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Abstract. A new language called ModelicaTM for physical modeling has been developed in an
international effort. The main objective is to make it easy to exchange models and model libraries.
The design approach builds on non-causal modeling with true ordinary differential and algebraic
equations and the use of object-oriented constructs to facilitate reuse of modeling knowledge.

Introduction
Mathematical modeling and simulation are emerging as key technologies in engineering. Relevant
computerized tools, suitable for integration with traditional design methods are essential to meet
future needs of efficient engineering. There is a large amount of simulation software on the market.
However, languages and model representations are proprietary and developed for certain tools.
Most general-purpose tools are based on the same modeling methodology, input-output blocks,
as in the previous standardization effort, CSSL, from 1967 [6], when it was necessary to put
more concern on computational aspects than on user aspects. The modeller has to perform the
tedious work of transforming conservation laws and constitutive equation into an explicit ordinary
differential equation, ODE, system. Domain-oriented packages are with few exceptions, only strong
in one domain and are not capable of modeling components in other domains reasonably. This is
a major disadvantage since technical systems are becoming more and more heterogeneous with
components from many engineering domains.

Techniques for general-purpose physical modeling have been developed during the last decades,
but did not receive much attention from the simulation market. The modern approaches build on
non-causal modeling with true equations and the use of object-oriented constructs to facilitate
reuse of modeling knowledge. There are already several modeling languages with such a support
available from universities and small companies. There is also significant experience of using
these languages in various applications.

In October 1996 an international effort started to unify the concepts of these languages in
order to introduce common basic syntax and semantics and to design a new unified modeling
language. The language is called Modelica1. The main objective is to make it easy to exchange
models and model libraries and to allow users to benefit from the advances in object-oriented
modeling methodology. In February 1997 the Modelica design effort became a Technical Committee
within the Federation of European Simulation Societies, EUROSIM. The Modelica effort started
in the continuous time domain since there is a common mathematical framework in the form of
differential-algebraic equation (DAE) systems and there are several existing modeling languages
based on similar ideas. Modelica version 1.0, was finished in September 1997. It is based on DAE
systems with some discrete-event features to handle discontinuities and sampled systems.

The Modelica Design Group: Manuel Alfonseca, Universidad Autonoma de Madrid, Spain, Bernhard
Bachmann, ABB Corporate Research, Baden-Dättwil, Switzerland, Fabrice Boudaud and Alexandre Jean-
del, Gaz de France, Jan Broenink, University of Twente, The Netherlands, Dag Brück and Hilding Elmqvist
(chairman), Dynasim AB, Lund, Sweden, Thilo Ernst, GMD-FIRST, Berlin, Germany, Rüdiger Franke,
Technical University of Ilmenau, Germany, Peter Fritzson, Linköping University, Sweden, Kaj Juslin, VTT,
Finland, Matthias Klose, Technical University of Berlin, Germany, Sven Erik Mattsson, Lund University,
Sweden, Pieter Mosterman and Martin Otter, DLR Oberpfaffenhofen, Germany, Per Sahlin, BrisData AB,
Stockholm, Sweden, André Schneider and Peter Schwarz, Fraunhofer Institute for Integrated Circuits,
Dresden, Germany, Hubertus Tummescheit, GMD FIRST, Berlin, Germany, Hans Vangheluwe, University
of Gent, Belgium.

1ModelicaTM is a trade mark of the Modelica Design Group
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Modelica Fundamentals
In order to give an introduction to Modelica we will consider modeling of a simple electrical circuit
as defined in Figure 1. The system can be broken up into a set of connected electrical standard
components. We have a voltage source, two resistors, an inductor, a capacitor and a ground point.
Models of these components are typically available in model libraries. Using a graphical model
editor we can define a model by drawing an object diagram as shown in Figure 1, by positioning
icons that represent the models of the components and drawing connections.

A Modelica model of the circuit is given in Figure 2. It is a composite model which specifies
the topology of the system to be modeled in terms of components and connections between the
components. The statement “Resistor R1 (R=10);” declares a component R1 of class Resistor

and sets the default value of the resistance R to 10.

Variables and connectors
Connections specify interactions between components. A connector must contain all quantities
needed to describe the interaction. For electrical components we need the quantities voltage and
current. A type for voltage quantities is declared as type Voltage = Real(Unit = "V"); where
Real is the name of a predefined type. A real variable has a set of attributes such as unit of
measure, minimum value, maximum value and initial value.

To simplify the use of Modelica and to support compatibility, there is an extensive standard
library of type definitions which always is available with a Modelica translator. The type definitions
in this base library are based on ISO 1000 and its naming conventions for physical quantities.
Several ISO names are long, which make them awkward in practical modeling work. For this
reason, shorter alias-names are provided if necessary. The use of the name ElectricPotential

repeatedly in a model becomes cumbersome and therefore the alternative Voltage is provided.
Defining a set of connector classes is a good start when developing model libraries for a new

application domain. It promotes compatibility of the component models. A connector class, Pin,
with voltage and current for electrical connections is defined in Figure 3.

A connection, connect (Pin1, Pin2), with Pin1 and Pin2 of connector class Pin, connects the
two pins such that they form one node. This implies two equations, namely Pin1.v = Pin2.v and
Pin1.i + Pin2.i = 0. The first equation indicates that the voltages on both branches connected
together are the same, and the second corresponds to Kirchhoff ’s current law saying that the
current sums to zero at a node. Similar laws apply to flow rates in a piping network and to forces
and torques in a mechanical system. The sum-to-zero equations are generated when the prefix
flow is used in the connector declarations. In Modelica it is assumed that the value is positive
when the current or the flow is into the component.

Figure 1 A simple electrical circuit.

model Circuit

Resistor R1 (R=10), R2 (R=100);

Capacitor C (C=0.01);

Inductor L (L=0.1);

VsourceAC AC;

Ground G;

equation
connect (AC.p, R1.p); // Capacitor circuit

connect (R1.n, C.p);

connect (C.n, AC.n);

connect (R1.p, R2.p); // Inductor circuit

connect (R2.n, L.p);

connect (L.n, C.n);

connect (AC.n, G.p);

end Circuit;

Figure 2 A Modelica model of the circuit in Figure 1.
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connector Pin

Voltage v;

flow Current i;

end Pin;

Figure 3 A connector representing a pin.

partial model TwoPin

Pin p, n;

Voltage v;

equation
v = p.v - n.v; p.i + n.i = 0;

end TwoPin;

Figure 4 Shell model with two electrical pins.

Partial models and inheritance
A very important feature in order to build reusable descriptions is to define and reuse partial
models. A common property of many electrical components is that they have two pins. This means
that it is useful to define a “shell” model class TwoPin, that has two pins, p and n, and a quantity,
v, that defines the voltage drop across the component. See Figure 4. The equations define common
relations between quantities of a simple electrical component. In order to be useful, a constitutive
equation must be added. The keyword partial indicates that this model class is incomplete.

To define a model for a resistor, start from TwoPin and add a parameter for the resistance and
Ohm’s law to define the behavior. A model for a capacitor is defined similarly.

model Resistor "Ideal resistor"

extends TwoPin;

parameter Resistance R;

equation
R*p.i = v;

end Resistor;

model Capacitor "Ideal capacitor"

extends TwoPin;

parameter Capacitance C;

equation
C*der (v) = p.i;

end Capacitor;

A string between the name of a class and its body is treated as a comment attribute. Tools may
display this documentation in special ways. The keyword parameter specifies that the quantity
is constant during a simulation experiment, but can change values between experiments. A pa-
rameter is a quantity which makes it simple for a user to modify the behavior of a model. The
expression der (v) means the time derivative of v.

Modelica’s facility with partial and extends is similar to inheritance in other languages.
Multiple inheritance, i.e., several extends statements, is supported. The type system of Model-
ica is greatly influenced by type theory [1], in particular the notion of subtyping (the structural
relationship that determines type compatibility) which is different from subclassing (the mecha-
nism for inheritance). The main benefit is added flexibility in the composition of types, while still
maintaining a rigorous type system. Inheritance is not used for classification and type checking
in Modelica. An extends clause can be used for creating a subtype relationship by inheriting all
components of the base class, but it is not the only means to create it. Instead, a class A is defined
to be a subtype of class B, if class A contains all the public components of B. In other words, B
contains a subset of the components declared in A. As an example, consider a varistor model

model Varistor

extends TwoPin;

parameter Resistance R;

parameter Voltage Uc "Cut-off voltage";

equation
v = Uc*atanh(R/Uc*p.i);

end Varistor;

It is not possible to extend this model from the ideal resistor model Resistor, because the equation
of the Resistor class needs to be replaced by a new equation. Still, Varistor is a subtype of
Resistor because it contains all the public components of Resistor. This subtype relationship
is especially used for class parameterization as explained in the next section, which discusses a
more powerful parameterization, not only involving values like time constants and matrices but
also classes.
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Class Parameterization
Consider the model Circuit in Figure 2. Assume that we would like to exchange the resistor
models with the varistor model, Varistor, while retaining the parameter values given for R1.R

and R2.R and the circuit topology. This can be accomplished by redeclaring R1 and R2:

model Circ2 = Circuit(redeclare Varistor R1, redeclare Varistor R2);

It is possible to replace the ideal resistor model, since Varistor is a subtype of Resistor. A value
can be given to the parameter Uc in the redeclaration: redeclare Varistor R1(Uc=100);

This is a very strong modification of the circuit model and there is the issue of possible in-
validation of the model. The keyword redeclare clearly marks such modifications. Furthermore,
the modeller of Circuit is able to state that such modifications are not allowed by declaring a
component as final: final Resistor R2(R=100); It is also possible to state that a parameter is
frozen to a certain value, i.e., is not a parameter anymore: Resistor R2(final R=100);

To use another resistor model in Circuit we needed to know that there were two replaceable
resistors and their names. To avoid this problem and prepare for replacement of a set of models,
one can define a replaceable class, ResistorModel in the circuit model:

model Circuit2

replaceable model ResistorModel = Resistor;

protected
ResistorModel R1(R=10), R2(R=100);

// then as Circuit.

The replaceable model ResistorModel is declared to be of type Resistor. This means that it will
be enforced that the actual class will be a subtype of Resistor, i.e., have compatible connectors
and parameters. It must have Pins p and n and a parameter R. Default for ResistorModel, i.e.,
when no actual redeclaration is made, is Resistor. Setting Resistormodel to Varistor is done as

model MyCircuit2 = Circuit2(redeclare model ResistorModel = Varistor);

Replaceable classes are useful for medium parametrization. It makes it possible to separate
medium properties from device properties in libraries for process components such as pumps, heat
exchangers, chemical reactors etc. [4]. Another example is a controlled plant where some PID con-
trollers are replaced with auto tuning controllers. It is of course possible to just replace those
controllers in a graphical user environment, i.e., to create a new model. The problem with this
solution is that two models must be maintained. Modelica has the capability to instead just substi-
tute the model class of certain components using a language construct at the highest hierarchical
level, so only one version of the rest of the model is needed.

Matrices
Modeling of, for example, multi-body systems, control systems and approximations to partial dif-
ferential equations is done conveniently by utilizing matrix equations. Multi-dimensional matrices
and the usual matrix operators and matrix functions are thus supported in Modelica. It is also
possible to have arrays of components and to define regular connection patterns. A typical usage
is the modeling of a distillation column which consists of a set of trays connected in series.

A matrix variable can be declared by appending dimensions after the name: Real S[3, 3];

It is also possible to declare matrix types: type Transformation = Real[3, 3];.
To describe interaction between rigidly connected bodies in a 3D free-body diagram, define

connector MbsCut

Transformation S "Rotation matrix for frame A relative to the inertial frame";

Position3 r0 "Vector from the origin of the inertial frame to A's origin";

flow Force3 f "Resultant cut-force acting at A's origin";

flow Torque3 t "Resultant cut-torque with respect to A's origin";

end MbsCut;

A model for a rigid bar can be defined as
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model Bar "Massless bar with two mechanical cuts."

MbsCut a b;

parameter Position3 r[3] = [0, 0, 0] "Position vector from a to b";

equation
b.S = a.S; b.r0 = a.r0 + a.S*r; // Kinematic relations between a and b

0 = a.f + b.f; // Force balance

0 = a.t + b.t - cross(r, a.f); // Torque balance

end Bar;

Other Modeling Features
Modelica supports hybrid modeling. Realistic physical models often contain discontinuities, dis-
crete events or changes of structure. Examples are relays, switches, friction, impact, sampled data
systems etc. Modelica has introduced special language constructs allowing a simulator to introduce
efficient handling of such events.

Algorithms and functions are supported in Modelica for modeling parts of a system in procedu-
ral programming style. Constructs for including graphical annotations are available in order that
also icons and model diagrams become portable. An extensive Modelica base library containing
standard variable and connector types promotes reuse by standardizing on interfaces.

Conclusions
A short overview of Modelica has been given. The expressive modeling power of Modelica is large.
Model classes and their instantiation form the basis of hierarchical modeling, connectors and
connections correspond to physical connections of components. At the lowest level, equations are
used to describe the relation between the quantities of the model.

Modelica has been used to model various kinds of systems. Modeling of automatic gearboxes for
the purpose of real-time simulation is described in [5]. Such models are non-trivial because of the
varying structure during gear shift utilizing clutches, free wheels and brakes. Modeling of heat
exchangers is discussed in [4]. Class parameters of Modelica are used for medium parametrization
and regular component structures are used for discretization in space of the heat exchanger.
Thermodynamical and flow oriented models are also discussed in [3]. A Modelica library supporting
the bond graph modeling methodology is described in [2].

Several Modelica tools and model libraries are under development. There are discussions to
extend Modelica to support, for example, partial differential equations and discrete event models.

More information, including modeling requirements, rationale and definition of Modelica and
future developments is available on WWW at URL: http://www.Dynasim.se/Modelica/.
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