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Abstract
MathModelica  is  a  Mathematica  extension,  which  provides  a  modeling,  and  simulation  environment  for
Mathematica  based  on  the  new  standard  of  physical  modeling  languages  called  Modelica.  Modelica  is  a  new
object-oriented  multi-domain  modeling  language  based  on  algebraic  and  differential  equations.  In  this  paper  we
present  a  language  and  an  environment,  MathModelica,  that  integrates  different  phases  of  the  Modelica
development  lifecycle.  This  is  achieved  by  using  the  Mathematica  environment  and  its  structured  documents,
“notebooks”. Simulation models are represented in the form of structured documents, which integrate source code,
documentation  and  code  transformation  specifications,  as  well  as  providing  control  over  simulation  and  result
visualization. 

Import and export  of  Modelica code between internal  structured and external  textual  representation is supported.
Mathematica is  an  interpreted  language,  which  is  suitable  as  a  scripting  language  for  controlling  simulation and
visualization.  Mathematica also  supports  symbolic transformations on  equations  and algebraic  expressions  which
is useful in building mathematical models. 
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1 Introduction
Integrated  simulation  environments  are  advantageous  in  order  to  work  effectively  and  flexibly  with  simulations.
Users prepare and run simulations as well as investigate simulation results. Several auxiliary activities accompany
simulation  experiments:  requirements  are  specified,  models  are  designed,  documentation  is  associated  with
appropriate places in the models, input and output data as well as possible constraints on such data are documented
and  stored  together  with  the  simulation  model.  The  user  should  be  able  to  reproduce  experimental  results.
Therefore  input  data  and  parts  of  output  data  as  well  as  the  experimenter’s  notes  should  be  stored  for  future
analysis. 

Traditionally, simulation and accompanying activities have been expressed using heterogeneous media and tools: 

è a simulation model is traditionally designed on paper using traditional mathematical notation; 

è simulation programs are written in a low-level programming language and stored on text files; 

è input  and  output  data  (if  stored  at  all)  are  saved  in  proprietary  formats  needed  for  particular
applications and numerical libraries; 

è documentation is written on paper or in separate files that are not integrated with the program files; 

è the graphical results are printed on paper or saved using proprietary formats. 

When the result  of  the research  and experiments,  such as a scientific paper,  is  written,  the user normally gathers
together  input  data,  algorithms,  output  data  and  its  visualizations  as  well  as  notes  and  descriptions.  One  of  the
major problem in simulation development environments is that gathering correct versions of all these components
from various files and formats is difficult and error-prone. 

1.1 The Modelica Language
There is definitely an interoperability problem amongst the large variety of modeling and simulation environments
available  today   [3]  .  The  main  cause  of  this  problem  is  the  absence  of  a  state-of-the-art,  standardized  external
model  representation.  Modeling  languages  often  do  not  adequately  support  the  structuring  of  large,  complex
models and the process of model evolution in general.

The language called Modelica [11] for hierarchical physical modeling is developed through an international effort.
It  is  an  object-oriented  language  [3]  [6]  for  modeling of  physical  systems.  The  language  unifies  and  generalizes
previous object-oriented modeling languages.  Modelica is intended to become a de facto standard.  It  offers  three
important features: 1) non-causal modeling based on differential and algebraic equations; 2) multidomain modeling
capability,  i.e.  it  is  possible  to  combine electrical,  mechanical,  thermodynamic, hydraulic  etc.  model components
within  the  same application  model;  3)  a  general  type  system that  unifies  object-orientation,  multiple inheritance,
and templates within a single class construct.

Modelica  models  are  built  from  classes.  Like  in  other  object-oriented  languages,  a  class  contains  variables,  i.e.,
class  attributes  representing  data.  The  main  difference  compared  to  traditional  object-oriented  languages  is  that
instead  of  functions  (methods)  the  programmer  uses  equations  to  specify  behavior.  Equations  can  be  written
explicitly,  like  a=b,  or  can  be  inherited  from  other  classes.  Equations  can  also  be  specified  by  the  connect
statement. Equations here includes differential equations (ODE and DAE).

MathModelica-IMS99.nb 2



1.2 MathModelica - A Mathematica Extension
Our  approach  to  the  integration  problem  is  based  on  the  Mathematica  environment  and  its  programmable
notebooks. Every notebook corresponds to one document (one file) and contains a tree structure of cells. A cell can
include other cells and/or arbitrary text or graphics. In particular a cell can include a code fragment or a graph with
computational results.

The contents of cells can be

è parts of models (a formal description that can be used for  verification, compilation and execution of
some simulation model); 

è text/documentation (used as comments to executable, formal model specifications);

è dialogue forms for specification and modification of input data;

è result tables (the results can be immediately represented in table form);

è graphical  result  representation  (with  2D vector  and  raster  graphics  as  well  as  3D vector  and surface
graphics);

è 2D graphs that are used for various model structure visualizations: 

é class diagrams

é variable dependency diagrams 

é data structure diagrams

Apart from the Mathematica  notebook interface, the Mathematica  system with its kernel, programming language,
and  symbolic  representation  of  code  and  mathematical  expressions  provides  a  powerful  environment  for  the
modeling  and  simulation  technology  as  given  by  the  Modelica  language.  Having  a  language  for  differential
equations  (DAEs)  Mathematica  ability  to  perform symbolic  computations/transformations on  expressions  is  very
important.  The  MathLink  interface  that  lets  Mathematica  communicate  with  other  processes  seamlessly  can  be
used to, e.g., integrate external special purpose simulators, or graphical modeling editors. The functional and rule
based language  is  not  only good for  expressing  mathematica operations,  but  also good transformations  of  (code)
formats to be interpreted, e.g., existing numerical data and tables that are needed to be integrated into a simulation.

MathModelica is the name of an extension of Mathematica that is an implementation of a modeling and simulation
environment  based  on  the  Modelica  language.  The  goal  has  been  to   integrate  the  Modelica  language  into  the
language of Mathematica  as close as possible. This makes it possible for the user to utilize both Mathematica  and
the Modelica language without severe restrictions.

MathModelica means both a language and an environment. The MathModelica language is a language close to the
Mathematica  syntax with the extension of a syntax for data types, i.e., the data types of symbols and functions in
Mathematica  expressions  can  be  specified  in  a  convenient  way.  Section  2  will  describe  the  language  of
MathModelica.  The  MathModelica  environment  means  a  collection  of  modeling  tools  (graph  editors)  and
simulation engines  where  Mathematica  is  the  center  and  user  frontend.  Section  3  will  describe  this  environment
briefly.
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2 MathModelia – the language

2.1 Syntax
A specific feature of Mathematica is that models (or code) are normally not written as free formatted text. Instead,
Mathematica expressions (terms) are used. These can be conveniently written in a tree-like prefix form, or entered
using standard mathematical notation. Every term is a number, an identifier or a form such as:

head[term1,..., termn]

In order to satisfy this requirement, we designed the new MathModelica language. Note that MathModelica has the
same  abstract  syntax  and  the  same  semantics  as  Modelica,  but  different  concrete  syntax.  This  means  that
essentially the same language constructs are written differently, as illustrated below.

The MathModelica language uses some Mathematica notation, such as:

term1; ...; termn,

{term1, ..., termn},

term1 term2,

term1 m term2

and  arbitrary  arithmetic  expressions  composed  from  terms.  We  will  not  present  the  complete  syntax  of
MathModelica and it's relation to Modelica here, but we will use some examples.

Note!  The  syntax  and  command  names  pruposed  in  this  paper  are  preliminary  and  can  be  changed  in  future
versions of MathModelica.

2.1.1 Type Operator

Consider the Modelica code:

model FirstOrder

Real x(start=1);

parameter Real a=1;

equation

der(x)=-a*x;

end FirstOrder;

The above example is a class definition of the model named "FirstOrder". This model includes one dynamic
variable  x  of  type  Real  with  the  initial  value  (start)  set  to  1.  The  symbol  a  is  declared  as  a  parameter  which
means that its value must be a constant and given by the user. To simulate this model means to compute values of
the  variable  x  starting  from  the  value  1  such  that  the  equations  of  the  model  are  satisfied.  The  dynamics
(differential equations) of the model is given after the equation  keyword. The operator der  is derivation with
respect  to  time.  If  time  is  represented  by  the  symbol  t,  der(x)  would  mean  „xHtLÅÅÅÅÅÅÅÅÅÅÅÅ„t .  The  model  definition  can
contain any number of equations.

The MathModelica syntax of the Modelica example above is

Model@FirstOrder,
Real x@8Start m 1<D;
Parameter Real a m 1;

Equation@

MathModelica-IMS99.nb 4



x' m −a xDD
Note  that  the  structure  of  the  MathModelica  code  is  the  same  as  for  Modelica  but  the  syntax  is  a  valid
Mathematica expression. A few things needs to be explained here:

è In  Modelica  the  character  '='  stand  for  an  equation  and  not  for  assignment.  Therefor  '=='  should  be
used in MathModelica which means Equal[].

è Space in Mathematica  means normally multiplication (Times).  To provide a easy to write and read
syntax for data types we have introduced a operator for prefixed attributes. In this case this operator is
called  TypeMark,  and  it  applies  in  certain  specific  places  in  the  MathModelica  language  where
multiplication (Times) is forbidden and therefore introduces no ambiguities.

To illustrate how TypeMark works we can take a look at the FullForm of a simple declaration statement that is
held to prevent any calculations. The constant dpi is declared and assigned the value of 2*3.14.

Declare@
Constant Real dpi = 2 3.14D êê Hold êê FullForm

Hold@Declare@Set@TypeMark@Constant, Real, dpiD, Times@2, 3.14`DDDD
We see that spaces between the type keywords are correctly interpreted to TypeMark.

To  use  space  as  the  type  operator  simplifies  the  writing  of  code  including  data  types,  especially  when  there  is
several  hundred  variables  to  declare  in  realistic  modeling  projects.  Once  the  code  is  written  we  can  ask
Mathematica  to  list  the  code  such  that  the  type  operator  and  multiplication  are  presented  differently.  This  is
possible  by  the  command  MathModelicaForm  where  the  TypeMark  operator  is  printed  using  'â'.  The
command GetModel[] returns the model definition.

MathModelicaForm@GetModel@FirstOrderDD
Model@FirstOrder,

Real  k  x@8Start == 1<D;
Parameter  k  Real  k  a == 1;

Equation@
x� == −a xDD

2.1.2 Field Selector

The second extension to the Mathematica  language necessary for the MathModelica language is the field selector.
Consider the record definition below.
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Record@Person,
String Name;

Integer AgeD
This type definition creates the type Person  including two fields: Name  and Age.  Declaration and initialization
of a record variable can then be done as

Declare@
Person p1D;

p1 = Person@"John", 23D;
The  record  variable  p1  will  now  contain  the  expression  Person["John",23]  where  Person[]  is  a
constructor for the record type.

To extract fields in a record or a general class, we use the Member function

Member@p1, NameD
John

which selects the field named Name and returns it's value. The infix operator symbol for the field selector is '.' in
many  common  programming  languages.  To  introduce  '.'  as  the  infix  field  selector  in  MathModelica  is  therefore
natural, except for the fact that Mathematica  uses '.' for Dot (tensor product). Still, the importance to have a infix
operator  for  the  field  selector  is  extensive  since  the  equations  generated  by  the  MathModelica  environment  will
contain many variables which are represented by the Member function. To keep the format easy both to read and
to  write  it  is  necessary  to  have  a  short  one  character  long  infix  operator.  Unfortunately  there  are  no  free  one
character operators that can be easily typed on the keyboard. The '.' is therefore chosen since it is possible for the
MathModelica environment to distinguish between Member and Dot, by analyzing the type of the first argument
of Dot. If the type is a class then Dot is converted to Member.

Using '.'  on a record variable returns the field

p1.Name

John

whereas '.'  on  vectors returns the scalar product.
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81, 2<.83, 4<
11

In  StandardForm the  Member  and  Dot  command are  distinguished  since  the  Member  function  is  printed  using
the '«' ([Hacek]) character.

pi.Age . 8a, b<Hp1 « AgeL.8a, b<
2.2 Circuit Example
The details of the MathModelica language will be described by an example of a circuit model that will be given in
the form of  MathModelica expressions  in this  section.  Note  that  we here  only describe the modeling in terms of
programming  MathModelica  textually.  The  MathModelica  environment  also  includes  a  graphical  modeling
paradigms  also  that  is  based  on  MathModelica  language.  The  graphical  environment  has  an  one-to-one
correspondence with the textual MathModelica language.

MathModelica models are built from classes. Like in other object-oriented languages, class contains variables, i.e.
class attributes representing data. The main difference compared with traditional object-oriented languages is that
instead of functions (methods) we use equations to specify behavior. Equations can be written explicitly, like a=b,
or  be  inherited  from  other  classes.  Equations  can  also  be  specified  by  the  Connect  statement.  The  statement
Connect[v1,v2]  expresses coupling between variables v1  and v2.  These variables are called connectors and
belong to the connected objects. This gives a flexible way of specifying topology of physical systems described in
an object-oriented way using MathModelica.

In  the  following  sections  we  introduce  some  basic  and  distinctive  syntactical  and  semantic  features  of
MathModelica,  such  as  connectors,  encapsulation  of  equations,  inheritance,  declaration  of  parameters  and
constants.  Powerful  parametrization capabilities (which are advanced features of  MathModelica) are discussed in
Section 2.4.

2.2.1 Connection Diagram

As an introduction to Modelica we will present a model of a simple electrical circuit as shown in Figure 1.

The system can be broken into a set of connected electrical standard components. We have a voltage source, two
resistors, an inductor, a capacitor and a ground point. Models of such components are available in Modelica class
libraries.

A  declaration  like  one  below  specifies  that  R1  to  be  of  class  Resistor  and  sets  the  default  value  of  the
resistance, R, to 10.

Resistor R1(R=10);
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Figure 1
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A MathModelica description of the complete circuit appears as follows:

Model@Circuit,
Resistor R1@8R == 10<D;
Capacitor C@8C == 0.01<D;
Resistor R2@8R m 100<D;
Inductor L@8L m 0.1<D;
VsourceAC AC;

Ground G;

Equation@
Connect@AC.p, R1.pD; "Capacitor circuit";

Connect@R1.n, C.pD;
Connect@C.n, AC.nD;
Connect@R1.p, R2.pD; "Inductor circuit";

Connect@R2.n, L.pD;
Connect@L.n, C.nD;
Connect@AC.n, G.pD; "Ground"DD

A composite model like the circuit model described above specifies the system topology, i.e. the components and
the connections between the components. The connections specify interactions between the components. In some
previous  object-oriented  modeling  languages  connectors  are  referred  to  cuts,  ports  or  terminals.  The  keyword
Connect is a special operator that generates equations taking into account what kind of interaction is involved as
explained in Section 2.2.3.

Variables declared within classes are public by default,  if  they are not preceded by the keyword protected which
has the same semantics as in Java. Additional public or protected sections can appear within a class, preceded by
the corresponding keyword.
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2.2.2 Type Definitions

The MathModelica  language  is  a  typed  language  where  new types  can  be  defined.  Here  the  type of  voltage  and
current are defined.

Type@Voltage, Real@8Unit m "V"<DD
This defines the symbol Voltage to be the type of a Real which is a basic predefined type. Each type (including
the basic types) has a collection of default attributes such as unit of measure, initial value, minimum and maximum
value. These default attributes can be changed when declaring a new type. In the case above the unit of measure of
Voltage is changed to "V". The corresponding definition is also made for the current.

Type@Current, Real@8Unit m "A"<DD
In MathModelica, the basic structuring element is a class. There are seven restricted class categories with specific
keywords, such as Type (a class that is an extension of built-in classes, such as Real, or of other defined types)
and  Connector  (a  class  that  does  not  have  equations  and  can  be  used  in  connections).  For  a  valid  model
replacing  the  type  and  connector  keywords  by  the  keyword  Class  is  fully  equivalent,  because  the  restrictions
imposed  by  such  a  specialized  class  are  fulfilled  by  a  valid  model.  Other  specific  class  categories  are  Model,
Record, and InOutBlock.

The  idea  of  restricted  classes  is  advantageous  because  the  modeler  does  not  have  to  learn  several  different
concepts,  but  just  one:  the  class  concept.  All  properties  of  a  class,  such  as  syntax  and  semantic  of  definition,
instantiation,  inheritance,  generic  properties  are  identical  to  all  kinds  of  restricted  classes.  Furthermore,  the
construction  of  MathModelica  translators  is  simplified  considerably  because  only  the  syntax  and  semantic  of  a
class  have  to  be  implemented along  with  some  additional  checks  on  restricted  classes.  The  basic  types,  such  as
Real  or Integer  are built-in type classes, i.e.,  they have all  the properties  of a class. The previous definitions
can be expressed as follows using the keyword Type which is equivalent to class, but limits the defined type to be
extension of a built-in type, record or array.

2.2.3 Connector Classes

A connector class is defined as follows:

Connector@Pin,
Voltage v;

Flow Current iD
Connection  statements  are  used  to  connect  instances  of  connection  classes.  A  connection  statement
Connect[Pin1,Pin2], with Pin1 and Pin2 of connector class Pin, connects the two pins so that they form
one node (in this case one electrical connection). This implies two equations, namely:

Pin1.v = Pin2.v

Pin1.i + Pin2.i = 0

The first equation says that the voltages of the connected wire ends are the same. The second equation corresponds
to Kirchhoff's  current  law saying that  the currents  sum to zero at  a node (assuming positive value while flowing
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into  the  component).  The  sum-to-zero  equations  are  generated  when  the  prefix  Flow  is  used  in  the  declaration.
Similar laws apply to flow rates in a piping network and to forces and torques in mechanical systems.

When developing models and model libraries for a new application domain, it is good to start
by defining a set of connector classes. A common set of connector classes used in all components
in the library supports compatibility of the component models.

2.2.4 Virtual (Partial) Classes

A common property of many electrical components is that they have two pins. This means that it is useful to define
an “interface” model class,

Partial Model@TwoPin,
"Superclass of elements with two electrical pins",

Pin 8p, n<;
Voltage v;

Current i;

Equation@
v m p.v − n.v;

0 m p.i + n.i;

i m p.iDD
that has two pins, p and n, a quantity, v, that defines the voltage drop across the component and a quantity, i, that
defines the current into the pin p, through the component and out from the pin n.

Figure 2

The equations define generic relations between quantities of a simple electrical component. In order to be useful a
constitutive  equation  must  be  added.  The  keyword  Partial  indicates  that  this  model  class  is  incomplete.  The
keyword is optional. It is meant as an indication to a user that it is not possible to use the class as it is to instantiate
components.

String after the class name is a comment that is a part of the language, i.e., these comments are associated with the
definition and are normally displayed by dialogs and forms presenting details about class definitions.

2.2.5 Equations and Non-Causal Modeling

Non-causal  modeling  means  modeling  based  on  equations  instead  of  assignment  statements.  Equations  do  not
specify  which  variables  are  inputs  and  which  are  outputs,  whereas  in  assignment  statements  variables  on  the
left-hand  side  are  always  outputs  (results)  and  variables  on  the  right-hand  side  are  always  inputs.  Thus,  the
causality of  equations-based  models is  unspecified  and fixed only when the equation systems are solved.  This  is
called non-causal modeling.
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The main advantage with non-causal modeling is that the solution direction of equations will adapt to the data flow
context in which the solution is computed. The data flow context is defined by telling which variables are needed
as outputs and which are external inputs to the simulated system.

The non-causality of MathModelica (Modelica) library classes makes these more reusable than traditional classes
containing assignment statements where the input-output causality is fixed.

For example the equation from resistor class below:

R*i = v;

can be used in two ways. The variable v can be computed as a function of i, or the variable i can be computed as
a function of v as shown in the two assignment statements below:

i := v/R;

v := R*i;

In the same way the following equation from the class TwoPin

v = p.v - n.v

can be used in three ways:

v := p.v - n.v;

p.v := v + n.v;

n.v := p.v - v;

2.2.6 Inheritance, Parameters and Constants

To  define  a  model  for  a  resistor  we  exploit  TwoPin  and  add  a  definition  of  a  parameter  for  the  resistance  and
Ohm's law to define the behavior:

Model@Resistor, "Ideal electrical resistor",

Extends@TwoPinD;
Parameter Real R@8unit m "ohm"<D; "Resistance";

Equation@
R i m vDD

The keyword Parameter  specifies  that  the variable  is  constant  during a simulation run,  but  can change values
between runs.  This  means that  parameter is  a special  kind of  constant,  which is  implemented as  a  static variable
that  is  initialized  once  and  never  changes  its  value  during  a  specific  execution.  A  parameter  is  a  variable  that
makes it simple for a user to modify the behavior of a model.

A MathModelica constant never changes and can be substituted inline.

The  keyword  Extends  specifies  the  parent  class.  All  variables,  equations  and  connects  are  inherited  from  the
parent. Multiple inheritance is supported in MathModelica.

Just like in C++ variables, equations and connections of the parent class cannot be removed in the subclass.

In C++ a virtual function can be replaced by a function with the same name in the child class. In Modelica 1.0 the
equations cannot  be named and therefore  we cannot  replace equations.  When classes are inherited,  equations  are
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accumulated.  This  makes  the  equation-based  semantics  of  the  child  classes  consistent  with  the  semantics  of  the
parent class.

An innovation of MathModelica is that the type of a variable of the parent class can be replaced. We describe this
in more detail in Section 2.4.

2.2.7 Time and Model Dynamics

Dynamic systems are models where behavior  evolves as a function of time. We use a predefined variable Time,
which steps forward during system simulation.

A class for the voltage source can be defined as:

Model@VsourceAC, "Sine−wave voltage source",

Extends@TwoPinD;
Parameter Real VA m 220; "Amplitude @VD";
Parameter Real f m 50; "Frequency @HzD";
Protected@

Constant Real PI m 3.141592D;
Equation@

v m VA ∗Sin@2 PI f TimeDDD
class for an electrical capacitor and inductor can also reuse the TwoPin as follows:

Model@Capacitor, "Ideal electrical capacitor",

Extends@TwoPinD;
Parameter Real C@8unit m "F"<D; "Capacitance";

Equation@
C v' m iDD

Model@Inductor, "Ideal electrical inductor",

Extends@TwoPinD;
Parameter Real L@8unit m "H"<D; "Inductance";

Equation@
L i' m vDD

where der(v) means the time derivative of v.

During  system simulation  the  variables  i  and  v  evolve  as  functions  of  time.  The  solver  of  differential  equations
computes the values of iHtL and vHtL (t is time) so that C v ' HtL = iHtL for all values of t.

Finally, we define the ground point as a reference value for the voltage levels
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Model@Ground, "Ground",

Pin p;

Equation@
p.v m 0DD

2.2.8 The Complete Circuit Model

Finally we let the MathModelica system print out the complete code for the circuit model. Each Class, Model,
Type,  and  Connector  definition  above  stores  the  definitions  in  a  symbol  table.  The  command
ListSymbolTable  generates a list of the class definitions available in the symbol table. MakeModel package
these definitions into a single model. The complete model in the MathModelicaFullForm  format is stored in
variable m.

m = MakeModel@ListSymbolTable@DD;
The  MathModelicacFullForm  format  is  converted  to  input  form  and  then  the  command
MathModelicaForm is used to pretty print the code.

MathModelicaFullFormToInputForm@mD êê MathModelicaForm

ModelicaModel@
Model@Capacitor, Ideal electrical capacitor,

Extends@TwoPinD;
Parameter  k  Real  k  C@8unit == F<D; Capacitance;
Equation@

C v� == iDD;
Model@Circuit,

Resistor  k  R1@8R == 10<D;
Capacitor  k  C@8C == 0.01<D;
Resistor  k  R2@8R == 100<D;
Inductor  k  L@8L == 0.1<D;
VsourceAC  k  AC;

Ground  k  G;

Equation@
Connect@AC « p, R1 « pD; Capacitor circuit;

Connect@R1 « n, C « pD;
Connect@C « n, AC « nD;
Connect@R1 « p, R2 « pD; Inductor circuit;

Connect@R2 « n, L « pD;
Connect@L « n, C « nD;
Connect@AC « n, G « pD; GroundDD;

Type@Current,
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Real@8unit == A<DD;
Model@Ground, Ground,

Pin  k  p;

Equation@
p « v == 0DD;

Model@Inductor, Ideal electrical inductor,

Extends@TwoPinD;
Parameter  k  Real  k  L@8unit == H<D; Inductance;
Equation@

L i� == vDD;
Connector@Pin,

Voltage  k  v ;

Flow  k  Current  k  iD;
Model@Resistor, Ideal electrical resistor,

Extends@TwoPinD;
Parameter  k  Real  k  R@8unit == ohm<D; Resistance;
Equation@

R i == vDD;
Model@TwoPin, Superclass of elements with two electrical pins,

Pin  k  8p, n<;
Voltage  k  v;

Current  k  i;

Equation@
v == p « v − n « v ;

0 == p « i + n « i ;

i == p « iDD;
Type@Voltage,

Real@8unit == A<DD;
Model@VsourceAC, Sine−wave voltage source,

Extends@TwoPinD;
Parameter  k  Real  k  VA == 220; Amplitude @VD;
Parameter  k  Real  k  f == 50; Frequency @HzD;
Protected@

Constant  k  Real  k  PI == 3.14159D;
Equation@

v == VA Sin@HH2 PIL fL TimeDDDD
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2.3 The MathModelica Notion of Subtypes
The notion of subtyping in MathModelica is influenced by type theory of Abbadi and Cardelli  [1] . The notion of
inheritance in MathModelica is separated from the notion of subtyping. According to the definition, a class A is a
subtype of class B if class A contains all the public variables declared in the class B, and types of these variables
are subtypes of types of corresponding variables in B. The main benefit of this definition is additional flexibility in
the composition of types. For instance, the class TempResistor is a subtype of Resistor.

Model@TempResistor,
Extends@TwoPinD;
Parameter Real 8R, RT, Tref<;
Real T;

Equation@
v m i HR + RT∗HT − TrefLL;DD

Subtyping  is  used  for  example in  class  instantiation, redeclarations  and function  calls.  If  variable  a  is  of  type A,
and A is a subtype of B, then a  can be initialized by a variable of  type B. Redeclaration is discussed in the next
section.

Note that TempResistor does not inherit the Resistor class. There are different equations for evaluation of v. If
equations are inherited from Resistor  then the set of equations will become inconsistent in TempResistor,
since MathModelica currently does not  support  named equations and replacement of equations.  For example, the
specialized equation below from TempResistor:

v=i*(R+RT*(T-Tref))

and the general equation from class Resistor

v=R*i

are inconsistent.

2.4 Class Parametrization
A distinctive feature  of  object-oriented  programming languages and environments is  ability to fetch classes from
standard libraries and reuse them for particular needs. Obviously, this should be done without modification of the
library codes. The two main mechanisms that serve for this purpose are:

è inheritance.  It  is  essentially  “copying”  class  definition  and  adding  more  elements  (variables,
equations and functions) to it.

è class parametrization (also called generic classes or types). It is replacing a generic type identifier in
whole class definition by an actual type.

In MathModelica we have a new way to control class parametrization. Assume that a library class is defined as

Model@SimpleCircuit,
Resistor 8R1@8R m 100<D, R2@8R m 200<D, R3@8R m 300<D<;
Equation@

Connect@R1.p, R2.pD;
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Connect@R1.p, R3.pDDD
Assume that in our particular application we would like to reuse the definition of SimpleCircuit: we want to
use the parameter values  given for R1.R  and R2.R  and the circuit  topology,  but  exchange Resistor  with the
temperature-dependent resistor model, TempResistor, discussed above.

This can be accomplished by redeclaring R1 and R2 as follows.

Type@RedefinedSimpleCircuit,
SimpleCircuit@8

Redeclare@TempResistor R1D,
Redeclare@TempResistor R2D<DD

Since TempResistor is a subtype of Resistor, it is possible to replace the ideal resistor model. Values of the
additional parameters of TempResistor can be added in the redeclaration:

Redeclare[TempResistor R1[{RTm0.1, Trefm20.0}]]

This  is  a  very  strong  modification  but  it  should  be  noted  that  all  equations  that  could  be  defined  in
SimpleCircuit are still valid.

3 MathModelica – the environment

3.1 MathModelicaFullForm
The  MathModelica  syntax  presented  so  far  is  the  syntax  that  can  be  given  as  input  (InputForm)  to  the
MathModelica system, this syntax is also used when code is printed in StandardForm where indentations and the
special character for the type operator are used.

Internally  in  the  MathModelica  system  uses  another  format  called  MathModelicaFullForm.  This  format  is  the
abstract  syntax   [2]  of  the  MathModelica  language  where  all  the  elements  of  the  language  are  separated
canonically to be easy to extract and compare for the functions operating on the MathModelica language. See also
the semantic implementation of  [9].

The following simple constant declaration

Declare@
Constant Real@2, 2D unitarr = 881, 0<, 80, 1<<; "2D Identity"D

is stored internally in the MathModelicaFullForm format as
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GetMathModelicaFullForm@unitarrD
Hold@Declaration@TYPE@Real, 82, 2<, 8Constant<, 8<D,

VariableComponent@unitarr, ValueBinding@881, 0<, 80, 1<<D,8<, 8<, StringRows@2D IdentityDDDD
A declaration of a global variable is represented by the Declaration node in the abstract syntax. This node has
two  arguments:  the  type  and  the  component.  The  type  is  represented  by  the  TYPE  node  which  stores  the  name,
array  dimension,  type  attributes  (Constant)  and  type  modifications  (which  is  empty  in  this  case).  The
component  argument  contains  a  VariableComponent  including  the  name  of  the  variable,  the  initialization
(ValueBinding), and in the end the comment string (StringRows) that is associated with the variable.

If  we  instead  declare  the  type  of  a  function  we  will  get  a  similar  expression  in  MathModelicaFullForm.  (The
syntax for function declarations have been introduced by the MathCode C++ system. [10])

Declare@
foo@Real x_D → Real@3DD

This declaration specifies that the Mathematica function foo[x] has the Real type for the input argument x, and a
Real vector for the return value. The MathModelicaFullForm is in this case:

GetMathModelicaFullForm@fooD
Hold@Declaration@TYPE@FunctionType@8TYPE@Real, 8<, 8<, 8<D<,8TYPE@Real, 83<, 8<, 8<D<, 8<D, 8<, 8<, 8<D,

FunctionComponent@foo, 8x<, 8Null<, foo@x_D, Null, NullDDD
The function declaration will also create a Declaration node with two arguments: type and component. In this
case  the  type  expression  (TYPE)  has  a  FunctionType  node  as  it's  first  argument  instead  of  a  name of  a  type
(like Real  in the array declaration above).  The FunctionType  node stores a list of the input arguments types
and another list with the type of the output values. Note that these type are also represented by the TYPE node, i.e.
any type can be built of nested TYPE expressions. The component is in this case a FunctionComponent which
stores the function name, input argument symbol names (the formal parameters), output names, and the pattern of
the function among other things not discussed here.

There are several goals behind the design of the MathModelicaFullForm format:

è Abstract  Syntax:  The  format  separates  the  different  constructions  in  the  language  systematically
making the navigation of types and code easier. 

è The  preserving  the  syntax  structure  of  the  Modelica  or  MathModelica  code.  This  means  that  the
mapping from Modelica to MathModelicaFullForm should be injective, and that transformations from
Modelica to MathModelicaFullForm into MathModelica input form should be reversible.
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è Symbol  table  format.  The  MathModelicaFullForm  should  be  possible  to  use  in  the  symbol  table.
Specially the representation of types with the TYPE node should be ready for efficient type inference,
i.e., deriving the types of general expressions.

è Internal  standard:  The  MathModelicaFullForm  format  should  be  used  by  all  the  components  in  the
MathModelica system. Therefore it must be easily parsed and unparsed.  By generating the FullForm
format  of  MathModelicaFullForm  we  get  a  pure  tree  syntax  of  the  format  which  is  very  easy  for
external programs to parse. The unparsing (e.g., to Modelica) is easy and can be done by simple table
driven unparsers if the MathModelicaFullForm is has a well designed abstract syntax.

3.2 Typed Pattern Matching
The  type  system in  MathModelica  is  mainly  used  for  generating  the  simulation  code,  whereas  the  Mathematica
computation  is  not  affected  of  the  type  of  a  symbol  or  a  function.  However,  the  types  can  be  used  in  pattern
matching.

Assume  we  have  a  list  of  equations  including  typed  variables,  and  that  some  of  these  variables  have  the  type
Angle. In particular we are interested in the expressions in the equations of the form Sin[exp] where the exp
is of  the type Angle.  Assume that the values of  the angle expressions  are always close to zero,  then to improve
simulation performance we could replace each Sin expression with it's third order approximation.

This can be done by the following rule.

r1 = TypedPattern@Sin@Angle x_DD → Normal@Series@Sin@xD, 8x, 0, 3<DD
HoldPattern@Sin@x_?HTypeQ@AngleDLDD → x −

x3
ccccccc
6

The TypedPattern  command works  as  the  inbuilt  HoldPattern  except  that  type information are extracted
and the pattern is rewritten using a predicate test called TypeQ.

3.3 Simulation
In Section 2.2 the MathModelica model of the circuit was defined. This circuit model will here be simulated.

To  simulate  a  MathModelica  model  a  sequence  of  transformations  must  be  done.  The  MathModelica  code  (or
MathModelicaFullForm  format)  is  the  starting  point  and  an  executable  binary  file  is  the  final  result  of  the
transformation.  The  simulation  is  performed  by  executing  the  binary  file  which  generates  a  data  file  with  the
simulation data,  that  is  then loaded into Mathematica.  We will  here  present  each of  these  steps to  perform the a
simulation. Note that the whole sequence is normally automated but is here manually done for illustration.

In Section 2.2.8, the MathModelicaFullForm model was stored in the the variable m. The first step is to export the
MathModelicaFullForm format to the Modelica format since the external simulation engine supports Modelica.

ExportModelica@"circuit.mo", mD;
The resulting file is

!! circuit.mo
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model Capacitor "Ideal electrical capacitor"
   extends TwoPin;
   parameter Real C(Unit="F") "Capacitance";
   
equation
   C*(der(v))=i;
end Capacitor;
model Circuit 
   Resistor R1(R=10);
   Capacitor C(C=0.01);
   Resistor R2(R=100);
   Inductor L(L=0.1);
   VsourceAC AC;
   Ground G;
   
equation
   connect(AC.p,R1.p) "Capacitor circuit";
   connect(R1.n,C.p);
   connect(C.n,AC.n);
   connect(R1.p,R2.p) "Inductor circuit";
   connect(R2.n,L.p);
   connect(L.n,C.n);
   connect(AC.n,G.p) "Ground";;
end Circuit;
type Current = Real(Unit="A");
model Ground "Ground"
   Pin p;
   
equation
   p.v=0;
end Ground;
model Inductor "Ideal electrical inductor"
   extends TwoPin;
   parameter Real L(Unit="H") "Inductance";
   
equation
   L*(der(i))=v;
end Inductor;
connector Pin 
   Voltage v;
   flow Current i;
end Pin;
model Resistor "Ideal electrical resistor"
   extends TwoPin;
   parameter Real R(Unit="ohm") "Resistance";
   
equation
   R*i=v;
end Resistor;
model TwoPin "Superclass of elements with two electrical pins"
   Pin p, n;
   Voltage v;
   Current i;
   
equation
   v=p.v-(n.v);
   0=p.i+n.i;
   i=p.i;;
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end TwoPin;
type Voltage = Real(Unit="A");
model VsourceAC "Sine-wave voltage source"
   extends TwoPin;
   parameter Real VA=220 "Amplitude [V]";
   parameter Real f=50 "Frequency [Hz]";
   protected
      constant Real PI=3.141592;
   
equation
   v=VA*(sin(2*PI*f*Time));
end VsourceAC;

The command OpenModel will make the external simulation engine to load the Modelica file.

OpenModel@"circuit.mo"D
The command InstantiateModel  instantiate a  model  object  of  the type Circuit.  Each component  in  that
model class will also be instatiated.

InstantiateModel@"Circuit"D;
The command TranslateModel starts a sequence of transformations:

è The set of differential equations is extracted from the Modelica classes into one set of equations. This
process is called flattening of the Modelica model, since it is equivalent to write the complete set of
equations for the model into one single class.

è After flattening, all the equations are sorted. Simplification algorithms can eliminate many of them. If
two syntactically equivalent  equations appear  only one copy of  the equations is kept.  Then they can
be converted to assignment statements. If a strongly connected set of equations appears, these can be
transformed  by  a  symbolic  solver.  The  symbolic  solver  performs  a  number  of  algebraic
transformations  to  simplify  the  dependencies  between  the  variables.  It  can  also  solve  a  system  of
differential equations if it has a symbolic solution.

è  Finally, C/C++ code is generated, and it is linked with a numeric solver.

TranslateModel@"Circuit"D;
The Modelica technology gives a high level modeling paradigm in which compilers, and algebraic transformation
can  gain  performance  in  the  simulation  runs,  by  reducing  the  number  of  equations,  and  solving  equations
symbolically. In  the MathModelica environment the user  can improve the symbolic transformation using domain
specific knowledge to derive transformation rules  that  are applied on the equations  before  the simulation code is
generated. The MathModelica environment is an open system where the user has access to the different layers of
transformations.

The final transformation produces a C code for the mode in the file "dsmodel.c".

!! dsmodel.c
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#include <matrixop.h>
/* Prototypes for functions used in model */
/* Codes used in model */
/*
*/
/*
*/
/* DSblock model generated by Dymola from Modelica model. */

/* DSblock C-code: */

#include <moutil.c>

/* Define variable names. */

#define Sections_
#define R1_p_direction  Variable(0)
#define R1_n_direction  Variable(1)
#define R1_R  Variable(2)
#define C_p_direction  Variable(3)
#define C_n_direction  Variable(4)
#define C_C  Variable(5)
#define R2_p_direction  Variable(6)
#define R2_n_direction  Variable(7)
#define R2_R  Variable(8)
#define L_p_direction  Variable(9)
#define L_n_direction  Variable(10)
#define L_L  Variable(11)
#define AC_p_direction  Variable(12)
#define AC_n_direction  Variable(13)
#define AC_VA  Variable(14)
#define AC_f  Variable(15)
#define AC_PI  Variable(16)
#define G_p_direction  Variable(17)
#define C_n_v  Variable(18)
#define AC_n_v  Variable(19)
#define L_n_v  Variable(20)
#define G_p_v  Variable(21)
#define AC_p_v  Variable(22)
#define R1_p_i  Variable(23)
#define R1_n_v  Variable(24)
#define R1_n_i  Variable(25)
#define R1_v  Variable(26)
#define C_p_i  Variable(27)
#define C_n_i  Variable(28)
#define R2_p_i  Variable(29)
#define R2_n_v  Variable(30)
#define R2_n_i  Variable(31)
#define R2_v  Variable(32)
#define L_n_i  Variable(33)
#define L_v  Variable(34)
#define AC_p_i  Variable(35)
#define AC_n_i  Variable(36)
#define AC_v  Variable(37)
#define G_p_i  Variable(38)
#define C_v   State(0)
#define der_C_v  Derivative(0)
#define L_i   State(1)
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#define der_L_i  Derivative(1)
#define CPUClk  Output(0)

TranslatedEquations
CPUClk = CurrentClockTime;

InitialSection
R1_p_direction = 1;
R1_n_direction = (-1);
R1_R = 10;
C_p_direction = 1;
C_n_direction = (-1);
C_C = 0.01;
R2_p_direction = 1;
R2_n_direction = (-1);
R2_R = 100;
L_p_direction = 1;
L_n_direction = (-1);
L_L = 0.1;
AC_p_direction = (-1);
AC_n_direction = 1;
AC_VA = 220;
AC_f = 50;
AC_PI = 3.141592;
G_p_direction = 1;
C_n_v = 0;
AC_n_v = 0;
L_n_v = 0;
G_p_v = 0;

OutputSection

DynamicsSection
AC_v = 220*sin(314.1592*Time);
AC_p_v = AC_v;
R1_n_v = C_v;
R1_v = AC_p_v-R1_n_v;
R1_p_i = 0.1*R1_v;
R1_n_i =  -R1_p_i;
C_p_i =  -R1_n_i;
der_C_v = 100.0*C_p_i;
R2_n_i =  -L_i;
R2_p_i =  -R2_n_i;
R2_v = 100*R2_p_i;
R2_n_v = AC_p_v-R2_v;
L_v = R2_n_v;
der_L_i = 10.0*L_v;

AcceptedSection
C_n_i =  -C_p_i;
L_n_i =  -L_i;
AC_p_i =  -(R1_p_i+R2_p_i);
AC_n_i =  -AC_p_i;
G_p_i =  -(L_n_i+C_n_i+AC_n_i);

DefaultSection
EndTranslatedEquations

#include <dsblock6.c>
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DeclareVariable("R1_p_direction")
DeclareConstant(1)
DeclareVariable("R1_n_direction")
DeclareConstant((-1))
DeclareVariable("R1_R")
DeclareConstant(10)
DeclareVariable("C_p_direction")
DeclareConstant(1)
DeclareVariable("C_n_direction")
DeclareConstant((-1))
DeclareVariable("C_C")
DeclareConstant(0.01)
DeclareVariable("R2_p_direction")
DeclareConstant(1)
DeclareVariable("R2_n_direction")
DeclareConstant((-1))
DeclareVariable("R2_R")
DeclareConstant(100)
DeclareVariable("L_p_direction")
DeclareConstant(1)
DeclareVariable("L_n_direction")
DeclareConstant((-1))
DeclareVariable("L_L")
DeclareConstant(0.1)
DeclareVariable("AC_p_direction")
DeclareConstant((-1))
DeclareVariable("AC_n_direction")
DeclareConstant(1)
DeclareVariable("AC_VA")
DeclareConstant(220)
DeclareVariable("AC_f")
DeclareConstant(50)
DeclareVariable("AC_PI")
DeclareConstant(3.141592)
DeclareVariable("G_p_direction")
DeclareConstant(1)
DeclareVariable("C_n_v")
DeclareConstant(0)
DeclareVariable("AC_n_v")
DeclareConstant(0)
DeclareVariable("L_n_v")
DeclareConstant(0)
DeclareVariable("G_p_v")
DeclareConstant(0)
DeclareVariable("AC_p_v")
DeclareVariable("R1_p_i")
DeclareVariable("R1_n_v")
DeclareVariable("R1_n_i")
DeclareVariable("R1_v")
DeclareVariable("C_p_i")
DeclareVariable("C_n_i")
DeclareVariable("R2_p_i")
DeclareVariable("R2_n_v")
DeclareVariable("R2_n_i")
DeclareVariable("R2_v")
DeclareVariable("L_n_i")
DeclareVariable("L_v")
DeclareVariable("AC_p_i")
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DeclareVariable("AC_n_i")
DeclareVariable("AC_v")
DeclareVariable("G_p_i")
DeclareState("C_v", "der_C_v", 0, 0.0)
DeclareState("L_i", "der_L_i", 1, 0.0)
DeclareOutput("CPUClk")

DeclareAlias("R1_p_v", " ", "AC_p_v", 1)
DeclareAlias("R2_p_v", " ", "AC_p_v", 1)
DeclareAlias("R1_i", " ", "R1_p_i", 1)
DeclareAlias("C_p_v", " ", "R1_n_v", 1)
DeclareAlias("C_i", " ", "C_p_i", 1)
DeclareAlias("R2_i", " ", "R2_p_i", 1)
DeclareAlias("L_p_v", " ", "R2_n_v", 1)
DeclareAlias("L_p_i", " ", "L_i", 1)
DeclareAlias("AC_i", " ", "AC_p_i", 1)
#define NX_    2
#define NX2_   0
#define NU_    0
#define NY_    1
#define NW_    39
#define NP_    0
#define NRel_  0
#define NCons_ 0
#define NA_    9

#include <dsblock5.c>

The  initial  values  can  be  taken  from  the  model  definition.  If  necessary,  the  user  specifies  the  parameter  values.
Numeric solvers  for  differential  equations  (such as LSODE, part  of  ODEPACK [8] )  give the user  possibility  to
ask about the value of specific variable in a specific time moment. As the result a function of time, e.g. R2.v HtL can
be computed for  a time interval @t0 , t1D  and displayed as a graph or  saved in a file.  This data presentation is the
final result of system simulation.

The command SimulateModel  will compile and link the C code file and execute the resulting binary file. The
parameter  values  are  taken  form  the  default  settings  given  in  the  Modelica  model  and  in  the  defaults  of  the
simulation engine. The parameter values can be changed between the simulation runs.

SimulateModel@"Circuit"D
We can check that the simulation data in produced.

FileNames@"∗.mat"D8DSRES.MAT<
The simulation data is load back into Mathematica.
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Hsimdata = GetSimulationData@"dsres.mat"DL êê Short88CPUClk → InterpolatingFunction@880., 1.<<, <>D,
i49j, AC.i → InterpolatingFunction@880., 1.<<, <>D<<

The simulation data is automatically converted to rules of InterpolatingFunctions, in the same format as NDSolve
produce.

A simple plot of one of the variables in the simulation data in the time interval [0, 0.2].

Plot@C.p.v@tD ê. simdata, 8t, 0., 0.2<D;

0.05 0.1 0.15 0.2

-5

5

10

3.4 Graphical Model Editors and Visualization

3.4.1 Model Editor

A 2D graphical model editor can be used to define a model by drawing and editing an object diagram very similar
to the circuit diagram shown in Figure 1. Such a model editor is developed for MathModelica. The user can place
icons  that  represent  the  components  and  connect  those  components  by  drawing  lines  between  their  iconic
representations.  For  clarity, attributes of  the MathModelica definition for the graphical layout of  the composition
diagram (here: an electric circuit diagram) are not shown in examples. These attributes are usually contained in a
MathModelica  model  as  annotations  (which  are  largely  ignored  by  the  MathModelica  translator  and  used  by
graphical tools).

3.4.2 Dynamic Simulation Visualization

Annotations  in  the  MathModelica  language  can  also  be  used  to  store  the  3D  graphical  representations  of  the
physical  objects  that  are  modeled,  e.g.,  when  modeling  mechanical  systems  the  graphical  models  are  stored
together  with the dynamical models. This can be used to do a physical visualization using the simulation data to
steer the animation [4] .
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3.5 Computational Steering
The  set  of  simulation  commands  provided  by  the  MathModelica  environment  can  be  used  to  as  a  scripting
language together with the Mathematica  language. Except from controlling the simulation the commands provides
the features:

è Setting  up  schedules  for  simulation  runs  and  generating  simulation  reports  using  Mathematica
notebooks.

è Starting simulation runs on remote machines.

è Management of parallel simulations.

è Management for simulation results and model libraries.

The  major  advantage  with  the  notebook  concept  is  that  the  same  interface  can  be  used  for  both  storing  and
document model, and for simulation scripts and logging the simulation result.

3.6 Codegeneration and Interfacing External Code
The  Mathematica  application  MathCode  C++   [10]  generated  C++  code  from  Mathematica  code.  This  is  an
essential  component  in  the MathModelica environment since it  provides  tools  for  having general function call  in
the  simulation  models.  Any  MathCode  C++  supported  function  or  algorithm  in  Mathematica  can  be  used
seamlessly  in  the  MathModelica  models.  The  C++  generated  code  from  MathCode  C++  is  them  automatically
linked to the simulation engine.

MathCode  C++ also  provides  tools  for  interfacing  external  (object  code)  in  Fortran,  C,  and  C++ into  C++ code
produced by MathCode C++. In this way external code implementing models (like old Fortran model libraries) can
be integrated into the MathModelica models.

4 Conclusions
The MathModelica is extension of the Modelica language targeted for work within the Mathematica environment.
This language is object-oriented (the programs consist of collections of classes). The language is equation based:
instead  of  traditional  functions  and  procedures  we  use  non-causal  equations  which  specify  algebraic  and
differential  relations  between  numerical  variables.  Input-output  causality  is  not  specified,  and  therefore  these
equations can be used in multiple ways. 

The  environment  integrates  most  activities  needed  in  simulation  design  and  use:  documentation,  modeling
(coding),  symbolic processing and transformation of formulas, input and output data visualization. This advanced
programming environment can be applied in various simulation applications.
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