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Abstract 

Using model components in complex system modeling is sometimes difficult because many 
semantic properties that should be obeyed during the design are not formalized in the modeling 
language. There exist rules that users of the components should follow in order to create 
semantically, mathematically, and physically correct models. Program verification aims at 
proving that programs meet certain specifications, i.e. that the actual program behavior fulfils 
certain specified properties. Model checking is a specific approach to verification of temporal 
properties of reactive and concurrent systems. Verification is usually carried out by using model 
checking algorithms to demonstrate the satisfiability of certain properties formalized as logical 
formulae over the model of the system. The model checking approach has proven successful for 
models based on finite-state automata and is based on state space inspection. To realize the full 
potential of the simulated and modeled systems with Modelica it is important to verify important 
properties of models in order to ensure that they meet the required criteria. In this paper we 
describe an algorithm that translates a non-trivial subset of Modelica to the model checking 
language of HyTech.   
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Nomenclature 

In the examples the following variables and 
symbols are used: 

alpha Time delay parameter in the 
railroad example  

app,exit Events indicating approach and exit 
of the train. 

clk1, clk2 Discrete variables storing time-
stamps. 

delay Stopwatch variable with time 
derivative 0 or 1.  

dy Time derivative of y. 

lower Boolean value that when becoming 
true tells the gate to close. 

open Boolean value representing the state 
of the valve. 

raise Boolean value that when becoming 
true tells the gate to open. 

t Time variable. 

v Velocity of the train. 

s1, …, s4 States of the hybrid automata. 

x Distance from the train to the gate. 

y Water level. 

 



Introduction 

Modelica (Fritzson 2003 [1]) is an object oriented 
modeling language capable of describing 
heterogeneous physical system. To take full 
advantage of the modeling and simulation 
capabilities of Modelica it is desirable to be able 
to formally verify important properties of the 
model. In order to do that the discrete algebraic 
equations that the Modelica model results in must 
be translated into a form that a tool capable of 
performing automated program verification can 
use. The hybrid automata formalism is such a 
form where tools like HyTech (Henzinger et al. 
1997 [2]) and CheckMate (Kapinski and Krogh 
2002 [3]) can perform program verification. 

Model Checking 

Model checking (Clarke et al. 1999 [4]) is a 
technique to perform program verification over 
finite state concurrent systems in a fully 
automated way. It is done by exploring the state 
space of the system. Validation is carried out 
against a formal specification consisting of a set of 
formulas over the model of the system. These 
formulas usually express safety properties that 
should be fulfilled at all times or illegal states that 
the system should be proven never to enter. 

The two main advantages compared to other 
program verification techniques is  that it can be 
fully automated and that it produces a sequence of 
steps in the specification leading to the state that 
does not satisfy the specification. This makes 
model checking suitable for integration in 
automated debugging and verification tools.  

The specification consists of a temporal logic 
formula expressing the desired properties of the 
system. The notion of the Kripke structure is used 
to model the behavior of the system. A Kripke 
structure consists of a set of states and transitions 
between states. Each state also has a valuation for 
a set of properties that are either true or false in 
the state. A transition from one state to another 
represents a step in time that makes a 
distinguishable difference of the state of the 
system. A path in a kripke structure represents a 
computation of the system.   

Many systems lead to very large state spaces. In 
order to be able to handle this, symbolic 
algorithms can be used. This is especially 

important in model checking of hybrid systems 
since real valued variables are present and the 
value ranges of these variables need to be 
represented symbolically.        

A temporal logic often used in model checking is 
called Computational Tree Logic (CTL). CTL 
formulas describe properties of computation trees. 
A computation tree is formed by selecting one of 
the states in the kripke structure to be the initial 
state. The rest of the infinite tree is then formed by 
unwinding the kripke structure from the initial 
state. 

CTL formulas are composed of path quantifiers 
and temporal operators. Path quantifiers express 
properties of the branching structure of the tree. 
The two path quantifiers in CTL are A and E, 
representing “for all paths” and “for some path”, 
respectively. These are used at a state to express 
that some property holds for all or some of the 
paths starting at that state.  The temporal operators 
express properties of a path through the tree.  The 
five basic operators are presented in Table 1. 

 

Symb. Phrase Explanation 

X Next time Requires a property to hold 
in the second state of the 
path. 

F Eventually Requires a property to hold at 
some state along the path. 

G Always Requires a property to hold at 
every state of the path. 

U Until This operator combines two 
properties and requires that 
there is a state on the path 
where the second property 
holds and that at every prior 
to that state, the first property 
holds. 

R Release This operator also combines 
two properties and requires 
the second property to hold at 
every state up to and 
including the first state at 
which the first property 
holds. 

Table 1. Basic operators of CTL. 

CTL formulas are divided in two categories; state 
formulas and path formulas. State formulas hold at 
a specific state in the Kripke structure. Path 



formulas hold along a specific path in the kripke 
structure. 

The syntax of a formula in CTL follows the 
following rules:  
All atomic propositions are state formulas. If f and 
g are state formulas then gfgff ∧∨¬ ,, are 
state formulas. If f is a path formula then E f and 
A f are state formulas. If f is a state formula then f 
is also a path formula. If f and g are path formulas 
then f¬ , gf ∨ , gf ∧ , X f , F f , 
G f , f U g , f R g  are path formulas. 

An example of a CTL formula that holds if when a 
request occurs then it will eventually be 
acknowledged: AG(Req ÿ AF Ack). 

Hybrid Automata 

Existing model checking tools for hybrid systems 
relies on the formalism of hybrid automata, which 
is an augmented form of finite automata where a 
finite set of continuous variables are allowed. 

The hybrid automaton is formally defined as 
follows: 

Variables: A finite set { }nxxxX ,...,, 21=  of real-

valued variables. E.g. y  in the Figure 2. 

Control modes: A finite set V of control modes. 
These correspond to states in a finite automaton. 

Flow conditions: A labeling function flow that 
assigns a flow condition to each control mode 

Vv∈  The flow condition flow(v) is a predicate 
over the variables in XX ÿ� . While an automaton 
is in a control mode v the variables in X evolve 
along a curve such that at all point along the curve 
the values of the variables and their first derivative 
satisfy the flow condition. In Figure 2 the 
equations involving dy  represent the flow 
conditions.  

Invariant condition: A labeling function inv that 
assigns an invariant condition to each control 
mode v. The invariant condition inv(v) is a 
predicate over the variables in X. While a hybrid 
automaton is in a control mode v, the variables in 
X must satisfy the invariant condition inv(v). 
Represented in Figure 2 by the inequalities inside 
the ellipses. 

Initial conditions: A labeling function init that 
assigns initial conditions to each control mode v. 
The initial condition init(v) is a predicate over the 

variables in X. The control of a hybrid automaton 
may start in the control mode v when the initial 
condition init(v) is true. 

Control switches: A finite multiset E of control 
switches. Each control switch is a directed edge 
between a source mode Vv∈ and a target mode 

Vv ∈′ . Control switches are denoted by arrows in 
Figure 2. 

Jump conditions: A labeling function jump that 
assigns a jump condition to each control switch in 
E. The jump condition jump(e) is a predicate over 
the variables in XX ′� . The symbols X refer to 
the values of the variables before the control 
switch and the symbols in X´ refer to the values of 
the variables after the control switch. The label 
delay’=0  in Figure 2 denote a jump conditions 
stating that the value of delay  is zero after the 
control switch. 

Events: A finite set ÿ of events and labeling 
function syn that assigns an event in ÿ to each 
control switch in E.  

This definition was taken from [2]. 

In order to be able to perform automatic analysis 
on hybrid systems certain restrictions have to be 
put on them. One such restricted class of the 
hybrid automaton is the linear hybrid automaton. 
In a linear hybrid automaton the flow conditions 
are predicates over the derivatives only, so that the 
derivative of a variable cannot be a function of 
any variable in X. Further more, the flow 
conditions, the invariant conditions and the initial 
conditions are convex linear predicates and for 
every control switch the jump condition is a 
convex linear predicate.  

HyTech 

HyTech is an automatic tool for the analysis of 
embedded systems. We decided to use HyTech as 
a target platform for our translator since it allows 
the symbolic verification and algorithmic analysis 
of hybrid dynamic systems. However, HyTech can 
only model linear hybrid automata, which is 
limiting for most of the simulation models 
expressed in Modelica. In order to overcome this 
limitation, we intend to extend our translator to 
generate code for HyTech+ (Henzinger et al. 2000 
[5]) and CheckMate. HyTech+ and CheckMate 
are both capable of verifying hybrid systems with 
general continuous expressed with linear and non-



linear differential equations. The input to the 
HyTech tool consists of a definition of the 
automaton to check and an analysis section where 
the specification is represented. It is possible to 
enter more then one automaton, in which case the 
HyTech tool transforms them into a single 
automaton as its initial step.  In this step synclabs, 
synchronization labels in HyTech, can be used to 
synchronize control switches in different 
automata. Two control switches marked with the 
same synclab always triggers simultaneously.  

Translator algorithm 

Modelica is based on the mathematical formalism 
of DAE (Differential Algebraic Equations) while 
HyTech uses the linear hybrid automata 
formalism, therefore we must find a way to isolate 
the discrete control modes of the model in order to 
build an automaton that is equivalent to the 
original model.  Since HyTech only handles linear 
hybrid automata only Modelica models with state 
variables of constant derivatives can be translated. 
In models where both constant and variable 
derivatives exist it is possible to use program 
slicing (Hatcliff et al. 2000 [6]) to isolate the 
linear part if there are no dependencies from the 
linear variables to nonlinear variables.  

We start the translation by creating a startup mode 
and then create transitions to new modes for each 
Modelica when-equation that can be triggered 
from that mode. For each new mode the procedure 
is then repeated according to the stepwise 
description of the algorithm below. 

The steps of the algorithm 

Step one: Find all state variables (y  in the water 
tank example below) and add them as continuous 
variables to the HyTech model. Also add the clock 
variable t . In Modelica there is a built in variable 
time  present.  

Step two: Find all discrete variables that are used 
together with continuous variables in when-
equations (open  in the water tank example). The 
discrete variables that do not appear together with 
continuous variables are not added, but they may 
appear as synclabs later. 

Step three: Find the start value of all state 
variables and discrete variables and generate a 
starting control mode in the automaton. In the 

water tank example we have open=true  and y=1  
as the initial condition. 

Step four: Find all when-equations that can be 
triggered from this control mode. When-equations 
with conditions that are already true or cannot 
become true in the given mode are discarded; all 
other when-equations result in corresponding 
transitions in the hybrid automaton. In the water 
tank example we have delay(y,2) >= 10 and 

open . The other clause of the condition can never 
be triggered in this mode since dy  is positive. 

Step five: The new transitions result in new values 
for the variables and the derivatives. If there is an 
already added control mode that matches all the 
values, then make the transition point to that 
control mode; otherwise create a new mode in the 
automaton. For all added modes start over from 
step four. 

When-equations that only depend on discrete 
variables trigger only as a result of another mode 
switch, since discrete variables only change at 
events. If the when-equation that changes the 
discrete value resides in the same component then 
the transitions are merged into a single transition. 
If the source event resides in a different 
component a synclab is generated so that the mode 
switches in the two resulting automata occur 
simultaneously.  If there is no source event that 
can trigger the transition, then it is omitted. 

When a transition that has a guard involving 
continuous variables is added to the automaton, a 
corresponding inequality has to be added to the 
invariant condition of the control mode, otherwise 
the automaton would have the possibility to stay 
in the source control mode and not follow the 
transition.  

In Modelica there is a delay  operator that delays 
a signal a specified amount of time. In order to 
translate this into the hybrid automaton an extra 
control mode is inserted in transitions involving a 
delayed variable. This extra control mode is a 
copy of the source control mode of the transition 
where the delayed transition is replaced by a 
transition depending on a clock variable. See the 
WaterTank example below for details. 

Example 1: WaterTank 

This example is taken from the HyTech system 
user’s guide. Consider a water tank that is leaking 
water at a constant rate. When the water level falls 



below five, a sensor signals a valve to open, which 
results in the tank being filled at a constant rate. 
However, the signal is delayed for two seconds 
before the valve reacts on it.  

When the water level reaches ten the valve is 
signaled to close, again with a two second delay. 
The Modelica code for such a system is shown in 
Figure 1. 

 

Figure 1. WaterTank in Modelica. 

The proposed algorithm would result in the 
automaton shown in Figure 2. In the figure each 
control mode is denoted by an ellipse and the 
arrows between them represent control switches. 
The slopes of the variables and the invariant 
regions are presented inside the ellipse. Each 
control switch is labeled by jump conditions, e.g.,  
“y ÿ 10 ”  and “delay’=0 ”, which state that in 
order for that control switch to take place the 
value of y before the switch must be grater than 
10 and the value of delay  after the switch is 0. 

Running HyTech on the resulting automaton 
shows us that the water level is kept between 1 
and 12 at all times.   

y=1 
dy=1 
y �  10 

dy=1 
delay �  2 

y �  10 

delay’=0 

delay �  2 

dy=-2 
y �  5 

y �  5 

delay’=0 

dy=-2 
delay �  2 

delay �  2 

Figure 2. WaterTank automaton. 

Example 2: Railroad crossing 

This example, also taken from the HyTech user’s 
guide demonstrates the ability to use model 
checking to calculate safe parameter values 

The example consists of a train that passes a 
railroad crossing. At a distance of 1000 m a signal 
is sent to the controller to lower the gate and 100 
m past the crossing a signal is sent to raise the 
gate. The parameter alpha in the controller is the 
delay from when the signal is sent until it is 
reacted upon. Here model checking is used to 
calculate safe values for alpha so that it can be 
guaranteed that the gate is closed whenever the 
train is closer than 10 m from the crossing. 

The Modelica model is divided into three 
components that are shown in the Figure 3, the 
Figure 4 and the Figure 6.  

 

Figure 3. Train model in Modelica. 

If we first look at the train model, the only state 
variable is x , so x  is added to the variables of the 
resulting automata. An initial control mode s1  is 
also added to the train automata. Since the 
derivative of x  is negative in the initial state only 
the event occurring when x  goes below 1000 is 
added as a transition from this state. A new 
control mode, s2 , is created as a target for the 
transition since there are no existing modes that 
match the variable values. In this control mode the 
only relevant event is when x  passes zero. This 

model  WaterTank  
  Boolean open(start=true); 
  Real y(start=1); 
equation  
  when delay(y, 2) >= 10 and  open  
    or  delay(y, 2) <= 5 and not  open  
  then 
    open = if pre (open) then   
 false else  true; 
  end when ; 
   
  der (y) = if  open then  1 else  -2; 
end  WaterTank; 

import   
 Modelica.Blocks.Interfaces.BooleanPort; 
 
package  Railroad  
  model  train  
    BooleanPort app; 
    BooleanPort exit; 
    Real x; 
    discrete  Real v; 
  initial  equation   
    v = -45; 
    x = 2000; 
  equation   
    der (x) = v; 
    when x >= 100 then  
      exit = app; 
    end  when; 
    when x <= 1000 then  
      v = -40; 
    elsewhen  x <= 0 then  
      v = 35; 
    end  when; 
  end  train; 



results in a new transition and a new control 
mode, and so on. The resulting automaton is 
shown in Figure 5.  

 

Figure 4. Gate model in Modelica. 

The gate component results in one new continuous 
variable y . Since y  is constant in the initial state of 
the gate automaton, there is no restriction in the 
invariant region of this state, but there are two 
events in the Modelica model that needs to be 
handled. Since the conditions of these events 
depend only on discrete variables we must search 
for the events that make them change. In this case 
there are events in the controller component that 
changes the variable. This results in the synclabs 
lower  and raise  that are added to both of the 
controller automaton and the gate automaton. The 
code for the gate automaton is shown in Figure 7. 

 

Figure 5. Train automaton in HyTech. 

In the controller automaton there exist no state 
variables but there are two discrete variables that 
are used in expressions together with continuous 
variables in when-equations; therefore they are 
added as discrete variables to the HyTech model. 
See Figure 8. 

 

Figure 6. Controller model in Modelica. 

 

Figure 7. Gate automaton in HyTech. 

automaton gate 
synclabs: lower, raise; 
 
initially s1 & y = 90; 
 
loc s1: while True wait {dy=0} 
  when True sync lower goto s2; 
  when True sync raise goto s3; 
 
loc s2: while y >= 0 wait {dy=-9} 
  when y <= 0 goto s1; 
 
loc s3: while y <= 90 wait {dy=9} 
  when y >= 90 goto s1; 
end 

var  
  x, y : analog; 
  t : clock; 
  clk1, clk2 : discrete; 
  alpha : parameter; 
automaton train 
synclabs: app, exit; 
initially s1 & x = 2000; 
loc s1: while x >= 1000 wait { dx=-45 } 
  when x <= 1000 sync app goto s2; 
loc s2: while x >= 0 wait { dx=-40 } 
  when x <= 0 goto s3; 
loc s3: while x <= 100 wait { dx=35 } 
  when x >= 100 sync exit goto s4; 
loc s4: while True wait { dx=35 } 
end 

  model  gate  
    Real y; 
    discrete  Real dy; 
    BooleanPort lower; 
    BooleanPort raise; 
  initial  equation   
    dy = 0; 
    y = 90; 
  equation   
    der (y) = dy; 
    when lower then  
      dy = -9; 
    elsewhen  raise then  
      dy = 9; 
    elsewhen  y <= 0 then  
      dy = 0; 
    elsewhen  y >= 90 then  
      dy = 0; 
    end  when; 
  end  gate; 

  model  controller  
    parameter  Real alpha=1.0; 
    BooleanPort lower; 
    BooleanPort raise; 
    BooleanPort app; 
    BooleanPort exit; 
    discrete  Real clk1(start=0); 
    discrete  Real clk2(start=0); 
  equation   
    when app then  
      clk1 = time; 
    end  when; 
    when exit then  
      clk2 = time; 
    end  when; 
    when app and  time-clk1 > alpha then  
      lower = true; 
    end  when; 
    when exit and  time-clk2 > alpha then  
      raise = true; 
    end  when; 
  end  controller; 
   
  model  test  
    controller ctrl; 
    train tr; 
    gate g; 
  equation   
    connect (tr.app, ctrl.app); 
    connect (tr.exit, ctrl.exit); 
    connect (g.lower, ctrl.lower); 
    connect (g.raise, ctrl.raise); 
  end  test; 
end  Railroad ;  



 

Figure 8. Controller automaton in HyTech. 

In order to make an analysis of the system we 
must add a section containing the analysis 
commands. These are shown in Figure 9.  

 
Figure 9. Analysis commands for railroad example 

in HyTech. 

The region avoid  represents the forbidden 
condition. By printing the resulting region of the 
intersection between the reachable region and the 
forbidden region while hiding all non-parameter 
values and locations we arrive at an expression for 
the values of alpha  that leads to unsafe states. 

Related Work 

Model checking can successfully complement 
existing software quality assurance techniques 
such as testing and debugging. Therefore it is 
important to provide efficient translators from 
various programming languages to model 
checkable formal languages. In this way, mature 
model checking techniques can be reused and 
applied to software systems that otherwise would 
not provide support for proving safety and 
liveness properties. Bridging the gap between high 
level languages such as C, C++, Java, Ada and 
Modelica and the input required by model 
checking tools (finite state automata with 
properties formulated in temporal logic) require 
the development of complex tool sets. In this 
section we present some of the translation 
frameworks that are most related to ours. 

The SLAM project at Microsoft Research (Ball 
and Rajamani. 2002 [7], Ball and Rajamani 2001 
[8]) checks temporal safety properties of 
sequential C programs. The system requires that 
the checked properties are encoded in a language 
called SLIC (Specification Language for Interface 
Checking). 

The Bandera tool set (Corbett et al. 200 [9]) is an 
integrated collection of program analysis, 
transformation and visualizations components that 
enables the extraction of finite state models from 
Java source code. Bandera is able to generate a 
description of a finite-state transition system in the 
Promela and Trans languages that can be 
interpreted by the SIPN and SMV (Symbolic 
Model Verifier) models checking systems. 
Previously to the Bandera project, the same 
research group at Kansas State University has 
developed a toolset for translating Ada source 
code to the input language of the SPIN and SMV 
model checkers (Dwyer et al. 1998 [10]).   

A related project to Bandera is the Java 
PathFinder (Brat et al. 2000 [11]) that translates 
Java programs to Promela, the specification 
language of the Spin model checker. Java 
PathFinder can detect race conditions, deadlocks, 
and violations of user specified assertions. The 
tool has been incorporated as a back-end checker 
for Bandera.         

var init_reg, reached, avoid: region; 
 
avoid := y > 0 & x <= 10; 
 
init_reg := loc[train] = s1 & x = 2000 & 
            loc[gate] = s1 & y = 90 & 
            loc[controller] = s1; 
 
reached :=  
   reach forward from init_reg endreach; 
 
print omit all locations  
      hide non_parameters in  
        reached & avoid  
      endhide; 

automaton controller 
synclabs: lower, raise, app, exit; 
 
initially s1; 
 
loc s1: while True wait {} 
  when True sync app  
        do {clk1'=t} goto s2; 
  when True sync exit  
        do {clk2'=t} goto s3; 
 
loc s2: while t-clk1 <= alpha wait {} 
  when t-clk1 >= alpha sync lower  
        goto s1; 
  when True sync exit  
        do {clk2'=t} goto s3; 
 
loc s3: while t-clk2 <= alpha wait {} 
  when t-clk2 >= alpha sync raise  
        goto s1; 
  when True sync app  
        do {clk1'=t} goto s2; 
 
loc s4: while t-clk1 <= alpha &  
              t-clk2 < alpha wait {} 
  when t-clk1 >= alpha sync lower  
        goto s3; 
  when t-clk2 >= alpha sync raise  
        goto s2; 
end 



Conclusion 

In this paper we have briefly outlined an algorithm 
to translate Modelica models to a representation 
that can be automatically verified against a formal 
specification using model checking. To be able to 
perform verifications on more sophisticated 
models it is possible to continue along this path 
and generate code for other systems such as 
CheckMate and HyTech+, both using hybrid 
automata.   

The presented work in this paper should be seen as 
an important component for a broader attempt to 
make static analysis (Bunus and Fritzson 2004 
[12]), run-time verification through algorithmic 
debugging (Bunus and Fritzson 2003 [13]) and 
model checking techniques, more applicable for 
the development of new automatic debugging 
tools with enhanced user-interaction for the 
Modelica language. We intend to implement a 
prototype translator using the presented algorithm 
in the numeric and symbolic engine developed for 
the OpenModelica compiler back-end.  
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