case). The
component argument contains a VariableComponent including the name of the variable, the initialization
(ValueBinding), and in the end the comment string (StringRows) that is associated with the variable.

If we instead declare the type of a function we will get a similar expression in MathModelicaFullForm. (The
syntax for function declarations have been introduced by the MathCode C++ system. [10])

Declare@
foo@Real x_D → Real@3DD

This declaration specifies that the Mathematica function foo[x] has the Real type for the input argument x, and a
Real vector for the return value. The MathModelicaFullForm is in this case:

GetMathModelicaFullForm@fooD
Hold@Declaration@TYPE@FunctionType@8TYPE@Real, 8<, 8<, 8<D<,8TYPE@Real, 83<, 8<, 8<D<, 8<D, 8<, 8<, 8<D,

FunctionComponent@foo, 8x<, 8Null<, foo@x_D, Null, NullDDD
The function declaration will also create a Declaration node with two arguments: type and component. In this
case the type expression (TYPE) has a FunctionType node as it's first argument instead of a name of a type
(like Real in the array declaration above). The FunctionType node stores a list of the input arguments types
and another list with the type of the output values. Note that these type are also represented by the TYPE node, i.e.
any type can be built of nested TYPE expressions. The component is in this case a FunctionComponent which
stores the function name, input argument symbol names (the formal parameters), output names, and the pattern of
the function among other things not discussed here.

There are several goals behind the design of the MathModelicaFullForm format:

è Abstract Syntax: The format separates the different constructions in the language systematically
making the navigation of types and code easier.

è The preserving the syntax structure of the Modelica or MathModelica code. This means that the
mapping from Modelica to MathModelicaFullForm should be injective, and that transformations from
Modelica to MathModelicaFullForm into MathModelica input form should be reversible.

MathModelica-IMS99.nb 17

è Symbol table format. The MathModelicaFullForm should be possible to use in the symbol table.
Specially the representation of types with the TYPE node should be ready for efficient type inference,
i.e., deriving the types of general expressions.

è Internal standard: The MathModelicaFullForm format should be used by all the components in the
MathModelica system. Therefore it must be easily parsed and unparsed. By generating the FullForm
format of MathModelicaFullForm we get a pure tree syntax of the format which is very easy for
external programs to parse. The unparsing (e.g., to Modelica) is easy and can be done by simple table
driven unparsers if the MathModelicaFullForm is has a well designed abstract syntax.

3.2 Typed Pattern Matching
The type system in MathModelica is mainly used for generating the simulation code, whereas the Mathematica
computation is not affected of the type of a symbol or a function. However, the types can be used in pattern
matching.

Assume we have a list of equations including typed variables, and that some of these variables have the type
Angle. In particular we are interested in the expressions in the equations of the form Sin[exp] where the exp
is of the type Angle. Assume that the values of the angle expressions are always close to zero, then to improve
simulation performance we could replace each Sin expression with it's third order approximation.

This can be done by the following rule.

r1 = TypedPattern@Sin@Angle x_DD → Normal@Series@Sin@xD, 8x, 0, 3<DD
HoldPattern@Sin@x_?HTypeQ@AngleDLDD → x −

x3
ccccccc
6

The TypedPattern command works as the inbuilt HoldPattern except that type information are extracted
and the pattern is rewritten using a predicate test called TypeQ.

3.3 Simulation
In Section 2.2 the MathModelica model of the circuit was defined. This circuit model will here be simulated.

To simulate a MathModelica model a sequence of transformations must be done. The MathModelica code (or
MathModelicaFullForm format) is the starting point and an executable binary file is the final result of the
transformation. The simulation is performed by executing the binary file which generates a data file with the
simulation data, that is then loaded into Mathematica. We will here present each of these steps to perform the a
simulation. Note that the whole sequence is normally automated but is here manually done for illustration.

In Section 2.2.8, the MathModelicaFullForm model was stored in the the variable m. The first step is to export the
MathModelicaFullForm format to the Modelica format since the external simulation engine supports Modelica.

ExportModelica@"circuit.mo", mD;
The resulting file is

!! circuit.mo

MathModelica-IMS99.nb 18

model Capacitor "Ideal electrical capacitor"
 extends TwoPin;
 parameter Real C(Unit="F") "Capacitance";

equation
 C*(der(v))=i;
end Capacitor;
model Circuit
 Resistor R1(R=10);
 Capacitor C(C=0.01);
 Resistor R2(R=100);
 Inductor L(L=0.1);
 VsourceAC AC;
 Ground G;

equation
 connect(AC.p,R1.p) "Capacitor circuit";
 connect(R1.n,C.p);
 connect(C.n,AC.n);
 connect(R1.p,R2.p) "Inductor circuit";
 connect(R2.n,L.p);
 connect(L.n,C.n);
 connect(AC.n,G.p) "Ground";;
end Circuit;
type Current = Real(Unit="A");
model Ground "Ground"
 Pin p;

equation
 p.v=0;
end Ground;
model Inductor "Ideal electrical inductor"
 extends TwoPin;
 parameter Real L(Unit="H") "Inductance";

equation
 L*(der(i))=v;
end Inductor;
connector Pin
 Voltage v;
 flow Current i;
end Pin;
model Resistor "Ideal electrical resistor"
 extends TwoPin;
 parameter Real R(Unit="ohm") "Resistance";

equation
 R*i=v;
end Resistor;
model TwoPin "Superclass of elements with two electrical pins"
 Pin p, n;
 Voltage v;
 Current i;

equation
 v=p.v-(n.v);
 0=p.i+n.i;
 i=p.i;;

MathModelica-IMS99.nb 19

end TwoPin;
type Voltage = Real(Unit="A");
model VsourceAC "Sine-wave voltage source"
 extends TwoPin;
 parameter Real VA=220 "Amplitude [V]";
 parameter Real f=50 "Frequency [Hz]";
 protected
 constant Real PI=3.141592;

equation
 v=VA*(sin(2*PI*f*Time));
end VsourceAC;

The command OpenModel will make the external simulation engine to load the Modelica file.

OpenModel@"circuit.mo"D
The command InstantiateModel instantiate a model object of the type Circuit. Each component in that
model class will also be instatiated.

InstantiateModel@"Circuit"D;
The command TranslateModel starts a sequence of transformations:

è The set of differential equations is extracted from the Modelica classes into one set of equations. This
process is called flattening of the Modelica model, since it is equivalent to write the complete set of
equations for the model into one single class.

è After flattening, all the equations are sorted. Simplification algorithms can eliminate many of them. If
two syntactically equivalent equations appear only one copy of the equations is kept. Then they can
be converted to assignment statements. If a strongly connected set of equations appears, these can be
transformed by a symbolic solver. The symbolic solver performs a number of algebraic
transformations to simplify the dependencies between the variables. It can also solve a system of
differential equations if it has a symbolic solution.

è Finally, C/C++ code is generated, and it is linked with a numeric solver.

TranslateModel@"Circuit"D;
The Modelica technology gives a high level modeling paradigm in which compilers, and algebraic transformation
can gain performance in the simulation runs, by reducing the number of equations, and solving equations
symbolically. In the MathModelica environment the user can improve the symbolic transformation using domain
specific knowledge to derive transformation rules that are applied on the equations before the simulation code is
generated. The MathModelica environment is an open system where the user has access to the different layers of
transformations.

The final transformation produces a C code for the mode in the file "dsmodel.c".

!! dsmodel.c

MathModelica-IMS99.nb 20

#include <matrixop.h>
/* Prototypes for functions used in model */
/* Codes used in model */
/*
*/
/*
*/
/* DSblock model generated by Dymola from Modelica model. */

/* DSblock C-code: */

#include <moutil.c>

/* Define variable names. */

#define Sections_
#define R1_p_direction Variable(0)
#define R1_n_direction Variable(1)
#define R1_R Variable(2)
#define C_p_direction Variable(3)
#define C_n_direction Variable(4)
#define C_C Variable(5)
#define R2_p_direction Variable(6)
#define R2_n_direction Variable(7)
#define R2_R Variable(8)
#define L_p_direction Variable(9)
#define L_n_direction Variable(10)
#define L_L Variable(11)
#define AC_p_direction Variable(12)
#define AC_n_direction Variable(13)
#define AC_VA Variable(14)
#define AC_f Variable(15)
#define AC_PI Variable(16)
#define G_p_direction Variable(17)
#define C_n_v Variable(18)
#define AC_n_v Variable(19)
#define L_n_v Variable(20)
#define G_p_v Variable(21)
#define AC_p_v Variable(22)
#define R1_p_i Variable(23)
#define R1_n_v Variable(24)
#define R1_n_i Variable(25)
#define R1_v Variable(26)
#define C_p_i Variable(27)
#define C_n_i Variable(28)
#define R2_p_i Variable(29)
#define R2_n_v Variable(30)
#define R2_n_i Variable(31)
#define R2_v Variable(32)
#define L_n_i Variable(33)
#define L_v Variable(34)
#define AC_p_i Variable(35)
#define AC_n_i Variable(36)
#define AC_v Variable(37)
#define G_p_i Variable(38)
#define C_v State(0)
#define der_C_v Derivative(0)
#define L_i State(1)

MathModelica-IMS99.nb 21

#define der_L_i Derivative(1)
#define CPUClk Output(0)

TranslatedEquations
CPUClk = CurrentClockTime;

InitialSection
R1_p_direction = 1;
R1_n_direction = (-1);
R1_R = 10;
C_p_direction = 1;
C_n_direction = (-1);
C_C = 0.01;
R2_p_direction = 1;
R2_n_direction = (-1);
R2_R = 100;
L_p_direction = 1;
L_n_direction = (-1);
L_L = 0.1;
AC_p_direction = (-1);
AC_n_direction = 1;
AC_VA = 220;
AC_f = 50;
AC_PI = 3.141592;
G_p_direction = 1;
C_n_v = 0;
AC_n_v = 0;
L_n_v = 0;
G_p_v = 0;

OutputSection

DynamicsSection
AC_v = 220*sin(314.1592*Time);
AC_p_v = AC_v;
R1_n_v = C_v;
R1_v = AC_p_v-R1_n_v;
R1_p_i = 0.1*R1_v;
R1_n_i = -R1_p_i;
C_p_i = -R1_n_i;
der_C_v = 100.0*C_p_i;
R2_n_i = -L_i;
R2_p_i = -R2_n_i;
R2_v = 100*R2_p_i;
R2_n_v = AC_p_v-R2_v;
L_v = R2_n_v;
der_L_i = 10.0*L_v;

AcceptedSection
C_n_i = -C_p_i;
L_n_i = -L_i;
AC_p_i = -(R1_p_i+R2_p_i);
AC_n_i = -AC_p_i;
G_p_i = -(L_n_i+C_n_i+AC_n_i);

DefaultSection
EndTranslatedEquations

#include <dsblock6.c>

MathModelica-IMS99.nb 22

DeclareVariable("R1_p_direction")
DeclareConstant(1)
DeclareVariable("R1_n_direction")
DeclareConstant((-1))
DeclareVariable("R1_R")
DeclareConstant(10)
DeclareVariable("C_p_direction")
DeclareConstant(1)
DeclareVariable("C_n_direction")
DeclareConstant((-1))
DeclareVariable("C_C")
DeclareConstant(0.01)
DeclareVariable("R2_p_direction")
DeclareConstant(1)
DeclareVariable("R2_n_direction")
DeclareConstant((-1))
DeclareVariable("R2_R")
DeclareConstant(100)
DeclareVariable("L_p_direction")
DeclareConstant(1)
DeclareVariable("L_n_direction")
DeclareConstant((-1))
DeclareVariable("L_L")
DeclareConstant(0.1)
DeclareVariable("AC_p_direction")
DeclareConstant((-1))
DeclareVariable("AC_n_direction")
DeclareConstant(1)
DeclareVariable("AC_VA")
DeclareConstant(220)
DeclareVariable("AC_f")
DeclareConstant(50)
DeclareVariable("AC_PI")
DeclareConstant(3.141592)
DeclareVariable("G_p_direction")
DeclareConstant(1)
DeclareVariable("C_n_v")
DeclareConstant(0)
DeclareVariable("AC_n_v")
DeclareConstant(0)
DeclareVariable("L_n_v")
DeclareConstant(0)
DeclareVariable("G_p_v")
DeclareConstant(0)
DeclareVariable("AC_p_v")
DeclareVariable("R1_p_i")
DeclareVariable("R1_n_v")
DeclareVariable("R1_n_i")
DeclareVariable("R1_v")
DeclareVariable("C_p_i")
DeclareVariable("C_n_i")
DeclareVariable("R2_p_i")
DeclareVariable("R2_n_v")
DeclareVariable("R2_n_i")
DeclareVariable("R2_v")
DeclareVariable("L_n_i")
DeclareVariable("L_v")
DeclareVariable("AC_p_i")

MathModelica-IMS99.nb 23

DeclareVariable("AC_n_i")
DeclareVariable("AC_v")
DeclareVariable("G_p_i")
DeclareState("C_v", "der_C_v", 0, 0.0)
DeclareState("L_i", "der_L_i", 1, 0.0)
DeclareOutput("CPUClk")

DeclareAlias("R1_p_v", " ", "AC_p_v", 1)
DeclareAlias("R2_p_v", " ", "AC_p_v", 1)
DeclareAlias("R1_i", " ", "R1_p_i", 1)
DeclareAlias("C_p_v", " ", "R1_n_v", 1)
DeclareAlias("C_i", " ", "C_p_i", 1)
DeclareAlias("R2_i", " ", "R2_p_i", 1)
DeclareAlias("L_p_v", " ", "R2_n_v", 1)
DeclareAlias("L_p_i", " ", "L_i", 1)
DeclareAlias("AC_i", " ", "AC_p_i", 1)
#define NX_ 2
#define NX2_ 0
#define NU_ 0
#define NY_ 1
#define NW_ 39
#define NP_ 0
#define NRel_ 0
#define NCons_ 0
#define NA_ 9

#include <dsblock5.c>

The initial values can be taken from the model definition. If necessary, the user specifies the parameter values.
Numeric solvers for differential equations (such as LSODE, part of ODEPACK [8]) give the user possibility to
ask about the value of specific variable in a specific time moment. As the result a function of time, e.g. R2.v HtL can
be computed for a time interval @t0 , t1D and displayed as a graph or saved in a file. This data presentation is the
final result of system simulation.

The command SimulateModel will compile and link the C code file and execute the resulting binary file. The
parameter values are taken form the default settings given in the Modelica model and in the defaults of the
simulation engine. The parameter values can be changed between the simulation runs.

SimulateModel@"Circuit"D
We can check that the simulation data in produced.

FileNames@"∗.mat"D8DSRES.MAT<
The simulation data is load back into Mathematica.

MathModelica-IMS99.nb 24

Hsimdata = GetSimulationData@"dsres.mat"DL êê Short88CPUClk → InterpolatingFunction@880., 1.<<, <>D,
i49j, AC.i → InterpolatingFunction@880., 1.<<, <>D<<

The simulation data is automatically converted to rules of InterpolatingFunctions, in the same format as NDSolve
produce.

A simple plot of one of the variables in the simulation data in the time interval [0, 0.2].

Plot@C.p.v@tD ê. simdata, 8t, 0., 0.2<D;

0.05 0.1 0.15 0.2

-5

5

10

3.4 Graphical Model Editors and Visualization

3.4.1 Model Editor

A 2D graphical model editor can be used to define a model by drawing and editing an object diagram very similar
to the circuit diagram shown in Figure 1. Such a model editor is developed for MathModelica. The user can place
icons that represent the components and connect those components by drawing lines between their iconic
representations. For clarity, attributes of the MathModelica definition for the graphical layout of the composition
diagram (here: an electric circuit diagram) are not shown in examples. These attributes are usually contained in a
MathModelica model as annotations (which are largely ignored by the MathModelica translator and used by
graphical tools).

3.4.2 Dynamic Simulation Visualization

Annotations in the MathModelica language can also be used to store the 3D graphical representations of the
physical objects that are modeled, e.g., when modeling mechanical systems the graphical models are stored
together with the dynamical models. This can be used to do a physical visualization using the simulation data to
steer the animation [4] .

MathModelica-IMS99.nb 25

3.5 Computational Steering
The set of simulation commands provided by the MathModelica environment can be used to as a scripting
language together with the Mathematica language. Except from controlling the simulation the commands provides
the features:

è Setting up schedules for simulation runs and generating simulation reports using Mathematica
notebooks.

è Starting simulation runs on remote machines.

è Management of parallel simulations.

è Management for simulation results and model libraries.

The major advantage with the notebook concept is that the same interface can be used for both storing and
document model, and for simulation scripts and logging the simulation result.

3.6 Codegeneration and Interfacing External Code
The Mathematica application MathCode C++ [10] generated C++ code from Mathematica code. This is an
essential component in the MathModelica environment since it provides tools for having general function call in
the simulation models. Any MathCode C++ supported function or algorithm in Mathematica can be used
seamlessly in the MathModelica models. The C++ generated code from MathCode C++ is them automatically
linked to the simulation engine.

MathCode C++ also provides tools for interfacing external (object code) in Fortran, C, and C++ into C++ code
produced by MathCode C++. In this way external code implementing models (like old Fortran model libraries) can
be integrated into the MathModelica models.

4 Conclusions
The MathModelica is extension of the Modelica language targeted for work within the Mathematica environment.
This language is object-oriented (the programs consist of collections of classes). The language is equation based:
instead of traditional functions and procedures we use non-causal equations which specify algebraic and
differential relations between numerical variables. Input-output causality is not specified, and therefore these
equations can be used in multiple ways.

The environment integrates most activities needed in simulation design and use: documentation, modeling
(coding), symbolic processing and transformation of formulas, input and output data visualization. This advanced
programming environment can be applied in various simulation applications.

Acknowledgement
The authors would like to thank the other members of the Modelica Design Group for their contribution of the
Modelica design.

Johan Gunnarsson would like to thank Kestrel Institute for an inspiring environment during the development of
MathModelica.

MathModelica-IMS99.nb 26

This work was supported by the Swedish National Board for Industrial and Technical Development (NUTEK),
which is gratefully acknowledged.

5 References
1. Abadi M. and Cardelli L., A Theory of Objects, Springer Verlag, ISBN 0-387-94775-2, 1996

2. Aho A., Sethi R., and Ullman J., Compilers – Principles Techniques and Tools, Addison – Wesley, 1986

3. Elmqvist H. and Mattsson S. E., An Introduction to the Physical Modeling Language Modelica, ESS'97 European
Simulation Symposium, Passau, Germany, October 19-22, 1997
4. Engelson V., Fritzson P., and Fritzson D., Generating Efficient 3D Graphics Animation Code with OpenGL from
Object Oriented Models in Mathematica, In Proceedings of the Second International Mathematica Symposium,
Rovaniemi, Finland, July, 1997.
5. Fritzson P., Static and Strong Typing for Extended Mathematica, In Proceedings of the Second International
Mathematica Symposium, Rovaniemi, Finland, July, 1997.
6. Fritzson P. and Engelson V., Modelica – A Unified Object-Oriented Language for System Modeling and Simulation,
in Proceedings of ECOOP-98, Brussels, July 1998.
7. Fritzson P., Viklund L., Fritzson D., and Herber J., High-level Mathematica Modeling and Programming, IEEE
Software, 12:3, July 1995.
8. Hindmarsh A.C., ODEPACK, A Systematized Collection of ODE Solvers, Scientific Computing, R.S. Stepleman et al.
(eds.), North-Holland, Amsterdam, 1983
9. Kågedal D. and Fritzson P., Generating a Modelica Compiler from Natural Semantic Specification, In Proceedings of
Summer Computer Simulation Conference -98 , Reno, Nevada, USA, July 19-22, 1998

10. MathCode C++ – A C++ Code Generator for Mathematica, MathCore AB, http://www.mathcore.com
11. Modelica, Language Design for Multi-Domain Modeling, Modelica Design Group, http://www.modelica.org.

6 Init

MathModelica-IMS99.nb 27

