
To be presented at the European Simulation Symposium 1997, Passau Germany, Oct. 19-22 page 1 /5

 BOND-GRAPH MODELING IN MODELICA

Jan F. Broenink
Control Laboratory, EE Department, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

phone +31-53-489 2793; fax +31-53-489 2223; e-mail J.F.Broenink@ el.utwente.nl

 Modelica is a trademark of the Modelica Design Group, TC–1 of EUROSIM

ABSTRACT
This paper discusses a bond–graph model library imple-
mented in Modelica. Modelica is a new language for
physical systems modeling with main objective to facili-
tate exchange of models and simulation specifications.
Bond graphs are a domain–independent way of modeling
the dynamics of physical systems.

Besides the presentation of the Modelica basic bond–
graph library, also an application example is discussed,
to test the usefulness of the library in practice.

The translation of existing bond–graph models to Mode-
lica was a straightforward process, indicating that Mode-
lica has the proper features for bond–graph modeling.
However, the implicitly generated sum–to–zero connec-
tion equations are not useful for bond–graph modeling
and in fact can obscure model specification in Modelica.

Our future aim is to build a Modelica import / export fa-
cility for our bond–graph / block–diagram modeling and
simulation software 20-SIM.

Keywords: Object–oriented modeling, Bond graphs,
Continuous languages, Control systems.

1 INTRODUCTION
The currently available modeling and simulation tools
have their own proprietary model description languages,
which complicate exchange of models between different
tools. Having a real expressive and standardized model-
ing language, exchange of models is really possible
without losing non-trivial language constructs of the pro-
prietary language from which the porting process starts.

Modelica™ is a new language for physical systems mod-
eling being developed in an international effort (Mode-
lica, 1997; Mattsson et al., 1997). The main objective of
this development is to facilitate the exchange of models,
model libraries and simulation specifications. The
Modelica design group covers a wide range of applica-
tion domains, thus ensuring that the versatility of Mode-
lica will be taken care of (Otter et al. 1997; Tummescheit
and Klose, 1997; Mattsson, 1997).

Bond graphs are a domain-independent notion of physi-
cal systems modeling, where the physical processes are
directly represented as vertices in a directed graph

(Breedveld, 1984; Thoma, 1989; Cellier 1991) and the
edges represent the ideal exchange of energy between the
vertices. This domain independence makes bond graphs
especially attractive in a multi-domain context. Further-
more, the equations associated with bond–graph elements
can be automatically converted into simulation code, thus
releasing the modeler of writing computable code as a
simulation model.

The contribution of this paper is the implementation of a
library of bond–graph elements in Modelica. This work
serves as a test on the versatility of the language.

First, a brief overview of Modelica is given (section 2),
and then the Modelica model library of bond–graph ele-
ments is presented (section 3). Section 4 presents an ap-
plication example consisting of a computer–controlled
physical system. In section 5, we draw conclusions.

2 MODELICA
Modelica is a language to describe the dynamic behavior
of physical systems. It is inspired on principle of object–
oriented software development (e.g. Rumbaugh et. al.
1991). Features of object orientation essential for physi-
cal systems modeling are covered, namely hierarchical
modeling, encapsulation, and inheritance.

Essential features of Modelica are the following:

Models and submodels are declared as classes, with in-
terfaces that are called connectors. A connector must
contain all quantities needed to describe the interaction.
Modification of a model definition is possible using the
extends construct. Models can have submodels that can
have submodels themselves. So, hierarchical modeling
and inheritance are supported.

The equations of the models are described non-causally,
and are real equations, i.e. the equality holds for all val-
ues of time, the independent variable. Furthermore, it is
possible to describe the connections in terms of physical
connections, i.e. pairs of bilaterally computed power–
conjugated variables. This implies that the internal
description of a model (its equations) can be separated
from the interface, i.e. when using such a submodel the
exact contents of it need not be known. Consequently,
symbolic manipulation including sorting of the equations
is necessary to obtain simulatable code. This is taken
care of by the Modelica compiler. With this facility,

To be presented at the European Simulation Symposium 1997, Passau Germany, Oct. 19-22 page 2 /5

of by the Modelica compiler. With this facility, encap-
sulation is taken care of.

Furthermore, Modelica has a facility to specify how the
connections are converted to computable code. Tagging a
variable in a connection with flow results in simulation
code where the variables involved are summed to zero.
This is an implicit implementation of Kirchhoff’s current
law generalized to all physical domains. This generaliza-
tion is legitimate, as is done in bond graphs. However,
the connect statement with flow tags on a variable is not a
pure connection anymore. Note that in the standard net-
work–like descriptions in Modelica, one of the two vari-
ables in a connection has the tag flow.

Modelica is a textual model description language, and is
as such more relevant for software tool builders then for
the end user (i.e. physical systems modeler). Our experi-
ence is that graphically representing models as intercon-
nected submodels displayed as icons supports their quick
understanding. Furhtermore, most contemporary tools
have graphical model editing facilities.

3 BOND–GRAPH LIBRARY IN MODELICA
The number of basic bond-graph elements is limited, and
can therefore be enumerated in a bond–graph library.
However, several properties of bonds need special atten-
tion when writing bond–graph models in Modelica:
1. Bonds are connected between ports of submodels

and are point-to-point connections, implying that ex-
actly one bond must be connected to a port. Com-
pare this to (computer) cables which must be con-
nected to the connectors of the devices.

2. Bonds are two-signal connections where these sig-
nals have opposite directions. These signals have the
generalized names effort and flow. Their product is
the power being exchanged.

3. Bonds embody an ideal connection, meaning that the
port variables at one side of the bond equal the port
variables at the other side of the bond. This implies
that simulation–code statements coming from a bond
connection are 2 equalities (see also figure 1):

Figure 1 A bond connecting 2 ports (p1 and p2) of differ-
ent submodels and its equations.

The above implies that the standard facility of Modelica
that a variable in a connection tagged with flow sums to
zero with the corresponding variable at the other end of
the connection, may not be used in the bond–graph li-
brary. Therefore, in a bond–graph port definition, neither
the effort nor the flow variable have a tag flow indicating
that a sum–to–zero equation must be generated when
converting the connection to computable code.

A bond–graph port is defined as follows:

connector BondPort "Bond Graph power port"
 Real e "Effort variable";
 Real f "Flow variable";
equation
ASSERT(Cardinality(This)==1, "Power ports

have only one edge connected to");
end BondPort;

A bond has a power direction and the elements put de-
mands on the possible power directions of the bonds
connected to their ports. Passive elements (R, C, I) have
a power direction pointing inward, while active elements
(Sources) have the power pointing outward. Using this
convention results in positive values for parameters and
helps resolving sign-placing problems. An attribute to the
port is used to specify the restrictions:

partial model OnePortPassive
"One port passive bond graph element"

 BondPort p "Generic power port p";
equation

ASSERT(Direction(p)==1,
"Power direction towards element for
passivity");

end OnePortPassive;

A bond is comprised of two signals flowing in opposite
directions. This signal direction is called the computa-
tional causality, and is not needed during modeling, but
is needed for deriving computable code. Again, the
equations constituting the elements put demands on the
computational causality. These demands can be specified
as causality restrictions in the form of attributes of the
ports. Especially the storage elements, also called ener-
getic elements, impose a preferred causality on their
ports. This means, that when the applied causality com-
plies with the preferred causality, the generated equations
are ODE's, otherwise DAE's are generated. The state
variable used here is the conserved quantity, which is a
specific quantity in each physical domain (p.e. charge
and flux linkage in the electro–magnetic domain, posi-
tion and impulse in the mechanical domain).

partial model OnePortEnergetic
"One port storage element, being passive"

 extends OnePortPassive;
 Real state "Conserved quantity";
end OnePortEnergetic;

The C storage element is shown below. C elements de-
scribe the ideal behavior of mechanical springs (both
translational and rotational), electrical capacitors, hy-
draulic vessels, heat capacitances.

model C
"Bond Graph C element, storage of
q-type conserved quantity"

 extends OnePortEnergetic;
 parameter Real c "Capacitance";

flowpflowp
effortpeffortp

.2.1
.2.1

=
=

To be presented at the European Simulation Symposium 1997, Passau Germany, Oct. 19-22 page 3 /5

equation
 der(state) = p.f;
 p.e = state / c;
end C;

The initial condition of the state variable can be specified
as an attribute belonging to that state variable. Note that
the causality restrictions are not explicitly formulated in
the Modelica description. Causality restrictions are not
essential for deriving simulation code, but are useful
during the model compilation process.

The I storage element is the dual form of the C storage
element (the state is now the integral of the effort vari-
able). Its conserved quantity is the generalized impulse.
I elements describe the ideal behavior of masses, rota-
tional inertias, electrical inductances, hydraulic inertias.
Since the Modelica description of the I element does not
have any new language feature, it is not given here.

The R element in its linear form imposes no causality re-
strictions, since its constitutive relation is an algebraic
one, which can easily be inverted.

model R "Bond Graph resistor"
 extends OnePortPassive;
 parameter Real R "Resistance ";
equation
 p.e = R * p.f;
end R;

To describe the connecting structure, special junction
structure elements are defined: The so-called 0-junction
and 1-junction, to specify a common effort and a com-
mon flow structure respectively. Since these elements are
ideal (i.e. no power dissipation or storage), besides the
equality for the efforts (flows), there is a weighted sum
for the other variable, namely the flows (efforts). The
specification of a 1-junction in Modelica is as follows:

model J1 "Bond graph One junction"
 parameter Integer N "# power ports";
 BondPort P[N] "extendable port";
equation
// Efforts sum up to 0, taking signs from
the power bond directions
 Direction(P)' * P.e = 0;
// Flows are all equal
 p.f[1] = p.f[2:N];
end J1;

Note that X’ means the transpose of X.

The 0-junction is the dual form of the 1-junction: the ef-
forts are all equal and the flows sum up to zero, taking
signs from the power bond directions into account.

The other basic bond graph elements (TF - transformer,
GY - gyrator) are defined in a similar way. Furthermore,
resistors, sources, transformers and gyrators can have
their parameter non-constant. The value is then fed
through the interface as an incoming signal. Non-linear
elements can be defined, reusing the linear ones. Only
the equations need to be adapted. The extra variables and
parameters used need of course be declared. An example
is the Modulated TransFormer, shown below:

model MTF
"Bond graph modulated transformer element"
 extends TwoPortPassive;
 input Real Modu "Modulation=e1/e2";
equation
 PowIn.e = Modu * PowOut.e;
 PowOut.f = Modu * PowIn.f;
end MTF;

This MTF is a specialization of a TwoPortPassive partial
model, in which 2 power ports are declared (PowIn and
PowOut).

In addition, block diagram elements can be specified
easily. The interface now consists of signal inputs and

Figure 2 Application example

To be presented at the European Simulation Symposium 1997, Passau Germany, Oct. 19-22 page 4 /5

signal outputs.

4 APPLICATION EXAMPLE
The application example we have chosen, is a model of a
computer controlled physical system. The top–level
model is shown in figure 2. Besides the bond–graph li-
brary, several block–diagram libraries are used. The
Modelica code of the top-level model is shown below.

model ControlledDevice
"Controlled physical system as application
example"
 StepGen reference; // SigGen lib
 PID control; // Controller lib
 Actuator actuator;
 Sensor sensor;
 Process process;
 Plus sum; // BlockDiagram
equation
 connect(reference.outp, sum.plusIn);
 connect(sum.outp, control.error);
 connect(control.steer, actuator.inp);
 connect(actuator.act, process.inp);
 connect(process.outp, sensor.sens);
 connect(sensor.outp, sum.minIn);
end ControlledDevice;

The listing of such a graph model clearly shows two
parts: one is the declaration part, in which all used sub-
models get a local name (to distinguish two instantiations
of the same submodel). These local names are used in the
equation part of a graph description contains connect
statements, to describe the connections between ports of
the submodels. The ports of the submodels are identified
by concatenating the submodel name and the port name
using a dot. In fact, each connect statement denotes one
edge in the graph. Also the ports (inputs or outputs) of
the model itself are connected to submodels in connect
statements.

The submodels Actuator, Process and Sensor are
graphs having submodels themselves. The submodels
Actuator and Motor are given below, and the physi-
cal model and bond graph of the submodel Motor is
shown in figure 3.

model Actuator
"The actuator of our application example"
 input Real inp "Control input";
 BondPort act "Actuation power"
 Limit limit "Prevent saturation"
 MSe VoltSource "Ideal power supply"
 Motor motor "The engine"
equation
 connect(inp, limit.inp);
 connect(limit.outp, VoltSource.Modu);
 connect(VoltSource.p, Motor.elec);
 connect(Motor.rot, act);
end Actuator;

model Motor "the engine"
 BondPort elec, rot;
 J1 current, angVelo;
 R resistor, friction;
 I inductance;
 GY transduct;
equation
 connect(elec, current.p[1]);
 connect(resistor.p, current.p[2]);
 connect(inductance.p, current.p[3]);
 connect(current.p[4],transduct.PowIn);
 connect(transduct.PowOut,

angVelo.p[1]);
 connect(angVelo.p[2], friction.p);
 connect(angVelo.p[3], rot);
end Motor;

The Modelica listings presented here only show the in-
formation necessary to derive the simulation code.
Modelica also has language constructs to describe the

Figuur 3 The physical model and the bond graph of the motor submodel

To be presented at the European Simulation Symposium 1997, Passau Germany, Oct. 19-22 page 5 /5

drawing itself. As most contemporary tools provide fa-
cilities to build models graphically, Modelica has lan-
guage constructs to represent icons and the graphical
layout (i.e. positions and sizes of the icons and additional
information on the edges when they are not straight
lines). The attributes describing an icon are separated
from the mathematical description and specified using
the icon attribute, because the graphical representation
has no influence on the mathematical description of the
model. A basic mechanism using a vector format, is pro-
vided to be as neutral as possible, allowing easy ex-
change to other tools. Furthermore, a vector format is su-
perior over a bitmap or raster images, since a vector for-
mat allows scaling without loss of quality, and the
amount of data needed is generally less. The icon is used
on the next higher level in the model hierarchy.

5 CONCLUSION
A Modelica bond graph library has been defined, and our
experience is that Modelica has possibilities to describe
hierarchical bond graph models. The application example
also approves this. However, some remarks need to be
made:

All bond–graph elements were elegantly described in the
bond–graph Modelica library, using the essential object
orientation features inheritance and encapsulation. Fur-
thermore, facilities to write equations in a (computa-
tional) acausal form, and constructs to build and check
power–bond connections also contribute to the elegant
implementation of the bond–graph library in Modelica.
However, causality restrictions cannot be expressed in
Modelica, which might complicate the model compila-
tion process.

A more relevant problem is that the sum–to–zero facility
in the connect statement of Modelica is not useful for
bond–graph like modeling. It is therefore not used in the
bond–graph library.

Furthermore, the translation of bond-graph models from
specific bond–graph modeling and simulation software,
such as 20-SIM (Broenink, 1997) to Modelica is in prin-
ciple a straightforward process. In fact, the 20-SIM model
libraries were a basis for the Modelica bond–graph li-
brary. However, to really facilitate the exchange of mod-
els and model libraries, those existing (bond graph) mod-
eling tools need to have both a export module which
generates directly Modelica code and an import module
capable of reading Modelica models. It depends on the
expressiveness of the bond graph modeling language
used compared to Modelica if both the import and export
facility can cover all possible language constructs.

It should be noted that Modelica is a textual model de-
scription language, and is primary a means to exchange
models. As such it is more relevant for software tool

builders then for the end user (i.e. physical systems mod-
eler).

A more general conclusion is that bond–graph modeling
is in fact a form of object–oriented physical systems
modeling.

Our aim is to build a Modelica import / export facility for
our bond graph / block diagram modeling and simulation
software, 20-SIM (Broenink, 1990; Broenink and
Weustink, 1995, Broenink, 1997).

References
Breedveld, P.C., (1984), Physical systems theory in terms of

bond graphs, Ph.D. thesis, University of Twente, Enschede
Netherlands.

Broenink, J.F. and P.B.T. Weustink, (1995), PC-version of the
bond graph modeling and simulation tool CAMAS, Proc
Int conf, Bond graph modeling and simulation, Las Vegas,
SCS simulation series 27 no. 1: 203-208.

Broenink, J.F., (1990), Computer aided modeling and simula-
tion: a bond graph approach, Ph.D. thesis, University of
Twente, Enschede Netherlands.

Broenink, J.F., (1997), Modelling, simulation and analysis with
20-SIM, Journal A 38, no.3 (Sept): 22-25.

Cellier, F.E., 1991, Continuous system modeling, Springer
Verlag.

Mattsson, S.E., H.E. Elmqvist and J.F.Broenink (1997), Mode-
lica™ – An international effort to design the next genera-
tion modeling language, Journal A 38, no.3 (Sept): 16-19.

Mattsson, S.E., (1997), On Modeling of Heat Exchangers in
Modelica, European Simulation Symposium (this issue).

Modelica, (1997), Modelica™ - a unified object oriented lan-
guage for physical systems modeling,
http://www.Dynasim.se/Modelica

Otter, M., C. Schlegel, H.E. Elmqvist, (1997), Modeling and
Realtime Simulation of an Automatic Gearbox using
Modelica, European Simulation Symposium (this issue).

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, W. Loren-
sen, (1991), Object oriented modeling and design, Prentice
Hall.

Thoma, J.U., (1989), Simulation by bond graphs – Introduction
to a graphical method, Springer Verlag.

 Tummescheit H. and M. Klose, (1997), A Case Study Apply-
ing Object-oriented Concepts for Multi-facet Modeling,
European Simulation Symposium (this issue).

Bibliography
Jan F. Broenink received the MSc degree in electrical
and biomedical engineering in 1984 and the PhD degree in
electrical engineering in 1990 from the University of Twente.
His PhD research was in the design of computer facilities for
modeling and simulation of physical systems using bond
graphs.
He is presently an Assistant Professor of the Department of
Electrical Engineering, University of Twente. His re-
search interest include development of computer tools for
modeling,simulation and implementation of embedded
control systems; and robotics.

