
OPENMODELICA MDT ECLIPSE PLUGIN FOR MODELICA
DEVELOPMENT, CODE BROWSING, AND SIMULATION

Elmir Jagudin, Andreas Remar, Adrian Pop, Peter Fritzson
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
{adrpo, petfr}@ida.liu.se

Abstract: The OpenModelica Modelica Development Tooling (MDT) Eclipse plugin inte-
grates the OpenModelica compiler with the Eclipse Integrated Development Environment
Framework., giving additional capabilities for the model developer. MDT, together with
the OpenModelica compiler, provides an environment for working with Modelica devel-
opment projects. Simulation is possible from a special command window. To our knowl-
edge MDT is the first Eclipse plugin for an equation-based language.

Keywords: OpenModelica, Modelica, modeling, Eclipse, simulation

1 INTRODUCTION
For a long time it has been an important goal to provide
the model developer with better tool support to simplify
or automate certain tasks.

 The OpenModelica Modelica Development Tool-
ing (MDT) Eclipse plugin is one step in this direction.
It provides file and class hierarchy browsing and text
editing capabilities. Some syntax highlighting facilities,
code completion, and a compilation manager are also
included in MDT. Recent enhancements to MDT, de-
scribed in [8], are debugging and automatic indenta-
tion.

1.1 Eclipse Platform Architecture

The most important advantage of the Eclipse frame-
work, see Fig. 1 and [1], is that it is easy to add future
extensions.

By itself, Eclipse does not provide a lot of end-user
functionality. The important contribution of Eclipse is
based on its plugins. The smallest architectural unit of
the Eclipse platform is the plugin.

At the core of Eclipse is the Eclipse Platform Run-
time. The Runtime in itself mostly provides the loading
of external plugins. The Java Development Tooling
(JDT) is for example a collection of plugins that are
loaded into Eclipse when they are requested. The fact
that Eclipse is in itself written in Java and comes with
the Java Development Tooling as default often leads
newcomers to believe that Eclipse is a Java IDE with
plugin capabilities. It is in fact the other way around,
with Eclipse being just a base for plugins, and the Java
Development Tooling plugging into this base.

Fig. 1. The architecture of Eclipse, with possible plugin
positions marked.

To extend Eclipse, a set of new plugins must be cre-
ated. A plugin is created by extending a certain exten-
sion point in Eclipse. There are several predefined ex-
tension points in Eclipse, and plugins can provide their
own extension points. This means that you can plug in
plugins into other plugins.

An extension point can have several plugins at-
tached, and what plugin that will be used is determined
by a property file. For example, the Modelica Editor is
loaded at the same time as the Java Editor is loaded.
When a user opens a Java file, the Java Editor will be
used, based on a property in the Java Editor extension.
In this case, it is the file name extension that deter-
mines what editor that should be used.

As the number of plugins in Eclipse can be very
large, a plugin is not actually loaded into memory be-
fore its contribution is directly requested by the user.
This design make the memory impact reasonably low
while running Eclipse.

A user-friendly aspect of Eclipse is the Eclipse Up-
date Manager which allows you to install new plugins
just by pointing Eclipse to a certain website. This web-
site is provided by the developers of the plugin that you
may wish to install. An update site at the OpenMode-
lica web site is for example provided for easy installa-
tion of the latest version of MDT.

2 ECLIPSE HISTORY
In the mid 1990s software developments tools were
primarily dominated by systems built around two tech-
nologies. Many of the tools were focused on a runtime
environment developed and controlled by the Microsoft
corporation. The other was built around the Java plat-
form. The Java platform is less dominated by a single
company and more open to industry and community
input. IBM felt it was important to contribute to the
growth of the more open Java platform to becoming
dependent of Microsoft.

By creating a common platform for development
tools built on top of the Java platform, IBM hoped to
attract more developers from competing environments.
In late 1998, the software division at the IBM corpora-
tion began working on the software project that is today
known as Eclipse. The original work was based on re-
sources developed by Object Technology International
labs. In the beginning, work on a new Java IDE was
done primarily at the IBM labs. In order to increase the
rate of adaptation of the platform and to instill confi-
dence in the Eclipse platform, IBM decided to release
the code base under an open source license, and to
build a community around the project.

In 2001, IBM together with eight other organiza-
tions created the Eclipse consortium. A website at
eclipse.org was started in order to create and coor-
dinate a community around Eclipse. The goal was that
source code would be controlled and developed by the
open source community and the consortium would
handle the marketing and business side of the project.

At that point, IBM was the largest contributor to
both the open source community and the consortium.
Two years later the first major public release of the
Eclipse platform was made. The release got a lot of
attention from developers and was well received. How-
ever, industry analysts suggested that many were still
perceiving Eclipse as an IBM-controlled technology.
Many key players in the industry did not want to make
commitments to a project controlled by the Interna-
tional Business Machines corporation.

After discussions within the consortium it was de-
cided that a new organization was needed to make the
status of Eclipse as an open and community driven pro-
ject clear. At the EclipseCon 2004 gathering an an-
nouncement was made that the Eclipse Foundation was
formed. The foundation is an independent not-for-profit
organization. It has its own full time paid professional
staff, supported by foundation members.

The new organization has proven itself a success. At
this point the foundation has released version 3.0 and
3.1 of Eclipse since its birth. These releases have
gained more adaptation and recognition than any earlier
versions. Today (2005) the foundation has more than
90 full-time developers on the pay roll and receives
more than $2 millions in funding each year.

Currently there are more than eighty member com-
panies in the foundation of which at least sixty-nine are
providing add-on products to Eclipse. Today there ex-
ists hundreds of proprietary and an even greater number
of free plugin products. Eclipse has gained a strong
foothold in the industry and is one of the major open
source software development platforms [2].

3 OPENMODELICA ENVIRONMENT
ARCHITECTURE

MDT is integrated in the OpenModelica environment
which consists of several interconnected subsystems, as
depicted in Fig. 2.

Arrows denote data and control flow. Several sub-
systems provide different forms of browsing and tex-
tual editing of Modelica code.

Modelica
Compiler

Interactive
session handler

Execution

Graphical Model
Editor/Browser

Textual
Model Editor

Modelica
Debugger

Emacs
Editor/Browser

DrModelica
NoteBook

Model Editor

Eclipse Plugin
Editor/Browser

Fig. 2. Architecture of OpenModelica environment.

4 MODELICA DEVELOPMENT
TOOLING (MDT) ECLIPSE PLUGIN

As mentioned, the Modelica Development Tooling
(MDT) Eclipse plugin provides an environment for
working with Modelica development projects.

The following MDT features are available:

• Browsing support for Modelica projects, pack-
ages, and classes

• Wizards for creating Modelica projects,
packages, and classes

• Syntax color highlighting
• Syntax checking
• Code completion when writing code to

reference a class or function
• Browsing of the Modelica Standard Library

Moreover, debugging and indentation support has re-
cently been added [8].

4.1 Using the Modelica Perspective

The most convenient way to work with Modelica pro-
jects is to use to the Modelica perspective. To switch to
the Modelica perspective, choose the Window menu
item, pick Open Perspective followed by
Other... Select the Modelica option from the dialog
presented and click OK.

4.2 Creating a Project

To start a new project, use the New Modelica Pro-
ject Wizard. It is accessible through File->New->
Modelica Project or by right-clicking in the Mode-
lica Projects view and selecting New->Modelica

Project.

Fig. 3. Creating a new package.

4.3 Creating a Package

To create a new package inside a Modelica project,
select File->New->Modelica Package. Enter the
desired name of the package and a description of what
it contains.

4.4 Creating a Class

To create a new Modelica class, select where in the
hierarchy that you want to add your new class and se-
lect File->New->Modelica Class. When creating a
Modelica class you can add different restrictions on
what the class can contain. These can for example be
model, connector, block, record, or function.

Fig. 4. Creating a new class.

When you have selected your desired class type, you
can select modifiers that add code blocks to the gener-
ated code. ‘Include initial code block’ will for
example add the line ‘initial equation’ to the
class.

4.5 Syntax Checking

Whenever a Modelica (.mo) file is saved by the Mode-
lica Editor, it is checked for syntactic errors. Any errors
that are found are added to the Problems view and also
marked in the source code editor. Errors are marked in
the editor as a red circle with a white cross, a squiggly
red line under the problematic construct, and as a red
marker in the right-hand side of the editor. If you want
to reach the problem, you can either click the item in
the Problems view or select the red box in the right-
hand side of the editor.

Fig. 5. Syntax checking.

4.6 Code Completion

MDT supports Code Completion in two variants. The
first variant, code completion when typing a dot after a
class (package) name, shows alternatives in a menu:

Fig. 6. Code completion using a popup menu after a dot.

The second variant is useful when typing a call to a
function. It shows the function signature (formal pa-
rameter names and types) in a popup when typing the
parenthesis after the function name, here the signature
Real sin(SI.Angle u) of the sin function:

Fig. 7. Code completion showing a popup function signature
after typing a left parenthesis.

5 SIMULATION AND PLOTTING
FROM MDT

Simulation and plotting is possible from a special
command window, where commands are sent to the
OpenModelica Compiler omc. For example:

It is simulated:
>> simulate(Influenza,startTime=0.0,
stopTime=3.0)
record
 resultFile = "Influenza_res.plt"
end record

The simulated population is plotted, which is shown in
Fig. 8.
>> plot({Infected_Popul.p})
true

Fig. 8. Plot of simulation from the Influenza model.

6 DISCUSSION
As mentioned, the main idea behind the development
of MDT is to make the benefits of software develop-
ment support in Eclipse also available to model devel-
opers, especially developers of large models. A natural

question is whether these promises been fulfilled. It is
still too early to give definite answers to this question
since the MDT became available very recently, a few
months ago, and some of the more advanced facilities
such as code completion are just now becoming avail-
able. So far, we have positive experience of early users
working in the MetaModelica [9] extended subset of
Modelica on large (100 000 line) applications, as well
as using standard Modelica on small application mod-
els, which is very promising.

7 CONCLUSIONS
An integrated development environment for Modelica
as a plugin to Eclipse has been developed. It is aimed
for development of large models, is called MDT (Mod-
elica Development Tooling), and is part of OpenMode-
lica. MDT allows browsing, editing, building executa-
bles, and simulation from a special command window.
It also has facilities such as code completion, query,
and automatic indentation.

ACKNOWLEDGEMENTS
This work was supported by Vinnova in the SWEB-
Prod project, by SSF in the VISIMOD and ProViking
SECD projects, by the CUGS graduate school, and by
MathCore Engineering AB.

REFERENCES
[1] Eclipse website. http://www.eclipse.org.

[2] Eclipse history. A brief history of eclipse.
http://www128.ibm.com/developerworks/rational/
library/nov05/cernosek/

[3] Peter Fritzson, Peter Aronsson, Håkan Lundvall,
Kaj Nyström, Adrian Pop, Levon Saldamli, David
Broman. The OpenModelica Modeling, Simula-
tion, and Development Environment. In Proceed-
ings of the 46th Conference on Simulation and
Modeling of the Scandinavian Simulation Society
(SIMS2005), Trondheim, Norway, October 13-14,
2005. www.ida.liu.se/projects/OpenModelica

[4] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press,
2004.

[5] Peter Fritzson, et al. The OpenModelica Users
Guide, version 0.7, May 2006.
www.ida.liu.se/projects/OpenModelica

[6] Peter Fritzson, et al. The OpenModelica System
Documentation, version 0.7, May 2006.
www.ida.liu.se/projects/OpenModelica

[7] The Modelica Association. The Modelica Lan-
guage Specification Version 2.2, March 2005.
http://www.modelica.org.

[8] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir
Jagudin, David Akhvlediani. OpenModelica De-
velopment Environment with Eclipse Integration
for Browsing, Modeling, and Debugging. In Proc
of Modelica'2006, the 5th Int. Modelica Conf.,
Vienna, Sept 4-5, 2006.

[9] Adrian Pop and Peter Fritzson. MetaModelica: A
Unified Equation-Based Semantical and Mathe-
matical Modeling Language. To appear in Pro-
ceedings of Joint Modular Languages Conference
2006 (JMLC2006) LNCS Springer Verlag. Jesus
College, Oxford, England, Sept 13-15, 2006.

