
An Easy-to-use Generic Model Configurator for
Models in Multiple Tool Formats

Vadim Engelson1, Peter Fritzson1, Ulf Sellgren2

1Department of Computer and Information Science

Linköping University
SE-58183 Linköping, Sweden

{petfr,vaden}@ida.liu.se
http://www.ida.liu.se/~pelab

2KTH - Department of Machine Design

Royal Institute of Technology
SE-10044 Stockholm, Sweden

ulfs@md.kth.se

ABSTRACT

Application models for simulation are usually built by combining and configuring a selection of
component models into an application model. This can be done by manually editing the model text
representations. However, it is usually much easier to use a graphic editor for selecting och connecting
components. The MathModelica tool has such a graphic editor, adapted for components in Modelica
libraries. However, since Modelica is a generic model description language, it has been possible to
extend the editor to support configuration of components in other modeling tool formats, e.g. ADAMS
or ANSYS. When the editor is used in this generic way, the Modelica connections and interfaces are
translated into the format of the specific tool. The editor does not need to know anything about the
internals of model components that are combined, just the interfaces. The configurator has successfully
been used to configure and simulate mechanical bearing models as well as a wheel loader model,
currently supporting three different formats: Modelica MBS, ADAMS, and ANSYS, with ongoing
development for the SKF BEAST MBS model format

KEYWORDS

Modelica, Configuration, Multi-Body Dynamics, MathModelica, Equation-based, FEM

1 INTRODUCTION

This paper describes generic configuration of simulation applications based on model components using
a generalized GUI tool as extensions of MathModelica [3] based on the Modelica standard [2], [5],
extended to handle domain-specific models not expressed in Modelica. For non-Modelica models,
configuration and connection are done at the meta level, using a drag-and-drop GUI to specify model
components and connections. How this can work for non-Modelica simulation tools? The reason is that
the graphical model design and topology (in the Modelica standard format) is interpreted differently.
Components are interpreted as components in another tool; connections are interpreted as data
communication between those components in the other tool. However, such interpretation is only
possible for coarse-grained components, at the “meta-level”.

2 THE MATHMODELICA GRAPHIC CONFIGURATION EDITOR

Figure 1. The MathModelica graphic model editor showing a simple electro-mechanical DC-motor model.

The standard MathModelica graphic model editor allows picking components from the library windows
to the left, dragging these components icons into the drawing area in the middle, and connecting these by
lines that represent communication or attachment between the components. The configuration editor we
have developed as en extension works in a similar manner.

3 CONNECTING WHEEL LOADER COMPONENTS

A special library of wheel loader components was created, with model components either in Modelica,
in ADAMS, or in ANSYS. A general graphic configuration editing tool has been developed, for
configuration of components in either of the three model formats with connections representing physical
interactions.

The graphic configuration editor maps icons and graphic connections to a Modelica model
representation which is already standardized according to [5] or [2], and defines strongly typed,
semantically well-specified connections. This Modelica connection model format is subsequently
translated to ADAMS or ANSYS script file representation. To summarize:

• For Modelica, the mapping from icons and graphic connections to a Modelica model representation
is already standardized according to [5] and [2]. The wheel loader lifting mechanism components are
mapped to primitive components in the Modelica mechanical Multi-Body System (MBS) library [5]
for simulation.

• For ADAMS, the editor maps connections to small pieces of ADAMS command script code, and
each component to a corresponding file containing a single ADAMS part component.

• For ANSYS, the editor maps each connection to an ANSYS connection model that properly connects
the related groups on nodes, i.e., the mating features. Each component is mapped to a corresponding
file containing a single ANSYS submodel corresponding to a component. The total aggregated FEM
model resulting from connecting the component models is a higher order ANSYS script file that
sequentially loads and orients the configured component models.

Note that configuring components based on Modelica MBS or ADAMS model components results in a
dynamic multi-body simulation, whereas in the third case a completely different kind of simulation is
obtained, i.e., a FEM-based simulation computing distributed physical variable such as tension, etc.

Figure 2. Connected components from the wheel-loader library, forming a wheel-loader lifting unit model.

In Figure 3 below the complete wheel loader lifting mechanism is shown in a 3D visualization. The
obtained simulation and visualization generated from the complete configured wheel loader lifting unit
model can be run and controlled in real-time.

Figure 3. Graphic 3D view of the configured wheel loader lifting unit mechanism.

4 CONFIGURING COMPONENTS VIA CONNECTIONS

In the following we will primarily discuss components, connections, and connectors in some more detail,
with emphasis on connections. Modelica is used as a general system model configuration language.

Components in Modelica models are simply instances of Modelica classes. Those classes should
have well-defined interfaces, sometimes called ports, in Modelica called connectors, for coupling
between a component and the rest of a system – e.g. the wheel loader lifting unit. Each rectangle (or
other shape) in a connection diagram, e.g. depicted in Figure 2 and Figure 4, represents a physical
component such as a body, a bar, a joint, etc.

The connections represented by lines in the diagram correspond to real, physical connections. For
example, connections can be realized by mechanical connections, by pipes for fluids in flow systems, by
heat exchange between components, etc.

The connectors, i.e., interface points, are shown as small square dots on the shapes in the diagrams of
Figure 2 and Figure 4. Variables at such interface points represent the interaction between the
component and the rest of the system.

connector1 connector2

connection

 component1 component2
connect(..., ...)

Figure 4. Connection between two connectors, i.e., ports, on components via a connection depicted as a line
and realized as a connect statement: connect(component1.connector1, component2.connector2).

Connections between components can be established between connectors of equivalent type. Modelica
supports equation-based acausal connections, which means that connections are realized as equations.
For acausal connections, the direction of data flow in the connection need not be known. If needed,
causal connections with a flow direction can be established by connecting a connector with an output
attribute to a connector declared as input.

Two types of coupling can be established by connections depending on whether the variables in the
connected connectors are nonflow (default), or declared using the flow prefix:

1. Equality coupling, for nonflow variables, according to Kirchhoff’s first law.

2. Sum-to-zero coupling, for flow variables, according to Kirchhoff’s current law.

For mechanical systems such as the wheel loader lifting unit, the flow variables are typically forces and
nonflow variables are positions.

Not all connections between connectors are legal. The types of the connectors to be connected must
agree. Moreover, certain tool or library-specific conventions apply to the way mate couplings, frame
connections, etc., can be legally connected in models based on components from a particular library or
tool such as Modelica MBS, ADAMS, or ANSYS.

5 CREATING COMPONENT ICONS WITH CONNECTOR MARKERS

One issue concerns the creation of pictorial component representations, i.e. icons, for use in the
connection diagrams.

 (a) (b) (c) (d)

Figure 5. (a): A 3D image from a CAD tool with joints marked. (b): The 3D image icon exported from CAD.
(c): Same image with joint positions marked at tips of arrows. (d) Image with rectangular connector icons.

An icon needs to be defined for each component. For mechanical components of a known mechanism
the icon can be produced as a screen-dump from a 3D visualization or using a CAD tool.

Joint positions are points. The connectors are represented by rectangles. In order to emphasize joint
positions for the body in Figure 5, red arrows have been added. This represents a single graphical entity
(icon) that can be used in the diagram editor, and is specified in Modelica as follows:

partial model GDF_icon
 annotation(Diagram(Bitmap(extent=[-80, 80; 80, -80], name="GDF_icon.gif")),
 Icon(Bitmap(extent=[-80, 80; 80, -80], name="GDF_icon.gif")));
end GDF_icon;

MF1

MF2

GDF

MF3

The three connectors used with these components are described with their positions specified via the
extent attribute. Here coordinates are presented as pairs [x1,y1; x2,y2] where x is measured left-to right
in an [-100,100] interval, Y is measured top-to-down in the same interval.

model GDF_comp
 extends GDF_icon;
 matingconnector mc1 annotation(extent=[-62, -70; -42, -50]);
 matingconnector mc2 annotation(extent=[50, -28; 76, -6]);
 matingconnector mc3 annotation(extent=[48, 38; 74, 64]);
end GDF_comp;

6 SIMULATION TOOL ATTRIBUTES FOR COMPONENTS

The kind of simulation tool associated with the component when it appears in the diagram is indicated
by inheriting partial classes AdamsPart, AnsysPart, ModelicaPart with associated attributes and icons.

Each simulation code (with simulation code filename) is represented as a separate Modelica model.
It has its own graphical icon (which can be generated automatically from extra information about the
model). In addition to filename, the model can store arbitrary additional numerical and textual attributes
that can be useful when the “complete”, “top-level code” simulation file is generated.
model GDF_Ansys_Part

extends AnsysPart(
 filename="GDFBeams.ans",
 orientation="PHMGDFTM.txt");

 extends GDF_comp;
 matingfeature mf1(…);
 matingfeature mf2(…);
 ...
end GDF_Ansys_Part;

model GDF_Adams_Part
extends AdamsPart(
 filename="GDF.cmd",
 part="GDF");

 extends GDF_comp;
 matingfeature mf1(…);
 matingfeature mf2(…);
 ...
end GDF_Adams_Part;

model GDF_Modelica_Part
extends ModelicaPart(
 filename="GDF.mo");

 extends GDF_comp;
 matingfeature mf1(…);
 matingfeature mf2(…);
 ...
end GDF_Modelica_Part;

7 ANSYS

An FEM submodel is a discretized representation of a product model component with a specified
orientation in space that is stored in the ANSYS proprietary script format. The interactions between two
FEM submodels is modeled with an ANSYS connection model.

An ANSYS connection model is a self-contained ANSYS model, e.g. a group of contact elements or
sets of linear equations that connects pairs of higher order mating features on two different submodels.

Mating features as currently defined as groups of nodal entities that are defined within each FEM
submodel. Node numbers, property ranges and the like for an ANSYS submodel or interface feature are
stored as source file metadata, e.g. [6].

Parts of the generated ANSYS script files for the wheel loader lifting unit configuration are shown
below:

! load submodels
 *use,orient,’PHMGDFTM’,’txt’
 *use,load,’GDFBeams’,’ans’
 *use,orient,’PHMGHTM’,’txt’
 *use,load,’GHBeams’,’ans’
 *use,orient,’PHMBITM’,’txt’
 *use,load,’BIBeams’,’ans’
 *use,orient,’PHMHIJTM’,’txt’
 *use,load,’HIJBeams’,’ans’

! connect submodels
 *use,connect,'revolute','gdfmfgh','ghmfgdf' ! gdf-gh
 *use,connect,'revolute','ghmfhij','hijmfgh' ! gh-hij
 *use,connect,'revolute','bimfhij','hijmfbi' ! bi-hij

8 ADAMS

When used in ADAMS connectors need to have several special attributes, e.g. as follows:

matingfeature mf3(matetype="rotate", altmatetype="spherical")

Here matetype and/or altmatetype can be “rotate”, “ fixed” or “spherical”. The type of connect
used when resulting code is emitted is computed internally partly based on such information. Some
generated ADAMS script code is shown below:

file command read file="C:/Demonstrator/init_ground.cmd"

file command read file="C:/Demonstrator/Lift_frame.cmd"
file command read file="C:/Demonstrator/tvarbalk.cmd"
file command read file="C:/Demonstrator/Liftcyl.cmd"
...
! Read marco files
macro read macro_name="connect spherical" file_name="C:/Demonstrator/connect_sph.mac"
macro read macro_name="connect revolute" file_name="C:/Demonstrator/connect_rev.mac"
...
!Connect Lift Frame to ground
connect revolute jname=REV1 Part1=ground Part2=Lift_Frame Part1marker=MARKER_MF2 Part2marker=MARKER_MF2
connect revolute jname=REV2 Part1=ground Part2=Lift_Frame Part1marker=MARKER_MF1 Part2marker=MARKER_MF1
!Connect Lift cylinder
connect revolute jname=REV3 Part1=ground Part2=Lift_piston Part1marker=MARKER_MF4 Part2marker=MARKER_MF1
...

9 CONCLUSIONS

This general configuration approach to modeling has demonstrated that it is indeed possible to have an
easy-to-use general model configurator based on a general and well specified model representation
format such as Modelica or ModelicaXML, where the configurator can translate the configuration
information to other formats and tools such as ANSYS and ADAMS. In this case the translation was
from a graphic configuration to Modelica, and for ANSYS and ADAMS via ModelicaXML to the
respective proprietary format.

This configuration approach to FEM modeling, here with ANSYS, assisted by the presented generic
model configurator, enables most practical finite element models of technical systems to be created in a
time linear to the number of FEM submodels and interface features [6].

The fact that the time to configure a FEM model of a system is almost independent of the size of the
submodels indicates that the presented modeling method and tool reduces FEM modeling complexity.

Similar conclusions can be drawn for other kinds models, such as the multi-body system models
configured for simulation with Modelica MBS or ADAMS.

10 ACKNOWLEDGEMENTS

Kjell Andersson contributed the ADAMS demonstration example with script code. Daniel Hedberg and
Peter Aronsson made important contributions to the design and implementation of the graphic
configuration tool, with input from Dag Fritzson and Alexander Siemers at SKF. Partial support for this
work was received from Vinnova in the VISP project. The development of the graphic configuration
tool has also been partially supported by SKF and by MathCore Engineering AB.

REFERENCES

[1] Engelson, Vadim, Peter Bunus, Lucian Popescu, and Peter Fritzson. Mechanical CAD with Multibody

Dynamic Analysis Based on Modelica Simulation. In Proceedings of the 44th Scandinavian Conference on
Simulation and Modeling (SIMS’2003), available at www.scan-sims.org. Västerås, Sweden. September
18-19, 2003.

[2] Fritzson, Peter. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-IEEE
Press, ISBN 0-471-471631, 2003.

[3] MathCore Engineering AB. MathModelica User’s Guide. www.mathcore.com, 2003.

[4] MathCore Engineering AB. Internal document draft. MathModelica CAD Integrator Users Guide.
www.mathcore.com, 2003.

[5] Modelica Association. A Unified Object-Oriented Language for Physical Systems Modeling: Language
Specification Version 2.1. Available at http://www.modelica.org, April, 2004.

[6] Sellgren, Ulf. Architecting models of technical systems for non-routine simulations, In Proceedings of the
14th International Conference on Engineering Design (ICED 03), ISBN : 1-904670-00-8, Stockholm,
Sweden, August 19-21, 2003.

[7] Tiller, Michael. Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers 2001,
ISBN 0-7923-7367-7.

