
Aircraft – A Modelica Library for Aircraft Dynamics Simulation

Andreas Idebrant, Peter Fritzson

MathCore Engineering AB, Teknikringen 1B,
SE-58320 Linköping, Sweden

Email: {idebrant, petfr}@mathcore.com; http://www.mathcore.com

ABSTRACT

The Aircraft library is a versatile Modelica library for modeling and simulating aircraft dynamics
applications. It is structured into a number of sublibraries, that contain models for describing the
aerodynamics, atmosphere aerodynamic impact on aircraft, bodies, engine models, coordinate
transformation models, etc. The library is very easy to use, and automatically computes up-to-date
center-of-mass and moment of inertia depending on the mass and position of components included in the
application model. External components written in C can be included, e.g. external controller models.
The library has successfully been used to model the flight dynamics of a generic aircraft whose visual
appearance has superficial similarities to the Swedish JAS Gripen aircraft, using the MathModelica tool
for modeling, simulation, and 3D visualization.

KEYWORDS

Modelica, Aircraft, Dynamics, MathModelica, Equation-based, Object-Oriented

1 INTRODUCTION

The Aircraft library was developed in 2003 at MathCore Engineering AB, Linköping, Sweden, in
cooperation with FOI (The Swedish Defense Institute) in Stockholm. The project was financed by FMV
(Swedish Defence Material Administration) and conducted by FOI. The developed library is a property
of FOI. The goal was to make a generic and easy-to-use aircraft model in the object-oriented modeling
language Modelica. The GAM data [1] and the ADMIRE model [2] have been used as a reference. Some
design principles have been adopted from
[3] and [4]. The result is the Aircraft library containing about 50 component classes for modeling
and simulating an aircraft in various configurations.
 This paper does not give any introduction to the Modelica language or the MathModelica [9] tool. For
more information about Modelica there are currently two books available: “Principles of
Object-Oriented Modeling and Simulation with Modelica 2.1” [5] and “Introduction to Physical
Modeling with Modelica” [6].

2 LIBRARY STRUCTURE

The Aircraft library currently consists of the following subpackages:

Aerodynamics Aerodynamic models
Atmosphere Aerodynamic impact on aircraft
Bodies Aircraft bodies without aerodynamic influence
Examples Example models
Functions Common functions
Icons Icons specific for this package
Interfaces Connector interfaces
Propulsion Engine models
Test Test models to verify their behavior

Transformations Transformation models for frames
Types Types specific for the main package
Utilities Utility components used for aircrafts

In the following we will briefly describe a few of these subpackages, but will first take a quick look at a
complete aircraft system model, including an aircraft body.

3 A COMPLETE AIRCRAFT MODEL

Figure 1. Left: The structure of a complete aircraft system model. Right: The actual aircraft body.

The connection diagram to the left in Figure 1 shows an example of a whole aircraft system model,
including the aircraft body, gravitational and aerodynamic influence, controller, propulsion unit, etc.
The picture to the right shows an aircraft body viewed from the side.

4 AERODYNAMICS SUBPACKAGE

Figure 2. Overview of the Aerodynamics subpackage.

The Aerodynamics subpackage basically consists of three types of different aerodynamic models:

 Aerodynamics_const

Constant aerodynamic force and moment coefficients where a
certain flight mode can be studied if you know the value of the
coefficients.

Aerodynamics_mech

Consists of components with mechanical flanges. This means that
each rudder can be placed in an arbitrary position and orientation
on a wing. The rudders contain equations for the force acting on
the effective area of the rudder. The components with mechanical
flanges have the extension “_mech”.

Aerodynamics_table

Contains block components similar to MATLAB/Simulink
models. The aerodynamic coefficients are calculated using
external function calls to C-functions using GAM data [1]. The
general data and conventions are described in “Report on the
usage of the Generic Aerodata Model”.

Table 1. Overview of the Atmosphere package.

The last two objects have inputs for controlling the rudders and outputs from the rudder deviations.

5 ATMOSPHERE SUBPACKAGE

Figure 3. Overview of the Atmosphere package.

The Atmosphere package contains objects to build a model of the surrounding environment. Some
properties that can be considered as constants are collected in the AtmophericProperties model.
A standard atmosphere is modeled in the Standard component and calculates pressure, temperature,
and density. The different quantities needed are calculated using the different functions placed in the
Atmosphere package. There are also help functions for calculating different quantities placed in the
package. The two earth models are used to model a constant gravity field and an altitude dependent
gravity field respectively. They contribute the gravitational constant, g, to the system.

6 BODIES SUBPACKAGE

Figure 4. An aircraft body with variable center of gravity (CoG) and mass moment of inertia (I_CoG).

Currently the Bodies package contains one aircraft Body class containing aircraft body dynamics,
specified in 6 degrees of freedom. It can handle movable center of gravity and also variable mass
moment of inertia.

There are two connectors on the body. The lower should be connected to a model that calculates the
gravitational acceleration, e.g. the earth models in Atmosphere package. The upper connector indicates
the center of gravity (CoG) of the body when nothing else is attached. This connector should be
connected to a reference point where the body fixed coordinate system is attached, e.g. an
ApplicationPoint in the Transformations library. It is of course possible to use a transformation
object to place the CoG in an arbitrary way.

To be able to calculate the body dynamics correctly we need to know the total center of gravity and
total mass moment of inertia in that point. To be able to do this, two quantities were introduced in the
connector type Frame. These are mass (mass), and the product of mass and position to initial center of
gravity (md). These are flow variables, which means that they are summed up in a junction point and in
this case the total sum are located in frame_b at the top in Figure 4.

The total mass (m_tot) is calculated using the mass at frame_b (the upper connector in Figure 4)
and the total empty body mass:

m_tot = frame_b.m + mass; (1)

In the same way the mass moment of inertia at frame_b is summed:
I_tot = frame_b.I + I_0; (2)

Position of center of gravity from initial center of gravity (r_CoG in Figure 4) is calculated by summing
the total mass of components multiplied by their distance to the initial center of gravity divided by the
total mass, i.e.

r_CoG = frame_b.md/m_tot; (3)

The total mass moment of inertia around CoG is calculated according to below:
I_CoG = I_tot - m_tot*skew(r_CoG)*skew(r_CoG); (4)

At the end the differential equations for the movement are calculated:
der(r) = Tmat*(v + cross(w, r_CoG));
der(Q) = -0.5*Q*{{0,p_w,q_w,r_w},{-p_w,0,-r_w,q_w},
 (-q_w,r_w,0,-p_w},{-r_w,-q_w,p_w,0}};
F = m_tot*(der(v) - g + cross(w, v));
M = I_CoG*der(w) + cross(w, I_CoG*w);

(5)

7 FRAME CONNECTORS

In the Interfaces subpackage there are four different connector models. The most fundamental
connector is the Frame connector. The two connectors Frame_a (filled icon, positive side of
component) and Frame_b (unfilled, negative) inherit from Frame and are identical apart from icons.

connector Frame "Connector for aerodynamic and mechanical purposes"
 SI.Pressure p "Static pressure";
 SI.Density rho "Atmosphere density";
 SI.Temperature T "Static temperature";
 Types.TransferMatrix Tmat "Transfer matrix from local to inertial system";
 SI.Position r[3] "Position of frame relative inertial frame";
 SI.AngularVelocity w[3] "Angular velocity";
 SI.Velocity v[3] "Translational velocity in earth frame";
 SI.Acceleration g[3] "Gravitational acceleration";
 flow SI.Force[3] F "Force";
 flow SI.Torque[3] M "Torque";
 flow SI.Mass m "Mass";
 flow Real[3] md(unit="kg.m") "Product mass*position (m*d) for calc CoG";
 flow SI.MomentOfInertia[3,3] I "Mass moment of inertia";
end Frame;

8 TRANSFORMATIONS, TYPES, AND AIRCRAFT ENGINE

Figure 5. Left: Transformation and reference objects. Right: Engine model in the Propulsion subpackage

The transformation and reference objects are essential for dealing with coordinate systems. They can
move the coordinate system from one point to another. The ApplicationPoint serves as a reference
point for the fixed coordinate system. It has a Frame_ref connector in the middle and inside the flow
variables are all set to zero, since the connector should not produce any physical effect to the
surroundings. The Translation object makes a translation from frame 1 (non-filled) to frame 2
(filled). If a rotation of the system is needed the Rotation object is used. Here it is possible to specify
which axis (x, y, or z) the coordinate system is going to rotate about and which angle.

The Aircraft library makes extensive use of physical types. The Modelica standard library
contains the packages SIunits and NonSIunits where most of the needed types can be found.
However, there are a few missing and they are defined in the Types subpackage:
 type TransferMatrix = Real[3,3] "A standard 3x3 rotation matrix";
 type Quaternion = Real[4] "Quaternion {q0,q1,q2,q3}";
type EulerAngle = SI.Angle[3] "Euler angles {psi,theta,phi}";

The current engine model (see Figure 5, right) in the Propulsion subpackage is very simple. The more
advanced engine model described in Figure 6 of [2] is not used here. There are two ways to configure
this model. Either you choose to set a fixed force using the parameter fixed_F or you can use the block
connection at the top to use an arbitrary signal. The block connection is compatible with the Blocks
library from the Modelica standard library. As soon as the block connector is connected the parameter
fixed_F is ignored.

9 UTILITIES SUBLIBRARY

Figure 6. Components present in the Utilities library.

Some components not belonging to either of the other subpackages or just used for test purposes have
been placed in the Utilites subpackage.

The StateSink component is just used to give the system values for the effort variables. For
example, it is used in the Test_Translation model in the Test package to give a consistent system
when testing the Translation model.

To be able to test certain model classes without having a full working aircraft a simplified aircraft,
DummyAircraft, was invented initially to supply the system with the required dynamics data.

When simulating a change in load and total mass it is useful to make use of the Load model. It
contains mass and mass moment of inertia. It can be placed arbitrary by using the transformation objects
in the Transformations package. The pink connection to the upper left makes it possible to connect a
Boolean component from the standard Modelica library and simulate a load drop, i.e. disconnect the

mass. This can be useful when simulating a missile that is being fired or a tank being dropped at a certain
event.

The multiplexers and demultiplexers are used as inputs and outputs for a controller. The limiter
model limits a signal and there are also two models that convert between degrees and radians.

The five sensors are ideal and transfers a property in a frame connector to the physical value
specified by their name.

10 AIRCRAFT EXAMPLES SUBPACKAGE

The Examples subpackage contains typical application models built using the component models of the
Aircraft library, also including the following two simple examples:

1. The Skid model, where the tail rudder wiggles making the body to “skid”. It is possible to
simulate the model for about 4 seconds before it fails.

2. The SimpleControl model, where a simple PID-controller has been defined controlling
alpha-angle and height. This model can be simulated for about 50 seconds before it fails.

Recently a more realistic controller has been designed, which has been used for modeling more complex
and prolonged flight scenarios, including a looping scenario.

11 MODEL TESTING AND VALIDATION

To make sure that the models are valid, each component has been tested thoroughly. Almost all tests
have also been stored in the Test package. Often the name convention used is Test_component, where
component is the name of the component being tested. Doing these tests, errors can be discovered in an
early stage and are easier to pinpoint and correct.

The behavior of the components has been validated using “know-how”, e.g., if you move the tail
rudder the aircraft should turn in the correct direction etc. A 3D-visualization tool, called MVIS1,
together with a simple 3D CAD-model of a fighter aircraft has been used for that purpose.

12 CONCLUSIONS

The Modelica Aircraft library has proved to be an easy-to-use and fairly comprehensive library for
building models of aircraft dynamics. It has been successfully used in several flight scenarios.

REFERENCES

[1] Backström, H. Report on the usage of the Generic Aero data Model. Saab Aircraft AB. Linköping, 1996.
[2] Forsell, Lars, et. al. The Aero-Data Model In a Research Environment (ADMIRE) for Flight Control

Robustness Evaluation. August, 2001.
[3] Idebrant, Andreas. Multidomänmodellering och simulering av jaktrobot. Master thesis

LiTH-ISY-EX-3085. In Swedish. Linköping, 2000.
[4] "Automatisierte Modellbildung der Flugsystemdynamik". Dr.-Ing Dieter Moormann. Fortschr.-Ber. VDI

Reihe 8 Nr. 931. Düsseldorf: VDI Verlag 2002. ISBN 3-18-393108-7.
[5] Fritzson, Peter. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. 940 pages,

ISBN 0-471-471631, Wiley-IEEE Press 2003.
[6] Tiller, Michael. Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers 2001,

ISBN 0-7923-7367-7.
[7] Ward, J.P., Quaternions and Cayley Numbers. Kluwer Academic Publishers, 1997.
[8] Nelson, Robert C.. Flight Stability and Automatic Control, Second Edition 1998.
[9] MathCore Engineering AB. MathModelica User’s Guide. www.mathcore.com, 2003.

1 MVIS or Modelica VISualizer is a tool for automatic 3D-visualization of 3D multi-body models in the Modelica
standard library. It is also possible to use CAD-models in conjunction with real simulation data. More information
is available at MathCore web site: http://www.mathcore.com.

